JP2012234925A - Piezoelectric film element, and actuator and compact vibration power generator manufactured using the same - Google Patents

Piezoelectric film element, and actuator and compact vibration power generator manufactured using the same Download PDF

Info

Publication number
JP2012234925A
JP2012234925A JP2011101512A JP2011101512A JP2012234925A JP 2012234925 A JP2012234925 A JP 2012234925A JP 2011101512 A JP2011101512 A JP 2011101512A JP 2011101512 A JP2011101512 A JP 2011101512A JP 2012234925 A JP2012234925 A JP 2012234925A
Authority
JP
Japan
Prior art keywords
piezoelectric film
film
piezoelectric
knn
film element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011101512A
Other languages
Japanese (ja)
Inventor
Kenji Shibata
憲治 柴田
Kazufumi Suenaga
和史 末永
Fumimasa Horikiri
文正 堀切
Kazutoshi Watanabe
和俊 渡辺
Akira Nomoto
明 野本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2011101512A priority Critical patent/JP2012234925A/en
Publication of JP2012234925A publication Critical patent/JP2012234925A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a piezoelectric film element manufactured using a KNN film which has a film thickness of 5 μm or more and excellent piezoelectric characteristics.SOLUTION: A piezoelectric film element 10 includes on a substrate 1: a lower electrode layer 2; an upper electrode 4; and a piezoelectric film 3 having an alkali niobium oxide-based perovskite structure represented by a compositional formula: (KNa)NbO(0.4≤x≤0.7). The piezoelectric film 3 has a film thickness of 5 μm or more, has any one of structures selected from among a pseudo-cubic crystal, a tetragonal crystal and a prismatic crystal of a perovskite structure, and is preferentially oriented in a specified plane direction.

Description

本発明は、アルカリニオブ酸化物系の圧電膜を用いた圧電膜素子及びそれを用いたアクチュエータ並びに小型振動発電装置に関する。   The present invention relates to a piezoelectric film element using an alkali niobium oxide-based piezoelectric film, an actuator using the piezoelectric film element, and a small vibration power generator.

圧電体は種々の目的に応じて様々な圧電素子に加工され、特に電圧を加えて変形を生じさせるアクチュエータや、逆に素子の変形から電圧を発生させるセンサなどの機能性電子部品として広く利用されている。   Piezoelectric materials are processed into various piezoelectric elements according to various purposes. In particular, they are widely used as functional electronic parts such as actuators that generate deformation by applying voltage, and sensors that generate voltage from deformation of the element. ing.

アクチュエータやセンサの用途に利用されている圧電体としては、優れた圧電特性を有する鉛系材料の誘電体、特にPZTと呼ばれるPb(Zr1-xTix)O3系のペロブスカイト型強誘電体がこれまで広く用いられており、通常、個々の元素からなる酸化物を焼結することにより形成されている。現在、各種電子部品の小型化、高性能化が進むにつれ、圧電素子においても小型化、高性能化が強く求められるようになった。 As a piezoelectric material used for actuators and sensors, a lead-based material dielectric material having excellent piezoelectric characteristics, particularly a Pb (Zr 1-x Ti x ) O 3 -based perovskite ferroelectric material called PZT Has been widely used so far, and is usually formed by sintering oxides composed of individual elements. At present, as various electronic components have been reduced in size and performance, there has been a strong demand for miniaturization and high performance in piezoelectric elements.

しかしながら、従来からの製法である焼結法を中心とした製造方法により作製した圧電材料は、その厚みを薄くするにつれ、特に厚みが10μm程度の厚さに近づくにつれて、材料を構成する結晶粒の大きさに近づき、その影響が無視できなくなる。そのため、特性のばらつきや劣化が顕著になるといった問題が発生し、それを回避するために、焼結法に代わる薄膜技術等を応用した圧電体の形成法が近年研究されるようになってきた(例えば、特許文献1)。最近では、シリコン基板上にスパッタリング法で形成したPZT膜が、高速高精細のインクジェットプリンタヘッド用アクチュエータの圧電膜として実用化されている。   However, the piezoelectric material manufactured by a manufacturing method centering on a sintering method, which is a conventional manufacturing method, becomes smaller as the thickness of the piezoelectric material is reduced, particularly as the thickness approaches 10 μm. It approaches the size and the effect cannot be ignored. For this reason, problems such as significant variations in characteristics and deterioration occur, and in order to avoid such problems, methods for forming piezoelectric bodies using thin film technology instead of sintering have been recently studied. (For example, patent document 1). Recently, a PZT film formed on a silicon substrate by a sputtering method has been put into practical use as a piezoelectric film for a high-speed, high-definition inkjet printer head actuator.

一方、前記のPZTからなる圧電焼結体や圧電膜は、鉛を60〜70質量%程度含有しているので、生態学的見地および公害防止の面から好ましくない。そこで環境への配慮から鉛を含有しない圧電体の開発が望まれている。現在、様々な非鉛圧電材料が研究されているが、その中に組成式(K1-xNax)NbO3(0<x<1)で表されるニオブ酸カリウムナトリウム(以降、KNNとも記す)がある(例えば、特許文献2,3参照)。 On the other hand, the piezoelectric sintered body or piezoelectric film made of PZT contains lead in an amount of about 60 to 70% by mass, which is not preferable from the viewpoint of ecology and pollution prevention. Therefore, development of a piezoelectric body that does not contain lead is desired in consideration of the environment. Currently, various lead-free piezoelectric materials have been studied. Among them, potassium sodium niobate represented by the composition formula (K 1-x Na x ) NbO 3 (0 <x <1) (hereinafter referred to as KNN). (See, for example, Patent Documents 2 and 3).

このKNNは、ペロブスカイト構造を有する材料であり、非鉛圧電材料の有力な候補として期待されている。KNN膜は、スパッタリング法でのシリコン基板上への成膜が試されており、(001)配向したスパッタKNN膜において実用化レベルの特性であるd31=−100pm/Vを実現したとの報告もある。 This KNN is a material having a perovskite structure and is expected as a promising candidate for a lead-free piezoelectric material. The KNN film has been tried to be deposited on a silicon substrate by a sputtering method, and it has been reported that a (001) -oriented sputtered KNN film has achieved a practical level characteristic of d 31 = −100 pm / V. There is also.

特開2006−40999号公報JP 2006-40999 A 特開2007−184513号公報JP 2007-184513 A 特開2008−159807号公報JP 2008-159807 A

T. Mimo et al., Piezoelectric Properties of Epitaxial NaNbO3 Thin Films Deposited on (001) SrRuO3/Pt/MgO Substrates, Jpn. J. Appl. Phys., 2006, Vol.46 No.10B, p.6960-6963T. Mimo et al., Piezoelectric Properties of Epitaxial NaNbO3 Thin Films Deposited on (001) SrRuO3 / Pt / MgO Substrates, Jpn.J.Appl.Phys., 2006, Vol.46 No.10B, p.6960-6963

圧電膜を用いたアクチュエータを設計する際に、その用途によっては圧電膜にある程度の力が必要な場合があり、力を出すためには圧電膜を厚膜化する必要がある。また、圧電膜を用いた小型振動発電装置を設計する際には、圧電膜の膜厚が薄いと環境の振動によって圧電膜素子が壊れてしまうことがあるため、圧電膜を厚膜化する必要がある。基板の種類、厚さ、素子の大きさにもよるが、これらの用途には膜厚5μm〜20μmの圧電膜が求められている。   When designing an actuator using a piezoelectric film, a certain amount of force may be required for the piezoelectric film depending on the application, and it is necessary to increase the thickness of the piezoelectric film in order to exert the force. Also, when designing a small vibration power generator using a piezoelectric film, if the film thickness of the piezoelectric film is thin, the piezoelectric film element may be damaged by environmental vibration, so it is necessary to increase the thickness of the piezoelectric film. There is. Although depending on the type, thickness, and element size of the substrate, a piezoelectric film having a film thickness of 5 μm to 20 μm is required for these applications.

しかし、一般的なスパッタ法によるKNN膜の製膜では、製膜速度が最大でも1μm/hr程度であり、膜厚5μm以上の厚膜を作製するとかなりのコスト高になってしまう。また、原因は未だ解明されていないが膜厚が4〜5μmを超えたときから、(001)配向製膜が行われず隙間が多い多結晶膜になってしまうことがあるという問題もある。一方、エアロゾルデポジション法やスクリーン印刷法などの厚膜化に適した製膜方法もあるが、これらの製膜方法で作製したKNN膜は無配向であるため、非常に圧電特性が低く、デバイスの要求特性を満足できない。   However, in the case of forming a KNN film by a general sputtering method, the film forming speed is about 1 μm / hr at the maximum, and if a thick film having a film thickness of 5 μm or more is manufactured, the cost is considerably increased. In addition, although the cause has not yet been elucidated, there is also a problem that (001) -oriented film formation is not performed and a polycrystalline film with many gaps may be formed after the film thickness exceeds 4 to 5 μm. On the other hand, there are film forming methods suitable for thickening such as aerosol deposition method and screen printing method, but the KNN film produced by these film forming methods is non-oriented and has very low piezoelectric characteristics. The required characteristics cannot be satisfied.

本発明は上記課題を解決するためになされたものであり、膜厚5μm以上で優れた圧電特性を有するKNN膜を用いた圧電膜素子及びそれを用いたアクチュエータ並びに小型振動発電装置を提供することを目的とする。   The present invention has been made to solve the above problems, and provides a piezoelectric film element using a KNN film having a film thickness of 5 μm or more and having excellent piezoelectric characteristics, an actuator using the piezoelectric film element, and a small vibration power generator. With the goal.

上記目的を達成するために創案された本発明は、基板上に、下部電極層と、組成式(K1-xNax)NbO3(0.4≦x≦0.7)で表されるアルカリニオブ酸化物系ペロブスカイト構造の圧電膜と、上部電極とを備える圧電膜素子で、前記圧電膜は、膜厚が5μm以上であり、ペロブスカイト構造の擬立方晶、正方晶、斜方晶のいずれかの構造からなり、特定の面方位に優先配向しているものである。 The present invention devised to achieve the above object is represented by a lower electrode layer and a composition formula (K 1-x Na x ) NbO 3 (0.4 ≦ x ≦ 0.7) on a substrate. A piezoelectric film element comprising an alkali niobium oxide-based perovskite structure piezoelectric film and an upper electrode, wherein the piezoelectric film has a film thickness of 5 μm or more, and any of pseudocubic, tetragonal and orthorhombic crystals with a perovskite structure These structures are preferentially oriented in a specific plane orientation.

前記圧電膜の全体またはその大半を水熱合成法で形成すると良い。   The whole or most of the piezoelectric film may be formed by a hydrothermal synthesis method.

前記基板は、金属からなると良い。   The substrate is preferably made of metal.

前記下部電極層は、(111)面方位に優先配向した白金または金を含むと良い。   The lower electrode layer may contain platinum or gold preferentially oriented in the (111) plane orientation.

また本発明は、上記いずれかの圧電膜素子を用いて作製したアクチュエータである。   The present invention also provides an actuator manufactured using any one of the above piezoelectric film elements.

また本発明は、上記いずれかの圧電膜素子を用いて作製した小型振動発電装置である。   Further, the present invention is a small vibration power generator manufactured using any one of the above piezoelectric film elements.

本発明によれば、膜厚5μm以上で優れた圧電特性を有するKNN膜を用いた圧電膜素子及びそれを用いたアクチュエータ並びに小型振動発電装置を提供できる。   According to the present invention, it is possible to provide a piezoelectric film element using a KNN film having a film thickness of 5 μm or more and having excellent piezoelectric characteristics, an actuator using the piezoelectric film element, and a small vibration power generator.

本発明の圧電膜素子の断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of the piezoelectric film element of this invention. 本発明の圧電膜素子を用いたアクチュエータ(あるいは小型振動発電装置)を示す概略構成図である。It is a schematic block diagram which shows the actuator (or small vibration power generator) using the piezoelectric film element of this invention. 本発明の実施例に係るKNN圧電膜のX線回折測定結果を示すグラフ図である。It is a graph which shows the X-ray-diffraction measurement result of the KNN piezoelectric film which concerns on the Example of this invention. 本発明の実施例に係るKNN圧電膜の断面SEM像を示す図である。It is a figure which shows the cross-sectional SEM image of the KNN piezoelectric film which concerns on the Example of this invention. 本発明の第一の比較例に係るKNN圧電膜の断面SEM像を示す図である。It is a figure which shows the cross-sectional SEM image of the KNN piezoelectric film which concerns on the 1st comparative example of this invention. 本発明の第二の比較例に係るKNN圧電膜の断面SEM像を示す図である。It is a figure which shows the cross-sectional SEM image of the KNN piezoelectric film which concerns on the 2nd comparative example of this invention. (a)は圧電膜素子を用いユニモルフカンチレバーで構成したアクチュエータを示す図であり、(b)は圧電膜の圧電定数の測定方法を説明する図である。(A) is a figure which shows the actuator comprised by the unimorph cantilever using the piezoelectric film element, (b) is a figure explaining the measuring method of the piezoelectric constant of a piezoelectric film.

我々は、膜厚5μm以上で優れた圧電特性を有するKNN圧電膜の形成方法の開発を目的として基礎実験と調査を行い、これまでKNN膜の製膜に適用した例が殆どない水熱合成法に注目した。水熱合成法でKNN膜の製膜を行った結果、(111)配向のPtやAuの上に(001)配向の水熱合成KNN厚膜を形成することに成功した。   We have conducted basic experiments and investigations for the purpose of developing a KNN piezoelectric film formation method with excellent piezoelectric properties with a film thickness of 5 μm or more. I paid attention to. As a result of forming a KNN film by a hydrothermal synthesis method, a thick (001) oriented hydrothermally synthesized KNN film was successfully formed on (111) oriented Pt or Au.

以下に、本発明の一実施の形態を図面に基づき説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本実施の形態に係る圧電膜素子の概略的な構造を示す断面図である。この圧電膜素子10は、図1に示すように、基板1上に下部電極層2と圧電膜3と上部電極4とが順次形成されているものである。   FIG. 1 is a cross-sectional view showing a schematic structure of a piezoelectric film element according to the present embodiment. As shown in FIG. 1, the piezoelectric film element 10 has a lower electrode layer 2, a piezoelectric film 3, and an upper electrode 4 sequentially formed on a substrate 1.

基板1はTi(チタン)基板またはステンレス基板などの金属を用いるのが好ましい。また、基板1には、脆性材料基板、半導体単結晶基板、金属酸化物基板などを用いてもよい。   The substrate 1 is preferably made of a metal such as a Ti (titanium) substrate or a stainless steel substrate. The substrate 1 may be a brittle material substrate, a semiconductor single crystal substrate, a metal oxide substrate, or the like.

下部電極層2は、Pt(白金)またはAu(金)を含むものであり、かつPt膜又はAu膜が(111)面方位に優先配向しているのが好ましい。Pt膜は、自己配向性があるため、製膜時にプラズマや熱のエネルギを与えることで容易に(111)面方位に配向できる。勿論、下部電極層2はPt、Au以外の金属や導電性金属酸化物を用いてもよい。下部電極層2はスパッタリング法、蒸着法などを用いて基板1上に形成する。なお、基板1と下部電極層2の密着性を高めるために、密着層を設けてもよい。   The lower electrode layer 2 preferably contains Pt (platinum) or Au (gold), and the Pt film or Au film is preferably preferentially oriented in the (111) plane orientation. Since the Pt film has self-orientation properties, it can be easily oriented in the (111) plane orientation by applying plasma or heat energy during film formation. Of course, the lower electrode layer 2 may use a metal other than Pt or Au or a conductive metal oxide. The lower electrode layer 2 is formed on the substrate 1 using a sputtering method, a vapor deposition method, or the like. In order to improve the adhesion between the substrate 1 and the lower electrode layer 2, an adhesion layer may be provided.

圧電膜3は、膜厚が5μm以上で、組成式(K1-xNax)NbO3(以下、KNNと略称する)で表されるアルカリニオブ酸化物系のペロブスカイト構造を有し、係数x=Na/(K+Na)比率は0.40≦x≦0.70の範囲であり、擬立方晶、正方晶、斜方晶のいずれかの構造からなり、特定の面方位に優先配向しているものである。KNNからなる圧電膜3は、全て又はその大半を水酸化カリウム溶液、水酸化ナトリウム溶液、Nb25粉末を原料として用いた水熱合成法によって製膜する。下部電極層2に接する領域のKNN膜は、スパッタ法や化学溶液堆積法(ゾルゲル法、CSD(Chemical Solution Deposition)法)などで製膜してもよい。KNN圧電膜3の上には上部電極4が設けられる。つまり本発明では、膜厚5μm以上のKNNからなる圧電膜3の、少なくとも上部電極4に接する領域を、水熱合成法により製膜する。KNN膜の全体またはその大半を水熱合成法によって形成することで、従来では多結晶化などにより厚膜化が困難であったKNNにおいても5μm以上の膜厚を得ることができる。 The piezoelectric film 3 has a thickness of 5 μm or more, an alkali niobium oxide-based perovskite structure represented by a composition formula (K 1-x Na x ) NbO 3 (hereinafter abbreviated as KNN), and a coefficient x = Na / (K + Na) ratio is in the range of 0.40 ≦ x ≦ 0.70, and is composed of pseudo cubic, tetragonal or orthorhombic structure, and is preferentially oriented in a specific plane orientation Is. The piezoelectric film 3 made of KNN is formed by a hydrothermal synthesis method using a potassium hydroxide solution, a sodium hydroxide solution, and Nb 2 O 5 powder as raw materials, all or most of the piezoelectric film 3 made of KNN. The KNN film in the region in contact with the lower electrode layer 2 may be formed by sputtering, chemical solution deposition (sol-gel method, CSD (Chemical Solution Deposition) method), or the like. An upper electrode 4 is provided on the KNN piezoelectric film 3. That is, in the present invention, at least a region in contact with the upper electrode 4 of the piezoelectric film 3 made of KNN having a thickness of 5 μm or more is formed by a hydrothermal synthesis method. By forming the whole or most of the KNN film by a hydrothermal synthesis method, it is possible to obtain a film thickness of 5 μm or more even in KNN, which has conventionally been difficult to increase in thickness by polycrystallization.

上部電極4は下部電極層2と同様に、Pt、Au、Al(アルミニウム)などをスパッタリング法、蒸着法、メッキ法、金属ペースト法などを用いて形成すればよい。上部電極4は、下部電極層2のように圧電膜3の結晶構造に大きな影響を与えるものではないため、上部電極4の材料は特に限定されない。   Similar to the lower electrode layer 2, the upper electrode 4 may be formed by using Pt, Au, Al (aluminum) or the like by a sputtering method, a vapor deposition method, a plating method, a metal paste method, or the like. Since the upper electrode 4 does not significantly affect the crystal structure of the piezoelectric film 3 unlike the lower electrode layer 2, the material of the upper electrode 4 is not particularly limited.

以上により、膜厚5μm以上で優れた圧電特性を有するKNN膜を用いた圧電膜素子を得ることができる。   As described above, a piezoelectric film element using a KNN film having a film thickness of 5 μm or more and having excellent piezoelectric characteristics can be obtained.

この圧電膜素子10は、非鉛圧電材料であるKNNからなる圧電膜を用いているので、環境への負荷を著しく低減することができる。また、KNN圧電膜の膜厚を5μm以上としているので、電圧印加時に大きな力を発生させたり、環境の振動によって破損する虞を低減したりすることができる。   Since this piezoelectric film element 10 uses a piezoelectric film made of KNN, which is a lead-free piezoelectric material, the load on the environment can be significantly reduced. Further, since the thickness of the KNN piezoelectric film is 5 μm or more, it is possible to generate a large force when a voltage is applied or to reduce the possibility of damage due to environmental vibration.

また、本発明に係る圧電膜素子10は、素子に電圧を加えて変形を生じさせるアクチュエータや、逆に素子の変形により電圧を発生させる小型振動発電装置を作製するのに好適である。   In addition, the piezoelectric film element 10 according to the present invention is suitable for manufacturing an actuator that applies a voltage to the element to cause deformation, and conversely, a small vibration power generation apparatus that generates a voltage by deformation of the element.

図2に、本発明に係る圧電膜素子10を用いて作製したアクチュエータ20(あるいは小型振動発電装置21)を示している。   FIG. 2 shows an actuator 20 (or a small vibration power generation device 21) manufactured using the piezoelectric film element 10 according to the present invention.

このアクチュエータ20は、図2に示すように、所定の形状に加工された圧電膜素子10の下部電極層2と上部電極4とに、電圧印加手段5を接続したものである。電圧印加手段5は、下部電極層2と上部電極4との間に電位差を生じさせるものであり、例えば直流電源や開閉器などを用いて適宜設計が可能である。   As shown in FIG. 2, the actuator 20 has a voltage applying means 5 connected to the lower electrode layer 2 and the upper electrode 4 of the piezoelectric film element 10 processed into a predetermined shape. The voltage application means 5 generates a potential difference between the lower electrode layer 2 and the upper electrode 4, and can be appropriately designed using, for example, a DC power supply or a switch.

このアクチュエータ20の圧電膜素子10に電圧を印加して、圧電膜素子10を変形することによって各種部材を作動させることができる。アクチュエータ20は、例えば、インクジェットプリンタヘッド、光スキャナ、超音波発生装置などに用いることができる。   Various members can be operated by applying a voltage to the piezoelectric film element 10 of the actuator 20 to deform the piezoelectric film element 10. The actuator 20 can be used in, for example, an ink jet printer head, an optical scanner, an ultrasonic generator, and the like.

このアクチュエータ20では、圧電膜素子10の圧電膜3として、非鉛圧電材料であり優れた圧電特性を有するKNNを5μm以上に製膜しているので、環境負荷を低減しつつ、電圧印加時に大きな力を発生させることができる。   In this actuator 20, the piezoelectric film 3 of the piezoelectric film element 10 is made of a lead-free piezoelectric material and KNN having excellent piezoelectric characteristics with a thickness of 5 μm or more. Can generate power.

さらに本発明では、所定の形状に成形された圧電膜素子10の下部電極層2と上部電極4とに、電圧により動作するデバイス6を接続することで、圧電膜素子10を、環境の振動によって発電する小型振動発電装置21とすることができる。デバイス6は、環境の振動により圧電膜素子10に生じた電圧で動作するものであり、例えばセンサなどが挙げられる。   Furthermore, in the present invention, by connecting a device 6 that operates by voltage to the lower electrode layer 2 and the upper electrode 4 of the piezoelectric film element 10 formed into a predetermined shape, the piezoelectric film element 10 is made to be vibrated by environmental vibration. It can be set as the small vibration power generator 21 which generates electric power. The device 6 operates with a voltage generated in the piezoelectric film element 10 due to environmental vibration, and includes, for example, a sensor.

この小型振動発電装置21では、圧電膜素子10の圧電膜3として、非鉛圧電材料であり優れた圧電特性を有するKNNを5μm以上に製膜しているので、環境負荷を低減しつつ、変形時に大きな電圧を発生させることができ、環境の振動によって破損する虞を低減することができる。   In this small vibration power generation device 21, the piezoelectric film 3 of the piezoelectric film element 10 is formed of a lead-free piezoelectric material and KNN having excellent piezoelectric characteristics to 5 μm or more. Sometimes a large voltage can be generated and the risk of damage due to environmental vibrations can be reduced.

次に本発明の実施例及び比較例を説明する。   Next, examples and comparative examples of the present invention will be described.

実施例および比較例1,2の圧電膜素子は、図1に示した断面構造を有し、Ti基板上にPt下部電極と、KNN圧電膜と、Pt上部電極とが順次積層されているものである。   The piezoelectric film elements of the example and comparative examples 1 and 2 have the cross-sectional structure shown in FIG. 1, and a Pt lower electrode, a KNN piezoelectric film, and a Pt upper electrode are sequentially stacked on a Ti substrate. It is.

[実施例]
以下に実施例におけるKNN圧電膜の製膜方法を説明する。
[Example]
A method for forming a KNN piezoelectric film in the example will be described below.

基板は厚さ200μm、サイズ20mm×20mmのTi(チタン)薄板を用い、基板上にRFマグネトロンスパッタリング法で、Pt下部電極((111)面優先配向、膜厚200nm)を形成した。Pt下部電極は、基板温度150℃、放電パワー300W、導入ガスAr、Ar雰囲気の圧力2.5Pa、製膜時間10分の条件で製膜した。   A Ti (titanium) thin plate having a thickness of 200 μm and a size of 20 mm × 20 mm was used as a substrate, and a Pt lower electrode ((111) plane preferential orientation, film thickness 200 nm) was formed on the substrate by RF magnetron sputtering. The Pt lower electrode was formed under conditions of a substrate temperature of 150 ° C., a discharge power of 300 W, an introduction gas Ar, an Ar atmosphere pressure of 2.5 Pa, and a film formation time of 10 minutes.

続いて、Pt下部電極の上に、水熱合成法で膜厚10μmのKNN圧電膜を製膜した。製膜条件は、KOH溶液が10mol/L、Nb25粉末充填量が3.0g、保持温度230℃、保持時間10hrで行い、NaOH溶液は、製膜されるKNN膜において、複数のNa/(K+Na)比率の膜が得られるように(a)4,(b)7,(c)10,(d)13mol/Lの4条件を用いた。製膜されたKNN圧電膜の組成分析は、ICP−AES(誘導結合型プラズマ発光分析)法によって組成分析を行った。分析は、湿式酸分解も用いて、酸にはフッ化水素酸と硝酸の混合液を用いた。Na/(K+Na)比率を算出した結果、4つのKNN膜のNa/(K+Na)比率は、(a)0.40,(b)0.52,(c)0.59,(d)0.70であった。 Subsequently, a KNN piezoelectric film having a thickness of 10 μm was formed on the Pt lower electrode by a hydrothermal synthesis method. The film forming conditions were KOH solution 10 mol / L, Nb 2 O 5 powder filling amount 3.0 g, holding temperature 230 ° C., holding time 10 hr. The four conditions (a) 4, (b) 7, (c) 10, and (d) 13 mol / L were used so that a film with a / (K + Na) ratio was obtained. Composition analysis of the formed KNN piezoelectric film was performed by ICP-AES (inductively coupled plasma emission analysis) method. The analysis also used wet acid decomposition, and a mixed liquid of hydrofluoric acid and nitric acid was used as the acid. As a result of calculating the Na / (K + Na) ratio, the Na / (K + Na) ratios of the four KNN films were (a) 0.40, (b) 0.52, (c) 0.59, (d) 0. 70.

これらのKNN膜のX線回折測定を行った結果を図3に示す。図3において、横軸はX線の入射角度の倍角2θ(度)、縦軸はX線の強度(cps;count per second)を示しており、各回折パターン(a)〜(d)は、上記(a)〜(d)の組成を有するKNN圧電膜から得られた結果を示している。このX線回折測定の結果から、(a)〜(d)全ての膜において、KNN(001)、KNN(110)、KNN(002)、KNN(210)の回折ピークが観察され、ペロブスカイト構造で擬立方晶または正方晶の(001)面優先配向のKNN膜が形成されていることが分かる。   The results of X-ray diffraction measurement of these KNN films are shown in FIG. In FIG. 3, the horizontal axis indicates the double angle 2θ (degrees) of the X-ray incident angle, the vertical axis indicates the X-ray intensity (cps; count per second), and the diffraction patterns (a) to (d) are The result obtained from the KNN piezoelectric film which has the composition of said (a)-(d) is shown. From the results of this X-ray diffraction measurement, diffraction peaks of KNN (001), KNN (110), KNN (002), and KNN (210) are observed in all the films (a) to (d), and have a perovskite structure. It can be seen that a pseudo-cubic or tetragonal (001) plane preferred orientation KNN film is formed.

Na/(K+Na)比率0.52のKNN膜付きTi基板の一部をダイサーによって切断し、その断面をSEMで観察した結果を図4に示す。膜厚約10μmの柱状晶組織を有するKNN膜が製膜できていることが分かる。他の組成の膜も同様のSEM観察評価でKNN膜厚がほぼ10μmあることを確認した。   FIG. 4 shows the result of cutting a part of a Ti substrate with a KNN film having a Na / (K + Na) ratio of 0.52 by a dicer and observing the cross section with an SEM. It can be seen that a KNN film having a columnar crystal structure with a film thickness of about 10 μm is formed. Films of other compositions were confirmed to have a KNN film thickness of approximately 10 μm by similar SEM observation evaluation.

その後、KNN圧電膜の上にPt上部電極(膜厚200nm)をスパッタリング法で製膜し、圧電膜素子を作製した。   Thereafter, a Pt upper electrode (thickness: 200 nm) was formed on the KNN piezoelectric film by sputtering to produce a piezoelectric film element.

[比較例1]
以下に比較例1におけるKNN圧電膜の製膜方法を説明する。
[Comparative Example 1]
A method for forming a KNN piezoelectric film in Comparative Example 1 will be described below.

基板は厚さ200μm、サイズ20mm×20mmのTi(チタン)薄板を用い、基板上にRFマグネトロンスパッタリング法で、Pt下部電極((111)面優先配向、膜厚200nm)を形成した。Pt下部電極は、基板温度150℃、放電パワー300W、導入ガスAr、Ar雰囲気の圧力2.5Pa、製膜時間10分の条件で製膜した。   A Ti (titanium) thin plate having a thickness of 200 μm and a size of 20 mm × 20 mm was used as a substrate, and a Pt lower electrode ((111) plane preferential orientation, film thickness 200 nm) was formed on the substrate by RF magnetron sputtering. The Pt lower electrode was formed under conditions of a substrate temperature of 150 ° C., a discharge power of 300 W, an introduction gas Ar, an Ar atmosphere pressure of 2.5 Pa, and a film formation time of 10 minutes.

続いて、Pt下部電極の上に、エアロゾルデポジション法で膜厚10μmのKNN圧電膜を製膜した。製膜条件を以下に記載する。   Subsequently, a KNN piezoelectric film having a thickness of 10 μm was formed on the Pt lower electrode by an aerosol deposition method. The film forming conditions are described below.

製膜装置には一般的なエアロゾルデポジション製膜装置を用いた。原料微粒子には、粒径が0.1〜2μmの良好な圧電特性を有するペロブスカイト構造の(K1-xNax)NbO3(x=0.5)微粒子を用いた。KNN原料微粒子は200gをエアロゾル室にチャージし、搬送用ガスとしてはHeガスを用いた。エアロゾル室でエアロゾル化した原料を、搬送用のHeガスに乗せて製膜チャンバに搬送し、微小な開口面積(0.3mm×5mm)のノズルを通すことで高速に加速し、前記基板上に吹付けた。基板温度は室温とした。基板はノズルに対してXYステージで連続的に走査することで基板全体に均一に製膜した。He搬送ガスの流量は1〜5L/min、製膜チャンバ内の圧力は約100Pa〜500Paの範囲で行った。 A general aerosol deposition film forming apparatus was used as the film forming apparatus. As the raw material fine particles, (K 1-x Na x ) NbO 3 (x = 0.5) fine particles having a perovskite structure having a good particle size of 0.1 to 2 μm were used. 200 g of the KNN raw material fine particles were charged in the aerosol chamber, and He gas was used as the carrier gas. The raw material aerosolized in the aerosol chamber is placed on the transporting He gas and transported to the film-forming chamber, and is accelerated at high speed by passing through a nozzle having a minute opening area (0.3 mm × 5 mm). Sprayed. The substrate temperature was room temperature. The substrate was uniformly formed on the entire substrate by continuously scanning the nozzle with an XY stage. The flow rate of He carrier gas was 1 to 5 L / min, and the pressure in the film forming chamber was about 100 Pa to 500 Pa.

これによりKNN圧電膜を10μmの厚さに成形した。   As a result, a KNN piezoelectric film was formed to a thickness of 10 μm.

このKNN膜のX線回折測定を行った結果当然の結果ではあるが完全な無配向であった。また、上記実施例と同様にICP−AESで組成分析を行った結果、膜のNa/(K+Na)比率は0.5であった。   As a result of X-ray diffraction measurement of this KNN film, it was natural that the film was completely unoriented. Further, as a result of composition analysis by ICP-AES as in the above example, the Na / (K + Na) ratio of the film was 0.5.

このKNN膜付きTi基板の一部をダイサーによって切断し、その断面をSEMで観察した結果を図5に示す。膜厚約10μmのKNN膜が製膜できていることが分かる。   FIG. 5 shows the result of observing the cross section of the Ti substrate with the KNN film with a dicer and observing the cross section with an SEM. It can be seen that a KNN film having a thickness of about 10 μm is formed.

その後、KNN圧電膜の上にPt上部電極(膜厚200nm)をスパッタリング法で製膜し、圧電膜素子を作製した。   Thereafter, a Pt upper electrode (thickness: 200 nm) was formed on the KNN piezoelectric film by sputtering to produce a piezoelectric film element.

[比較例2]
以下に比較例2におけるKNN圧電膜の製膜方法を説明する。
[Comparative Example 2]
A method for forming a KNN piezoelectric film in Comparative Example 2 will be described below.

基板は厚さ200μm、サイズ20mm×20mmのTi(チタン)薄板を用い、基板上にRFマグネトロンスパッタリング法で、Pt下部電極((111)面優先配向、膜厚200nm)を形成した。Pt下部電極は、基板温度150℃、放電パワー300W、導入ガスAr、Ar雰囲気の圧力2.5Pa、製膜時間10分の条件で製膜した。   A Ti (titanium) thin plate having a thickness of 200 μm and a size of 20 mm × 20 mm was used as a substrate, and a Pt lower electrode ((111) plane preferential orientation, film thickness 200 nm) was formed on the substrate by RF magnetron sputtering. The Pt lower electrode was formed under conditions of a substrate temperature of 150 ° C., a discharge power of 300 W, an introduction gas Ar, an Ar atmosphere pressure of 2.5 Pa, and a film formation time of 10 minutes.

続いて、Pt下部電極の上に、RFマグネトロンスパッタリング法で膜厚6μmのKNN圧電膜の形成を試みた。KNN圧電膜は、Na/(K+Na)比率=0.65の(K1-xNax)NbO3焼結体をターゲットに用い、基板温度(基板表面の温度)550℃、放電パワー75W、導入ガスAr/O2混合ガス(Ar/O2=90/10)、雰囲気ガスの圧力1.3Paの条件で製膜した。本来、実施例、比較例1と同じく10μm厚のKNN膜を製膜すべきであるが、それにはかなりの長時間製膜が必要になるため、本発明者等が実験可能な範囲ということで目標膜厚を6μm厚とした。この結果得られたKNN膜は真っ黒の膜で全く光沢が無い膜であった。 Subsequently, an attempt was made to form a KNN piezoelectric film having a film thickness of 6 μm on the Pt lower electrode by RF magnetron sputtering. The KNN piezoelectric film uses a (K 1-x Na x ) NbO 3 sintered body of Na / (K + Na) ratio = 0.65 as a target, substrate temperature (substrate surface temperature) 550 ° C., discharge power 75 W, introduction A film was formed under the conditions of a gas Ar / O 2 mixed gas (Ar / O 2 = 90/10) and an atmospheric gas pressure of 1.3 Pa. Originally, a KNN film having a thickness of 10 μm should be formed in the same manner as in Example 1 and Comparative Example 1. However, since this requires film formation for a considerably long time, it is within the range where the inventors can experiment. The target film thickness was 6 μm. The resulting KNN film was a black film with no gloss.

このKNN膜付きTi基板の一部をダイサーによって切断し、その断面をSEMで観察した結果を図6に示す。膜厚4μm程度までは柱状構造の綺麗なKNN膜が製膜されているが、その上は隙間が多数ある非晶質の膜になっていることが分かる。原因は不明であるが、スパッタ法でKNN膜の厚膜を製膜する際に、しばしばこのような製膜がされてしまう。   FIG. 6 shows the result of slicing a part of the KNN film-coated Ti substrate with a dicer and observing the cross section with an SEM. A clean KNN film having a columnar structure is formed up to a film thickness of about 4 μm, but it can be seen that an amorphous film having many gaps is formed thereon. Although the cause is unknown, such a film is often formed when a thick KNN film is formed by sputtering.

その後、KNN圧電膜の上にPt上部電極(膜厚200nm)をスパッタリング法で製膜したが、表面平坦性があまりにも悪いため電圧印加に使える上部電極としての機能を果たさなかった。   Thereafter, a Pt upper electrode (thickness: 200 nm) was formed on the KNN piezoelectric film by sputtering. However, since the surface flatness was too bad, the function as an upper electrode usable for voltage application was not achieved.

(実施例および比較例の圧電膜素子の圧電特性評価)
上記実施例、比較例1,2の圧電膜素子を作製した後、KNN膜の圧電定数d31を評価するために、各圧電膜素子から長さ20mm幅2.5mmの短冊形を切り出し、KNN膜を含む圧電素子を作製した。
(Evaluation of Piezoelectric Characteristics of Piezoelectric Film Elements of Examples and Comparative Examples)
After producing the piezoelectric film elements of the above-mentioned Examples and Comparative Examples 1 and 2, in order to evaluate the piezoelectric constant d 31 of the KNN film, a rectangular shape having a length of 20 mm and a width of 2.5 mm was cut out from each piezoelectric film element. A piezoelectric element including a film was produced.

図7に、この圧電素子を用いて構成したアクチュエータ構造およびその圧電特性評価方法の概略を示す。   FIG. 7 shows an outline of an actuator structure constituted by using this piezoelectric element and a piezoelectric characteristic evaluation method thereof.

このアクチュエータ構造は、圧電素子の長手方向の端をクランプで固定し、この状態で上下両電極間のKNN膜に電圧を印加し、KNN膜を伸縮させることでカンチレバー全体が屈曲動作してレバー先端を動作させるという、簡易的なユニモルフカンチレバーで構成される。そのアクチュエータの電圧印加時の先端変位量をレーザドップラ変位計で測定し、カンチレバー先端の変位量、カンチレバー長さ、基板と薄膜の厚さとヤング率、印加電圧から圧電定数d31を算出した。ここでは、印加電界100kV/cmの時のカンチレバーの先端変位量を測定し、圧電定数d31の値を算出した。圧電定数d31の算出方法は非特許文献1に記載されている方法で行った。KNN膜のヤング率は104GPaを用いた。 In this actuator structure, the longitudinal end of the piezoelectric element is fixed with a clamp, and in this state, a voltage is applied to the KNN film between the upper and lower electrodes and the KNN film expands and contracts, so that the entire cantilever is bent and the tip of the lever It consists of a simple unimorph cantilever that operates. The displacement of the tip of the actuator when a voltage was applied was measured with a laser Doppler displacement meter, and the piezoelectric constant d 31 was calculated from the displacement of the cantilever tip, the length of the cantilever, the thickness and Young's modulus of the substrate and thin film, and the applied voltage. Here, the tip displacement of the cantilever when the applied electric field was 100 kV / cm was measured, and the value of the piezoelectric constant d 31 was calculated. The calculation method of the piezoelectric constant d 31 was performed by the method described in Non-Patent Document 1. The Young's modulus of the KNN film was 104 GPa.

その結果、実施例の圧電膜素子のKNN膜の圧電定数d31はNa/(K+Na)比率(a)0.40,(b)0.52,(c)0.59,(d)0.70のKNN膜でそれぞれ、(a)82,(b)90,(c)95,(d)88であり、いずれも実用可能レベルの−80pm/V以上であった。一方、比較例1の圧電膜素子のKNN膜の圧電定数d31は35であった。これは上述の通り、比較例1のKNN圧電膜が無配向に形成されたものであることが主な原因であると考えられる。 As a result, the piezoelectric constant d 31 of the KNN film of the piezoelectric film element of the example has the Na / (K + Na) ratio (a) 0.40, (b) 0.52, (c) 0.59, (d) 0. The 70 KNN films were (a) 82, (b) 90, (c) 95, and (d) 88, respectively, which were practical levels of −80 pm / V or more. On the other hand, the piezoelectric constant d 31 of the KNN film of the piezoelectric film element of Comparative Example 1 was 35. As described above, this is considered to be mainly caused by the non-oriented formation of the KNN piezoelectric film of Comparative Example 1.

1 基板
2 下部電極層
3 圧電膜
4 上部電極
10 圧電膜素子
DESCRIPTION OF SYMBOLS 1 Substrate 2 Lower electrode layer 3 Piezoelectric film 4 Upper electrode 10 Piezoelectric film element

Claims (6)

基板上に、下部電極層と、組成式(K1-xNax)NbO3(0.4≦x≦0.7)で表されるアルカリニオブ酸化物系ペロブスカイト構造の圧電膜と、上部電極とを備える圧電膜素子で、前記圧電膜は、膜厚が5μm以上であり、ペロブスカイト構造の擬立方晶、正方晶、斜方晶のいずれかの構造からなり、特定の面方位に優先配向していることを特徴とする圧電膜素子。 On the substrate, a lower electrode layer, a piezoelectric film having an alkali niobium oxide-based perovskite structure represented by a composition formula (K 1-x Na x ) NbO 3 (0.4 ≦ x ≦ 0.7), and an upper electrode The piezoelectric film has a thickness of 5 μm or more, and has a perovskite structure of pseudo cubic, tetragonal or orthorhombic structure, and is preferentially oriented in a specific plane orientation. A piezoelectric film element characterized by comprising: 前記圧電膜の全体またはその大半を水熱合成法で形成した請求項1記載の圧電膜素子。   The piezoelectric film element according to claim 1, wherein the whole or most of the piezoelectric film is formed by a hydrothermal synthesis method. 前記基板は、金属からなる請求項1又は2記載の圧電膜素子。   The piezoelectric film element according to claim 1, wherein the substrate is made of metal. 前記下部電極層は、(111)面方位に優先配向した白金または金を含む請求項1〜3いずれか記載の圧電膜素子。   The piezoelectric film element according to claim 1, wherein the lower electrode layer includes platinum or gold preferentially oriented in a (111) plane orientation. 請求項1〜4いずれかに記載の圧電膜素子を用いて作製したことを特徴とするアクチュエータ。   An actuator manufactured using the piezoelectric film element according to claim 1. 請求項1〜4いずれかに記載の圧電膜素子を用いて作製したことを特徴とする小型振動発電装置。   A compact vibration power generator produced using the piezoelectric film element according to claim 1.
JP2011101512A 2011-04-28 2011-04-28 Piezoelectric film element, and actuator and compact vibration power generator manufactured using the same Withdrawn JP2012234925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011101512A JP2012234925A (en) 2011-04-28 2011-04-28 Piezoelectric film element, and actuator and compact vibration power generator manufactured using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011101512A JP2012234925A (en) 2011-04-28 2011-04-28 Piezoelectric film element, and actuator and compact vibration power generator manufactured using the same

Publications (1)

Publication Number Publication Date
JP2012234925A true JP2012234925A (en) 2012-11-29

Family

ID=47434975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011101512A Withdrawn JP2012234925A (en) 2011-04-28 2011-04-28 Piezoelectric film element, and actuator and compact vibration power generator manufactured using the same

Country Status (1)

Country Link
JP (1) JP2012234925A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110832654A (en) * 2017-09-22 2020-02-21 Tdk株式会社 Piezoelectric thin film element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110832654A (en) * 2017-09-22 2020-02-21 Tdk株式会社 Piezoelectric thin film element

Similar Documents

Publication Publication Date Title
JP5515675B2 (en) Piezoelectric thin film element and piezoelectric thin film device
JP5044902B2 (en) Piezoelectric thin film element
JP5056914B2 (en) Piezoelectric thin film element and piezoelectric thin film device
KR100978145B1 (en) Epitaxial oxide film, piezoelectric film, piezoelectric film element, and liquid delivery head and liquid delivery apparatus using piezoelectric element
JP5300184B2 (en) Piezoelectric body, piezoelectric element, liquid discharge head and liquid discharge apparatus using the piezoelectric element
JP5024399B2 (en) Piezoelectric thin film element, piezoelectric thin film device, and method for manufacturing piezoelectric thin film element
JP5531635B2 (en) Piezoelectric thin film element and piezoelectric thin film device
JP5865410B2 (en) Piezoelectric element, piezoelectric actuator, and ink jet recording head
JP4258530B2 (en) Piezoelectric thin film element
JP2007019302A (en) Piezoelectric thin film element and actuator and sensor using the same
JP2013016776A (en) Manufacturing method of piezoelectric film element and manufacturing method of piezoelectric device
JP4595889B2 (en) Method for manufacturing piezoelectric thin film element
JP5103790B2 (en) Piezoelectric thin film, element using piezoelectric thin film, and method for manufacturing piezoelectric thin film element
JP2007294593A (en) Element using piezoelectric thin film
JP5115161B2 (en) Piezoelectric thin film element
JP5743203B2 (en) Piezoelectric film element and piezoelectric film device
JP5131674B2 (en) Piezoelectric body and manufacturing method thereof, piezoelectric element, liquid discharge head and liquid discharge apparatus using the same
JP2009049065A (en) Piezoelectric thin-film element
JP2008042192A (en) Piezoelectric element, method for manufacturing piezoelectric, and liquid jet head
JP2012234925A (en) Piezoelectric film element, and actuator and compact vibration power generator manufactured using the same
JP2011192736A (en) Piezoelectric thin film element and piezoelectric thin film device
WO2011099231A1 (en) Piezoelectric thin film element, piezoelectric thin film device, and process for production of piezoelectric thin film element
JP6964511B2 (en) Piezoelectric laminate, manufacturing method of piezoelectric laminate and piezoelectric element
JP2022137784A (en) Piezoelectric thin film, piezoelectric thin film element and piezoelectric transducer
TW202137590A (en) Piezoelectric film, piezoelectric stack up, piezoelectric device, and method of producing piezoelectric stack up

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701