JP2012240059A - Weld portion repairing method - Google Patents

Weld portion repairing method Download PDF

Info

Publication number
JP2012240059A
JP2012240059A JP2011109660A JP2011109660A JP2012240059A JP 2012240059 A JP2012240059 A JP 2012240059A JP 2011109660 A JP2011109660 A JP 2011109660A JP 2011109660 A JP2011109660 A JP 2011109660A JP 2012240059 A JP2012240059 A JP 2012240059A
Authority
JP
Japan
Prior art keywords
welding
layer
build
temper bead
welding process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011109660A
Other languages
Japanese (ja)
Inventor
Takeshi Fukuda
健 福田
Wataru Kono
渉 河野
Masaki Tamura
雅貴 田村
Minoru Obata
稔 小畑
Yasuo Morishima
康雄 森島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011109660A priority Critical patent/JP2012240059A/en
Publication of JP2012240059A publication Critical patent/JP2012240059A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PROBLEM TO BE SOLVED: To provide a weld portion repairing method which enables high-quality padding welding hardly generating melting shortage, undercut, and poor fusion to efficiently be performed when repairing the weld portion wherein members having different materials are welded and joined each other.SOLUTION: In the weld portion repairing method for repairing the weld portion wherein a first member 1 requiring temper bead welding and a second member 2 not requiring the temper bead welding are joined each other, there are included a cutting process of forming a groove section by cutting sections containing a part of the weld portion, and a padding welding process of performing multi-layered padding welding to the groove section. The padding welding process includes a temper bead multi-layered padding welding process to the first member 1, and thickness of a padding layer based the temper bead multi-layered padding welding process is thinner at a lower layer section rather than that of an upper layer section.

Description

本発明は、材質が異なる部材同士が溶接接合されたその溶接部のき裂補修や予防保全のための溶接部補修方法に関する。   The present invention relates to a weld repair method for crack repair and preventive maintenance of welds in which members of different materials are welded together.

たとえば原子炉容器の出入口管台に対する、予防保全、およびき裂除去加工後の肉盛溶接に関して、レーザ溶接により複数の溶接条件を用いて肉盛溶接を行なう際、少なくとも一つの条件をテンパービード溶接とする溶接施工方法が知られている(たとえば、特許文献1参照)。   For example, with regard to preventive maintenance for reactor vessel inlet / outlet nozzles and overlay welding after crack removal processing, when overlay welding is performed using multiple welding conditions by laser welding, at least one condition is temper bead welding. A welding construction method is known (for example, see Patent Document 1).

たとえば、低合金鋼からなる原子炉容器の管台溶接部では、経年化したプラントにおいて応力腐食割れが原因で管台溶接部のき裂や欠陥などが生じた場合、低合金鋼のクラッド材、および母材である低合金鋼を含めた部分を機械加工により削り取り、その後肉盛溶接により元の耐食性に改善する補修作業が行なわれる。また、事前に管台溶接部でのき裂や欠陥の発生を抑制するための予防保全として、耐食性改善の前記の補修作業と類似の方法で行なう。   For example, in a welded base of a reactor vessel made of low-alloy steel, if a crack or defect occurs in the welded base due to stress corrosion cracking in an aging plant, the cladding material of the low-alloy steel, And the part including the low alloy steel which is the base material is cut off by machining, and then repair work is performed to improve the original corrosion resistance by overlay welding. Further, as preventive maintenance for suppressing the occurrence of cracks and defects at the welded portion of the nozzle in advance, it is performed in a manner similar to the above-described repair work for improving corrosion resistance.

特許第4112736号公報Japanese Patent No. 412736

しかし、除去したクラッド材の厚さが薄い場合、あるいはクラッド材に近接した低合金鋼まで機械加工で削り取った場合、補修溶接時の熱影響によって低合金鋼が焼入れ硬化し、硬化部分の靭性が劣化し、水素脆化などによる低温割れの恐れがある。   However, if the removed cladding material is thin or if the low alloy steel close to the cladding material is machined away, the low alloy steel is quenched and hardened due to the heat effect during repair welding, and the toughness of the hardened part is reduced. Deteriorated and there is a risk of cold cracking due to hydrogen embrittlement.

一般に、原子炉容器のような構造物の溶接時の硬化による靭性劣化を改善するには、溶接後熱処理(PWHT)を実施するが、PWHTを補修する実機に適用することは、コスト面から非常に困難である。PWHTを用いることなく、溶接による硬化部の靭性を回復する方法としてテンパービード工法が用いられている。   Generally, in order to improve toughness deterioration due to hardening of structures such as nuclear reactor vessels, heat treatment after welding (PWHT) is carried out. However, it is very costly to apply to actual equipment that repairs PWHT. It is difficult to. The temper bead method is used as a method for recovering the toughness of the hardened portion by welding without using PWHT.

しかし、従来のTIG溶接に代表されるようなアーク溶接によるテンパービード工法では、溶接エネルギーをより局所的に絞るには限界があることから、レーザ溶接のような高エネルギー密度の溶接方法に比較して、溶接速度をはじめとした施工効率の向上には限界がある。また、TIG溶接では電極管理交換などに手間がかかるという問題や、アース位置によって溶接品質が変動しやすいという問題もある。   However, the temper bead method using arc welding as typified by conventional TIG welding has a limit in restricting the welding energy more locally, so it is compared with a high energy density welding method such as laser welding. Therefore, there is a limit to improving the construction efficiency including welding speed. In addition, TIG welding has a problem that it takes time to exchange and manage electrodes, and a problem that welding quality tends to vary depending on the ground position.

さらにTIG溶接をはじめとしたアーク溶接では、溶接エネルギーをより局所的に付与することができるレーザ溶接のような溶接方法に比べて、溶接入熱が大きくなることが多く、レーザ溶接のような溶接方法に比べて、低合金鋼の残存クラッド厚が薄い場合でもテンパービード工法が必要となる。   Furthermore, in arc welding such as TIG welding, the welding heat input is often larger than welding methods such as laser welding that can apply welding energy more locally. Compared to this method, the temper bead method is required even when the remaining cladding thickness of the low alloy steel is thin.

一般的にテンパービード工法は、広い焼戻し軟化層を用いて、前層までの溶接で生じた硬化層を焼戻し軟化するため、大入熱かつ溶着効率の低い条件で溶接施工するため、施工効率は低い。そのため、補修対象とする開先寸法が大きい場合、施工時間に長時間を要するという問題がある。   In general, the temper bead method uses a wide temper softening layer to temper soften the hardened layer produced by welding up to the previous layer, so the welding efficiency is low and the welding efficiency is low. Low. Therefore, when the groove dimension to be repaired is large, there is a problem that it takes a long time for construction.

施工時間の短縮のためには、開先部の溶接において、焼戻し軟化が必要な低合金鋼に近接する部分に限って溶着効率の低いテンパービード溶接を行ない、それ以外の部分は溶着効率が高い条件で施工する方法が考えられる。   In order to shorten the construction time, temper bead welding with low welding efficiency is performed only in the part close to the low alloy steel that requires temper softening in the welding of the groove part, and the other part has high welding efficiency. A method of construction under conditions is conceivable.

しかしながら、同じ開先内で複数の溶接条件を用いた施工時、溶接条件の変化点で適切な積層を行なわない場合、溶け込み不足やアンダーカット、融合不良などの溶接不良が起きる。   However, during construction using a plurality of welding conditions in the same groove, if proper lamination is not performed at the changing point of the welding conditions, poor welding such as insufficient penetration, undercut and poor fusion occurs.

本発明の目的は、材質が異なる部材同士が溶接接合されたその溶接部の補修を行なうに当たり、効率良く、かつ溶け込み不足やアンダーカット、融合不良などが生じにくい高品質な肉盛溶接を行なうことができるようにすることにある。   An object of the present invention is to perform high-quality overlay welding that is efficient and does not cause insufficient penetration, undercut, poor fusion, etc., when repairing a welded portion in which members of different materials are welded together. Is to be able to.

上記目的を達成するために、本発明に係る溶接部補修方法は、テンパービード溶接を必要とする第1の部材とテンパービード溶接を必要としない第2の部材とを互いに接合した溶接部を補修する溶接部補修方法であって、前記溶接部の一部を含む部分を削り取って開先部を形成する切削工程と、前記開先部に多層肉盛溶接を施す肉盛溶接工程と、を有し、前記肉盛溶接工程は、前記第1の部材へのテンパービード多層肉盛溶接工程を含み、当該テンパービード多層肉盛溶接工程による肉盛積層の厚さが、上層部よりも下層部で薄いこと、を特徴とする。   In order to achieve the above-described object, a weld repair method according to the present invention repairs a welded portion in which a first member that requires temper bead welding and a second member that does not require temper bead welding are joined together. A welding portion repairing method, comprising: a cutting step of cutting a portion including a part of the welded portion to form a groove portion; and a build-up welding step of performing multilayer overlay welding on the groove portion. The build-up welding process includes a temper bead multi-layer build-up welding process to the first member, and the thickness of the build-up lamination by the temper bead multi-layer build-up welding process is lower than the upper layer part. It is thin.

本発明によれば、材質が異なる部材同士が溶接接合されたその溶接部の補修を行なうに当たり、効率良く、かつ溶け込み不足やアンダーカット、融合不良などが生じにくい高品質な肉盛溶接を行なうことができる。   According to the present invention, when repairing a welded portion in which members of different materials are welded together, high-quality overlay welding is performed efficiently and is unlikely to cause poor penetration, undercut, or poor fusion. Can do.

本発明に係る溶接部補修方法の実施形態による肉盛溶接部の構成を示す模式的断面図である。It is typical sectional drawing which shows the structure of the overlay welding part by embodiment of the welding part repair method which concerns on this invention. 本発明に係る溶接部補修方法の実施形態を適用可能な加圧水型原子炉の原子炉容器を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the reactor vessel of the pressurized water reactor which can apply embodiment of the welding part repair method which concerns on this invention. 本発明に係る溶接部補修方法の実施形態による肉盛溶接施工前の開先部の構成を示す模式的断面図である。It is typical sectional drawing which shows the structure of the groove part before overlay welding construction by embodiment of the welding part repair method which concerns on this invention. 本発明に係る溶接部補修方法の実施形態による肉盛溶接部の溶接条件区分を示す模式的断面図である。It is typical sectional drawing which shows the welding condition division of the overlay welding part by embodiment of the welding part repair method which concerns on this invention.

以下、本発明に係る溶接部補修方法の一実施形態について添付図面を参照しながら説明する。図1は、本発明に係る溶接部補修方法の実施形態による肉盛溶接部の構成を示す模式的断面図である。図2は、本発明に係る溶接部補修方法の実施形態を適用可能な加圧水型原子炉の原子炉容器を示す概略縦断面図である。図3は、本発明に係る溶接部補修方法の実施形態による肉盛溶接施工前の開先部の構成を示す模式的断面図である。図4は、本発明に係る溶接部補修方法の実施形態による肉盛溶接部の溶接条件区分を示す模式的断面図である。   Hereinafter, an embodiment of a weld repair method according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic cross-sectional view showing a configuration of a build-up weld according to an embodiment of a weld repair method according to the present invention. FIG. 2 is a schematic longitudinal sectional view showing a reactor vessel of a pressurized water reactor to which an embodiment of the weld repair method according to the present invention can be applied. FIG. 3 is a schematic cross-sectional view showing the configuration of the groove portion before overlay welding according to the embodiment of the weld repair method according to the present invention. FIG. 4 is a schematic cross-sectional view showing the welding condition classification of the build-up weld according to the embodiment of the weld repair method according to the present invention.

図2に示すように、加圧水型原子炉の原子炉容器50の側面には、入口管台51および出口管台52が設けられている。また、原子炉容器50の頂部には制御棒駆動機構53が配置され、原子炉容器50の底部には計装管54が取り付けられている。入口管台51および出口管台52の構造は共通であるから、図1、図3および図4ではこれらを合わせて管台(第1の部材)1として表示している。管台1の先端には、冷却水配管のセーフエンド(第2の部材)2が突き合わせ溶接によって接合されている。ただし、図2ではセーフエンド2の図示が省略されている。   As shown in FIG. 2, an inlet nozzle 51 and an outlet nozzle 52 are provided on the side surface of the reactor vessel 50 of the pressurized water reactor. A control rod drive mechanism 53 is disposed at the top of the reactor vessel 50, and an instrumentation tube 54 is attached to the bottom of the reactor vessel 50. Since the structure of the inlet nozzle 51 and the outlet nozzle 52 is common, in FIG. 1, FIG. 3 and FIG. 4, these are collectively shown as a nozzle (first member) 1. A safe end (second member) 2 of the cooling water pipe is joined to the tip of the nozzle 1 by butt welding. However, the illustration of the safe end 2 is omitted in FIG.

管台1を含む原子炉容器50の主要部は低合金鋼からなり、その内面はステンレス鋼製のクラッド層4に覆われている。また、セーフエンド2はステンレス鋼製である。管台1とセーフエンド2は、溶接金属3によって溶接され、溶接金属3と管台1の間にバタリング層30が形成されている。溶接金属3は、たとえば、JIS600系ニッケル基合金である。これは、クロムを約15%含有し、ニッケル、クロム、鉄を主成分とする耐熱性、耐食性に優れた合金である。   The main part of the reactor vessel 50 including the nozzle 1 is made of low alloy steel, and the inner surface thereof is covered with a cladding layer 4 made of stainless steel. The safe end 2 is made of stainless steel. The nozzle 1 and the safe end 2 are welded by a weld metal 3, and a buttering layer 30 is formed between the weld metal 3 and the nozzle 1. The weld metal 3 is, for example, a JIS 600 nickel base alloy. This is an alloy containing about 15% chromium and having excellent heat resistance and corrosion resistance mainly composed of nickel, chromium and iron.

管台1とセーフエンド2の溶接部で溶接金属3として使われるJIS600系合金は、応力腐食割れの発生が懸念される材料であり、耐食性改善のためにはJIS600系合金の表面にJIS690系合金を肉盛溶接することで、応力腐食割れを抑制することができる。ここで、JIS690系合金は、クロムを約30%含有し、ニッケル、クロム、鉄を主成分とし、JIS600系合金よりも耐食性に優れた合金である。   The JIS 600 alloy used as the weld metal 3 in the welded portion between the nozzle 1 and the safe end 2 is a material that is concerned about the occurrence of stress corrosion cracking. In order to improve corrosion resistance, the surface of the JIS 600 alloy has a JIS 690 alloy. By overlay welding, stress corrosion cracking can be suppressed. Here, the JIS 690 series alloy is an alloy containing about 30% of chromium, having nickel, chromium, and iron as main components and having better corrosion resistance than the JIS 600 series alloy.

あるいは、JIS600系合金の溶接部に割れが発生した場合に、割れを除去して機械加工で開先部を形成し、この開先部をJIS690系合金で肉盛積層することで、補修施工をすることもできる。   Alternatively, when a crack occurs in a welded part of a JIS 600 alloy, repair is performed by removing the crack and forming a groove part by machining and overlaying the groove part with a JIS 690 alloy. You can also

たとえば、既存の溶接部3に割れなどの欠陥部が発生した場合などに、はじめに、機械加工により欠陥部を除去して、図3に示す開先部5を形成する。つぎに、図1に示すように多層肉盛溶接を行なう。   For example, when a defect part such as a crack occurs in the existing welded part 3, first, the defect part is removed by machining to form the groove part 5 shown in FIG. Next, multilayer overlay welding is performed as shown in FIG.

ここで補修の対象となる溶接部は、たとえば、加圧水型原子炉の原子炉容器の冷却水出入口管台の場合、厚さ70mm程度の板であって、厚さ5mm程度のステンレス鋼製クラッド層4が設けられている。この場合、開先部5の深さはたとえば40mm以下である。   Here, in the case of the cooling water inlet / outlet base of the reactor vessel of the pressurized water reactor, the welded portion to be repaired is a plate having a thickness of about 70 mm and a stainless steel clad layer having a thickness of about 5 mm. 4 is provided. In this case, the depth of the groove portion 5 is, for example, 40 mm or less.

この実施形態における肉盛溶接はレーザ溶接で行なうものとする。   The build-up welding in this embodiment is performed by laser welding.

開先部5の開先面と船底面とのなす角は45度以下であることが望ましい。レーザ光は、溶接施工面に対して法線方向から入射した場合にもっとも効率よくエネルギーが施工部に投入され、法線方向から傾くに従い効率が下がる。一方、実際の施工を考慮すると、レーザ光の入射角は施工対象部に応じて変化するため、より広い入射角範囲で健全な溶接施工ができることが望ましい。溶接品質が健全であることの証拠として、入射角45度の場合のテンパービード溶接において、低合金鋼の熱影響部の硬さが350Hv以下であることを確認している。   It is desirable that the angle formed between the groove surface of the groove portion 5 and the bottom surface of the ship is 45 degrees or less. When laser light is incident on the welding surface from the normal direction, energy is most efficiently input to the work portion, and the efficiency decreases as the laser beam is tilted from the normal direction. On the other hand, in consideration of actual construction, the incident angle of the laser beam changes depending on the construction target part, so that it is desirable that sound welding construction can be performed in a wider incident angle range. As proof that the welding quality is sound, it has been confirmed that the hardness of the heat-affected zone of the low alloy steel is 350 Hv or less in temper bead welding when the incident angle is 45 degrees.

なお、溶接進行方向は開先面および船底面と平行である。   The welding direction is parallel to the groove surface and the ship bottom.

JIS690系合金を肉盛溶接する部分が低合金鋼から成る管台1に近接しているときには、低合金鋼の近接部分でテンパービード工法を用いる必要がある。テンパービード工法とは、前層までの溶接で生じた硬化層を、次層以降の溶接で焼戻し軟化しながら積層を繰り返し、元の母材と同等以上に靭性を改善する工法である。   When the portion where the JIS 690 alloy is build-up welded is close to the nozzle 1 made of low alloy steel, it is necessary to use the temper bead method in the vicinity of the low alloy steel. The temper bead method is a method in which a hardened layer produced by welding up to the previous layer is repeatedly laminated while being tempered and softened by welding after the next layer, and the toughness is improved to be equal to or higher than that of the original base material.

テンパービード工法は、広い焼戻し軟化層を重ね合わせながら肉盛積層を重ねる原理上、入熱量が大きく、余盛り高さが低い溶接条件となることが多く、一般的に溶着効率は高くない。したがって、開先部全体をテンパービード溶接の条件で肉盛溶接した場合、溶接施工に非常に多くの時間を要する。そのため、テンパービード溶接が不要な部分に関しては、溶着効率が高い条件で肉盛溶接することが望ましい。   The temper bead method is based on the principle of overlaying a wide range of tempered softening layers, and is often a welding condition where the heat input is large and the surplus height is low, and the welding efficiency is generally not high. Therefore, when the entire groove portion is overlay welded under the conditions of temper bead welding, a very long time is required for welding. Therefore, it is desirable to perform overlay welding under conditions where the welding efficiency is high for a portion where temper bead welding is unnecessary.

しかしながら、同じ開先内で複数の溶接条件で溶接施工する場合、溶接条件が切り替わる部分では、溶接パス間のビード高さが大きく変化したときに、溶け込み不足やアンダーカット、融合不良などが生じる恐れがある。このような問題を解決するには、溶接条件が切り替わる部分で、できるだけ溶接パス間の段差を小さくすることが効果的である。   However, when welding is performed with multiple welding conditions in the same groove, there is a risk of insufficient penetration, undercut, poor fusion, etc., when the bead height between welding passes changes significantly at the part where the welding conditions change. There is. In order to solve such a problem, it is effective to reduce the level difference between the welding paths as much as possible at the portion where the welding conditions are switched.

この実施形態の溶接部補修方法における多層肉盛溶接の手順を、図1を参照して説明する。はじめに、開先部5の底部の管台1側にテンパービード肉盛溶接を行なって、テンパービード初層11を形成する。つぎに、開先部5の底部のセーフエンド2側に、高溶着条件で肉盛溶接を行なって高溶着条件初層12を形成する。高溶着条件での肉盛溶接は、テンパービード肉盛溶接よりも溶着効率が高いものとする。テンパービード初層11と高溶着条件初層12の間は、間隙なく接続されているものとする。つぎに、テンパービード初層11の上にテンパービード第2層13を形成する。さらにそのつぎに、高溶着条件初層12の上に高溶着条件第2層14を形成する。   The procedure of the multilayer build-up welding in the welding part repair method of this embodiment is demonstrated with reference to FIG. First, temper bead overlay welding is performed on the nozzle base 1 side at the bottom of the groove portion 5 to form the temper bead initial layer 11. Next, on the safe end 2 side of the bottom portion of the groove portion 5, overlay welding is performed under high welding conditions to form the high welding condition initial layer 12. Overlay welding under high welding conditions is assumed to have higher deposition efficiency than temper bead overlay welding. It is assumed that the temper bead initial layer 11 and the high welding condition initial layer 12 are connected without a gap. Next, the temper bead second layer 13 is formed on the temper bead initial layer 11. Next, a high welding condition second layer 14 is formed on the high welding condition initial layer 12.

上述の工程と同様にして、テンパービード肉盛溶接と高溶着条件肉盛溶接とを交互に行なう。これにより、テンパービード初層11の上に、テンパービード第2層13、テンパービード第3層15、テンパービード第4層17、テンパービード第5層19、テンパービード第6層21を順次形成する。同様に、高溶着条件初層12の上に、高溶着条件第2層14、高溶着条件第3層16、高溶着条件第4層18、高溶着条件第5層20を順次形成する。   In the same manner as described above, temper bead overlay welding and high welding condition overlay welding are alternately performed. Thus, the temper bead second layer 13, the temper bead third layer 15, the temper bead fourth layer 17, the temper bead fifth layer 19, and the temper bead sixth layer 21 are sequentially formed on the temper bead initial layer 11. . Similarly, a high welding condition second layer 14, a high welding condition third layer 16, a high welding condition fourth layer 18, and a high welding condition fifth layer 20 are sequentially formed on the high welding condition initial layer 12.

その後、テンパービード第6層21および高溶着条件第5層20の上に、高溶着条件による多層肉盛溶接層である第2の高溶着条件層31を形成する。   Thereafter, a second high-welding condition layer 31 that is a multilayer build-up weld layer under the high-welding conditions is formed on the temper bead sixth layer 21 and the high-welding condition fifth layer 20.

このように、管台1に近接した部分では、初層11〜第6層21までのテンパービード溶接を行なう。一方、テンパービード溶接が不要なセーフエンド側では、溶着効率が高い高溶着条件で初層12から第5層20まで積層することで、施工効率が改善できる。   Thus, in the part close to the nozzle 1, temper bead welding from the first layer 11 to the sixth layer 21 is performed. On the other hand, on the safe end side where temper bead welding is unnecessary, the construction efficiency can be improved by laminating the first layer 12 to the fifth layer 20 under high welding conditions with high welding efficiency.

また、テンパービード溶接条件は、初層11および第2層13と、第3層15〜第6層21では、異なる溶接条件を用いている。具体例として、初層11および第2層13では、入熱量2.3〜2.7kJ/cm、溶接速度55〜65cm/min、ワイヤ供給速度110〜120cm/minとし、第3層15〜第6層21では、入熱量11.3〜13.8kJ/cm、溶接速度13〜16cm/min、ワイヤ供給速度33〜37cm/minとする。2種類の溶接条件を組み合わせて肉盛積層を行なうことにより、低合金鋼の靭性が改善できる。   Further, different temper bead welding conditions are used for the first layer 11 and the second layer 13 and for the third layer 15 to the sixth layer 21. As a specific example, in the first layer 11 and the second layer 13, the heat input amount is 2.3 to 2.7 kJ / cm, the welding speed is 55 to 65 cm / min, the wire supply speed is 110 to 120 cm / min, In the 6-layer 21, the heat input is 11.3 to 13.8 kJ / cm, the welding speed is 13 to 16 cm / min, and the wire supply speed is 33 to 37 cm / min. The toughness of the low alloy steel can be improved by performing overlay lamination by combining two kinds of welding conditions.

テンパービード溶接条件では、初層11および第2層13の条件は、硬化層をできるだけ小さくするために入熱量を低くする。一方、第3層15〜第6層21は広い焼戻し軟化層を得るために入熱量を大きくする。溶着量に関しては、たとえば、初層11および第2層13では13.1〜17.0g/sとし、第3層15〜第6層21では16.0〜22・1g/sであり、溶接後の余盛高さにも違いがある。   Under the temper bead welding conditions, the conditions of the first layer 11 and the second layer 13 are such that the heat input is lowered in order to make the hardened layer as small as possible. On the other hand, the third layer 15 to the sixth layer 21 increase the heat input to obtain a wide tempered softened layer. Regarding the welding amount, for example, the initial layer 11 and the second layer 13 are 13.1 to 17.0 g / s, the third layer 15 to the sixth layer 21 are 16.0 to 22 · 1 g / s, and welding is performed. There is also a difference in the height of later surging.

一方、テンパービード溶接が不要な部分の肉盛積層については、高溶着条件で積層する。たとえば、入熱量が2.7〜5.4kJ/cm、溶接速度が30〜70cm/min、ワイヤ供給速度が100〜170cm/minの範囲で、融合不良や割れなどが生じず、健全な溶接が可能である。高溶着条件では、溶着量が12.2〜22.11g/sである。   On the other hand, for the build-up lamination of the portion that does not require temper bead welding, the lamination is performed under high welding conditions. For example, when the heat input is in the range of 2.7 to 5.4 kJ / cm, the welding speed is 30 to 70 cm / min, and the wire supply speed is 100 to 170 cm / min, the fusion failure and cracking do not occur and sound welding is performed. Is possible. Under high welding conditions, the welding amount is 12.2 to 22.11 g / s.

テンパービード溶接条件、高溶着条件ともに、レーザは、たとえば、YAGまたはファイバレーザとし、レーザのスポット径は4.5〜6、5mm、シールドガスはアルゴンとする。   For both the temper bead welding conditions and the high welding conditions, the laser is, for example, YAG or a fiber laser, the laser spot diameter is 4.5 to 6, 5 mm, and the shielding gas is argon.

一般的に、実機での溶接施工では、溶接条件の中央条件で溶接施工を行なう。このときの各溶接条件の溶着量は、テンパー溶接条件の初層〜第2層条件:14.9g/s、第3層〜第6層条件:18.8g/s、高溶着条件:22.6g/sである。   In general, in welding with an actual machine, welding is performed under the central condition of the welding conditions. The welding amount of each welding condition at this time is as follows: first layer to second layer condition of temper welding condition: 14.9 g / s, third to sixth layer condition: 18.8 g / s, high welding condition: 22. 6 g / s.

一方、標準条件での多パス施工時の余盛り高さは、テンパー溶接条件の初層〜第2層条件:0.6mm、第3層〜第6層条件:0.8mm、高溶着条件:0.9mmである。   On the other hand, the surplus height at the time of multi-pass construction under standard conditions is as follows: initial layer to second layer conditions of temper welding conditions: 0.6 mm, third layer to sixth layer conditions: 0.8 mm, high welding conditions: 0.9 mm.

以上説明したように、補修対象となる開先に対しては、区分ごとに溶接条件を切り替えることにより効率良く溶接できる。すなわち、図1および図4に示すように、開先部に肉盛溶接部6を形成するに当たって、開先部の管台1側の最下部にテンパービードの下盛溶接層7を形成し、その上にテンパービードの上盛溶接層8を形成する。一方、開先部のセーフエンド2側に高溶着条件層9を形成する。そしてその後、テンパービードの上盛溶接層8と高溶着条件層9の境界部(切替部)を覆うように第2の高溶着条件層31を形成する。   As described above, the groove to be repaired can be efficiently welded by switching the welding conditions for each section. That is, as shown in FIG. 1 and FIG. 4, when forming the build-up welded portion 6 in the groove portion, the underlay weld layer 7 of the temper bead is formed at the lowest portion on the nozzle base 1 side of the groove portion, A temper bead overlay weld layer 8 is formed thereon. On the other hand, the high welding condition layer 9 is formed on the safe end 2 side of the groove portion. And after that, the 2nd high welding condition layer 31 is formed so that the boundary part (switching part) of the overlay welding layer 8 of a temper bead and the high welding condition layer 9 may be covered.

しかしながら、溶接条件毎に余盛り高さが異なるために、たとえば、テンパービード溶接での積層を全て終えた後に高溶着条件での積層を行なうと、テンパービード溶接の積層と高溶着条件の積層の切り替え部分で大きな段差があるため、溶接施工が困難であると同時に、溶接欠陥が出やすくなってしまう。   However, since the surplus height differs depending on the welding conditions, for example, if lamination is performed under high welding conditions after all lamination in temper bead welding is performed, lamination of temper bead welding and lamination under high welding conditions are performed. Since there is a large step at the switching portion, welding construction is difficult and at the same time, welding defects are likely to occur.

これを改善するには、溶接条件切り替え時に生じる溶接パス間の段差ができるだけ少なくなりように、テンパービード溶接条件、高溶着条件を切り替えて使用することが効果的である。   In order to improve this, it is effective to switch between the temper bead welding conditions and the high welding conditions so that the level difference between the welding passes generated when switching the welding conditions is minimized.

テンパービード溶接条件と高溶着条件を切り替えながら施工するとき、施工中に生じる段差が最も少なくなる積層順序について、図1を用いてさらに具体的に説明する。   When performing construction while switching between temper bead welding conditions and high welding conditions, the stacking sequence in which the level difference generated during construction is minimized will be described more specifically with reference to FIG.

まず初めに、テンパービード溶接が必要である管台1側に対してテンパービード溶接の初層条件でテンパービード初層11を積層する。このテンパービード初層11の余盛高さは約0.6mmである。続いて、テンパービード溶接が不要であるセーフエンド2側に対して、高溶着条件で高溶着条件初層12を積層する。この高溶着条件初層12の余盛高さは約0.9mmである。このとき、テンパービード溶接条件と、高溶着条件の施工部分では、約0.3mmの段差がある。仮に、初層積層の途中で溶接条件を切り替えず、管台側のテンパービード溶接条件の積層、あるいはセーフエンド側のクラッド溶接条件での積層のみを第2層以降も続けた場合、条件を切り替える部分での段差が大きくなってしまう。   First, the temper bead initial layer 11 is laminated on the nozzle 1 side that requires temper bead welding under the initial layer conditions of temper bead welding. The extra height of the temper bead initial layer 11 is about 0.6 mm. Subsequently, the high welding condition initial layer 12 is laminated under the high welding conditions on the safe end 2 side where temper bead welding is unnecessary. The overfill height of the high-welding condition initial layer 12 is about 0.9 mm. At this time, there is a step of about 0.3 mm between the temper bead welding condition and the high welding condition. If the welding conditions are not switched in the middle of the first layer stacking, but the stacking under the temper bead welding conditions on the nozzle side or the laminating under the clad welding conditions on the safe end side is continued even after the second layer, the conditions are switched. The step at the part becomes large.

前述のように初層溶接を行なったのち、管台1側に対してテンパービード溶接条件の第2層13の積層(余盛高さ0.6mm)を行なう。このとき、管台1側の余盛り高さは合計1.2mmとなり、セーフエンド2側の高溶着条件側のとの段差は0.3mmである。仮に、第2層の積層で、セーフエンド2側に対する高溶着条件(余盛り高さ0.9mm)を先に行なったとすると、第2層で生じる条件切り替え部の段差は1.2mmとなり、溶接不良が生じる恐れがある。   After the first layer welding is performed as described above, the second layer 13 (tempering height 0.6 mm) under the temper bead welding condition is stacked on the nozzle base 1 side. At this time, the surplus height on the nozzle base 1 side is 1.2 mm in total, and the level difference between the safe end 2 side and the high welding condition side is 0.3 mm. Assuming that the second layer is laminated and the high-weld condition (excess height of 0.9 mm) is first applied to the safe end 2 side, the step of the condition switching portion generated in the second layer is 1.2 mm, and welding is performed. Defects may occur.

以降の積層に関しても、できるだけ条件切り替え部分で生じる段差が少なくなるように肉盛積層を行なう。前述したテンパービード溶接条件と高溶着条件で開先を埋めるにあたり、溶接条件の切り替え部分での段差は、肉盛溶接層11、12、13、・・・、21の順で積層した場合が最も小さくなり、溶接欠陥は発生しない。   With regard to the subsequent stacking, the overlaying is performed so that the level difference generated at the condition switching portion is reduced as much as possible. When filling the groove with the temper bead welding condition and the high welding condition described above, the step at the welding condition switching portion is most often in the case of laminating in the order of the build-up weld layers 11, 12, 13,. It becomes smaller and no welding defect occurs.

なお、肉盛溶接層11、12、13、・・・、21を形成した後は、すべて高溶着条件のみで第2の高溶着条件層31を形成する。このときは、溶接条件の切り替えがなく、溶接パス間の段差は生じない。   In addition, after forming the build-up weld layers 11, 12, 13, ..., 21, the second high-weld condition layer 31 is formed only under the high-weld condition. At this time, there is no switching of welding conditions, and no step between welding passes occurs.

このような積層方法で積層を行なうことで、溶接条件の切り替え部分において、溶け込み不足やアンダーカット、融合不良などが生じない高品質なレーザ肉盛溶接ができる。   By laminating by such a laminating method, high-quality laser overlay welding that does not cause lack of penetration, undercut, poor fusion, or the like can be achieved at the welding condition switching portion.

このような開先に対する溶接施工は、現在、補修溶接が必要とされる開先深さは最大で約40mm程度であるが原理的には開先深さが無限であっても可能である。   Such a welding operation for a groove is currently at a maximum depth of about 40 mm where repair welding is required, but in principle it is possible even if the groove depth is infinite.

また開先形状に関しては、肉盛補修溶接を行なう開先形状が、開先面と船底面のなす角が45°以下、かつ溶接進行方向が開先面と船底面と平行であれば、低合金鋼の靭性が改善され、テンパービード溶接が可能である。   As for the groove shape, the groove shape for overlay repair welding is low if the angle between the groove surface and the bottom of the ship is 45 ° or less and the welding progress direction is parallel to the groove surface and the bottom of the ship. The toughness of the alloy steel is improved and temper bead welding is possible.

以上本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   Although the embodiment of the present invention has been described above, this embodiment is presented as an example and is not intended to limit the scope of the invention. This embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. This embodiment and its modifications are included in the scope of the present invention and the gist thereof, and are also included in the invention described in the claims and the equivalent scope thereof.

1 管台(第1の部材)
2 セーフエンド(第2の部材)
3 溶接金属
4 クラッド層
5 開先部
6 肉盛溶接部
7 テンパービードの下盛溶接層
8 テンパービードの上盛溶接層
9 高溶着条件層
11〜21 溶接層
30 バタリング層
31 第2の高溶着条件層
50 原子炉容器
51 入口管台
52 出口管台
53 制御棒駆動機構
54 計装管
1 Tubular base (first member)
2 Safe end (second member)
3 weld metal 4 clad layer 5 groove portion 6 overlay weld portion 7 temper bead under weld layer 8 temper bead over weld layer 9 high welding condition layers 11 to 21 weld layer 30 buttering layer 31 second high weld Condition layer 50 Reactor vessel 51 Entrance nozzle 52 Exit nozzle 53 Control rod drive mechanism 54 Instrumentation tube

Claims (7)

テンパービード溶接を必要とする第1の部材とテンパービード溶接を必要としない第2の部材とを互いに接合した溶接部を補修する溶接部補修方法であって、
前記溶接部の一部を含む部分を削り取って開先部を形成する切削工程と、
前記開先部に多層肉盛溶接を施す肉盛溶接工程と、
を有し、
前記肉盛溶接工程は、前記第1の部材へのテンパービード多層肉盛溶接工程を含み、当該テンパービード多層肉盛溶接工程による肉盛積層の厚さが、上層部よりも下層部で薄いこと、を特徴とする溶接部補修方法。
A welding portion repairing method for repairing a welded portion in which a first member that requires temper bead welding and a second member that does not require temper bead welding are joined together,
A cutting step of scraping off a portion including a part of the welded portion to form a groove portion;
Overlay welding process for applying multi-layer overlay welding to the groove portion;
Have
The build-up welding process includes a temper bead multi-layer build-up welding process to the first member, and the thickness of the build-up lamination by the temper bead multi-layer build-up welding process is thinner in the lower layer than in the upper layer The welding part repairing method characterized by this.
前記肉盛溶接工程は、前記テンパービード多層肉盛溶接よりも高溶着条件による前記第2の部材への高溶着条件溶接工程をさらに含み、当該肉盛溶接工程は、前記テンパービード多層肉盛溶接工程と高溶着条件溶接工程とを交互に繰り返し行なうこと、を特徴とする請求項1に記載の溶接部補修方法。   The build-up welding process further includes a high welding condition welding process to the second member under higher welding conditions than the temper bead multilayer build-up welding, and the build-up welding process includes the temper bead multilayer build-up welding. The welding part repairing method according to claim 1, wherein the process and the high welding condition welding process are alternately repeated. 前記肉盛溶接工程は、前記テンパービード溶接工程と、前記高溶着条件溶接工程とを連続して交互に繰り返し、
前記第1の部材へのテンパービード溶接工程による肉盛積層の数が前記第2の部材への高溶着条件溶接工程による肉盛積層の数よりも一つ多いことを特徴とする請求項2に記載の溶接部補修方法。
In the overlay welding process, the temper bead welding process and the high welding condition welding process are alternately and continuously repeated.
The number of build-up lamination by the temper bead welding process to the first member is one more than the number of build-up lamination by the high welding condition welding process to the second member. The welding part repair method described.
前記肉盛溶接工程は、前記テンパービード溶接工程と前記高溶着条件溶接工程とを繰り返した後に、前記第1の部材へのテンパービード溶接と前記第2の部材への高溶着条件溶接とを施した部分の切替部を覆うように高溶着条件溶接による多層肉盛溶接を行なう第2の高溶着条件肉盛溶接工程を有すること、を特徴とする請求項3に記載の溶接部補修方法。   In the build-up welding process, after repeating the temper bead welding process and the high welding condition welding process, temper bead welding to the first member and high welding condition welding to the second member are performed. The welding part repairing method according to claim 3, further comprising a second high welding condition build-up welding process in which multi-layer build-up welding by high welding condition welding is performed so as to cover the switching portion of the part. 前記第1の部材は低合金鋼製または炭素鋼製であって、前記第2の部材はステンレス鋼製またはニッケル基合金製であること、を特徴とする請求項1ないし請求項4のいずれか一項に記載の溶接部補修方法。   5. The method according to claim 1, wherein the first member is made of low alloy steel or carbon steel, and the second member is made of stainless steel or nickel base alloy. The weld repair method according to one item. 前記溶接をレーザ溶接によって行なうことを特徴とする請求項1ないし請求項5のいずれか一項に記載の溶接部補修方法。   6. The welding portion repair method according to claim 1, wherein the welding is performed by laser welding. 前記第1の部材は原子炉容器に設けられた管台であり、前記第2の部材は管であって、
水中で行なうこと、を特徴とする請求項6に記載の溶接部補修方法。
The first member is a nozzle provided in a reactor vessel, and the second member is a tube,
The welding portion repair method according to claim 6, wherein the welding portion repair method is performed in water.
JP2011109660A 2011-05-16 2011-05-16 Weld portion repairing method Withdrawn JP2012240059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011109660A JP2012240059A (en) 2011-05-16 2011-05-16 Weld portion repairing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011109660A JP2012240059A (en) 2011-05-16 2011-05-16 Weld portion repairing method

Publications (1)

Publication Number Publication Date
JP2012240059A true JP2012240059A (en) 2012-12-10

Family

ID=47462306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011109660A Withdrawn JP2012240059A (en) 2011-05-16 2011-05-16 Weld portion repairing method

Country Status (1)

Country Link
JP (1) JP2012240059A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104722938A (en) * 2015-02-27 2015-06-24 东方电气集团东方锅炉股份有限公司 Barrel defect welding repair method
CN108838573A (en) * 2018-06-27 2018-11-20 中广核工程有限公司 Nuclear power pressure vessel low-alloy steel adds the compound repair method of stainless steel and system
JP2021159993A (en) * 2020-03-31 2021-10-11 日立金属株式会社 Building-up method for metallic member, and metallic member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104722938A (en) * 2015-02-27 2015-06-24 东方电气集团东方锅炉股份有限公司 Barrel defect welding repair method
CN108838573A (en) * 2018-06-27 2018-11-20 中广核工程有限公司 Nuclear power pressure vessel low-alloy steel adds the compound repair method of stainless steel and system
CN108838573B (en) * 2018-06-27 2020-11-13 中广核工程有限公司 Low-alloy steel and stainless steel composite repair welding method and system for nuclear power pressure vessel
JP2021159993A (en) * 2020-03-31 2021-10-11 日立金属株式会社 Building-up method for metallic member, and metallic member
JP7232391B2 (en) 2020-03-31 2023-03-03 株式会社プロテリアル Overlay method for metal member and metal member

Similar Documents

Publication Publication Date Title
US8681923B2 (en) Method of manufacturing core shroud for nuclear power plant and structure of nuclear power plant
JP6776555B2 (en) Narrow groove welded joint using laser arc hybrid welding method and its manufacturing method
EP2698223B1 (en) A process of welding to repair thick sections using two arc welding devices and a laser device
CN106112263B (en) Titanium steel composite board laser silk filling butt welding method using T2 red coppers as transition zone
CN105108341A (en) Laser-MAG welding method for steel plate of medium thickness and superhigh strength
JP5320196B2 (en) Dissimilar material overlay welding method and dissimilar material overlay welded structure
CN103394815B (en) A kind of method of circumferential weld laser-GMA composite welding
JP6155183B2 (en) Narrow groove laser welding method
JP2009061483A (en) Two sided welding method and two sided welded structure
Ramakrishna R et al. Narrow gap laser welding (NGLW) of structural steels—A technological review and future research recommendations
Shelyagin et al. Multi-pass laser and hybrid laser-arc narrow-gap welding of steel butt joints
JP5954009B2 (en) Manufacturing method of welded steel pipe
CA3037358A1 (en) Laser metal deposition welding process, parts formed therefrom and their usage in oil, gas and petrochemical applications
JP2012240059A (en) Weld portion repairing method
JP2012115886A (en) Method for welding structure
CN110091066B (en) Laser-arc hybrid welding method for titanium alloy part
JP2008168319A (en) Butt welded joint of steel plate
JP4528683B2 (en) Narrow groove welding method, welded structure, and welding apparatus therefor
US20220063019A1 (en) Improvements in the welding of pipes
JP6638529B2 (en) Weld joint by laser-arc hybrid welding method using Ni-base alloy-based welding material and method for producing the same
KR100631404B1 (en) The laser-arc hybrid welding weldment of carbon steel, and the laser-arc hybrid welding method for the same
CN108067732A (en) A kind of method for inhibiting titanium-steel composite board Butt Joint transition zone crackle
CN106695144B (en) Welding repair method for nuclear power equipment made of low-alloy high-strength steel
JP2006231339A (en) Repairing method of structure and repairing structure
KR101103160B1 (en) welding method of coupler base socket of liquefied natural gas carrier and appraisal method of coating layer at opposite side of coupler base socket welding part

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140110

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805