JP2012235935A - X-ray computed tomography apparatus - Google Patents

X-ray computed tomography apparatus Download PDF

Info

Publication number
JP2012235935A
JP2012235935A JP2011107558A JP2011107558A JP2012235935A JP 2012235935 A JP2012235935 A JP 2012235935A JP 2011107558 A JP2011107558 A JP 2011107558A JP 2011107558 A JP2011107558 A JP 2011107558A JP 2012235935 A JP2012235935 A JP 2012235935A
Authority
JP
Japan
Prior art keywords
ray
tube
bias
voltage
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011107558A
Other languages
Japanese (ja)
Other versions
JP5812679B2 (en
Inventor
Sanae Harada
早苗 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Canon Medical Systems Corp
Original Assignee
Toshiba Corp
Toshiba Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Medical Systems Corp filed Critical Toshiba Corp
Priority to JP2011107558A priority Critical patent/JP5812679B2/en
Publication of JP2012235935A publication Critical patent/JP2012235935A/en
Application granted granted Critical
Publication of JP5812679B2 publication Critical patent/JP5812679B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve controllability of X-ray generation in a triode X-ray tube.SOLUTION: This X-ray computed tomography apparatus includes: an X-ray tube 121 having a negative electrode 124, a positive electrode 122, and a bias electrode 125; an X-ray detector 14; an image reconstruction part 23; a high voltage power supply 131 generating a tube voltage; a filament heating power supply 132; a bias power supply 133; and an X-ray control part 16 controlling the high voltage power supply, the filament power supply, and the bias power supply. The X-ray control part makes the tube voltage be continuously applied, makes a filament current be continuously supplied, makes a bias voltage be applied as a pulse train, and varies at least one of a pulse repetition frequency and a pulse width of the bias voltage with time.

Description

本発明の実施形態は、X線コンピュータ断層撮影装置(CT装置)に関する。   Embodiments described herein relate generally to an X-ray computed tomography apparatus (CT apparatus).

近年、管電圧スイッチング制御や、心電同期制御において、X線管電流の高速応答は性能及び被曝低減という観点で重要となっている。X線管電圧・管電流変調制御時の波形の例を図5に示す。管電圧スイッチング制御時は、管電流も管電圧の変動に追従した波形が必要となり、高速な応答が必要となる。また、心電同期などの管電流変調時は、管電流を高速で制御することにより、不要なX線を低減することが望ましい。   In recent years, in tube voltage switching control and electrocardiographic synchronization control, high-speed response of X-ray tube current has become important from the viewpoint of performance and exposure reduction. An example of a waveform at the time of X-ray tube voltage / tube current modulation control is shown in FIG. At the time of tube voltage switching control, the tube current also needs to have a waveform that follows the fluctuation of the tube voltage, and a high-speed response is required. In addition, during tube current modulation such as electrocardiogram synchronization, it is desirable to reduce unnecessary X-rays by controlling the tube current at high speed.

従来の管電流制御技術は、陰極・陽極の2極構造を有する2極X線管と、陰極・陽極・バイアス電極の3極構造を有する3極X線管について次の通りである。   Conventional tube current control techniques are as follows for a bipolar X-ray tube having a cathode / anode bipolar structure and a triode X-ray tube having a cathode / anode / bias electrode triode structure.

まず、バイアス電極を持たない、2極X線管の場合、X線管電流はフィラメント電流の調整により制御される。管電流の周波数応答は陰極フィラメントの熱時定数に依存するため、図5の要求に対し管電流が追従できず、X線管電流はフィラメント電流に対して図6に示すように遅延する。これにより線量不足や不要被曝が発生することがある。   First, in the case of a bipolar X-ray tube having no bias electrode, the X-ray tube current is controlled by adjusting the filament current. Since the frequency response of the tube current depends on the thermal time constant of the cathode filament, the tube current cannot follow the requirement of FIG. 5, and the X-ray tube current is delayed with respect to the filament current as shown in FIG. This may cause a shortage of dose or unnecessary exposure.

次に3極X線管の場合は、図7、図8に示すバイアス電圧は、事前に特定されている管電流との関係に基づいて制御される。周波数応答の遅い陰極フィラメント電流ではなく、バイアス電圧を調整することで、管電流の周波数応答性を改善する方式である。   Next, in the case of a triode X-ray tube, the bias voltage shown in FIGS. 7 and 8 is controlled based on the relationship with the tube current specified in advance. In this method, the frequency response of the tube current is improved by adjusting the bias voltage instead of the cathode filament current having a slow frequency response.

しかし、バイアス電圧が印加されると、管電流が減少するだけでなく、焦点サイズも縮小され、最終的には焦点がなくなり、電子ビームがカットされ管電流が”0mA“になる。この電圧をカットオフ電圧という。低い管電流領域で制御を行う場合、バイアス電圧はカットオフ電圧に近い値を印加することとなり、焦点サイズが著しく小さくなり、図6に示すように実際の管電流波形は不安定になり、安定した制御が難しい。   However, when a bias voltage is applied, not only the tube current decreases, but also the focal spot size is reduced, eventually the focal point disappears, the electron beam is cut, and the tube current becomes “0 mA”. This voltage is called a cut-off voltage. When control is performed in a low tube current region, the bias voltage is applied to a value close to the cutoff voltage, the focal spot size becomes extremely small, and the actual tube current waveform becomes unstable and stable as shown in FIG. Control is difficult.

目的は、三極X線管におけるX線発生の制御性を向上することにある。   The purpose is to improve the controllability of X-ray generation in a triode X-ray tube.

本実施形態に係るX線コンピュータ断層撮影装置は、陰極と、陽極と、前記陰極と前記陽極との間に配置されるバイアス電極とを有するX線管と、前記X線管から発生され、被検体を透過したX線を検出するX線検出器と、前記X線検出器の出力に基づいて画像を再構成する画像再構成部と、前記陰極と前記陽極との間に印加される管電圧を発生する高電圧電源と、前記陰極のフィラメントに供給されるフィラメント電流を発生するフィラメント加熱電源と、前記陰極と前記陽極との間の管電流を制御するために前記バイアス電極に印加されるバイアス電圧を発生するバイアス電源と、前記高電圧電源と前記フィラメント加熱電源と前記バイアス電源とを制御するX線制御部とを具備し、前記X線制御部は、前記管電圧を継続的に印加させ、前記フィラメント電流を継続的に供給させ、前記バイアス電圧をパルス列として印加させるとともに、前記バイアス電圧のパルス幅とパルス繰り返し周波数との少なくとも一方を経時的に変化させる。   An X-ray computed tomography apparatus according to the present embodiment includes an X-ray tube having a cathode, an anode, and a bias electrode disposed between the cathode and the anode, and an X-ray tube generated from the X-ray tube. An X-ray detector that detects X-rays transmitted through the specimen, an image reconstruction unit that reconstructs an image based on the output of the X-ray detector, and a tube voltage applied between the cathode and the anode A bias voltage applied to the bias electrode to control a tube current between the cathode and the anode. A bias power source that generates a voltage; and an X-ray control unit that controls the high voltage power source, the filament heating power source, and the bias power source, wherein the X-ray control unit continuously applies the tube voltage. , Serial filament current continuously to supply, together to apply the bias voltage as a pulse train over time to vary at least one of the pulse width and pulse repetition frequency of the bias voltage.

本実施形態に係るX線コンピュータ断層撮影装置の構成を示す図である。It is a figure which shows the structure of the X-ray computed tomography apparatus which concerns on this embodiment. 図1のX線高電圧電源の構成を示す図である。It is a figure which shows the structure of the X-ray high voltage power supply of FIG. 図1のX線制御部によるバイアス電圧制御を示す図である。It is a figure which shows the bias voltage control by the X-ray control part of FIG. 図1のX線制御部による他のバイアス電圧制御を示す図である。It is a figure which shows the other bias voltage control by the X-ray control part of FIG. 従来のX線制御を示す図である。It is a figure which shows the conventional X-ray control. 従来のバイアス電圧制御による不具合を示す図である。It is a figure which shows the malfunction by the conventional bias voltage control. バイアス電圧と管電流との相関を示す図である。It is a figure which shows the correlation of a bias voltage and a tube current. バイアス電圧と管電流との相関を示す図である。It is a figure which shows the correlation of a bias voltage and a tube current.

以下、図面を参照しながら本実施形態に係るX線コンピュータ断層撮影装置を説明する。
本実施形態のX線管は陰極と、陽極と、陰極と陽極との間に配置されるバイアス電極とを有する三極X線管である。バイアス電極に印加するバイアス電圧はパルス列として発生される。バイアス電圧のパルス幅とパルス繰り返し周波数との少なくとも一方は経時的に変化される。それによりX線発生の制御性が向上する。
The X-ray computed tomography apparatus according to this embodiment will be described below with reference to the drawings.
The X-ray tube of the present embodiment is a triode X-ray tube having a cathode, an anode, and a bias electrode disposed between the cathode and the anode. A bias voltage applied to the bias electrode is generated as a pulse train. At least one of the pulse width of the bias voltage and the pulse repetition frequency is changed with time. Thereby, the controllability of X-ray generation is improved.

なお、X線コンピュータ断層撮影装置には、X線管と放射線検出器とが1体として被検体の周囲を回転する回転/回転タイプと、リング状に多数の検出素子がアレイされ、X線管のみが被検体の周囲を回転する固定/回転タイプ等様々なタイプがあり、いずれのタイプでも本実施形態を適用可能である。ここでは、現在、主流を占めている回転/回転タイプとして説明する。また、1スライスの断層像データを再構成するには、被検体の周囲1周、約360°分の投影データが、またハーフスキャン法でも180°+α(α:ファン角)分の投影データが必要とされる。いずれの再構成方式にも本発明を適用可能である。ここでは、前者の例で説明する。また、入射X線を電荷に変換するメカニズムは、シンチレータ等の蛍光体でX線を光に変換し更にその光をフォトダイオード等の光電変換素子で電荷に変換する間接変換形と、X線による半導体内の電子正孔対の生成及びその電極への移動すなわち光導電現象を利用した直接変換形とが主流である。X線検出素子としては、それらのいずれの方式を採用してもよい。また、近年では、X線管とX線検出器との複数のペアを回転リングに搭載したいわゆる多管球型のX線コンピュータ断層撮影装置の製品化が進み、その周辺技術の開発が進んでいる。本実施形態では、従来からの一管球型のX線コンピュータ断層撮影装置であっても、多管球型のX線コンピュータ断層撮影装置であってもいずれにも適用可能である。ここでは、一管球型として説明する。   The X-ray computed tomography apparatus includes a rotation / rotation type in which an X-ray tube and a radiation detector are rotated as one body, and a large number of detection elements are arrayed in a ring shape. There are various types, such as a fixed / rotation type that only rotates around the subject, and the present embodiment can be applied to any type. Here, the rotation / rotation type that currently occupies the mainstream will be described. In addition, to reconstruct one slice of tomographic image data, projection data for about 360 ° around the object and projection data for about 360 ° is obtained, and projection data for 180 ° + α (α: fan angle) is also obtained by the half scan method. Needed. The present invention can be applied to any reconstruction method. Here, the former example will be described. In addition, the mechanism for converting incident X-rays into electric charges is based on an indirect conversion type in which X-rays are converted into light by a phosphor such as a scintillator and the light is further converted into electric charges by a photoelectric conversion element such as a photodiode. The generation of electron-hole pairs in semiconductors and their transfer to the electrode, that is, the direct conversion type utilizing a photoconductive phenomenon, is the mainstream. Any of these methods may be adopted as the X-ray detection element. In recent years, the so-called multi-tube X-ray computed tomography apparatus in which a plurality of pairs of an X-ray tube and an X-ray detector are mounted on a rotating ring has been commercialized, and the development of peripheral technologies has progressed. Yes. The present embodiment can be applied to both a conventional single-tube X-ray computed tomography apparatus and a multi-tube X-ray computed tomography apparatus. Here, a single tube type will be described.

図1、図2は本実施形態に係るX線コンピュータ断層撮影装置の構成を示している。このX線コンピュータ断層撮影装置は、被検体に関する投影データを収集するために構成された架台1と、架台1の制御及び画像再構成等の各種信号処理に必要な複数のモジュールを収容する操作卓(コンソールともいう)2とを有する。架台1は、X線管装置12とX線検出器14とを有する。X線管装置12とX線検出器14は、回転駆動されるリング状のフレーム11に搭載される。X線管装置12と多チャンネル型X線検出器14は、撮影時に被検体が挿入される撮影領域Sを挟んで対向する。一般的にDAS(data acquisition system) と呼ばれているデータ収集部15は、X線検出器14からチャンネルごとに出力される信号を電圧信号に変換し、増幅し、さらにディジタル信号(投影データという)に変換してから出力する。操作卓2は、操作者がスキャン条件等を入力するための操作部22と、操作者により設定されたスキャン条件に従って装置全体を制御してスキャンを実行するための制御部21と、データ収集部15で収集された投影データに基づいて断層面またはボリュームに関する画像データを再構成するデータ再構成部23とを有する。   1 and 2 show the configuration of an X-ray computed tomography apparatus according to this embodiment. This X-ray computed tomography apparatus includes a gantry 1 configured to collect projection data relating to a subject, and a console that accommodates a plurality of modules necessary for various signal processing such as control of the gantry 1 and image reconstruction. 2 (also referred to as a console). The gantry 1 includes an X-ray tube device 12 and an X-ray detector 14. The X-ray tube device 12 and the X-ray detector 14 are mounted on a ring-shaped frame 11 that is rotationally driven. The X-ray tube device 12 and the multi-channel X-ray detector 14 face each other with an imaging region S into which the subject is inserted at the time of imaging. A data acquisition unit 15, generally called a DAS (data acquisition system), converts a signal output from the X-ray detector 14 for each channel into a voltage signal, amplifies it, and further digital signal (referred to as projection data). ) And then output. The console 2 includes an operation unit 22 for an operator to input scan conditions and the like, a control unit 21 for controlling the entire apparatus according to the scan conditions set by the operator and executing a scan, and a data collection unit And a data reconstruction unit 23 for reconstructing image data related to the tomographic plane or volume based on the projection data collected in step 15.

上記X線管装置12は、真空状態で密閉される三極X線管121を有する。三極X線管121は、回転陽極122、それに対向する陰極124、そして陽極122と陰極124との間に配置されるバイアス電極125とを収容する。バイアス電極125に印加される電圧によりX線の発生と停止とを制御することができる。   The X-ray tube device 12 includes a triode X-ray tube 121 that is sealed in a vacuum state. The triode X-ray tube 121 houses a rotating anode 122, a cathode 124 facing the rotating anode 122, and a bias electrode 125 disposed between the anode 122 and the cathode 124. Generation and stop of X-rays can be controlled by a voltage applied to the bias electrode 125.

X線高電圧電源ユニット13は、高電圧電源131、フィラメント加熱電源132、バイアス電源133を有する。高電圧電源131は、X線制御部16からの制御信号に従って、陽極122と陰極124との間に印加される高電圧(管電圧)を出力し、また停止する。フィラメント加熱電源132は、X線制御部16からの制御信号に従って、陰極124のフィラメントに供給されるフィラメント電流を出力し、また停止する。バイアス電源133は、バイアス電極125に印加されるバイアス電圧を発生するインバータ式電源であり、X線制御部16からの制御パルスに同期するスイッチング素子によりパルス系列としてバイアス電圧を発生する。バイアス電極125の電位は、ゼロと、陰極124の電位と等価またはそれより低いマイナス極性の電位(カットオフ電圧)との間で変位する。図3に示すようにカットオフ電位が維持されている期間をパルス幅PW、カットオフ電位の発生周期をパルス周期PSとする。バイアス電位がゼロのとき、陰極124のフィラメントから発生される熱電子がバイアス電極125を通過して回転陽極122のタングステン等のターゲット123に衝突し管電流が流れる。バイアス電位がカットオフ電位のとき、陰極124のフィラメントから発生される熱電子がバイアス電極125で遮断され管電流は流れない。   The X-ray high voltage power supply unit 13 includes a high voltage power supply 131, a filament heating power supply 132, and a bias power supply 133. The high voltage power supply 131 outputs a high voltage (tube voltage) applied between the anode 122 and the cathode 124 according to a control signal from the X-ray control unit 16 and stops. The filament heating power supply 132 outputs a filament current supplied to the filament of the cathode 124 according to a control signal from the X-ray control unit 16 and stops. The bias power supply 133 is an inverter type power supply that generates a bias voltage applied to the bias electrode 125, and generates a bias voltage as a pulse series by a switching element synchronized with a control pulse from the X-ray control unit 16. The potential of the bias electrode 125 is displaced between zero and a negative polarity potential (cutoff voltage) equivalent to or lower than the potential of the cathode 124. As shown in FIG. 3, a period in which the cutoff potential is maintained is a pulse width PW, and a generation period of the cutoff potential is a pulse period PS. When the bias potential is zero, the thermoelectrons generated from the filament of the cathode 124 pass through the bias electrode 125 and collide with the target 123 such as tungsten of the rotating anode 122 and a tube current flows. When the bias potential is a cut-off potential, thermoelectrons generated from the filament of the cathode 124 are interrupted by the bias electrode 125, and no tube current flows.

図3に示すように、スキャン期間中においては、管電圧が継続的に印加され、フィラメント電流が継続的に供給されるとともにバイアス電圧のデューティー比(PW/PS)が経時的に変化されることによりパルスX線の発生とその停止とが制御される。デューティー比を変化させるために、バイアス電圧のパルス幅PWとパルス繰り返し周波数(スイッチング周波数fsw、1/PS)との少なくとも一方が経時的に変化される。図3の例では、スイッチング周波数fswは一定に保たれ、パルス幅PWが変化される。   As shown in FIG. 3, during the scanning period, the tube voltage is continuously applied, the filament current is continuously supplied, and the duty ratio (PW / PS) of the bias voltage is changed with time. Thus, the generation and stop of the pulse X-ray are controlled. In order to change the duty ratio, at least one of the pulse width PW of the bias voltage and the pulse repetition frequency (switching frequency fsw, 1 / PS) is changed over time. In the example of FIG. 3, the switching frequency fsw is kept constant and the pulse width PW is changed.

バイアス電圧を連続的に変化させる従来の方式では、低い管電流領域での安定した制御が困難であった。本実施形態では、バイアス電源133にリニアアンプではなく、ON−OFFスイッチング可能な例えばチョッパ形電源を採用し、バイアス電圧を図3に示すようにVb0とカットオフ電圧Vbcutの間で高速スイッチング(ON/OFF)させパルスのデューティー比を変化することにより、管電流を制御する。デューティー比は、ゼロ又はその近似値から、1又はその近似値まで連続的に変化される。   In the conventional method in which the bias voltage is continuously changed, stable control in a low tube current region is difficult. In this embodiment, for example, a chopper type power supply capable of ON-OFF switching is adopted as the bias power supply 133 instead of a linear amplifier, and the bias voltage is switched at a high speed (ON) between Vb0 and the cut-off voltage Vbcut as shown in FIG. The tube current is controlled by changing the pulse duty ratio. The duty ratio is continuously changed from zero or an approximate value thereof to 1 or an approximate value thereof.

なお、バイアス電源133のスイッチング周波数fswを管電流の応答速度より十分速く、例えば数十〜100kHzの範囲から選択することにより、電流検出部17で検出される管電流は図3の実線のような波形になり安定した制御が可能となる。   Note that by selecting the switching frequency fsw of the bias power supply 133 sufficiently faster than the response speed of the tube current, for example, from the range of several tens to 100 kHz, the tube current detected by the current detector 17 is as shown by the solid line in FIG. It becomes a waveform and stable control becomes possible.

さらに、バイアス電圧のスイッチング周波数fswをデータ収集部15のサンプリング速度(数kHz)の例えば10倍以上として数十kHz以上であって、管電流の応答速度を基準とした周波数(数十〜100kHz)よりも低い周波数に設定する場合は、管電流検出部17に数十kHzのフィルタ(平均化回路)を追加することが好ましい。この場合、実際の管電流波形は、図3の点線で示す波形を示すことになるが、管電流検出部17の波形は図3に実線で示す連続波形を得られる。また、スイッチング周波数がデータ収集部15のサンプリング速度よりも十分速いため、スイッチングされたX線は1サンプリング内で積分されるため、データ収集部15で検出されるX線量は平均化されスイッチングの影響は画像には表れない。   Furthermore, the switching frequency fsw of the bias voltage is, for example, 10 times or more of the sampling speed (several kHz) of the data collecting unit 15 and is several tens of kHz or more, and the frequency based on the tube current response speed (several tens to 100 kHz). When the frequency is set to a lower frequency, it is preferable to add a filter (averaging circuit) of several tens of kHz to the tube current detection unit 17. In this case, the actual tube current waveform is the waveform indicated by the dotted line in FIG. 3, but the waveform of the tube current detection unit 17 is a continuous waveform indicated by the solid line in FIG. Further, since the switching frequency is sufficiently faster than the sampling speed of the data acquisition unit 15, the switched X-rays are integrated within one sampling, so the X-ray dose detected by the data acquisition unit 15 is averaged and the influence of switching Does not appear in the image.

バイアス電圧のパルス制御としては、以下のように制御する。バイアス電源133のパルス周波数を一定のもとでパルス幅PWを拡大していくと、バイアス電極125にカットオフ電圧を印加している期間は陰極124からの電子がカットされるため、管電流は低くなる。パルス幅PWを狭くしていくと、管電流は高くなる。図4に示すように、パルス幅PWを一定として、スイッチング周波数fswを連続的に変化させることでデューティー比を連続的に変化させるようにしてもよいし、パルス幅PWとスイッチング周波数fswとの両方を変化させることでデューティー比を連続的に変化するようにしてもよい。   The bias voltage pulse control is performed as follows. When the pulse width PW is increased with the pulse frequency of the bias power supply 133 kept constant, electrons from the cathode 124 are cut during the period in which the cutoff voltage is applied to the bias electrode 125, so that the tube current is Lower. As the pulse width PW is reduced, the tube current increases. As shown in FIG. 4, the duty ratio may be changed continuously by changing the switching frequency fsw continuously with the pulse width PW constant, or both the pulse width PW and the switching frequency fsw. The duty ratio may be changed continuously by changing.

スイッチング周波数fswを非常に高くしていくと、パルス幅PWは狭くなっていき、パルス出力が難しくなっていく。この場合は、デューティー比制御に加えて、管電流領域により出力電圧可変制御と、パルス出力制御を切り替えて制御することで対応する。低い管電流領域では、焦点が著しく小さくなるカットオフ領域付近での制御となるため、バイアス電圧はパルス出力制御とし、焦点が著しく小さくならないような管電流領域では、バイアス電圧をリニアに変えて制御する。   When the switching frequency fsw is made very high, the pulse width PW becomes narrower and the pulse output becomes difficult. In this case, in addition to the duty ratio control, the output voltage variable control and the pulse output control are switched and controlled by the tube current region. In the low tube current region, control is performed in the vicinity of the cutoff region where the focal point becomes extremely small. Therefore, the bias voltage is controlled by pulse output. In the tube current region where the focal point does not become extremely small, the bias voltage is changed linearly. To do.

本実施形態のように管電流制御をバイアス電圧のパルス系列のデューティー比制御により実現んすることにより、管電流、管電流変調制御をより低い管電流領域でも高速且つ安定に制御することができ、不要な被曝を低減することが可能となる。   By realizing the tube current control by the duty ratio control of the bias voltage pulse series as in this embodiment, the tube current and the tube current modulation control can be controlled quickly and stably even in a lower tube current region. Unnecessary exposure can be reduced.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

1…架台、2…操作卓、11…回転フレーム、12…X線管装置、13…X線高電圧電源ユニット、14…X線検出器、15…データ収集部、17…管電流検出部、21…制御部、22…操作部、23…データ再構成部、121…三極X線管、122…回転陽極、124…陰極、125…バイアス電極、131…高電圧電源、132…フィラメント加熱電源、133…バイアス電源。   DESCRIPTION OF SYMBOLS 1 ... Mounting stand, 2 ... Console, 11 ... Rotating frame, 12 ... X-ray tube apparatus, 13 ... X-ray high voltage power supply unit, 14 ... X-ray detector, 15 ... Data collection part, 17 ... Tube current detection part, DESCRIPTION OF SYMBOLS 21 ... Control part, 22 ... Operation part, 23 ... Data reconstruction part, 121 ... Triode X-ray tube, 122 ... Rotary anode, 124 ... Cathode, 125 ... Bias electrode, 131 ... High voltage power supply, 132 ... Filament heating power supply 133: Bias power supply.

Claims (6)

陰極と、陽極と、前記陰極と前記陽極との間に配置されるバイアス電極とを有するX線管と、
前記X線管から発生され、被検体を透過したX線を検出するX線検出器と、
前記X線検出器の出力に基づいて画像を再構成する画像再構成部と、
前記陰極と前記陽極との間に印加される管電圧を発生する高電圧電源と、
前記陰極のフィラメントに供給されるフィラメント電流を発生するフィラメント加熱電源と、
前記陰極と前記陽極との間の管電流を制御するために前記バイアス電極に印加されるバイアス電圧を発生するバイアス電源と、
前記高電圧電源と前記フィラメント加熱電源と前記バイアス電源とを制御するX線制御部とを具備し、
前記X線制御部は、前記管電圧を継続的に印加させ、前記フィラメント電流を継続的に供給させ、前記バイアス電圧をパルス列として印加させるとともに、前記バイアス電圧のパルス幅とパルス繰り返し周波数との少なくとも一方を経時的に変化させることを特徴とするX線コンピュータ断層撮影装置。
An X-ray tube having a cathode, an anode, and a bias electrode disposed between the cathode and the anode;
An X-ray detector that detects X-rays generated from the X-ray tube and transmitted through the subject;
An image reconstruction unit for reconstructing an image based on the output of the X-ray detector;
A high voltage power source for generating a tube voltage applied between the cathode and the anode;
A filament heating power source for generating a filament current supplied to the cathode filament;
A bias power source for generating a bias voltage applied to the bias electrode to control a tube current between the cathode and the anode;
An X-ray control unit that controls the high-voltage power source, the filament heating power source, and the bias power source;
The X-ray control unit continuously applies the tube voltage, continuously supplies the filament current, applies the bias voltage as a pulse train, and at least includes a pulse width of the bias voltage and a pulse repetition frequency. An X-ray computed tomography apparatus characterized in that one is changed over time.
前記パルス繰り返し周波数は、前記管電流の応答速度の逆数よりも高いことを特徴とする請求項1記載のX線コンピュータ断層撮影装置。   The X-ray computed tomography apparatus according to claim 1, wherein the pulse repetition frequency is higher than a reciprocal of a response speed of the tube current. 前記X線検出器の出力には、前記X線検出器の出力信号を所定のサンプリング周波数でディジタル信号に変換する機能を有するデータ収集部が接続され、
前記パルス繰り返し周波数は、前記サンプリング周波数よりも高いことを特徴とする請求項1記載のX線コンピュータ断層撮影装置。
Connected to the output of the X-ray detector is a data collection unit having a function of converting the output signal of the X-ray detector into a digital signal at a predetermined sampling frequency,
The X-ray computed tomography apparatus according to claim 1, wherein the pulse repetition frequency is higher than the sampling frequency.
前記管電流を検出する電流検出部をさらに備え、
前記X線制御部は、前記電流検出部で検出された管電流値に基づいて前記パルス幅とパルス繰り返し周波数との少なくとも一方を変化させることを特徴とする請求項1記載のX線コンピュータ断層撮影装置。
A current detector for detecting the tube current;
2. The X-ray computed tomography according to claim 1, wherein the X-ray control unit changes at least one of the pulse width and a pulse repetition frequency based on a tube current value detected by the current detection unit. apparatus.
前記X線制御部は、前記バイアス電圧のパルス幅とパルス繰り返し周波数との少なくとも一方とともに、前記バイアス電圧の電圧値を変化させることを特徴とする請求項1記載のX線コンピュータ断層撮影装置。   The X-ray computed tomography apparatus according to claim 1, wherein the X-ray control unit changes the voltage value of the bias voltage together with at least one of a pulse width and a pulse repetition frequency of the bias voltage. 陰極と、陽極と、前記陰極と前記陽極との間に配置されるバイアス電極とを有するX線管と、
前記X線管から発生され、被検体を透過したX線を検出するX線検出器と、
前記X線検出器の出力に基づいて画像を再構成する画像再構成部と、
前記陰極と前記陽極との間に印加される管電圧を発生する高電圧電源と、
前記陰極のフィラメントに供給されるフィラメント電流を発生するフィラメント加熱電源と、
前記陰極と前記陽極との間の管電流を制御するために前記バイアス電極に印加されるバイアス電圧を発生するバイアス電源と、
前記高電圧電源と前記フィラメント加熱電源と前記バイアス電源とを制御するX線制御部とを具備し、
前記X線制御部は、前記管電圧を継続的に印加させ、前記フィラメント電流を継続的に供給させ、前記バイアス電圧をパルス列として印加させるとともに、前記バイアス電圧のデューティー比を経時的に変化させることを特徴とするX線コンピュータ断層撮影装置。
An X-ray tube having a cathode, an anode, and a bias electrode disposed between the cathode and the anode;
An X-ray detector that detects X-rays generated from the X-ray tube and transmitted through the subject;
An image reconstruction unit for reconstructing an image based on the output of the X-ray detector;
A high voltage power source for generating a tube voltage applied between the cathode and the anode;
A filament heating power source for generating a filament current supplied to the cathode filament;
A bias power source for generating a bias voltage applied to the bias electrode to control a tube current between the cathode and the anode;
An X-ray control unit that controls the high-voltage power source, the filament heating power source, and the bias power source;
The X-ray controller continuously applies the tube voltage, continuously supplies the filament current, applies the bias voltage as a pulse train, and changes the duty ratio of the bias voltage over time. X-ray computed tomography apparatus.
JP2011107558A 2011-05-12 2011-05-12 X-ray computed tomography system Active JP5812679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011107558A JP5812679B2 (en) 2011-05-12 2011-05-12 X-ray computed tomography system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011107558A JP5812679B2 (en) 2011-05-12 2011-05-12 X-ray computed tomography system

Publications (2)

Publication Number Publication Date
JP2012235935A true JP2012235935A (en) 2012-12-06
JP5812679B2 JP5812679B2 (en) 2015-11-17

Family

ID=47459417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011107558A Active JP5812679B2 (en) 2011-05-12 2011-05-12 X-ray computed tomography system

Country Status (1)

Country Link
JP (1) JP5812679B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159618A1 (en) * 2015-03-31 2016-10-06 주식회사 쎄크 X-ray generation device and control method therefor
US9717469B2 (en) 2012-08-31 2017-08-01 Toshiba Medical Systems Corporation X-ray computed tomography apparatus, high voltage generation device, and radiological image diagnostic apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5473894A (en) * 1977-11-24 1979-06-13 Mitsubishi Chem Ind Ltd Production of polyoxymethylene
JP2000060839A (en) * 1998-08-18 2000-02-29 Siemens Ag X-ray computer tomograph
JP2004071563A (en) * 2002-07-31 2004-03-04 Ge Medical Systems Global Technology Co Llc Electron source and cable for x-ray tube
JP2007319439A (en) * 2006-06-01 2007-12-13 Mitsubishi Heavy Ind Ltd Control device for radiotherapy system and radiation irradiation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5473894A (en) * 1977-11-24 1979-06-13 Mitsubishi Chem Ind Ltd Production of polyoxymethylene
JP2000060839A (en) * 1998-08-18 2000-02-29 Siemens Ag X-ray computer tomograph
JP2004071563A (en) * 2002-07-31 2004-03-04 Ge Medical Systems Global Technology Co Llc Electron source and cable for x-ray tube
JP2007319439A (en) * 2006-06-01 2007-12-13 Mitsubishi Heavy Ind Ltd Control device for radiotherapy system and radiation irradiation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9717469B2 (en) 2012-08-31 2017-08-01 Toshiba Medical Systems Corporation X-ray computed tomography apparatus, high voltage generation device, and radiological image diagnostic apparatus
WO2016159618A1 (en) * 2015-03-31 2016-10-06 주식회사 쎄크 X-ray generation device and control method therefor

Also Published As

Publication number Publication date
JP5812679B2 (en) 2015-11-17

Similar Documents

Publication Publication Date Title
US8320521B2 (en) Method and system for operating an electron beam system
RU2399907C1 (en) Device for generating several x-ray beams and x-ray imaging device
JP6054119B2 (en) X-ray CT system
JP2015180859A (en) photon counting CT apparatus
JP2016140762A (en) Panoramic imaging using multi-spectral x-ray source
JP2004357724A (en) X-ray ct apparatus, x-ray generating apparatus, and data collecting method of x-ray ct apparatus
WO2014163187A1 (en) X-ray computed tomography apparatus
US7460635B2 (en) X-ray CT apparatus, method of controlling the same, and program
JP2010086960A (en) Wide-range irradiation type x-ray tube and ct system
JP6104526B2 (en) X-ray tube and X-ray CT apparatus
WO2014034909A1 (en) X-ray computed tomography apparatus
JP2014223289A (en) X-ray ct apparatus
JP5812679B2 (en) X-ray computed tomography system
JP2018126506A (en) X-ray computed tomography apparatus
JP7250532B2 (en) X-ray CT device and imaging planning device
JP6494944B2 (en) X-ray CT system
JP5622371B2 (en) X-ray tube and X-ray CT apparatus using the same
JP2006255089A (en) X-ray computer tomography apparatus
US20030210764A1 (en) Pulsed power application for x-ray tube
JP2011167465A (en) X-ray ct apparatus
JP5823178B2 (en) X-ray CT system
JP6283873B2 (en) X-ray computed tomography system
JP2015165874A (en) X-ray tube device and x-ray ct device
JP6168770B2 (en) Radiation generation unit and radiography system
JP2019042281A (en) X-ray computerized tomographic imaging apparatus

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150915

R150 Certificate of patent or registration of utility model

Ref document number: 5812679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350