JP2012237348A - Transmission device - Google Patents

Transmission device Download PDF

Info

Publication number
JP2012237348A
JP2012237348A JP2011105581A JP2011105581A JP2012237348A JP 2012237348 A JP2012237348 A JP 2012237348A JP 2011105581 A JP2011105581 A JP 2011105581A JP 2011105581 A JP2011105581 A JP 2011105581A JP 2012237348 A JP2012237348 A JP 2012237348A
Authority
JP
Japan
Prior art keywords
transmission
central axis
continuously variable
variable transmission
cvp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011105581A
Other languages
Japanese (ja)
Inventor
Arata Murakami
新 村上
Hiroyuki Ogawa
裕之 小川
Takahiro Shiina
貴弘 椎名
Daisuke Tomomatsu
大輔 友松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011105581A priority Critical patent/JP2012237348A/en
Publication of JP2012237348A publication Critical patent/JP2012237348A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Transmission Devices (AREA)
  • Friction Gearing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a transmission device which can be driven with excellent power transmission efficiency.SOLUTION: The transmission device has a stepless transmission 2 including: the first and the second rotary members 10, 20 capable of relatively rotating around the first central shaft A1 as a center; a sun roller 30; planet balls 50 of multiple number disposed radially on an outer circumference of the sun roller 30, and pinched between the first and the second roller members 10, 20; a support shaft 51 having the second central shaft A2 and supporting the planet ball 50 rotatably; a tilting mechanism 60 for tilting each second central shaft A2 toward the first central shaft A1 with the planet ball 50 and the support shaft 51; and a carrier 40 for supporting each planet ball 50 through each support shaft 51. When the angle made by a base line LO and a line L1 connecting the gravity center G of the planet ball 50 and a contact point P1 and the angle made by the base line LO and the gravity center G and a line L2 connecting the gravity center G and a contact point P2 are defined as a contact angle θ, and the angle made by the second central shaft A2 to a line L3 is defined as a tilting angle α, the tilting mechanism 60 controls so that the tilting angle α falls within the range of -|θ|≤α≤|θ|.

Description

本発明は、共通の回転軸を有する2つの回転要素と、その回転軸に対して放射状に複数配置した転動部材と、を備え、各回転要素の内の2つに挟持された各転動部材を傾転させることによって入出力間の変速比を無段階に変化させる変速装置に関する。   The present invention includes two rotating elements having a common rotating shaft and a plurality of rolling members arranged radially with respect to the rotating shaft, and each rolling element sandwiched between two of the rotating elements. The present invention relates to a transmission that changes a transmission ratio between input and output steplessly by tilting a member.

この種の変速装置としては、例えば、下記の特許文献1に開示されたものが知られている。この特許文献1には、回転要素としての入力ディスクと出力ディスクとで挟持された複数のボール(転動部材)を有し、そのボールの傾転角を調整して変速比を無段階に変える無段変速機構と、この無段変速機構の出力軸に回転要素の1つが連結された遊星歯車機構(差動機構)と、を備えた所謂トラクションドライブ式の無段変速機が開示されている。   As this type of transmission, for example, the one disclosed in Patent Document 1 below is known. This Patent Document 1 has a plurality of balls (rolling members) sandwiched between an input disk and an output disk as rotating elements, and changes the gear ratio steplessly by adjusting the tilt angle of the balls. A so-called traction drive type continuously variable transmission including a continuously variable transmission mechanism and a planetary gear mechanism (differential mechanism) in which one of rotating elements is connected to an output shaft of the continuously variable transmission mechanism is disclosed. .

尚、従来、無段変速機と有段変速機とを有している変速装置が知られている。例えば、下記の特許文献2には、トロイダル式の無段変速機と低速段及び高速段からなる有段変速機とを直列に繋げたものにおいて、夫々の変速比から決まる総合変速比を変化させない為に、有段変速機を低速段から高速段に切り替えると共に無段変速機を低速段側に変速させる技術が開示されている。また、下記の特許文献3には、ベルト式の無段変速機と減速機構としての遊星歯車機構からなる有段変速機とを備えた変速装置において、その有段自動変速機の変速比について、無段変速機の最大変速比より小さく、且つ、有段自動変速機の変速比と出力伝達効率との積が無段変速機の最大変速比と最大変速比における出力伝達効率との積よりも大きくなるように設定する技術が開示されている。また、下記の特許文献4には、ベルト式の無段変速機と遊星歯車機構からなる有段変速機とを備えた変速装置において、高速走行時の動力伝達効率を高めるべく、有段変速機を1よりも小さい変速比に固定すると共に、無段変速機の変速比を増大させる技術が開示されている。更に、下記の特許文献5には、入力ディスク及び出力ディスクとパワーローラとの接触点での相対滑り角速度(スピン角速度)並びに入力ディスクの角速度から決まるスピンについて、ロー側変速比からハイ側変速比までの変速比範囲で0以上になるように諸元を決めたトロイダル式の無段変速機が開示されている。その諸元とは、夫々の接触点における法線とパワーローラの回転軸とがなす角度θ、パワーローラの傾転角度φ、入出力ディスクの円弧半径をR0とし、円弧中心から入出力ディスク回転軸までの距離とR0との差をeとしたときの比k=(e/R0)である。   Conventionally, a transmission having a continuously variable transmission and a stepped transmission is known. For example, in Patent Document 2 below, a toroidal continuously variable transmission and a stepped transmission consisting of a low speed stage and a high speed stage are connected in series, and the overall speed ratio determined by each speed ratio is not changed. For this purpose, a technique for switching the stepped transmission from the low speed stage to the high speed stage and shifting the continuously variable transmission to the low speed stage side is disclosed. In addition, in Patent Document 3 below, in a transmission including a belt-type continuously variable transmission and a stepped transmission including a planetary gear mechanism as a speed reduction mechanism, the gear ratio of the stepped automatic transmission is as follows. The product of the gear ratio of the continuously variable transmission and the output transmission efficiency is smaller than the product of the maximum gear ratio of the continuously variable transmission and the output transmission efficiency at the maximum gear ratio. A technique for setting to be large is disclosed. Further, in Patent Document 4 below, in a transmission device including a belt-type continuously variable transmission and a stepped transmission including a planetary gear mechanism, a stepped transmission is provided in order to increase power transmission efficiency during high-speed traveling. Is fixed to a gear ratio smaller than 1, and a technology for increasing the gear ratio of the continuously variable transmission is disclosed. Further, Patent Document 5 below discloses a relative slip angular velocity (spin angular velocity) at a contact point between an input disk and an output disk and a power roller, and a spin determined from an angular speed of the input disk, and a low gear ratio to a high gear ratio. A toroidal continuously variable transmission has been disclosed in which specifications are determined so as to be 0 or more in the speed ratio range up to. The specifications are the angle θ between the normal line at each contact point and the rotation axis of the power roller, the tilt angle φ of the power roller, the arc radius of the input / output disk is R0, and the input / output disk is rotated from the center of the arc. The ratio k = (e / R0) where e is the difference between the distance to the axis and R0.

特表2006−519349号公報JP-T-2006-519349 特開2006−022839号公報JP 2006-022839 A 特開2008−164117号公報JP 2008-164117 A 特開2007−211962号公報JP 2007-211962 A 特開2002−054707号公報JP 2002-054707 A

ところで、トラクションドライブ式の無段変速機は、その変速比の大きさ如何で動力伝達効率が変化する。これが為、使用される変速比によっては、動力伝達効率の悪化を招く虞がある。   By the way, the power transmission efficiency of a traction drive type continuously variable transmission changes depending on the speed ratio. For this reason, depending on the gear ratio used, there is a risk of deteriorating power transmission efficiency.

そこで、本発明は、かかる従来例の有する不都合を改善し、良好な動力伝達効率で運転可能な変速装置を提供することを、その目的とする。   Therefore, an object of the present invention is to provide a transmission that can improve the disadvantages of the conventional example and can be operated with good power transmission efficiency.

上記目的を達成する為、本発明は、共通の第1中心軸上で対向させて配置し、該第1中心軸を中心とする相対回転が可能な第1及び第2の部材と、前記第1中心軸と同心上で且つ前記第1部材と前記第2部材との間に配置した第3部材と、前記第1中心軸と平行な第2中心軸及び回転中心となる当該第2中心軸上の重心を有し、前記第3部材の外周面上で前記第1中心軸を中心として放射状に複数配置すると共に、前記第1及び第2の部材との夫々の接点が前記第1中心軸から径方向外側に向けて同じ距離で且つ前記重心からも同じ距離となるように当該第1及び第2の部材に挟持させた転動部材と、前記第2中心軸を有し、前記転動部材を回転自在に支持する支持軸と、夫々の前記第2中心軸を前記第1中心軸に対して前記転動部材及び前記支持軸と共に傾転させる傾転機構と、前記各支持軸を介して前記各転動部材を傾転動作が可能な状態で支持する第4部材と、を備えた無段変速機を有し、前記転動部材の重心から径方向に向けた基準線と当該転動部材の重心及び当該転動部材上の前記第1部材との接点を結ぶ線とが成す角度並びに前記基準線と前記転動部材の重心及び当該転動部材上の前記第2部材との接点を結ぶ線とが成す角度を接触角θとし、且つ、前記転動部材の重心を通る前記第1中心軸と平行な線に対する前記第2中心軸の成す角度を傾転角αとし、その傾転角αが「−|θ|≦α≦|θ|」の範囲内に収まるよう前記傾転機構を制御することを特徴としている。   In order to achieve the above object, the present invention provides a first member and a second member which are arranged to face each other on a common first central axis and are capable of relative rotation about the first central axis, A third member disposed concentrically with one central axis and between the first member and the second member; a second central axis parallel to the first central axis; and the second central axis serving as a rotation center A plurality of radial centers about the first central axis on the outer peripheral surface of the third member, and a plurality of contacts with the first and second members are arranged on the first central axis. A rolling member sandwiched between the first and second members so as to be the same distance from the center of gravity toward the radially outer side and the second center axis, and the rolling A support shaft for rotatably supporting the member, and the rolling member and the front of each of the second central axes with respect to the first central axis. A continuously variable transmission comprising: a tilting mechanism that tilts together with the support shaft; and a fourth member that supports each of the rolling members through the support shafts in a state in which the tilting operation is possible. The angle formed by the reference line extending in the radial direction from the center of gravity of the rolling member and the line connecting the center of gravity of the rolling member and the contact point of the first member on the rolling member, and the reference line and the rolling The angle formed by the center of gravity of the member and the line connecting the contact point with the second member on the rolling member is defined as a contact angle θ, and the line parallel to the first central axis passing through the center of gravity of the rolling member An angle formed by the second central axis is a tilt angle α, and the tilt mechanism is controlled so that the tilt angle α is within a range of “− | θ | ≦ α ≦ | θ |”. Yes.

ここで、前記第2部材と一体になって回転する低速用第1歯車及び当該低速用第1歯車に噛み合う低速用第2歯車を備えた低速段と、前記第2部材と一体になって回転する高速用第1歯車及び当該高速用第1歯車に噛み合う高速用第2歯車を備えた高速段と、を有する有段変速機を設け、前記有段変速機が前記低速段のときで且つ前記無段変速機の傾転角αが「α=θ」のときの当該無段変速機における前記第1部材と前記第2部材との間の回転比をγd1、前記有段変速機が前記高速段のときで且つ前記無段変速機の傾転角αが「α=−θ」のときの当該無段変速機における前記第1部材と前記第2部材との間の回転比をγd2、前記有段変速機の低速段の変速比をγLo、前記有段変速機の高速段の変速比をγHiとし、これらが「(γLo/γHi)≦(γd2/γd1)」の関係を満たすことが望ましい。   Here, a low-speed stage including a first low-speed gear that rotates integrally with the second member, and a second low-speed gear meshing with the first low-speed gear, and the second member rotate together. And a high speed stage having a high speed second gear meshing with the high speed first gear, wherein the stepped transmission is at the low speed stage and When the tilt angle α of the continuously variable transmission is “α = θ”, the rotation ratio between the first member and the second member in the continuously variable transmission is γd1, and the stepped transmission is the high speed. The rotation ratio between the first member and the second member in the continuously variable transmission when the step and the tilt angle α of the continuously variable transmission is “α = −θ” is γd2, The speed ratio of the low speed stage of the stepped transmission is γLo, the speed ratio of the high speed stage of the stepped transmission is γHi, and these are “(γLo / γ i) ≦ (γd2 / γd1) preferably satisfies the relationship ".

本発明に係る変速装置は、傾転角αを「−|θ|≦α≦|θ|」の範囲内で制御することで、傾転角αを「α<−|θ|」又は「α>|θ|」の範囲内で制御した場合よりも、無段変速機の変速比が動力伝達効率の良好なものとなる。また、この変速装置は、傾転角αを「−|θ|≦α≦|θ|」の範囲内で制御することで、その傾転角αの変化率に対する無段変速機の変速比の変化率を一定に保つことができるので、変速比の制御性に優れる。従って、本発明に係る変速装置に依れば、動力伝達効率と変速制御性の良好な変速比の領域のみが使われることになり、燃費や変速品質が向上する。   The transmission according to the present invention controls the tilt angle α within the range of “− | θ | ≦ α ≦ | θ |”, so that the tilt angle α is “α <− | θ |” or “α The speed ratio of the continuously variable transmission is better in power transmission efficiency than when the control is performed within the range of> | θ |. In addition, this transmission device controls the tilt angle α within the range of “− | θ | ≦ α ≦ | θ |”, so that the speed ratio of the continuously variable transmission with respect to the rate of change of the tilt angle α can be reduced. Since the change rate can be kept constant, the controllability of the gear ratio is excellent. Therefore, according to the transmission according to the present invention, only the region of the transmission ratio with good power transmission efficiency and transmission controllability is used, and fuel consumption and transmission quality are improved.

図1は、無段変速機及び有段変速機を備える本発明に係る変速装置の全体構成を示す概略図である。FIG. 1 is a schematic diagram showing the overall configuration of a transmission according to the present invention including a continuously variable transmission and a stepped transmission. 図2は、無段変速機について説明する図である。FIG. 2 is a diagram illustrating a continuously variable transmission. 図3は、無段変速機における傾転角と夫々の接点の接点距離との関係を説明する図である。FIG. 3 is a diagram for explaining the relationship between the tilt angle and the contact distance of each contact in the continuously variable transmission. 図4は、無段変速機における変速比と夫々の接点の損失との関係を説明する図である。FIG. 4 is a diagram for explaining the relationship between the gear ratio and the loss of each contact in a continuously variable transmission. 図5は、無段変速機における変速比と動力伝達効率との関係を説明する図である。FIG. 5 is a diagram for explaining the relationship between the gear ratio and the power transmission efficiency in the continuously variable transmission. 図6は、無段変速機における傾転角と変速比との関係を説明する図である。FIG. 6 is a diagram for explaining the relationship between the tilt angle and the gear ratio in the continuously variable transmission. 図7は、変速装置における変速比と動力伝達効率との関係を説明する図である。FIG. 7 is a diagram for explaining the relationship between the gear ratio and power transmission efficiency in the transmission. 図8は、変速装置における変速比と動力伝達効率との関係を説明する図である。FIG. 8 is a diagram illustrating the relationship between the transmission ratio and the power transmission efficiency in the transmission. 図9は、変速装置のアップシフト制御時の動作について説明するタイムチャートである。FIG. 9 is a time chart for explaining the operation during upshift control of the transmission. 図10は、変速装置のダウンシフト制御時の動作について説明するタイムチャートである。FIG. 10 is a time chart for explaining the operation during downshift control of the transmission. 図11は、変速装置における傾転角と変速比との関係を説明する図である。FIG. 11 is a diagram illustrating the relationship between the tilt angle and the gear ratio in the transmission.

以下に、本発明に係る変速装置の実施例を図面に基づいて詳細に説明する。尚、この実施例によりこの発明が限定されるものではない。   Hereinafter, embodiments of a transmission according to the present invention will be described in detail with reference to the drawings. The present invention is not limited to the embodiments.

[実施例]
本発明に係る変速装置の実施例を図1から図11に基づいて説明する。この例示では車両用の変速装置として説明するが、この変速装置は、入出力間の変速を要するものであれば、車両以外に適用してもよい。
[Example]
An embodiment of a transmission according to the present invention will be described with reference to FIGS. In this example, the transmission is described as a transmission for a vehicle. However, the transmission may be applied to a vehicle other than a vehicle as long as a transmission between input and output is required.

図1の符号1は、本実施例の変速装置を示す。この変速装置1は、トラクションドライブ式の無段変速機2を有している。   Reference numeral 1 in FIG. 1 indicates the transmission of this embodiment. The transmission 1 has a traction drive type continuously variable transmission 2.

この無段変速機2は、第1から第4の部材10,20,30,40と、転動部材50と、傾転機構60と、を備えた所謂トラクション遊星ギヤ機構と云われるものである。第1及び第2の部材10,20は、共通の第1中心軸A1上で対向させて配置され、その相互間で第1中心軸A1を中心とする相対回転を行うことができる。第3及び第4の部材30,40は、第1中心軸A1と同心上で且つ第1部材10と第2部材20との間に配置される。転動部材50は、第1中心軸A1と平行な第2中心軸A2及び回転中心となる当該第2中心軸A2上の重心を有し、第3部材30の外周面上で第1中心軸A1を中心とする放射状に複数配置されると共に、第1及び第2の部材10,20との夫々の接点が第1中心軸A1から径方向外側に向けて同じ距離で且つ前記重心からも同じ距離となるように当該第1及び第2の部材10,20に挟持されたものである。傾転機構60は、夫々の転動部材50の第2中心軸A2を第1中心軸A1に対して転動部材50及び支持軸51と共に傾転させるものである。ここで、この転動部材50は、第2中心軸A2を有する支持軸51によって回転自在に支持されている。また、各転動部材50は、その外周面が第1から第3の部材10,20,30で保持されると共に、各支持軸51を介して傾転動作が可能な状態で第4部材40に支持されている。   The continuously variable transmission 2 is a so-called traction planetary gear mechanism including first to fourth members 10, 20, 30, 40, a rolling member 50, and a tilting mechanism 60. . The first and second members 10 and 20 are arranged to face each other on a common first central axis A1, and can perform relative rotation around the first central axis A1 between them. The third and fourth members 30 and 40 are disposed concentrically with the first central axis A <b> 1 and between the first member 10 and the second member 20. The rolling member 50 has a second central axis A2 parallel to the first central axis A1 and a center of gravity on the second central axis A2 serving as a rotation center, and the first central axis on the outer peripheral surface of the third member 30 A plurality of radial arrangements centered on A1, and the respective contacts with the first and second members 10 and 20 are the same distance from the first central axis A1 toward the radially outer side and the same from the center of gravity. It is sandwiched between the first and second members 10 and 20 so as to be a distance. The tilting mechanism 60 tilts the second central axis A2 of each rolling member 50 together with the rolling member 50 and the support shaft 51 with respect to the first central axis A1. Here, the rolling member 50 is rotatably supported by a support shaft 51 having a second central axis A2. Each rolling member 50 has its outer peripheral surface held by the first to third members 10, 20, and 30 and can be tilted via each support shaft 51. It is supported by.

以下においては、特に言及しない限り、その第1中心軸A1や第2中心軸A2に沿う方向を軸線方向と云い、その第1中心軸A1周りの方向を周方向と云う。また、その第1中心軸A1に直交する方向を径方向と云い、その中でも、内方に向けた側を径方向内側と、外方に向けた側を径方向外側と云う。   In the following, unless otherwise specified, the direction along the first central axis A1 and the second central axis A2 is referred to as the axial direction, and the direction around the first central axis A1 is referred to as the circumferential direction. Further, the direction orthogonal to the first central axis A1 is referred to as a radial direction, and among these, the inward side is referred to as a radial inner side, and the outward side is referred to as a radial outer side.

この無段変速機2においては、第1部材10と第2部材20と第3部材30との間で各転動部材50を介したトルクの伝達が行われる。そのトルクの伝達は、第1及び第2の部材10,20の内の少なくとも一方を転動部材50に押し付け、これにより第1から第3の部材10,20,30と各転動部材50との間に適切な接線力(トラクション力)を発生させることによって可能にする。   In the continuously variable transmission 2, torque is transmitted through the rolling members 50 among the first member 10, the second member 20, and the third member 30. The torque is transmitted by pressing at least one of the first and second members 10, 20 against the rolling member 50, whereby the first to third members 10, 20, 30 and each rolling member 50 are It is made possible by generating an appropriate tangential force (traction force) during

また、この無段変速機2は、第2中心軸A2を第1中心軸A1に対して傾斜させ、支持軸51と共に転動部材50を傾転させることによって、入出力間の変速比γCVPを変える。その傾転動作は、夫々の転動部材50を自身の第2中心軸A2と第1中心軸A1とを含む傾転平面上において自らの重心を中心にして動かすことによって行う。 Further, the continuously variable transmission 2 tilts the second central axis A2 with respect to the first central axis A1 and tilts the rolling member 50 together with the support shaft 51, whereby the gear ratio γ CVP between input and output is increased. change. The tilting operation is performed by moving each rolling member 50 about its own center of gravity on the tilting plane including the second central axis A2 and the first central axis A1.

この無段変速機2においては、第1から第4の部材10,20,30,40の内の何れか1つが周方向に回転しない固定要素となり、残りが周方向に回転する回転要素になる。そして、この無段変速機2では、その回転要素の内の1つがトルク(動力)の入力部となり、残りの回転要素の内の少なくとも1つがトルクの出力部となる。これが為、この無段変速機2においては、入力部となる何れかの回転要素と出力部となる何れかの回転要素との間の回転速度(回転数)の比が変速比γCVPとなる。例えば、この無段変速機2は、車両の動力伝達経路上に配設される。その際には、その入力部がエンジンやモータ等の動力源側に連結され、その出力部が駆動輪側に連結される。この無段変速機2においては、入力部としての回転要素にトルクが入力された場合の各回転要素の回転動作を正駆動と云い、出力部としての回転要素に正駆動時とは逆方向のトルクが入力された場合の各回転要素の回転動作を逆駆動と云う。例えば、この無段変速機2は、先の車両の例示に従えば、加速等のように動力源側からトルクが入力部たる回転要素に入力されて当該回転要素を回転させているときが正駆動となり、減速等の様に駆動輪側から出力部たる回転中の回転要素に正駆動時とは逆方向のトルクが入力されているときが逆駆動となる。 In the continuously variable transmission 2, any one of the first to fourth members 10, 20, 30, 40 is a fixed element that does not rotate in the circumferential direction, and the rest is a rotating element that rotates in the circumferential direction. . In the continuously variable transmission 2, one of the rotating elements serves as a torque (power) input unit, and at least one of the remaining rotating elements serves as a torque output unit. For this reason, in this continuously variable transmission 2, the ratio of the rotational speed (the number of rotations) between any of the rotating elements serving as the input unit and any of the rotating elements serving as the output unit is the gear ratio γ CVP. . For example, the continuously variable transmission 2 is disposed on the power transmission path of the vehicle. In that case, the input part is connected with the power source side, such as an engine and a motor, and the output part is connected with the drive wheel side. In this continuously variable transmission 2, the rotation operation of each rotation element when torque is input to the rotation element as the input unit is referred to as normal drive, and the rotation element as the output unit is in the direction opposite to that during normal drive. The rotating operation of each rotating element when torque is input is called reverse driving. For example, in the continuously variable transmission 2, according to the example of the preceding vehicle, when the torque is input from the power source side to the rotating element as the input unit and the rotating element is rotated as in acceleration or the like, Driving is performed, and reverse driving is performed when torque in the opposite direction to that during forward driving is input to the rotating rotating element serving as the output unit from the driving wheel side, such as deceleration.

ここで、この無段変速機2においては、第1及び第2の部材10,20が遊星歯車機構で云うところのリングギヤの機能を為すものとなる。また、第3部材30は、トラクション遊星ギヤ機構のサンローラとして機能する。また、第4部材40は、トラクション遊星ギヤ機構のキャリアとして機能する。また、転動部材50は、トラクション遊星ギヤ機構におけるボール型ピニオンとして機能する。従って、以下においては、第3部材30を「サンローラ30」と云い、第4部材40を「キャリア40」と云う。更に、転動部材50については、「遊星ボール50」と云う。また、以下の例示では、キャリア40を固定要素とする。故に、以下においては、第1及び第2の部材10,20のことを各々「第1及び第2の回転部材10,20」と云う。   Here, in the continuously variable transmission 2, the first and second members 10 and 20 perform the ring gear function as a planetary gear mechanism. The third member 30 functions as a sun roller of the traction planetary gear mechanism. The fourth member 40 functions as a carrier for the traction planetary gear mechanism. Moreover, the rolling member 50 functions as a ball-type pinion in the traction planetary gear mechanism. Therefore, in the following, the third member 30 is referred to as “sun roller 30”, and the fourth member 40 is referred to as “carrier 40”. Further, the rolling member 50 is referred to as a “planetary ball 50”. In the following example, the carrier 40 is a fixed element. Therefore, hereinafter, the first and second members 10 and 20 are referred to as “first and second rotating members 10 and 20”, respectively.

第1及び第2の回転部材10,20は、中心軸を第1中心軸A1に一致させた円盤部材(ディスク)や円環部材(リング)であり、軸線方向で対向させて各遊星ボール50を挟み込むように配設する。この例示においては、双方とも円環部材とする。   The first and second rotating members 10 and 20 are disk members (disks) or ring members (rings) whose central axes are coincident with the first central axis A1, and are opposed to each other in the axial direction so as to face each planetary ball 50. It arrange | positions so that it may be inserted | pinched. In this example, both are circular members.

この第1及び第2の回転部材10,20は、後で詳述する各遊星ボール50の径方向外側の外周曲面と接触する接触面を有している。その夫々の接触面は、例えば、遊星ボール50の外周曲面の曲率と同等の曲率の凹円弧面、その外周曲面の曲率とは異なる曲率の凹円弧面、凸円弧面又は平面等の形状を成している。ここでは、後述する基準位置の状態で第1中心軸A1から各遊星ボール50との接点P1,P2までの距離が同じ長さになるように夫々の接触面を形成して、第1及び第2の回転部材10,20の各遊星ボール50に対する夫々の接触角θが同じ角度になるようにしている(図2)。その接触角θとは、基準線L0から各遊星ボール50における第1及び第2の回転部材10,20との接点P1,P2までの角度のことであり、その基準線L0と遊星ボール50の重心G及び接点P1,P2を結ぶ夫々の線L1,L2とが成す角度のことである。ここでは、遊星ボール50の重心Gから径方向に向けた線を基準線L0に設定している。その夫々の接触面は、遊星ボール50の外周曲面に対して点接触するものとして説明するが、面接触するものであってもよい。また、夫々の接触面は、第1及び第2の回転部材10,20から遊星ボール50に向けて軸線方向の力(押圧力)が加わった際に、その遊星ボール50に対して径方向内側で且つ斜め方向の力(法線力)が加わるように形成されている。   Each of the first and second rotating members 10 and 20 has a contact surface that comes into contact with a radially outer peripheral curved surface of each planetary ball 50 described in detail later. Each of the contact surfaces has, for example, a concave arc surface having a curvature equivalent to the curvature of the outer peripheral curved surface of the planetary ball 50, a concave arc surface having a curvature different from the curvature of the outer peripheral curved surface, a convex arc surface, or a flat surface. doing. Here, the contact surfaces are formed so that the distances from the first central axis A1 to the contact points P1 and P2 with the planetary balls 50 are the same length in the state of the reference position described later. The contact angles θ of the two rotating members 10 and 20 with respect to the planetary balls 50 are set to the same angle (FIG. 2). The contact angle θ is an angle from the reference line L0 to the contacts P1 and P2 of each planetary ball 50 with the first and second rotating members 10 and 20, and the reference line L0 and the planetary ball 50 have a contact angle θ. This is the angle formed by the center of gravity G and the lines L1 and L2 connecting the contacts P1 and P2. Here, the line from the center of gravity G of the planetary ball 50 toward the radial direction is set as the reference line L0. Each contact surface will be described as a point contact with the outer peripheral curved surface of the planetary ball 50, but may be a surface contact. Each contact surface is radially inward with respect to the planetary ball 50 when an axial force (pressing force) is applied from the first and second rotating members 10, 20 toward the planetary ball 50. And an oblique force (normal force) is applied.

その遊星ボール50への押圧力は、例えばトルクカム(図示略)等の押圧部で第1及び第2の回転部材10,20の内の少なくとも一方に加えられた軸線方向の力により発生させる。そのトルクカムは、例えば第1回転部材10と下記の入力軸11との間、第2回転部材20と下記の出力軸21との間に配設する。その第1回転部材10と入力軸11との間のトルクカムは、その間で回転トルクを伝達させると共に軸力を発生させる。その軸力は、第1回転部材10から遊星ボール50への押圧力として伝わる。また、第2回転部材20と出力軸21との間のトルクカムは、その間で回転トルクを伝達させると共に軸力を発生させる。その軸力は、第2回転部材20から遊星ボール50への押圧力として伝わる。   The pressing force to the planetary ball 50 is generated by an axial force applied to at least one of the first and second rotating members 10 and 20 by a pressing portion such as a torque cam (not shown), for example. The torque cam is disposed, for example, between the first rotating member 10 and the following input shaft 11 and between the second rotating member 20 and the following output shaft 21. The torque cam between the first rotating member 10 and the input shaft 11 transmits rotational torque therebetween and generates an axial force. The axial force is transmitted as a pressing force from the first rotating member 10 to the planetary ball 50. Further, the torque cam between the second rotating member 20 and the output shaft 21 transmits the rotational torque therebetween and generates an axial force. The axial force is transmitted as a pressing force from the second rotating member 20 to the planetary ball 50.

この例示においては、第1回転部材10を無段変速機2の正駆動時におけるトルク入力部として作用させ、第2回転部材20を無段変速機2の正駆動時におけるトルク出力部として作用させる。従って、その第1回転部材10には入力軸11が連結され、第2回転部材20には出力軸21が連結される。その入力軸11は、動力源側に接続されている。また、出力軸21は、駆動輪側に接続されている。   In this illustration, the first rotating member 10 acts as a torque input portion when the continuously variable transmission 2 is positively driven, and the second rotating member 20 acts as a torque output portion when the continuously variable transmission 2 is positively driven. . Accordingly, the input shaft 11 is connected to the first rotating member 10, and the output shaft 21 is connected to the second rotating member 20. The input shaft 11 is connected to the power source side. The output shaft 21 is connected to the drive wheel side.

サンローラ30は、第1中心軸A1と同心の円筒状又は円柱状のものである。このサンローラ30の外周面には、複数個の遊星ボール50が放射状に略等間隔で配置される。従って、このサンローラ30においては、その外周面が遊星ボール50の自転の際の転動面となる。このサンローラ30は、自らの回転動作によって夫々の遊星ボール50を転動(自転)させることもできれば、夫々の遊星ボール50の転動動作(自転動作)に伴って回転することもできる。   The sun roller 30 is cylindrical or columnar concentric with the first central axis A1. A plurality of planetary balls 50 are radially arranged at substantially equal intervals on the outer peripheral surface of the sun roller 30. Accordingly, the outer peripheral surface of the sun roller 30 is a rolling surface when the planetary ball 50 rotates. The sun roller 30 can roll (rotate) each planetary ball 50 by its own rotation, or it can rotate along with the rolling operation (spinning) of each planetary ball 50.

遊星ボール50は、サンローラ30の外周面上を転がる転動部材である。この遊星ボール50は、完全な球状体であることが好ましいが、少なくとも転動方向にて球形を成すもの、例えばラグビーボールの様な断面が楕円形状のものであってもよい。この遊星ボール50は、その中心(重心G)を通って貫通させた支持軸51によって支持する。この遊星ボール50は、支持軸51の外周面との間に配設した軸受(例えばニードルベアリング)によって、第2中心軸A2を回転軸とした支持軸51に対する相対回転(つまり自転)が行えるようにしている。従って、この遊星ボール50は、支持軸51を中心にしてサンローラ30の外周面上を転動することができる。その支持軸51の両端は、遊星ボール50から突出させておく。   The planetary ball 50 is a rolling member that rolls on the outer peripheral surface of the sun roller 30. The planetary ball 50 is preferably a perfect spherical body, but it may have a spherical shape at least in the rolling direction, for example, a rugby ball having an elliptical cross section. The planetary ball 50 is supported by a support shaft 51 that passes through the center (center of gravity G). The planetary ball 50 can be rotated relative to the support shaft 51 with the second central axis A2 as a rotation axis (that is, rotation) by a bearing (for example, a needle bearing) disposed between the planetary ball 50 and the outer peripheral surface of the support shaft 51. I have to. Accordingly, the planetary ball 50 can roll on the outer peripheral surface of the sun roller 30 around the support shaft 51. Both ends of the support shaft 51 are projected from the planetary ball 50.

その支持軸51の基準となる位置は、図1に示すように、第2中心軸A2が第1中心軸A1と平行になる位置である。この支持軸51は、その基準位置で形成される自身の中心軸(第2中心軸A2)と第1中心軸A1とを含む傾転平面内において、基準位置とそこから傾斜させた位置との間を遊星ボール50と共に揺動(傾転)することができる。その傾転は、その傾転平面内で遊星ボール50の重心Gを中心にして行われる。   The reference position of the support shaft 51 is a position where the second central axis A2 is parallel to the first central axis A1, as shown in FIG. The support shaft 51 has a reference position and a position inclined from the reference position in a tilt plane including the center axis (second center axis A2) and the first center axis A1 formed at the reference position. It can swing (tilt) with the planetary ball 50 between them. The tilt is performed around the center of gravity G of the planetary ball 50 in the tilt plane.

キャリア40は、夫々の遊星ボール50の傾転動作を妨げないように支持軸51の夫々の突出部を支持する。このキャリア40は、例えば、第1中心軸A1と同心の第1及び第2の円盤部41,42を対向させて配置し、その第1及び第2の円盤部41,42を複数本の連結軸(図示略)で連結して、全体として籠状となるようにしている。これにより、このキャリア40は、外周面に開放部分を有することになる。各遊星ボール50は、第1及び第2の円盤部41,42の間に配置し、その開放部分を介して第1回転部材10と第2回転部材20とに接している。   The carrier 40 supports each projecting portion of the support shaft 51 so as not to prevent the tilting motion of each planetary ball 50. In this carrier 40, for example, first and second disk parts 41, 42 concentric with the first central axis A1 are arranged to face each other, and a plurality of the first and second disk parts 41, 42 are connected. They are connected by a shaft (not shown) so as to have a bowl shape as a whole. As a result, the carrier 40 has an open portion on the outer peripheral surface. Each planetary ball 50 is disposed between the first and second disk portions 41 and 42 and is in contact with the first rotating member 10 and the second rotating member 20 through an open portion thereof.

この無段変速機2には、その変速比γCVPを変える為の変速部が設けられている。変速比γCVPは遊星ボール50の傾転角αの変化に伴い変わるので、その変速部としては、夫々の遊星ボール50を傾転させる傾転機構60を用いる。ここで云う傾転角αとは、遊星ボール50の重心Gを通る第1中心軸A1と平行な線(基準線)L3に対する第2中心軸A2の成す角度のことである。ここでは、その基準線L3に対する時計回り方向を正とする。 The continuously variable transmission 2 is provided with a transmission unit for changing the transmission gear ratio γ CVP . Since the gear ratio γ CVP changes as the tilt angle α of the planetary ball 50 changes, a tilt mechanism 60 that tilts each planetary ball 50 is used as the speed change portion. The tilt angle α referred to here is an angle formed by the second central axis A2 with respect to a line (reference line) L3 parallel to the first central axis A1 passing through the center of gravity G of the planetary ball 50. Here, the clockwise direction with respect to the reference line L3 is positive.

この傾転機構60には、この技術分野において周知のものを利用する。例えば、傾転機構60としては、延設された支持軸51の一方の端部に取り付けられた長手方向が径方向の支持部材と、この支持部材に径方向の力を加えるアクチュエータと、で構成されたものが考えられる。この傾転機構60は、その支持部材を径方向へと動かすことにより、支持軸51を介して遊星ボール50を傾転させることができる。また、傾転機構60としては、第1中心軸A1と同心の円盤状のアイリスプレートを用いてもよい。そのアイリスプレートは、支持軸51の一方の突出部が挿入される絞り孔(アイリス孔)を遊星ボール50毎に備えたものであり、例えば第2回転部材20と第2円盤部42との間に配設する。その絞り孔は、径方向内側の端部を起点とし、この基点から径方向に向けた線を基準線と仮定した場合、径方向内側から径方向外側に向かうにつれて基準線から周方向に離れていく弧状になっている。この種の傾転機構60は、アイリスプレートを周方向に回転させることによって、支持軸51を介して遊星ボール50を傾転させることができる。   As the tilt mechanism 60, a mechanism well known in this technical field is used. For example, the tilting mechanism 60 includes a support member having a longitudinal direction attached to one end of the extended support shaft 51 and an actuator that applies a radial force to the support member. What has been considered. The tilt mechanism 60 can tilt the planetary ball 50 via the support shaft 51 by moving the support member in the radial direction. Further, as the tilting mechanism 60, a disc-shaped iris plate concentric with the first central axis A1 may be used. The iris plate is provided with a throttle hole (iris hole) into which one protrusion of the support shaft 51 is inserted for each planetary ball 50, for example, between the second rotating member 20 and the second disk portion 42. It arranges in. Assuming that the restriction hole starts from the radially inner end and the line extending from the base point in the radial direction is the reference line, the restriction hole moves away from the reference line in the circumferential direction from the radially inner side toward the radially outer side. It is arcuate. This type of tilting mechanism 60 can tilt the planetary ball 50 via the support shaft 51 by rotating the iris plate in the circumferential direction.

この無段変速機2には、夫々の遊星ボール50の傾転時に支持軸51を傾転方向へと案内する為のガイド部(支持部)が設けられている。この例示では、そのガイド部をキャリア40に設ける。ガイド部は、遊星ボール50から突出させた支持軸51を傾転方向に向けて案内する径方向のガイド溝41a,42aであり、第1及び第2の円盤部41,42の夫々の対向する部分に遊星ボール50毎に形成する。全てのガイド溝41aと全てのガイド溝42aは、軸線方向から観ると夫々に放射状を成している。また、ガイド溝41aとガイド溝42aは、軸線方向で対向させた位置に配置されている。   The continuously variable transmission 2 is provided with a guide portion (support portion) for guiding the support shaft 51 in the tilt direction when each planetary ball 50 tilts. In this example, the guide portion is provided on the carrier 40. The guide portions are radial guide grooves 41a and 42a for guiding the support shaft 51 protruding from the planetary ball 50 in the tilt direction, and the first and second disk portions 41 and 42 are opposed to each other. A portion is formed for each planetary ball 50. All the guide grooves 41a and all the guide grooves 42a are radial when viewed from the axial direction. The guide groove 41a and the guide groove 42a are disposed at positions facing each other in the axial direction.

この無段変速機2においては、夫々の遊星ボール50の傾転角αが基準位置、即ち0度のときに、第1回転部材10と第2回転部材20とが同一回転速度(同一回転数)で回転する。つまり、このときには、第1回転部材10と第2回転部材20との間の回転比(回転速度又は回転数の比)γdが1となる。その回転比γdは、第1及び第2の回転部材10,20の回転数を各々N1,N2とすると、「γd=N1/N2」で表される。この無段変速機2では第1回転部材10が入力側で且つ第2回転部材20が出力側なので、このときの変速比γCVPは、1になる。 In this continuously variable transmission 2, when the tilt angle α of each planetary ball 50 is the reference position, that is, 0 degrees, the first rotating member 10 and the second rotating member 20 have the same rotational speed (the same rotational speed). ) To rotate. That is, at this time, the rotation ratio (rotational speed or rotation speed ratio) γd between the first rotating member 10 and the second rotating member 20 is 1. The rotation ratio γd is expressed by “γd = N1 / N2” where the rotation speeds of the first and second rotating members 10 and 20 are N1 and N2, respectively. In this continuously variable transmission 2, since the first rotating member 10 is on the input side and the second rotating member 20 is on the output side, the gear ratio γ CVP at this time is 1.

一方、夫々の遊星ボール50を基準位置から傾転させた際には、第2中心軸A2から第1回転部材10との接点P1までの距離(第1接点距離)D1が変化すると共に、第2中心軸A2から第2回転部材20との接点P2までの距離(第2接点距離)D2が変化する。その第1接点距離D1は、第2中心軸A2と接点P1との最短距離に相当し、第2接点距離D2は、第2中心軸A2と接点P2との最短距離に相当する(図2)。図3には、第1から第3の接点距離D1,D2,D3と傾転角αとの対応関係を各々示している。第3接点距離D3とは、第2中心軸A2と遊星ボール50におけるサンローラ30との接点P3との最短距離に相当するものである。また、「Rb」は、遊星ボール50の半径である。その第1接点距離D1と第2接点距離D2は、遊星ボール50の半径Rb、傾転角α及び接触角θを用いて下記の式1,2の如く求めることができる。   On the other hand, when each planetary ball 50 is tilted from the reference position, the distance (first contact distance) D1 from the second central axis A2 to the contact P1 with the first rotating member 10 changes, and the first 2 The distance (second contact distance) D2 from the central axis A2 to the contact P2 with the second rotating member 20 changes. The first contact distance D1 corresponds to the shortest distance between the second central axis A2 and the contact P1, and the second contact distance D2 corresponds to the shortest distance between the second central axis A2 and the contact P2 (FIG. 2). . FIG. 3 shows the correspondence between the first to third contact distances D1, D2, D3 and the tilt angle α. The third contact distance D3 corresponds to the shortest distance between the second central axis A2 and the contact point P3 of the planetary ball 50 with the sun roller 30. “Rb” is the radius of the planetary ball 50. The first contact distance D1 and the second contact distance D2 can be obtained by using the radius Rb, the tilt angle α, and the contact angle θ of the planetary ball 50 as in the following formulas 1 and 2.

D1=Rb×cos(θ+α) … (1)
D2=Rb×cos(θ−α) … (2)
D1 = Rb × cos (θ + α) (1)
D2 = Rb × cos (θ−α) (2)

そして、回転比γdや変速比γCVPは、第1接点距離D1と第2接点距離D2とを用いて下記の式3の如く表すこともできる。 Then, the rotation ratio γd and the transmission ratio γ CVP can be expressed as the following Expression 3 using the first contact distance D1 and the second contact distance D2.

γd=γCVP=D1/D2 … (3) γd = γ CVP = D1 / D2 (3)

その接点距離の変化により、この無段変速機2においては、第1回転部材10又は第2回転部材20の内の何れか一方が基準位置のときよりも高速で回転し、他方が低速で回転するようになる。例えば第2回転部材20は、遊星ボール50を一方へと傾転させたときに第1回転部材10よりも低回転になり(減速)、他方へと傾転させたときに第1回転部材10よりも高回転になる(増速)。従って、この無段変速機2においては、その傾転角αを変えることによって、第1回転部材10と第2回転部材20との間の回転比γd(=変速比γCVP)を無段階に変化させることができる。尚、ここでの増速時(γCVP<1)には、図1における上側の遊星ボール50を紙面時計回り方向に傾転させ且つ下側の遊星ボール50を紙面反時計回り方向に傾転させる。また、減速時(γCVP>1)には、図1における上側の遊星ボール50を紙面反時計回り方向に傾転させ且つ下側の遊星ボール50を紙面時計回り方向に傾転させる。 Due to the change in the contact distance, in the continuously variable transmission 2, either the first rotating member 10 or the second rotating member 20 rotates at a higher speed than when it is at the reference position, and the other rotates at a lower speed. To come. For example, the second rotating member 20 has a lower rotation (deceleration) than the first rotating member 10 when the planetary ball 50 is tilted in one direction, and the first rotating member 10 is tilted in the other direction. (High speed). Therefore, in this continuously variable transmission 2, the rotation ratio γd (= transmission ratio γ CVP ) between the first rotating member 10 and the second rotating member 20 is stepless by changing the tilt angle α. Can be changed. When the speed is increased (γ CVP <1), the upper planetary ball 50 in FIG. 1 is tilted clockwise in the plane of the drawing, and the lower planetary ball 50 is tilted counterclockwise in the plane of the drawing. Let Further, at the time of deceleration (γ CVP > 1), the upper planetary ball 50 in FIG. 1 is tilted counterclockwise on the paper surface and the lower planetary ball 50 is tilted clockwise on the paper surface.

このように、この無段変速機2は、傾転角αの大きさに応じて第1回転部材10と第2回転部材20との間の回転比γd(=変速比γCVP)が変化する。 Thus, in the continuously variable transmission 2, the rotation ratio γd (= transmission ratio γ CVP ) between the first rotating member 10 and the second rotating member 20 changes according to the magnitude of the tilt angle α. .

ここで、この無段変速機2の各接点P1,P2,P3における変速比γCVPとスピン損失との関係を観てみる。スピン損失は、夫々の接点P1,P2,P3におけるスピン量と接点面積と接点面圧との積に比例する。 Here, the relationship between the speed ratio γ CVP and the spin loss at each contact P1, P2, P3 of the continuously variable transmission 2 will be examined. The spin loss is proportional to the product of the spin amount, the contact area, and the contact surface pressure at each contact P1, P2, P3.

接点P1においては、傾転角αが接触角θのときの変速比γCVP(α=θ){<1}でスピン損失が最も小さく、傾転角αが接触角θよりも大きくなるほど又は接触角θよりも小さくなるほど、つまり変速比γCVPが変速比γCVP(α=θ)よりも小さくなるほど又は変速比γCVP(α=θ)よりも大きくなるほどスピン損失が大きくなる。接点P2においては、傾転角αが接触角−θのときの変速比γCVP(α=−θ){>1}でスピン損失が最も小さく、傾転角αが接触角−θよりも大きくなるほど又は接触角−θよりも小さくなるほど、つまり変速比γCVPが変速比γCVP(α=−θ)よりも大きくなるほど又は変速比γCVP(α=−θ)よりも小さくなるほどスピン損失が大きくなる。接点P3においては、傾転角αが0のときの変速比γCVP(α=0){=1}でスピン損失が最も小さく、傾転角αが0よりも大きくなるほど又は0よりも小さくなるほど、つまり変速比γCVPが1よりも大きくなるほど又は1よりも小さくなるほどスピン損失が大きくなる。従って、無段変速機2においては、傾転角αが接触角θよりも大きくなるほど又は傾転角αが接触角−θよりも大きくなるほどにスピン損失が拡大していく。一方、傾転角αが接触角θよりも小さい領域又は傾転角αが接触角−θよりも小さい領域では、そのスピン損失の拡大する領域よりもスピン損失が小さくなる。 In the contact P1, the spin loss is the smallest at the gear ratio γ CVP (α = θ) {<1} when the tilt angle α is the contact angle θ, and the contact angle P becomes larger as the tilt angle α becomes larger than the contact angle θ. more smaller than angle theta, i.e. the gear ratio gamma CVP spin loss increases as greater than the speed ratio γ CVP (α = θ) smaller than the more or gear ratio γ CVP (α = θ). In the contact P2, the spin loss is the smallest at the gear ratio γ CVP (α = −θ) {> 1} when the tilt angle α is the contact angle −θ, and the tilt angle α is larger than the contact angle −θ. more smaller than the more or contact angle - [theta], i.e. the spin loss is large enough smaller than the gear ratio gamma CVP speed change ratio γ CVP (α = -θ) greater than the more or gear ratio γ CVP (α = -θ) Become. At the contact P3, the spin loss is the smallest at the gear ratio γ CVP (α = 0) {= 1} when the tilt angle α is 0, and the tilt angle α is larger than 0 or smaller than 0. That is, the higher the gear ratio γ CVP is, or the smaller the ratio is, the greater the spin loss. Accordingly, in the continuously variable transmission 2, the spin loss increases as the tilt angle α becomes larger than the contact angle θ or the tilt angle α becomes larger than the contact angle −θ. On the other hand, in a region where the tilt angle α is smaller than the contact angle θ or a region where the tilt angle α is smaller than the contact angle −θ, the spin loss becomes smaller than the region where the spin loss increases.

そこで、この無段変速機2においては、スピン損失を小さくして動力伝達効率を高めるべく、スピン損失の小さい傾転角αで、つまり傾転角αが「−|θ|≦α≦|θ|」の範囲内に収まるよう電子制御装置(ECU)100に傾転機構60を制御させる。   Therefore, in this continuously variable transmission 2, in order to reduce the spin loss and increase the power transmission efficiency, the tilt angle α with a small spin loss, that is, the tilt angle α is “− | θ | ≦ α ≦ | θ The tilting mechanism 60 is controlled by the electronic control unit (ECU) 100 so as to be within the range of “|”.

この無段変速機2においては、傾転角αを「−|θ|≦α≦|θ|」の範囲内で制御し、変速比γCVPを「γCVP(α=θ)≦γCVP≦γCVP(α=−θ)」の範囲内に収めることで、動力伝達効率の良好な高効率領域の変速比γCVPで動力を伝達することができる。この無段変速機2は、その高効率領域において、変速比γCVPが1のとき(α=0のとき)に最も動力伝達効率が良くなる。そして、この無段変速機2は、変速比γCVPが1よりも大きくなるにつれて又は小さくなるにつれて(換言するならば傾転角αが−θ又はθに近づくにつれて)、動力伝達効率が変速比γCVPの変化率に対して徐々に低下していく。一方、傾転角αが「α>|θ|」又は「α≦−|θ|」の範囲内に制御され、変速比γCVPがγCVP(α=−θ)よりも大きくなる又はγCVP(α=θ)よりも小さくなると、その領域では、上記の高効率領域よりも、変速比γCVPの変化率に対する動力伝達効率の低下率が高く、僅かな変速比γCVPの変更で急激に動力伝達効率が悪くなる。図5には、この無段変速機2における変速比γCVPと動力伝達効率との対応関係を示している。 In this continuously variable transmission 2, the tilt angle α is controlled within the range of “− | θ | ≦ α ≦ | θ |”, and the gear ratio γ CVP is set to “γ CVP (α = θ) ≦ γ CVP ≦ By being within the range of “γ CVP (α = −θ)”, power can be transmitted with a gear ratio γ CVP in a high efficiency region with good power transmission efficiency. This continuously variable transmission 2 has the highest power transmission efficiency in the high efficiency region when the gear ratio γ CVP is 1 (when α = 0). The continuously variable transmission 2 has a power transmission efficiency that changes as the gear ratio γ CVP becomes larger or smaller than 1 (in other words, as the tilt angle α approaches -θ or θ). It gradually decreases with respect to the rate of change of γ CVP . On the other hand, the tilt angle α is controlled within the range of “α> | θ |” or “α ≦ − | θ |”, and the gear ratio γ CVP becomes larger than γ CVP (α = −θ) or γ CVP. When it becomes smaller than (α = θ), the reduction rate of the power transmission efficiency with respect to the change rate of the transmission gear ratio γ CVP is higher in that region than in the above high efficiency region, and abruptly changes with a slight change in the transmission gear ratio γ CVP. The power transmission efficiency becomes worse. FIG. 5 shows a correspondence relationship between the speed ratio γ CVP and the power transmission efficiency in the continuously variable transmission 2.

また、この無段変速機2は、傾転角αが−θよりも小さくなるにつれて又はθよりも大きくなるにつれて(つまり傾転角αの絶対値が|θ|よりも大きくなるにつれて)、その傾転角αの変化率に対する変速比γCVPの変化率が高くなっていく(図6)。これが為、その領域においては、傾転角αの変化に対して変速比γCVPが急速に変化することになり、均等に変化させることができないので、変速比γCVPの制御が難しい。しかしながら、この無段変速機2は、傾転角αが「−|θ|≦α≦|θ|」の範囲内であれば、その傾転角αの変化率に対する変速比γCVPの変化率を一定に保つことができるので、変速比γCVPの制御性に優れる。従って、変速比γCVPの制御性を向上させる上でも、この無段変速機2は、傾転角αを「−|θ|≦α≦|θ|」の範囲内で制御することが好ましい。 Further, the continuously variable transmission 2 has its tilt angle α smaller than −θ or larger than θ (that is, as the absolute value of the tilt angle α becomes larger than | θ |). The rate of change of the gear ratio γ CVP with respect to the rate of change of the tilt angle α increases (FIG. 6). For this reason, in that region, the gear ratio γ CVP changes rapidly with respect to the change in the tilt angle α and cannot be changed evenly, so it is difficult to control the gear ratio γ CVP . However, in this continuously variable transmission 2, if the tilt angle α is in the range of “− | θ | ≦ α ≦ | θ |”, the rate of change of the gear ratio γ CVP with respect to the rate of change of the tilt angle α. Can be kept constant, so that the controllability of the gear ratio γ CVP is excellent. Therefore, in order to improve the controllability of the gear ratio γ CVP, the continuously variable transmission 2 preferably controls the tilt angle α within the range of “− | θ | ≦ α ≦ | θ |”.

このように、この無段変速機2は、傾転角αを「−|θ|≦α≦|θ|」の範囲内で制御するように、即ち変速比γCVPを「γCVP(α=θ)≦γCVP≦γCVP(α=−θ)」の範囲内で制御するように設定しているので、動力伝達効率と変速制御性の良好な変速比γCVPの領域のみが使われることになり、燃費や変速品質が向上する。 In this way, the continuously variable transmission 2 controls the tilt angle α within the range of “− | θ | ≦ α ≦ | θ |”, that is, the gear ratio γ CVP is “γ CVP (α = θ) ≦ γ CVP ≦ γ CVP (α = −θ) ”, so that only the region of the gear ratio γ CVP with good power transmission efficiency and speed controllability is used. As a result, fuel economy and gear shifting quality are improved.

ところで、この変速装置1には、図1に示すように、複数の変速段を有する有段変速機3も設けている。その有段変速機3は、無段変速機2の出力側と駆動輪側との間に介在させている。ここでは、電子制御装置100によって切り替えの制御が為される低速段70と高速段80の2つの変速段を備えている。   By the way, the transmission 1 is also provided with a stepped transmission 3 having a plurality of shift stages, as shown in FIG. The stepped transmission 3 is interposed between the output side of the continuously variable transmission 2 and the drive wheel side. Here, there are two shift stages, a low speed stage 70 and a high speed stage 80, which are controlled to be switched by the electronic control unit 100.

低速段70は、出力軸21と一体になって回転する低速用第1歯車71と、この低速用第1歯車71と噛み合う低速用第2歯車72と、を有する。また、高速段80は、出力軸21と一体になって回転する高速用第1歯車81と、この高速用第1歯車81と噛み合う高速用第2歯車82と、を有する。低速用第2歯車72と高速用第2歯車82は、変速装置1のケースCAの内側に回転自在に支持されている。   The low speed stage 70 includes a low speed first gear 71 that rotates integrally with the output shaft 21, and a low speed second gear 72 that meshes with the low speed first gear 71. The high-speed stage 80 includes a first high-speed gear 81 that rotates integrally with the output shaft 21, and a second high-speed gear 82 that meshes with the first high-speed gear 81. The low speed second gear 72 and the high speed second gear 82 are rotatably supported inside the case CA of the transmission 1.

この変速装置1においては、無段変速機2の変速比γCVPと有段変速機3の低速段70の変速比γLo又は高速段80の変速比γHiとの積が最終的な変速比γになる(式4,5)。 In this transmission 1, the product of the speed ratio γ CVP of the continuously variable transmission 2 and the speed ratio γLo of the low speed stage 70 or the speed ratio γHi of the high speed stage 80 of the stepped transmission 3 is the final speed ratio γ. (Equations 4 and 5).

γ=γCVP×γLo … (4)
γ=γCVP×γHi … (5)
γ = γ CVP × γLo (4)
γ = γ CVP × γHi (5)

電子制御装置100には、有段変速機3の低速段70の使用域(以下、「有段低速域」と云う。)において、無段変速機2を上記の傾転角αの制御範囲内「−|θ|≦α≦|θ|」で制御させればよい。これにより、この変速装置1は、その有段低速域における動力伝達効率と変速制御性の良好な変速比γの領域のみが使用されることになる。これと同様に、この電子制御装置100は、有段変速機3の高速段80の使用域(以下、「有段高速域」と云う。)において、無段変速機2を上記の傾転角αの制御範囲内「−|θ|≦α≦|θ|」で制御すればよい。これにより、この変速装置1は、その有段高速域においても、有段高速域における動力伝達効率と変速制御性の良好な変速比γの領域のみが使用されることになる。   In the electronic control unit 100, the continuously variable transmission 2 is within the control range of the tilt angle α in the use range of the low speed stage 70 of the stepped transmission 3 (hereinafter referred to as “stepped low speed range”). Control may be performed with “− | θ | ≦ α ≦ | θ |”. As a result, the transmission 1 is used only in the region of the gear ratio γ with good power transmission efficiency and good shift controllability in the stepped low speed region. Similarly, the electronic control unit 100 causes the continuously variable transmission 2 to move at the tilt angle in the use range of the high speed stage 80 of the stepped transmission 3 (hereinafter referred to as “stepped high speed range”). Control may be performed within the range of α, “− | θ | ≦ α ≦ | θ |”. As a result, the speed change device 1 uses only the region of the gear ratio γ having good power transmission efficiency and speed controllability in the stepped high speed region even in the stepped high speed region.

有段低速域と有段高速域において最も動力伝達効率が良くなるのは、無段変速機2の変速比γCVPが1(α=0)に制御されているときである(図7)。また、この変速装置1は、有段低速域と有段高速域の双方において、無段変速機2の変速比γCVPが1よりも大きくなるにつれて又は小さくなるにつれて(換言するならば無段変速機2の傾転角αが−θ又はθに近づくにつれて)、動力伝達効率が変速比γの変化率に対して徐々に低下していく。 The power transmission efficiency is most improved in the stepped low speed region and the stepped high speed region when the gear ratio γ CVP of the continuously variable transmission 2 is controlled to 1 (α = 0) (FIG. 7). In addition, the speed change device 1 has a continuously variable speed change as the gear ratio γ CVP of the continuously variable transmission 2 becomes larger or smaller than 1 in both the stepped low speed region and the stepped high speed region. As the tilt angle α of the machine 2 approaches −θ or θ), the power transmission efficiency gradually decreases with respect to the change rate of the speed ratio γ.

ここで、電子制御装置100は、要求された変速装置1の変速比γに応じて低速段70と高速段80の切り替えを行う。その際、変速装置1は、変速比γを高効率領域に保持したままで低速段70と高速段80の切り替えを行うことが好ましい。   Here, the electronic control unit 100 switches between the low speed stage 70 and the high speed stage 80 in accordance with the requested speed ratio γ of the transmission 1. At this time, the transmission 1 preferably switches between the low speed stage 70 and the high speed stage 80 while maintaining the speed ratio γ in the high efficiency region.

そこで、電子制御装置100には、変速装置1が低速段70でアップシフト制御されている状態(つまり有段低速域で変速比γを小さくする為の無段変速機2の制御状態)であれば、無段変速機2の変速比γCVPがγCVP(α=θ)になったときに、その変速比γCVPをγCVP(α=−θ)に切り替えさせると共に、有段変速機3を低速段70から高速段80に切り替えさせればよい。また、この電子制御装置100には、変速装置1が高速段80でダウンシフト制御されている状態(つまり有段高速域で変速比γを大きくする為の無段変速機2の制御状態)であれば、無段変速機2の変速比γCVPがγCVP(α=−θ)になったときに、その変速比γCVPをγCVP(α=θ)に切り替えさせると共に、有段変速機3を高速段80から低速段70に切り替えさせればよい。これが為、この変速装置1は、図7に示す如く、その低速段70と高速段80とを切り替える際の変速比γ、つまり有段低速域で運転中の無段変速機2が変速比γCVP(α=θ)のときの変速比γ(α=θ)と、有段高速域で運転中の無段変速機2が変速比γCVP(α=−θ)のときの変速比γ(α=−θ)と、が同じ大きさになるように、無段変速機2の諸元(傾転角α、接触角θ、変速比γCVP等)と有段変速機3の諸元(低速段70と高速段80の変速比γLo、γHi)を設定すればよい。 Therefore, the electronic control unit 100 may be in a state where the transmission 1 is upshift controlled at the low speed stage 70 (that is, the control state of the continuously variable transmission 2 for reducing the speed ratio γ in the stepped low speed range). For example, when the gear ratio γ CVP of the continuously variable transmission 2 becomes γ CVP (α = θ), the gear ratio γ CVP is switched to γ CVP (α = −θ) and the stepped transmission 3 May be switched from the low speed stage 70 to the high speed stage 80. Further, the electronic control unit 100 is in a state in which the transmission 1 is downshift controlled at the high speed stage 80 (that is, the control state of the continuously variable transmission 2 for increasing the speed ratio γ in the stepped high speed range). If present, when the gear ratio γ CVP of the continuously variable transmission 2 becomes γ CVP (α = −θ), the gear ratio γ CVP is switched to γ CVP (α = θ) and the stepped transmission 3 may be switched from the high speed stage 80 to the low speed stage 70. For this reason, as shown in FIG. 7, the transmission 1 has a transmission ratio γ when switching between the low speed stage 70 and the high speed stage 80, that is, the continuously variable transmission 2 operating in the stepped low speed range is changed to the transmission ratio γ. The transmission ratio γ (α = θ) when CVP (α = θ) and the transmission ratio γ (when the continuously variable transmission 2 operating in the stepped high speed range is the transmission ratio γ CVP (α = −θ). (α = −θ) and the specifications of the continuously variable transmission 2 (tilt angle α, contact angle θ, gear ratio γ CVP, etc.) and the specifications of the stepped transmission 3 ( The speed ratio γLo, γHi) between the low speed stage 70 and the high speed stage 80 may be set.

更に、この変速装置1は、変速装置1が低速段70でアップシフト制御されている状態において、無段変速機2の変速比γCVPがγCVP(α=θ)になる前に、その変速比γCVPを切り替え、且つ、有段変速機3を低速段70から高速段80に切り替えたとしても、変速比γを高効率領域に保持し続けることができる(図8)。また、この変速装置1は、変速装置1が高速段80でダウンシフト制御されている状態において、変速比γCVPがγCVP(α=−θ)になる前に、その変速比γCVPを切り替え、且つ、有段変速機3を高速段80から低速段70に切り替えたとしても、変速比γを高効率領域に保持し続けることができる(図8)。この場合には、その低速段70から切り替えるときの変速比γと高速段80から切り替えるときの変速比γとが同じ大きさになるように、無段変速機2の諸元と有段変速機3の諸元を設定すればよい。 Further, the transmission 1 is shifted before the transmission ratio γ CVP of the continuously variable transmission 2 becomes γ CVP (α = θ) in a state where the transmission 1 is upshift controlled at the low speed stage 70. Even if the ratio γ CVP is switched and the stepped transmission 3 is switched from the low speed stage 70 to the high speed stage 80, the speed ratio γ can be kept in the high efficiency region (FIG. 8). Further, the transmission 1 switches the transmission ratio γ CVP before the transmission ratio γ CVP becomes γ CVP (α = −θ) in a state where the transmission 1 is downshift controlled at the high speed stage 80. Even if the stepped transmission 3 is switched from the high speed stage 80 to the low speed stage 70, the speed ratio γ can be kept in the high efficiency region (FIG. 8). In this case, the specifications of the continuously variable transmission 2 and the stepped transmission are set so that the speed ratio γ when switching from the low speed stage 70 and the speed ratio γ when switching from the high speed stage 80 are the same. It is only necessary to set 3 specifications.

従って、この変速装置1においては、変速比γを高効率領域のみで使う為、低速段70及び高速段80の変速比γLo、γHi、有段低速域で運転中の無段変速機2の変速比γCVP(α=θ)及び有段高速域で運転中の無段変速機2の変速比γCVP(α=−θ)が下記の式6の関係を満たすように、無段変速機2の諸元と有段変速機3の諸元を設定すればよい。つまり、この変速装置1は、有段低速域における変速比γCVP(α=θ)のときの変速比γ(α=θ){=γCVP(α=θ)×γLo}が有段高速域における変速比γCVP(α=−θ)のときの変速比γ(α=−θ){=γCVP(α=−θ)×γHi}以下になるように設定すればよい。尚、低速段70と高速段80の変速比γLo、γHiは、「1<(γLo/γHi)」の関係を有している。 Therefore, in this transmission 1, since the gear ratio γ is used only in the high efficiency region, the gear ratios γLo and γHi of the low speed stage 70 and the high speed stage 80, and the speed change of the continuously variable transmission 2 operating in the stepped low speed region. The continuously variable transmission 2 so that the ratio γ CVP (α = θ) and the transmission ratio γ CVP (α = −θ) of the continuously variable transmission 2 operating in the stepped high speed range satisfy the relationship of the following Expression 6. And the specifications of the stepped transmission 3 may be set. In other words, the transmission 1 has a gear ratio γ (α = θ) {= γ CVP (α = θ) × γLo} at a gear ratio γ CVP (α = θ) in a stepped low speed region. speed ratio γ (α = -θ) {= γ CVP (α = -θ) × γHi} may be set to be less than when the speed ratio γ CVP (α = -θ) in. The gear ratios γLo and γHi between the low speed stage 70 and the high speed stage 80 have a relationship of “1 <(γLo / γHi)”.

(γLo/γHi)≦{γCVP(α=−θ)/γCVP(α=θ)} … (6) (ΓLo / γHi) ≦ {γ CVP (α = −θ) / γ CVP (α = θ)} (6)

この式6においては、その変速比γCVP(α=θ)を有段低速域における「α=θ」のときの無段変速機2の回転比γd1に置き換え、且つ、その変速比γCVP(α=−θ)を有段高速域における「α=−θ」のときの無段変速機2の回転比γd2に置き換えてもよい。 In this equation 6, the gear ratio γ CVP (α = θ) is replaced with the rotation ratio γd1 of the continuously variable transmission 2 when “α = θ” in the stepped low speed region, and the gear ratio γ CVP ( α = −θ) may be replaced with the rotation ratio γd2 of the continuously variable transmission 2 when “α = −θ” in the stepped high speed range.

低速段70と高速段80とを切り替える際、無段変速機2は、傾転角αを傾転角α1(0<α1≦θ)と傾転角α2(−θ≦α2<0)との間で切り替える。その傾転角α1,α2は、「|α1|=|α2|」の関係を有していることが望ましい。   When switching between the low speed stage 70 and the high speed stage 80, the continuously variable transmission 2 changes the tilt angle α between the tilt angle α1 (0 <α1 ≦ θ) and the tilt angle α2 (−θ ≦ α2 <0). Switch between. It is desirable that the tilt angles α1 and α2 have a relationship of “| α1 | = | α2 |”.

この変速装置1をアップシフトさせるとき及びダウンシフトさせるときの動作について、各々図9及び図10のタイムチャートに基づき説明する。   Operations when the transmission 1 is upshifted and downshifted will be described based on the time charts of FIGS. 9 and 10, respectively.

アップシフト制御時には、低速段70で運転しているときに、無段変速機2の傾転角αが負の値、0、正の値へと順に移り変わる。電子制御装置100は、傾転角αがα1になったときに、傾転角αをα2に制御すると共に、有段変速機3を低速段70から高速段80に切り替える。そして、この電子制御装置100は、アップシフト制御が続くのであれば、傾転角αをα2から0に近づけていき、接触角θと同一角度になるまで制御する。従って、この変速装置1は、図9の下図や図11に示すように、単位時間当りの変速比変化率を一定に保ちながら、変速比γをγ(α=−θ)からγ(α=θ)の間でアップシフトできる。また、この変速装置1は、「(γLo/γHi)≦{γCVP(α=−θ)/γCVP(α=θ)}」の関係を満たすように設定しているので、低速段70から高速段80へと切り替えるときに、その切り替え前後で連続的な変速比γの変化、つまり段付きを抑えた無段階の変速比γの変化が可能になる。故に、この変速装置1は、アップシフト制御時の変速比γの制御性に優れる。 During upshift control, when the vehicle is operating at the low speed stage 70, the tilt angle α of the continuously variable transmission 2 changes in order from a negative value, 0, and a positive value. When the tilt angle α becomes α1, the electronic control unit 100 controls the tilt angle α to α2, and switches the stepped transmission 3 from the low speed stage 70 to the high speed stage 80. Then, if the upshift control continues, the electronic control unit 100 controls the tilt angle α from α2 to 0 and until it reaches the same angle as the contact angle θ. Therefore, as shown in the lower diagram of FIG. 9 and FIG. 11, the transmission 1 changes the transmission ratio γ from γ (α = −θ) to γ (α = α = −θ) while keeping the transmission ratio change rate per unit time constant. upshift between θ). The transmission 1 is set so as to satisfy the relationship of “(γLo / γHi) ≦ {γ CVP (α = −θ) / γ CVP (α = θ)}”. When switching to the high speed stage 80, it is possible to continuously change the speed ratio γ before and after the switching, that is, to change the stepless speed ratio γ while suppressing stepping. Therefore, the transmission 1 is excellent in controllability of the speed ratio γ during upshift control.

一方、ダウンシフト制御時には、高速段80で運転しているときに、無段変速機2の傾転角αが正の値、0、負の値へと順に移り変わる。電子制御装置100は、傾転角αがα2になったときに、傾転角αをα1に制御すると共に、有段変速機3を高速段80から低速段70に切り替える。そして、この電子制御装置100は、ダウンシフト制御が続くのであれば、傾転角αをα1から0に近づけていき、−θになるまで制御する。従って、この変速装置1は、図10の下図や図11に示すように、単位時間当りの変速比変化率を一定に保ちながら、変速比γをγ(α=θ)からγ(α=−θ)の間でダウンシフトできる。また、この変速装置1は、「(γLo/γHi)≦{γCVP(α=−θ)/γCVP(α=θ)}」の関係を満たすように設定しているので、高速段80から低速段70へと切り替えるときに、その切り替え前後で連続的な変速比γの変化、つまり段付きを抑えた無段階の変速比γの変化が可能になる。故に、この変速装置1は、ダウンシフト制御時の変速比γの制御性に優れる。 On the other hand, during downshift control, when the vehicle is operating at the high speed stage 80, the tilt angle α of the continuously variable transmission 2 changes in order from a positive value, 0, and a negative value. When the tilt angle α becomes α2, the electronic control unit 100 controls the tilt angle α to α1 and switches the stepped transmission 3 from the high speed stage 80 to the low speed stage 70. Then, if the downshift control continues, the electronic control device 100 controls the tilt angle α from α1 to 0 until it reaches −θ. Therefore, as shown in the lower diagram of FIG. 10 and FIG. 11, the transmission 1 changes the gear ratio γ from γ (α = θ) to γ (α = −) while keeping the speed ratio change rate per unit time constant. downshift between (θ). The transmission 1 is set so as to satisfy the relationship of “(γLo / γHi) ≦ {γ CVP (α = −θ) / γ CVP (α = θ)}”. When switching to the low speed stage 70, it is possible to continuously change the speed ratio γ before and after the switching, that is, to change the stepless speed ratio γ while suppressing stepping. Therefore, the transmission 1 is excellent in controllability of the speed ratio γ during downshift control.

このように、この変速装置1は、傾転角αを「−|θ|≦α≦|θ|」の範囲内で制御するように設定し、且つ、「(γLo/γHi)≦{γCVP(α=−θ)/γCVP(α=θ)}」の関係を満たすように設定しているので、動力伝達効率と変速制御性の良好な変速比γの領域のみが使われることになり、燃費や変速品質が向上する。 Thus, the transmission 1 is set so that the tilt angle α is controlled within the range of “− | θ | ≦ α ≦ | θ |”, and “(γLo / γHi) ≦ {γ CVP. (Α = −θ) / γ CVP (α = θ)} ”is set so as to satisfy the relationship of“ α = −θ) / γ CVP (α = θ)} ”. , Improve fuel economy and shift quality.

1 変速装置
2 無段変速機
3 有段変速機
10 第1回転部材(第1部材)
11 入力軸
20 第2回転部材(第2部材)
21 出力軸
30 サンローラ(第3部材)
40 キャリア(第4部材)
50 遊星ボール(転動部材)
51 支持軸
60 傾転機構
70 低速段
71 低速用第1歯車
72 低速用第2歯車
80 高速段
81 高速用第1歯車
82 高速用第2歯車
100 電子制御装置
A1 第1中心軸
A2 第2中心軸
G 重心
L0 基準線
L1,L2 線
L3 基準線
P1,P2,P3 接点
α 傾転角
θ 接触角
DESCRIPTION OF SYMBOLS 1 Transmission device 2 Continuously variable transmission 3 Stepped transmission 10 First rotating member (first member)
11 Input shaft 20 Second rotating member (second member)
21 Output shaft 30 Sun roller (third member)
40 Carrier (4th member)
50 Planetary ball (rolling member)
51 Support shaft 60 Tilt mechanism 70 Low speed stage 71 Low speed first gear 72 Low speed second gear 80 High speed stage 81 High speed first gear 82 High speed second gear 100 Electronic control unit A1 First central axis A2 Second center Axis G Center of gravity L0 Reference line L1, L2 line L3 Reference line P1, P2, P3 Contact α Tilt angle θ Contact angle

Claims (2)

共通の第1中心軸上で対向させて配置し、該第1中心軸を中心とする相対回転が可能な第1及び第2の部材と、
前記第1中心軸と同心上で且つ前記第1部材と前記第2部材との間に配置した第3部材と、
前記第1中心軸と平行な第2中心軸及び回転中心となる当該第2中心軸上の重心を有し、前記第3部材の外周面上で前記第1中心軸を中心として放射状に複数配置すると共に、前記第1及び第2の部材との夫々の接点が前記第1中心軸から径方向外側に向けて同じ距離で且つ前記重心からも同じ距離となるように当該第1及び第2の部材に挟持させた転動部材と、
前記第2中心軸を有し、前記転動部材を回転自在に支持する支持軸と、
夫々の前記第2中心軸を前記第1中心軸に対して前記転動部材及び前記支持軸と共に傾転させる傾転機構と、
前記各支持軸を介して前記各転動部材を傾転動作が可能な状態で支持する第4部材と、
を備えた無段変速機を有し、
前記転動部材の重心から径方向に向けた基準線と当該転動部材の重心及び当該転動部材上の前記第1部材との接点を結ぶ線とが成す角度並びに前記基準線と前記転動部材の重心及び当該転動部材上の前記第2部材との接点を結ぶ線とが成す角度を接触角θとし、且つ、前記転動部材の重心を通る前記第1中心軸と平行な線に対する前記第2中心軸の成す角度を傾転角αとし、その傾転角αが「−|θ|≦α≦|θ|」の範囲内に収まるよう前記傾転機構を制御することを特徴とした変速装置。
A first member and a second member disposed opposite to each other on a common first central axis and capable of relative rotation about the first central axis;
A third member disposed concentrically with the first central axis and between the first member and the second member;
A second central axis parallel to the first central axis and a center of gravity on the second central axis serving as a rotation center, and a plurality of radial arrangements about the first central axis on the outer peripheral surface of the third member In addition, the first and second members are arranged such that the respective contacts with the first and second members have the same distance from the first central axis outward in the radial direction and the same distance from the center of gravity. A rolling member sandwiched between members;
A support shaft having the second central axis and rotatably supporting the rolling member;
A tilt mechanism that tilts each of the second central axes with the rolling member and the support shaft with respect to the first central axis;
A fourth member that supports each rolling member in a state capable of tilting operation via each support shaft;
Having a continuously variable transmission with
The angle formed by the reference line extending in the radial direction from the center of gravity of the rolling member and the line connecting the center of gravity of the rolling member and the contact point of the first member on the rolling member, and the reference line and the rolling The angle formed by the center of gravity of the member and the line connecting the contact point with the second member on the rolling member is defined as a contact angle θ, and the line parallel to the first central axis passing through the center of gravity of the rolling member An angle formed by the second central axis is defined as a tilt angle α, and the tilt mechanism is controlled so that the tilt angle α is within a range of “− | θ | ≦ α ≦ | θ |”. Gearbox.
前記第2部材と一体になって回転する低速用第1歯車及び当該低速用第1歯車に噛み合う低速用第2歯車を備えた低速段と、前記第2部材と一体になって回転する高速用第1歯車及び当該高速用第1歯車に噛み合う高速用第2歯車を備えた高速段と、を有する有段変速機を設け、
前記有段変速機が前記低速段のときで且つ前記無段変速機の傾転角αが「α=θ」のときの当該無段変速機における前記第1部材と前記第2部材との間の回転比をγd1、前記有段変速機が前記高速段のときで且つ前記無段変速機の傾転角αが「α=−θ」のときの当該無段変速機における前記第1部材と前記第2部材との間の回転比をγd2、前記有段変速機の低速段の変速比をγLo、前記有段変速機の高速段の変速比をγHiとし、これらが「(γLo/γHi)≦(γd2/γd1)」の関係を満たすことを特徴とした請求項1記載の変速装置。
A low-speed stage including a first low-speed gear that rotates integrally with the second member and a second low-speed gear that meshes with the first low-speed gear; and a high-speed rotation that rotates integrally with the second member A stepped transmission having a first gear and a high-speed stage provided with a second high-speed gear meshing with the first high-speed gear;
Between the first member and the second member in the continuously variable transmission when the stepped transmission is at the low speed and the tilt angle α of the continuously variable transmission is “α = θ”. The first member in the continuously variable transmission when the stepped transmission is at the high speed and the tilt angle α of the continuously variable transmission is “α = −θ”. The rotation ratio between the second member and the second member is γd2, the low speed gear ratio of the stepped transmission is γLo, and the high speed gear ratio of the stepped transmission is γHi. These are “(γLo / γHi)”. 2. The transmission according to claim 1, wherein a relationship of ≦ (γd2 / γd1) ”is satisfied.
JP2011105581A 2011-05-10 2011-05-10 Transmission device Withdrawn JP2012237348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011105581A JP2012237348A (en) 2011-05-10 2011-05-10 Transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011105581A JP2012237348A (en) 2011-05-10 2011-05-10 Transmission device

Publications (1)

Publication Number Publication Date
JP2012237348A true JP2012237348A (en) 2012-12-06

Family

ID=47460431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011105581A Withdrawn JP2012237348A (en) 2011-05-10 2011-05-10 Transmission device

Country Status (1)

Country Link
JP (1) JP2012237348A (en)

Similar Documents

Publication Publication Date Title
CN102265063B (en) Continuously variable transmission
CN102144112B (en) Stepless transmission
JP5500118B2 (en) Continuously variable transmission
JP2015227691A (en) Continuously variable transmission
JP2015227690A (en) Continuously variable transmission
CN103797274A (en) Continuously variable transmission
JP2016520782A (en) 3 mode front wheel drive and rear wheel drive continuously variable planetary transmission
CN102782364A (en) Power transmission device
JPH08170706A (en) Automatic continuously variable transmission
JP2015075148A (en) Toroidal type continuously variable transmission
JP5803878B2 (en) Continuously variable transmission
JP5234015B2 (en) Continuously variable transmission
JP2011153645A (en) Continuously variable transmission and control device of continuously variable transmission
JP2012237348A (en) Transmission device
WO2012169057A1 (en) Continuously variable transmission
KR100640247B1 (en) Cvt for automobile usage
JP5826146B2 (en) Control device for continuously variable transmission
JP5761445B2 (en) Continuously variable transmission
JP2012127457A (en) Continuously variable transmission
KR101035207B1 (en) Continuously variable transmission
JP4561126B2 (en) Toroidal continuously variable transmission
JP2014202267A (en) Power transmission device
JP2014152853A (en) Power transmission device
JP2011202701A (en) Continuously variable transmission
JP2013190019A (en) Continuously variable transmission

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805