JP2012227061A - Multi-core expansion/contraction cable for signal transmission - Google Patents

Multi-core expansion/contraction cable for signal transmission Download PDF

Info

Publication number
JP2012227061A
JP2012227061A JP2011095428A JP2011095428A JP2012227061A JP 2012227061 A JP2012227061 A JP 2012227061A JP 2011095428 A JP2011095428 A JP 2011095428A JP 2011095428 A JP2011095428 A JP 2011095428A JP 2012227061 A JP2012227061 A JP 2012227061A
Authority
JP
Japan
Prior art keywords
conductor
expansion
cable
core
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011095428A
Other languages
Japanese (ja)
Other versions
JP5872787B2 (en
Inventor
Akihito Nakazawa
彰仁 中澤
Shunji Tatsumi
俊二 巽
Hiroyuki Makino
広行 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Fibers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Fibers Corp filed Critical Asahi Kasei Fibers Corp
Priority to JP2011095428A priority Critical patent/JP5872787B2/en
Publication of JP2012227061A publication Critical patent/JP2012227061A/en
Application granted granted Critical
Publication of JP5872787B2 publication Critical patent/JP5872787B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a multi-core expansion/contraction cable for signal transmission which flexibly deforms with and follows complicate movements of robots and others and which is excellent in signal quality and expansion/contraction durability.SOLUTION: A multi-core expansion/contraction cable for signal transmission comprises at least two expansion/contraction transmission lines having a core part comprising an elastic body and a conductor part comprising a conductor wire wound around the outer periphery of the core part in the same direction and an outside coating layer comprising insulation fiber and/or insulation resin which collects the expansion/contraction transmission lines together and which coats the peripheries thereof, and the distance X between the conductor wires of adjacent expansion/contraction transmission lines is 0.1 mm or more.

Description

本発明は、信号伝送用多芯型伸縮ケーブルに関するものである。詳しくは、LANケーブルを中心とした多芯型信号ケーブルに関し、信号伝送性、伸縮性および耐久性に優れた信号伝送用多芯型伸縮ケーブルに関するものである。   The present invention relates to a signal transmission multi-core expansion cable. More specifically, the present invention relates to a multicore type signal cable centering on a LAN cable, and relates to a signal transmission multicore type extendable cable excellent in signal transmission property, stretchability and durability.

近年、ロボットはますます高度化し、複雑な動きをするようになってきているため、様々な動きに応じて形態変形と追従性を兼ね備えた伸縮伝送線が望まれている。ここで、伝送線とは信号や電力を伝えるためのケーブル状物をいい、いわゆる電線や光ケーブル等が該当する。一方、電線分野において、信号の高速伝送化には目覚ましいものがある。信号伝送を高速化する方法として、信号線の数を増やす多芯化する方法がある。これは多芯化にすることにより、多くの情報を一度に送信できるようになり、さらに高速化できるからである。しかし、信号線を多芯化にすることにより、信号線間で干渉し合い、信号品質を悪化させるという問題が発生する。伸縮電線を多芯化する方法として、同一伸縮電線内に銅線を複数本挿入する方法が知られているが、伸縮性が低下するとともに、銅線間距離が近いため、信号線同士が干渉し、信号品質の悪化が避けられない(例えば、下記特許文献1参照)。また、伸縮電線を複数本束ねて、被覆をかけて多芯化する方法が知られているが、銅線間距離が十分考慮されず、距離が近づき過ぎると信号品質の低下を引き起こし、さらに繰り返し伸縮によって銅線同士が接触し擦れて断線の問題が発生する(例えば、下記特許文献1および2参照)。   In recent years, robots have become more sophisticated and have complicated movements. Therefore, telescopic transmission lines having both shape deformation and followability according to various movements are desired. Here, the transmission line refers to a cable-like object for transmitting a signal or electric power, and corresponds to a so-called electric wire or optical cable. On the other hand, in the electric wire field, there is a remarkable increase in signal transmission speed. As a method for speeding up signal transmission, there is a method of increasing the number of signal lines to increase the number of signal lines. This is because by increasing the number of cores, a large amount of information can be transmitted at a time, and the speed can be further increased. However, by making the signal lines multi-core, there is a problem that the signal lines interfere with each other and signal quality deteriorates. As a method of multi-stretching electric wires, a method of inserting a plurality of copper wires into the same electric wire is known. However, since the elasticity decreases and the distance between the copper wires is short, the signal wires interfere with each other. However, deterioration of signal quality is unavoidable (see, for example, Patent Document 1 below). In addition, a method of bundling a plurality of stretchable wires and making them multi-core by covering them is known, but the distance between the copper wires is not sufficiently considered, and if the distance is too close, the signal quality is lowered and repeated repeatedly. The copper wires come into contact with each other due to the expansion and contraction, and the problem of disconnection occurs (for example, see Patent Documents 1 and 2 below).

国際公開第2008/078780号パンフレットInternational Publication No. 2008/078780 Pamphlet 特開2002−313145号公報JP 2002-313145 A

本発明の目的は、ロボット等の複雑な動きに対して柔軟に変形、追従し、信号品質や伸縮耐久性に優れる信号伝送用多芯型伸縮ケーブルを提供することである。   An object of the present invention is to provide a signal transmission multi-core expansion cable that flexibly deforms and follows a complex movement of a robot or the like and is excellent in signal quality and expansion / contraction durability.

本発明者等は、信号伝送用多芯型伸縮ケーブル内の各々の伸縮伝送線の内部と外部の導体線間距離の範囲を一定範囲に調整することにより、伝送性および伸縮耐久性が向上することを見出し、本発明に至った。
すなわち、本発明は下記の発明を提供する。
The present inventors improve the transmission performance and the stretch durability by adjusting the range of the distance between the inside and outside of each stretchable transmission line in the multi-core stretchable cable for signal transmission to a certain range. As a result, they have reached the present invention.
That is, the present invention provides the following inventions.

(1)弾性体からなる芯部およびその外周に同一方向に捲回された導体線からなる導体部を有する少なくとも2本の伸縮伝送線と、該伸縮伝送線を纏めてその周囲を被覆してなる絶縁繊維及び/又は絶縁樹脂からなる外部被覆層からなり、隣接する伸縮伝送線間の導体線間距離Xが0.1mm以上であることを特徴とする信号伝送用多芯型伸縮ケーブル。
(2)伸縮伝送線の導体線の本数が1〜8本である上記1項に記載の信号伝送用多芯型伸縮ケーブル。
(3)導体線の本数が2本以上である伸縮伝送線を少なくとも1本含み、隣接する伸縮伝送線間の導体線間距離Xと各伸縮伝送線内の導体線間距離YがY<Xである上記2項に記載の信号伝送用多芯型伸縮ケーブル。
(4)伸縮伝送線が導体部の外周に絶縁繊維及び/又は絶縁樹脂からなる被覆層を有する上記1〜3項のいずれか一項に記載の信号伝送用多芯型伸縮ケーブル。
(5)伸縮伝送線の周囲及び/又は各伸縮伝送線を纏めた周囲がシールドされている上記1〜4項のいずれか一項に記載の信号伝送用多芯型伸縮ケーブル。
(6)伸縮伝送線間に少なくとも1本の弾性体が介在する上記1〜5項のいずれか一項に記載の信号伝送用多芯型伸縮ケーブル。
(7)導体部が、導体線の外側に導体線と逆方向に捲回された絶縁性糸状体を含む上記1〜6項のいずれか一項に記載の信号伝送用多芯型伸縮ケーブル。
(1) At least two stretchable transmission lines having a core portion made of an elastic body and a conductor portion wound in the same direction on the outer periphery thereof, and the stretchable transmission lines are collectively covered A multi-core elastic cable for signal transmission, comprising an outer covering layer made of an insulating fiber and / or an insulating resin, wherein a distance X between conductor wires between adjacent elastic transmission lines is 0.1 mm or more.
(2) The signal transmission multicore expansion cable according to the above item 1, wherein the number of conductor wires of the expansion transmission line is 1 to 8.
(3) It includes at least one stretchable transmission line having two or more conductor lines, and the distance X between conductor lines between adjacent stretchable transmission lines and the distance Y between conductor lines in each stretchable transmission line are Y <X. The multi-core type elastic cable for signal transmission according to 2 above.
(4) The signal transmission multi-core expansion cable according to any one of the above items 1 to 3, wherein the expansion transmission line has a coating layer made of an insulating fiber and / or an insulating resin on the outer periphery of the conductor portion.
(5) The signal transmission multicore expansion cable according to any one of the above items 1 to 4, wherein the periphery of the expansion transmission line and / or the periphery of each expansion transmission line is shielded.
(6) The signal transmission multi-core expansion cable according to any one of the above items 1 to 5, wherein at least one elastic body is interposed between the expansion and contraction transmission lines.
(7) The multi-core elastic cable for signal transmission according to any one of the above items 1 to 6, wherein the conductor portion includes an insulating thread-like body wound around the outside of the conductor wire in a direction opposite to the conductor wire.

本発明の信号伝送用多芯型伸縮ケーブルは、従来の伸縮伝送線と比較して高速信号を伝送でき、繰り返し伸縮耐久性に優れている。従って、本発明の信号伝送用多芯型伸縮ケーブルはロボット配線分野における多芯の配線や高速伝送ケーブルとしての使用に最適である。   The multi-core elastic cable for signal transmission of the present invention can transmit a high-speed signal as compared with a conventional elastic transmission line, and is excellent in repeated elastic durability. Therefore, the multi-core type extension cable for signal transmission of the present invention is optimal for use as a multi-core wiring or a high-speed transmission cable in the robot wiring field.

本発明の信号伝送用多芯型伸縮ケーブルの一例を示した模式図である。It is the schematic diagram which showed an example of the multi-core type expansion-contraction cable for signal transmission of this invention. 本発明の信号伝送用多芯型伸縮ケーブルの断面模式図の一例である。It is an example of the cross-sectional schematic diagram of the multicore expansion-contraction cable for signal transmission of this invention. 本発明の信号伝送用多芯型伸縮ケーブルにおける、隣接する伸縮伝送線間の導体線間距離Xを示す断面模式図の一例である。It is an example of the cross-sectional schematic diagram which shows the distance X between the conductor lines between the adjacent expansion-contraction transmission lines in the multi-core expansion cable for signal transmissions of this invention. 本発明の信号伝送用多芯型伸縮ケーブルの断面模式図の別の一例である。It is another example of the cross-sectional schematic diagram of the multicore expansion-contraction cable for signal transmission of this invention. 本発明の信号伝送用多芯型伸縮ケーブルの断面模式図の別の一例である。It is another example of the cross-sectional schematic diagram of the multicore expansion-contraction cable for signal transmission of this invention. 本発明の信号伝送用多芯型伸縮ケーブルの断面模式図の別の一例である。It is another example of the cross-sectional schematic diagram of the multicore expansion-contraction cable for signal transmission of this invention. 繰り返し伸張試験方法について説明する模式図である。It is a schematic diagram explaining the repeated extension test method. USBデバイス動作テストについて説明する模式図である。It is a schematic diagram explaining a USB device operation test.

本発明について、以下具体的に説明する。
本発明の信号伝送用多芯型伸縮ケーブルは、弾性体からなる芯部の外周に同一方向に捲回された導体線を有する伸縮伝送線を少なくとも2本以上まとめ、隣接する伸縮伝送線間の導体線が取りうる最短距離(以下、導体線間距離と表記する)Xを0.1mm以上に保ち、周囲を絶縁繊維及び/又は絶縁樹脂で被覆した構造である。具体例を図1〜3に示す。これらの図中、1は芯部(弾性体)、2は導体線(導体部)、3は絶縁繊維及び/又は絶縁樹脂(外部被覆層)である。隣接する伸縮伝送線間の導体線間距離Xとは、図3に示す、導体線が隣接する伸縮伝送線に最接近する位置における距離である。
The present invention will be specifically described below.
The signal transmission multi-core extension cable according to the present invention includes at least two extension transmission lines having conductor wires wound in the same direction on the outer periphery of a core portion made of an elastic body, and between adjacent extension transmission lines. This is a structure in which the shortest distance that can be taken by the conductor wire (hereinafter referred to as the distance between the conductor wires) X is kept at 0.1 mm or more and the periphery is covered with insulating fibers and / or insulating resin. A specific example is shown in FIGS. In these drawings, 1 is a core part (elastic body), 2 is a conductor wire (conductor part), and 3 is an insulating fiber and / or an insulating resin (external coating layer). The distance X between conductor lines between adjacent expansion / contraction transmission lines is a distance at a position where the conductor lines are closest to the adjacent expansion / contraction transmission lines shown in FIG.

伸縮伝送線を複数本まとめる際に信号を乱れさせずに、繰り返し伸縮耐久性を悪化させないために、隣接する伸縮伝送線間の導体線間距離Xを0.1mm以上にする必要がある。好ましくは0.3mm以上、さらに好ましくは0.5mm以上、特に好ましくは1.0mm以上である。隣接する伸縮伝送線間の距離Xが0.1mm未満だと、信号伝送する導体線間で干渉し合い、信号品質の低下を引き起こし、さらに繰り返し伸縮によって伸縮伝送線同士が接触し擦れて被覆部の破れによる短絡や、導体線の断線が起こることがある。
Xを0.1mm以上にするには、導体線の捲回間隔・位置関係を調節して同一断面上で導体線同士が最接近しないようにケーブル長さ方向の配置を制御する方法や、導体線と隣接する伸縮伝送線間に一定の距離を保つための絶縁物を配置させる方法が挙げられ、工業上の生産性、および後述するXとYの関係を満たすためには、後者の方法が好ましい。具体的には伸縮伝送線最外部に被覆層を設ける方法、隣接する伸縮伝送線の間に弾性体等を設ける方法等が挙げられる。
また、隣接する伸縮伝送線間の導体線間距離Xを10mm以下にすることが好ましい。より好ましくは5mm以下、さらに好ましくは3mm以下である。隣接する伸縮伝送線間の距離Xがこの範囲であれば、ケーブルの外径が過大にならず、外部被覆層の形成が容易である。
In order to prevent the signal from being disturbed and to repeatedly deteriorate the expansion / contraction durability when a plurality of the expansion / contraction transmission lines are gathered, it is necessary to set the distance X between the conductor lines between adjacent expansion / contraction transmission lines to 0.1 mm or more. Preferably it is 0.3 mm or more, More preferably, it is 0.5 mm or more, Most preferably, it is 1.0 mm or more. If the distance X between adjacent telescopic transmission lines is less than 0.1 mm, the conductor lines that transmit signals will interfere with each other, causing signal quality to deteriorate. May cause a short circuit due to breakage or breakage of the conductor wire.
For X to be 0.1 mm or more, a method of controlling the arrangement in the cable length direction so that the conductor wires are not closest to each other on the same cross section by adjusting the winding interval and positional relationship of the conductor wires, In order to satisfy industrial productivity and the relationship between X and Y described later, the latter method is used. preferable. Specifically, a method of providing a coating layer on the outermost part of the stretchable transmission line, a method of providing an elastic body or the like between adjacent stretchable transmission lines, and the like can be mentioned.
Moreover, it is preferable that the distance X between the conductor lines between adjacent expansion-contraction transmission lines is 10 mm or less. More preferably, it is 5 mm or less, More preferably, it is 3 mm or less. If the distance X between adjacent telescopic transmission lines is within this range, the outer diameter of the cable does not become excessive, and the formation of the outer coating layer is easy.

伸縮伝送線の芯部に用いる弾性体の種類としては、特に限定されるものではないが、例えばポリウレタン系エラストマー、ポリオレフィン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー等の熱可塑性エラストマーや、シリコーンゴム、エチレンプロピレンゴム、クロロプレンゴム、ブチルゴム等の合成ゴム、天然ゴム、及び前記合成ゴムと天然ゴムの複合ゴム系材料からなる弾性長繊維又は弾性チューブが好ましい。
伸縮伝送線の芯部の外径は、目的とする伸縮伝送線の太さに応じて適宜設定すればよいが、好ましくは0.01〜10mmの範囲であり、0.02〜5mmがより好ましく、0.1〜3mmがさらに好ましく、0.2〜2mmが特に好ましい。
The type of elastic body used for the core of the stretchable transmission line is not particularly limited. For example, thermoplastic elastomers such as polyurethane elastomers, polyolefin elastomers, polyester elastomers, polyamide elastomers, silicone rubbers, Synthetic rubber such as ethylene propylene rubber, chloroprene rubber and butyl rubber, natural rubber, and elastic long fibers or elastic tubes made of a composite rubber-based material of the synthetic rubber and natural rubber are preferable.
The outer diameter of the core of the stretchable transmission line may be appropriately set according to the thickness of the intended stretchable transmission line, but is preferably in the range of 0.01 to 10 mm, and more preferably 0.02 to 5 mm. 0.1 to 3 mm is more preferable, and 0.2 to 2 mm is particularly preferable.

伸縮伝送線は、上記芯部の外周に導体線を捲回及び/又は編組した導体部を有する。導体線は単線であってもよく、細線の集合線であってもよいが、少なくとも2本以上の細線の集合線であることが好ましい。細線の集合線とすることで、導体線の柔軟性が高まり、伸縮性を阻害しにくくなり、より細い伸縮伝送線が得られ易い。
伸縮伝送線内の導体線間距離Yは、0.01〜20mmであることが好ましい。この範囲であれば、伸縮時の耐ショート性や伝送性の点で好ましい。さらに好ましくは0.02〜10mmであり、特に好ましくは0.05〜5mmである。Yを本範囲とするには、導体線に被覆層を設ける方法や、導体線間に他の弾性体等を挟んで捲き回す方法等を適用すればよい。
The telescopic transmission line has a conductor portion obtained by winding and / or braiding a conductor wire on the outer periphery of the core portion. The conductor wire may be a single wire or an aggregated line of fine wires, but is preferably an aggregated line of at least two fine wires. By using a set of thin wires, the flexibility of the conductor wires is increased, and it becomes difficult to inhibit the stretchability, and a thinner stretchable transmission line is easily obtained.
It is preferable that the distance Y between the conductor lines in the telescopic transmission line is 0.01 to 20 mm. If it is this range, it is preferable at the point of the short circuit resistance at the time of expansion-contraction and transmission property. More preferably, it is 0.02-10 mm, Most preferably, it is 0.05-5 mm. In order to make Y within this range, a method of providing a coating layer on the conductor wire, a method of winding around another elastic body or the like between the conductor wires, or the like may be applied.

導体線を構成する細線の直径は1mm以下であることが好ましく、さらに好ましくは0.1mm以下であり、特に好ましくは0.08mm以下であり、最も好ましくは0.05mm以下である。細線の直径がこの範囲であれば導体線の柔軟性が高まり、伸縮性を阻害しにくくなり、伸縮による断線も起きにくくなり、さらに、配線が柔らかくなる。あまり細すぎると加工時に断線し易いため、0.01mm以上が好ましい。   The diameter of the thin wire constituting the conductor wire is preferably 1 mm or less, more preferably 0.1 mm or less, particularly preferably 0.08 mm or less, and most preferably 0.05 mm or less. If the diameter of the thin wire is in this range, the flexibility of the conductor wire is increased, the stretchability is hardly hindered, the disconnection due to the stretch is less likely to occur, and the wiring is softened. Since it will be easy to disconnect at the time of a process when too thin, 0.01 mm or more is preferable.

伸縮伝送線の導体線の本数は、伸縮性および信号伝送性を低下させないために8本以下にすることが好ましい。4本以下がさらに好ましく、2本以下が特に好ましい。伸縮伝送線の導体線本数がこの範囲であると、伸縮性が優れた伸縮伝送線が得られる。さらに、信号伝送する導体線同士が干渉を起こしづらくなり、伸縮伝送線の信号伝送性が優れる。伸縮伝送線を複数本まとめることにより、伸縮性を落とさずに、導体線の多芯化をすることができる。   The number of the conductor wires of the stretchable transmission line is preferably 8 or less so as not to reduce the stretchability and the signal transmission property. 4 or less is more preferable, and 2 or less is particularly preferable. When the number of conductor wires of the stretchable transmission line is within this range, a stretchable transmission line having excellent stretchability can be obtained. Furthermore, it becomes difficult for the conductor wires for signal transmission to interfere with each other, and the signal transmission property of the telescopic transmission line is excellent. By collecting a plurality of stretchable transmission lines, it is possible to increase the number of conductor wires without reducing stretchability.

2本以上の導体線を有する伸縮伝送線を用いる場合、隣接する伸縮伝送線間の導体線間距離Xと伸縮伝送線内の導体線間距離Yは、Y<Xに保ち、周囲を被覆することが重要となる。Y>Xであると、伸縮伝送線の外部の導体線と内部の導体線で電磁結合を形成し、外部からのクロストーク量が増え、信号品質の低下を引き起こす。Y<Xであると、伸縮伝送線の内部の導体線同士で電磁結合を形成し、隣接する伸縮伝送線からのクロストーク量が減り、信号品質を安定させる。   When using an expansion / contraction transmission line having two or more conductor lines, the distance X between conductor lines between adjacent expansion / contraction transmission lines and the distance Y between conductor lines in the expansion / contraction transmission line are kept Y <X and cover the periphery. It becomes important. When Y> X, electromagnetic coupling is formed by the outer conductor wire and the inner conductor wire of the telescopic transmission line, the amount of crosstalk from the outside is increased, and the signal quality is lowered. When Y <X, electromagnetic coupling is formed between the conductor lines inside the expansion transmission line, the amount of crosstalk from the adjacent expansion transmission line is reduced, and the signal quality is stabilized.

導体線は、比抵抗が10-4Ω・cm以下であることが好ましく、10-5Ω・cm以下であることがより好ましい。導体線は80wt%以上が銅からなる銅線、または80%以上がアルミニウムからなるアルミニウム線であることが好ましい。銅線は、比較的安価で電気抵抗が低いので、最も好ましい。アルミニウム線は軽量であるから、銅線に続いて好ましい。銅線は軟銅線または錫銅合金線が一般的であるが、導電性をあまり低下させずに、強力を高めた強力銅合金(例えば、無酸素銅に鉄、燐およびインジウム等を添加したもの)、錫、金、銀または白金などでメッキして酸化を防止したもの、電気信号の伝送特性を向上させるために金その他の元素で表面処理したものなどを用いることもできる。 The conductor wire preferably has a specific resistance of 10 −4 Ω · cm or less, and more preferably 10 −5 Ω · cm or less. The conductor wire is preferably a copper wire made of copper by 80 wt% or more, or an aluminum wire made of aluminum by 80% or more. Copper wire is most preferred because it is relatively inexpensive and has low electrical resistance. Aluminum wires are preferred after copper wires because they are lightweight. Copper wire is generally annealed copper wire or tin-copper alloy wire, but strong copper alloy with increased strength without significantly reducing electrical conductivity (for example, iron, phosphorus and indium added to oxygen-free copper) ), Tin, gold, silver, platinum or the like plated to prevent oxidation, or those treated with gold or other elements to improve the electrical signal transmission characteristics can also be used.

導体線は1本ずつを絶縁体で被覆されているものを用いることもでき、細線の集合線をまとめて絶縁体で被覆したものを用いることもできる。被覆する絶縁体の厚さは2mm以下であることが好ましく、より好ましくは1mm以下であり、さらに好ましくは0.1mm以下である。被覆する絶縁体の厚さがこの範囲であれば、絶縁被覆された導体線は柔軟であり、かつ外径の小さい導体線となる。導体線としては銅線やアルミ線等以外に光信号を伝送するための光ファイバーを用いることもできる。導体線が電気信号を流すものであれば伸縮電気伝送線または伸縮電線、導体線が光信号を流すものであれば伸縮光伝送線となる。   The conductor wires can be used one by one covered with an insulator, or a set of fine wires can be covered together with an insulator. The thickness of the insulator to be coated is preferably 2 mm or less, more preferably 1 mm or less, and still more preferably 0.1 mm or less. If the thickness of the insulator to be covered is within this range, the insulated conductor wire is flexible and has a small outer diameter. As the conductor wire, an optical fiber for transmitting an optical signal can be used other than a copper wire or an aluminum wire. If the conductor line allows an electrical signal to flow, it can be a telescopic electric transmission line or an expandable electric wire, and if the conductor line allows an optical signal to flow, it becomes an expandable optical transmission line.

被覆する絶縁体の種類は、公知の絶縁樹脂から任意に選ぶことができる。導体線1本ずつに樹脂被覆を行う場合は、例えば一般のマグネットワイヤーで用いられるいわゆるエナメル被覆として、ポリウレタン被覆、ポリウレタン−ナイロン被覆、ポリエステル被覆、ポリエステルーナイロン被覆、ポリエステルーイミド被覆およびポリエステルイミド・ポリアミドイミド被覆等が挙げられる。また、集合線としてから樹脂被覆を行う場合は、塩ビ樹脂、ポリオレフィン樹脂、フッ素樹脂、ウレタン樹脂およびエステル樹脂などを用いることができる。また、識別のため、各導体線をあらかじめ色分けしておくこともできる。   The type of insulator to be coated can be arbitrarily selected from known insulating resins. When resin coating is applied to each conductor wire, for example, as a so-called enamel coating used for general magnet wires, polyurethane coating, polyurethane-nylon coating, polyester coating, polyester-nylon coating, polyester-imide coating, and polyesterimide- Polyamideimide coating etc. are mentioned. In the case where the resin coating is performed after forming the assembly line, a vinyl chloride resin, a polyolefin resin, a fluororesin, a urethane resin, an ester resin, or the like can be used. For identification, each conductor wire can be color-coded in advance.

導体線にあらかじめ絶縁繊維を被覆したものを用いることもできる。絶縁繊維としては、フッ素繊維、ポリエステル繊維、ナイロン繊維、ポリプロピレン繊維、塩化ビニル繊維、サラン繊維、ガラス繊維およびポリウレタン繊維等の公知の絶縁繊維を用いることができる。導体線に絶縁繊維を捲回および/または編組することによって、導体線を被覆することができる。あらかじめ絶縁繊維で被覆した導体線は、加工時に細線表層の絶縁性樹脂層が破壊されにくく、好ましい。   A conductor wire coated with an insulating fiber in advance can also be used. As the insulating fibers, known insulating fibers such as fluorine fibers, polyester fibers, nylon fibers, polypropylene fibers, vinyl chloride fibers, saran fibers, glass fibers and polyurethane fibers can be used. The conductor wire can be covered by winding and / or braiding insulating fibers on the conductor wire. A conductor wire previously coated with an insulating fiber is preferable because the insulating resin layer on the surface of the thin wire is not easily broken during processing.

導体部は導体線の外側に導体線と逆方向に捲回された絶縁性糸状体を含むことが好ましい。導体線を1方向(例えばZ方向)に捲回し、その上から絶縁性糸条体を逆方向(S方向)に捲回することで、導体線を拘束し、伸縮によるズレを防止することができる。
さらに好ましくは、導体線と逆方向に導体線の内側(弾性体側)と外側を交互に通って絶縁性糸状態を捲回し導体線を拘束することである。導体線の内側と外側を交互に通って、導体線と逆方向に絶縁性糸状体を捲回することで、繰り返し伸縮や、伸縮を伴う屈曲動作によっても、伸張時と弛緩時の導体線間隔の変化が少なく、かつ繰り返し伸縮によって導体線間隔の変化が少ない伸縮性信号伝送ケーブルを得ることができる。導体線の内側と外側を交互に通す場合、導体線1本ずつ交互に通してもよいし、複数の導体線を纏めて交互に通してもよい。
It is preferable that the conductor portion includes an insulating filament that is wound in the opposite direction to the conductor wire on the outside of the conductor wire. By winding the conductor wire in one direction (for example, the Z direction) and then winding the insulating thread body in the opposite direction (S direction) from above, the conductor wire can be restrained and displacement due to expansion and contraction can be prevented. it can.
More preferably, the conductive wire is constrained by winding the insulating yarn state alternately through the inner side (elastic body side) and the outer side of the conductor wire in the opposite direction to the conductor wire. By winding the insulating filament in the opposite direction of the conductor wire alternately through the inside and outside of the conductor wire, the conductor wire spacing during stretching and relaxation can be obtained even by repeated stretching and bending operations. Thus, an elastic signal transmission cable can be obtained in which the change in the conductor wire interval is small due to repeated expansion and contraction. When the inner side and the outer side of the conductor wire are alternately passed, the conductor wires may be alternately passed one by one, or a plurality of conductor wires may be alternately passed collectively.

当該絶縁性糸条体は、導体線より細いものが好ましい。太い絶縁性糸状態を用いると、導体線そのものが、変形せざるをえなくなり、伸縮しにくくなる。
拘束力を高めるためには、1周につき1箇所以上好ましくは4箇所以上さらに好ましくは8箇所以上拘束点を持つように、絶縁性糸状態を導体線の内側と外側を交互に通って捲回することが好ましい。捲回する糸に荷重をかけることで、捲回張力を高めることができ、拘束力を増すことができる。
また、互いの導体線の位置がずれないように、導体線間に絶縁性の糸状体を介在させて、導体線と介在させた糸状体を一緒にして、または別々に、それらの内側と外側を交互に通って前記絶縁性糸状体を捲回することもできる。
The insulating thread is preferably thinner than the conductor wire. When a thick insulating yarn state is used, the conductor wire itself must be deformed and is difficult to expand and contract.
In order to increase the restraint force, the insulating yarn state is wound by alternately passing through the inner side and the outer side of the conductor wire so as to have one or more, preferably four or more, more preferably eight or more constraining points per circuit. It is preferable to do. By applying a load to the yarn to be wound, the winding tension can be increased and the binding force can be increased.
Also, in order not to shift the positions of the conductor wires, an insulating filamentous body is interposed between the conductor wires, and the conductor wire and the intervening filamentous body are joined together or separately, inside and outside of them. It is also possible to wind the insulating filaments alternately.

導体線からなる導体部の外周に、図4に示したように、絶縁繊維を編組した被覆層及び/又は絶縁樹脂からなる被覆層を有することが好ましい。図4において、4が被覆層である。使用する絶縁繊維および絶縁樹脂としては、後述する外部被覆層に用いる絶縁繊維および絶縁樹脂がそのまま使用できる。   As shown in FIG. 4, it is preferable to have a coating layer made of braided insulating fibers and / or a coating layer made of an insulating resin on the outer periphery of the conductor portion made of a conductor wire. In FIG. 4, 4 is a coating layer. As the insulating fiber and the insulating resin to be used, the insulating fiber and the insulating resin used for the outer coating layer described later can be used as they are.

伸縮伝送線の被覆層の厚さは0.1mm〜10mmが好ましい。より好ましくは0.2mm〜5mm、さらに好ましくは0.3mm〜1mmである。伸縮伝送線の被覆層の厚さがこの範囲であれば、伸縮性に優れ、繰り返し伸縮による伸縮伝送線同士の接触、断線を抑制できる。
また、伸縮伝送線の外径は一般に1mm〜20mmが好ましい。伸縮伝送線の外径がこの範囲であれば、伸縮性、製造工程性に優れる。
The thickness of the coating layer of the stretchable transmission line is preferably 0.1 mm to 10 mm. More preferably, it is 0.2 mm-5 mm, More preferably, it is 0.3 mm-1 mm. If the thickness of the coating layer of the stretchable transmission line is within this range, the stretchability is excellent, and the contact between the stretchable transmission lines and the disconnection due to repeated stretching can be suppressed.
The outer diameter of the telescopic transmission line is generally preferably 1 mm to 20 mm. If the outer diameter of the telescopic transmission line is within this range, it is excellent in stretchability and manufacturing processability.

2本以上の伸縮伝送線を纏めてその周囲を被覆する外部被覆層に用いる絶縁繊維としては、マルチフィラメントまたは紡績糸を用いることができ、用途や想定される使用条件に合わせて、公知の絶縁性繊維から任意に選ぶことができる。絶縁繊維は原糸のままでも良いが、意匠性や劣化防止の観点から原着糸や先染め糸を用いることもできる。また、仕上げ加工により、柔軟性や耐摩擦性の向上を図ることもできる。さらに、難燃加工、撥水加工、撥油加工、防汚加工、抗菌加工、制菌加工および消臭加工など、公知の繊維の加工を施すことにより、実用時の取り扱い性を向上させることもできる。特に、絶縁繊維の表面にシリコーン樹脂等の平滑剤を付与すると、伸縮ケーブル表面の摩擦係数をより低減できるので好ましい。   Multifilament or spun yarn can be used as the insulating fiber used for the outer covering layer that covers two or more stretchable transmission lines and covers the periphery thereof, and is well-known in accordance with the application and assumed use conditions. It can be arbitrarily selected from sex fibers. The insulating fiber may be a raw yarn, but an original yarn or a pre-dyed yarn can also be used from the viewpoint of design properties and prevention of deterioration. In addition, the finish processing can improve flexibility and friction resistance. In addition, handling of known fibers such as flame retardant processing, water repellent processing, oil repellent processing, antifouling processing, antibacterial processing, antibacterial processing, and deodorizing processing can also improve handling in practical use it can. In particular, it is preferable to apply a smoothing agent such as silicone resin to the surface of the insulating fiber because the friction coefficient on the surface of the stretchable cable can be further reduced.

耐熱性と耐磨耗性を両立させる絶縁繊維としては、アラミド繊維、ポリスルホン繊維およびフッ素繊維が挙げられる。耐火性の観点からは、ガラス繊維、耐炎化アクリル繊維、フッ素繊維およびサラン繊維が、また、耐磨耗性や強度の観点からは、高強力ポリエチレン繊維およびポリケトン繊維が挙げられる。コストと耐熱性の観点からは、ポリエステル繊維、ナイロン繊維およびアクリル繊維がある。これらに、難燃性を付与した難燃ポリエステル繊維、難燃ナイロン繊維および難燃アクリル繊維(モダクリル繊維)なども好適である。摩擦熱による局部的な劣化に対しては、非溶融繊維を用いることが好ましい。その例としては、アラミド繊維、ポリスルホン繊維、コットン、レーヨン、キュプラ、ウール、絹およびアクリル繊維を挙げることができる。強度を重視する場合は、高強力ポリエチレン繊維、アラミド繊維およびポリフェニレンサルファイド繊維が挙げられる。摩擦性を重視する場合は、フッ素繊維、ナイロン繊維およびポリエステル繊維が挙げられる。意匠性を重視する場合は、発色の良いアクリル繊維を用いることもできる。さらに、人との接触による触感を重視する場合は、キュプラ、アセテート、コットンおよびレーヨンなどのセルロース系繊維や、絹または繊度の細い合成繊維を用いることができる。   Examples of insulating fibers that achieve both heat resistance and wear resistance include aramid fibers, polysulfone fibers, and fluorine fibers. From the viewpoint of fire resistance, glass fiber, flame-resistant acrylic fiber, fluorine fiber and saran fiber are mentioned, and from the viewpoint of wear resistance and strength, high-strength polyethylene fiber and polyketone fiber are mentioned. From the viewpoint of cost and heat resistance, there are polyester fiber, nylon fiber and acrylic fiber. Also suitable are flame retardant polyester fiber, flame retardant nylon fiber, flame retardant acrylic fiber (modacrylic fiber) and the like imparted with flame retardancy. For local deterioration due to frictional heat, it is preferable to use non-melted fibers. Examples thereof include aramid fibers, polysulfone fibers, cotton, rayon, cupra, wool, silk and acrylic fibers. When emphasizing strength, examples include high-strength polyethylene fiber, aramid fiber, and polyphenylene sulfide fiber. When importance is attached to frictional properties, examples thereof include fluorine fibers, nylon fibers, and polyester fibers. When emphasizing design properties, acrylic fibers with good color can be used. Furthermore, when importance is attached to the tactile sensation due to human contact, cellulosic fibers such as cupra, acetate, cotton, and rayon, and silk or synthetic fibers with fine fineness can be used.

外部被覆層に用いる絶縁樹脂はさまざまな弾性の絶縁樹脂から任意に選ぶことができ、伸縮ケーブルの用途及び伸縮ケーブルの内部構造に使用する他の絶縁繊維との相性を考慮しながら、選定することができる。
考慮すべき性能は伸縮性が挙げられ、これらの性能に優れるものとしては合成ゴム系弾性体が挙げられ、フッ素系ゴム、シリコーン系ゴム、エチレン・プロピレン系ゴム、クロロプレン系ゴムおよびブチル系ゴムが好ましい。より好ましくは、伸縮性に優れるシリコーン系ゴムである。また、生体からの汗や外部からの雨等の浸入を防ぐために、外部被覆層の最外部には、絶縁繊維よりも弾性樹脂を用いる方が好適である。
The insulating resin used for the outer cover layer can be selected arbitrarily from various elastic insulating resins, and should be selected in consideration of compatibility with other insulating fibers used for the extension cable and the internal structure of the extension cable. Can do.
The properties to be considered include elasticity, and those excellent in these performances include synthetic rubber elastic bodies, such as fluorine rubber, silicone rubber, ethylene / propylene rubber, chloroprene rubber and butyl rubber. preferable. More preferably, it is a silicone rubber excellent in stretchability. In order to prevent permeation of perspiration from the living body or rain from the outside, it is preferable to use an elastic resin rather than an insulating fiber for the outermost part of the outer coating layer.

外部被覆層の厚さは一般に0.1mm〜10mmが好ましい。より好ましくは0.2mm〜5mm、さらに好ましくは0.3mm〜1mmである。外部被覆層の厚さがこの範囲であれば、伸縮性に優れ、外部の障害物との接触や磨耗による被覆層の破れや伸縮伝送線のズレを抑制できる。
また、本発明の伸縮ケーブルの外径は一般に2mm〜50mmが好ましい。伸縮伝送線の外径がこの範囲であれば、伸縮性や取り扱い性、製造工程性に優れる。
In general, the thickness of the outer coating layer is preferably 0.1 mm to 10 mm. More preferably, it is 0.2 mm-5 mm, More preferably, it is 0.3 mm-1 mm. If the thickness of the outer covering layer is in this range, the stretchability is excellent, and it is possible to suppress the tearing of the covering layer and the displacement of the stretchable transmission line due to contact with external obstacles or wear.
Further, the outer diameter of the stretchable cable of the present invention is generally preferably 2 mm to 50 mm. If the outer diameter of the telescopic transmission line is within this range, it is excellent in stretchability, handleability, and manufacturing processability.

2本以上の伸縮伝送線をまとめる際に、伸縮伝送線の芯部に用いる弾性体のみを一緒にまとめて、周囲を被覆すると良い。弾性体のみも一緒にまとめることにより、伸縮伝送線同士の磨耗による導体線の断線を抑制し、弾性体が緩衝材の役割をして、屈曲耐久性が向上する。また、弾性体の位置は特に限定されないが、図6に示したように、伸縮伝送線間に配置することが好ましい。図中、6が弾性体である。また、弾性体の周囲に絶縁繊維を被覆していると、弾性体と伸縮伝送線の摩擦抵抗を低下させ、磨耗による導体線の断線を抑制できるため、より好ましい。   When collecting two or more stretchable transmission lines, only the elastic bodies used for the core of the stretchable transmission line may be gathered together to cover the periphery. By gathering together only the elastic body, disconnection of the conductor wire due to wear between the expansion and contraction transmission lines is suppressed, and the elastic body serves as a cushioning material, and the bending durability is improved. Further, the position of the elastic body is not particularly limited, but it is preferable that the elastic body is disposed between the telescopic transmission lines as shown in FIG. In the figure, 6 is an elastic body. Further, it is more preferable to cover the elastic body with insulating fibers because the frictional resistance between the elastic body and the expansion / contraction transmission line can be reduced and disconnection of the conductor wire due to wear can be suppressed.

各伸縮伝送線及び/又は2本以上まとめた伸縮伝送線の周囲にシールドを有しているとより好ましい。ここでいうシールドとは電磁波や静電場の結合を遮断する層である。図5がシールドを有している場合の例である。図中、5がシールドである。しかし、シールドされていても、5%以上の伸縮性を有していなければならない。シールドを構成する方法としては、例えば、銅線およびアルミ線などの導体細線や、銀メッキ繊維などの導電性繊維を捲回又は編組することにより得ることができる。また、磁性粉末を混合した弾性樹脂を伸縮伝送線の周囲に被覆することもできる。磁性粉は、セラミック系磁性粉、金属系磁性粉または合成金系磁性粉等があり、特に限定されない。例えば、セラミック系磁性粉としては、Ni−Znフェライト粉末およびMn−Zn系フェライト粉末等が挙げる事ができる。金属系磁性粉の例としては、Fe、NiまたはCoの少なくとも一種を含むものが挙げられる。合金系磁性粉の例としては、Fe−Ni合金(パーマロイ)またはFe−Si−Al合金(センダスト)等を挙げることができる。   It is more preferable that a shield is provided around each stretchable transmission line and / or two or more stretchable transmission lines. The shield here is a layer that blocks the coupling of electromagnetic waves and electrostatic fields. FIG. 5 is an example in the case of having a shield. In the figure, 5 is a shield. However, even if shielded, it must have a stretchability of 5% or more. As a method for forming the shield, for example, it can be obtained by winding or braiding conductive fine wires such as copper wires and aluminum wires, or conductive fibers such as silver-plated fibers. Further, an elastic resin mixed with magnetic powder can be coated around the telescopic transmission line. Examples of the magnetic powder include ceramic magnetic powder, metal magnetic powder, and synthetic gold magnetic powder, and are not particularly limited. For example, examples of the ceramic magnetic powder include Ni—Zn ferrite powder and Mn—Zn ferrite powder. Examples of the metal-based magnetic powder include those containing at least one of Fe, Ni or Co. Examples of the alloy-based magnetic powder include an Fe—Ni alloy (permalloy) or an Fe—Si—Al alloy (Sendust).

次に信号伝送用多芯型伸縮ケーブルの代表的な製造方法について説明する。なお、本発明の信号伝送用多芯型伸縮ケーブルは以下の製造方法に限定されるものではない。
本発明の伸縮伝送線の代表的な製造方法としては、2対のローラー間で芯部を伸長した状態で導体線をらせん状に1本または複数本捲回させる方法が挙げられる。伸縮性を発現させやすくするために、芯部を30%以上伸長することが好ましく、さらに好ましくは50%以上、特に好ましくは100%以上である。
Next, a typical manufacturing method of the signal transmission multi-core expansion cable will be described. In addition, the multicore type | mold expansion-contraction cable for signal transmission of this invention is not limited to the following manufacturing methods.
As a typical method for producing the telescopic transmission line of the present invention, there is a method in which one or a plurality of conductor wires are spirally wound in a state where the core portion is extended between two pairs of rollers. In order to facilitate the development of stretchability, it is preferable to extend the core part by 30% or more, more preferably 50% or more, and particularly preferably 100% or more.

導体線をらせん状に捲回させる方法としては、例えば、カバーリング機を用いて導体線を捲回する方法が挙げられる。カバーリング機を用いて導体線を捲回する場合は、導体線を巻いたボビンの回転数を高くする等して捲回張力を高くすることが可能である。
カバーリング機を用いて導体線を1方向に複数本捲回する場合は、あらかじめ1つのボビンに複数本を引き揃えて捲きつけたボビンを用い、これを一度に捲回することが好ましいが、導体線同士が重なり合う可能性があるため、導体線間に絶縁性の糸状体を挟んで引き揃えておくことが好ましい。
Examples of the method of winding the conductor wire in a spiral manner include a method of winding the conductor wire using a covering machine. When winding a conductor wire using a covering machine, it is possible to increase the winding tension by increasing the number of rotations of the bobbin around which the conductor wire is wound.
When winding a plurality of conductor wires in one direction using a covering machine, it is preferable to use a bobbin in which a plurality of conductor wires are arranged in advance on one bobbin and wound it at a time, Since there is a possibility that the conductor wires overlap each other, it is preferable that the insulating filaments are sandwiched and arranged between the conductor wires.

伸縮伝送線は、芯部へ導体線を捲回し導体部を形成した後、必要に応じて該導体部の外周に絶縁樹脂または絶縁繊維を用いた被覆層を形成する。絶縁樹脂として弾性樹脂またはゴムチューブを用いた場合の被覆層は、押し出し装置等を用いることにより被覆することが好ましい。絶縁繊維による被覆層の形成方法は、製紐機等を用いて編組を行うことが好ましい。
次に伸縮伝送線を複数本まとめ、前述と同様な方法により外周に絶縁樹脂及び/又は絶縁繊維を用いた外部被覆層を形成し、信号伝送用多芯型伸縮ケーブルが得られる。
In the telescopic transmission line, a conductor wire is wound around a core portion to form a conductor portion, and then a coating layer using an insulating resin or an insulating fiber is formed on the outer periphery of the conductor portion as necessary. The coating layer when an elastic resin or a rubber tube is used as the insulating resin is preferably coated by using an extrusion device or the like. As a method for forming a coating layer with insulating fibers, braiding is preferably performed using a string making machine or the like.
Next, a plurality of stretchable transmission lines are gathered, and an outer covering layer using an insulating resin and / or insulating fiber is formed on the outer periphery by the same method as described above to obtain a signal transmission multicore stretchable cable.

以下、本発明を実施例及び比較例に基づいて説明するが、本発明はこれらの実施例のみに限定されるものではない。また本発明の特性は下記の方法で測定した。
(1)隣接する伸縮伝送線間の導体線間距離
マイクロスコープを用いて撮影した信号伝送用多芯型伸縮ケーブルの断面図の画像、および各々の伸縮伝送線の導体線の状態観察によって、各々の伸縮伝送線間の導体線間距離が最短となる距離を算出する。図3のように、同一断面上で各々の伸縮伝送線間の導体線が最接近する位置に出現するときに、最短となる距離はXで表される。この位置を求めるには、ケーブルを長さ方向に例えば5mm間隔で切断し、順次断面画像を観察すればよい。各々の伸縮伝送線間の導体線が同一断面上の最接近する位置に同時に現れないように、巻ピッチ等が調整されている場合には、上記順次観察した断面画像10枚の中から最短距離Xを決めればよい。
EXAMPLES Hereinafter, although this invention is demonstrated based on an Example and a comparative example, this invention is not limited only to these Examples. The characteristics of the present invention were measured by the following methods.
(1) Distance between conductor lines between adjacent extension transmission lines An image of a cross-sectional view of a signal transmission multi-core extension cable photographed using a microscope, and observation of the state of the conductor lines of each extension transmission line, The distance at which the distance between the conductor lines between the telescopic transmission lines is the shortest is calculated. As shown in FIG. 3, when the conductor line between the respective stretchable transmission lines appears on the same section at the closest position, the shortest distance is represented by X. In order to obtain this position, the cable may be cut in the length direction at intervals of 5 mm, for example, and the cross-sectional images may be observed sequentially. When the winding pitch or the like is adjusted so that the conductor lines between the respective stretchable transmission lines do not appear at the closest position on the same cross section at the same time, the shortest distance from among the 10 cross-sectional images observed sequentially. X should be determined.

(2)伸縮伝送線内の導体線間距離
得られたケーブルから伸縮伝送線を抜き出し、外部被覆やシールド等をはがした状態で、各々の伸縮伝送線における、近接する導体線間距離を任意に10箇所測定し、その平均値を伸縮伝送線内の導体線間距離(Y)とした。
(2) Distance between conductor lines in expansion / contraction transmission line With the expansion / contraction transmission line extracted from the obtained cable and the outer sheath and shield etc. peeled off, the distance between adjacent conductor lines in each expansion / contraction transmission line is arbitrary 10 points were measured, and the average value was defined as the distance (Y) between conductor wires in the telescopic transmission line.

(3)繰り返し伸張試験
デマッチャー試験機((株)大栄科学精機製作所製)を用い、図7に示したように、チャック上部(8)とチャック下部(9)の間に100mmの試料(7)を110mmでセットし、初期伸張率10%、引っ張り時伸張率40%で100回/minで100万回伸縮を繰り返し、繰り返し伸張試験を行う。
繰り返し伸張試験の前後で試料の全ての導体線の電気抵抗を測定し、最も変化の大きい導体線につき、次式により繰り返し伸張試験前後での電気抵抗の変化率(ΔR)を求める。
ΔR={(R2−R1)/R1}×100
(但し、R1:試験前の電気抵抗、R2:試験後の電気抵抗)
電気抵抗の変化率(ΔR)に基づいて、下記基準により、耐断線性を判定した。
A:ΔR<1%
B:1%≦ΔR<10%
C:10%≦ΔR<30%
D:30%≦ΔR<∞、又は断線
(3) Repeated extension test Using a Dematcher tester (manufactured by Daiei Kagaku Seisakusho Co., Ltd.), as shown in FIG. 7, a 100 mm sample (7) between the chuck upper part (8) and the chuck lower part (9) Is set at 110 mm, and stretching is repeated 1 million times at 100 times / min with an initial stretching rate of 10% and a stretching rate of 40% when pulled, and a repeated stretching test is performed.
The electrical resistance of all the conductor wires of the sample is measured before and after the repeated extension test, and the change rate (ΔR) of the electrical resistance before and after the repeated extension test is obtained from the following equation for the conductor wire having the largest change.
ΔR = {(R2−R1) / R1} × 100
(However, R1: electrical resistance before test, R2: electrical resistance after test)
Based on the rate of change in electrical resistance (ΔR), the breakage resistance was determined according to the following criteria.
A: ΔR <1%
B: 1% ≦ ΔR <10%
C: 10% ≦ ΔR <30%
D: 30% ≦ ΔR <∞ or disconnection

(4)USBデバイス動作テスト
測定方法:4本の導体線を捲回した伸縮伝送線Aと伸縮伝送線Bの2本を束ねた信号伝送用多芯型伸縮ケーブルを用意し、弛緩状態で1mのケーブルを採取した。次に束ねられた伸縮伝送線Aと伸縮伝送線Bの両端の導体線の先端を約5mm引き出し、先端約3mmをハンダ浴に浸漬し細線間の導通を高めた後、図8に示したように、USBコネクター(Aタイプ オス)(10)の端子位置2および3にシグナルライン(特に断らない限り、隣接する2本の導体線)、端子位置1および4に他の2本の導体線をそれぞれハンダ付けし、接合部分を絶縁性ビニールテープで被覆し、束ねられた伸縮伝送線Aと伸縮伝送線Bの両端にUSBコネクター(Aタイプ オス)(10)が接続されたケーブルを得た。当該USBコネクターが取り付けられた伸縮伝送線Aと伸縮伝送線Bの一端を、30万画素WEBカメラ(WCU204SV Arvel社製)付属のソフトウエアーをあらかじめインストールし、当該WEBカメラを直接パーソナルコンピュータに接続し、動作することを確認しておいたパーソナルコンピュータ(Dynabook Satelitet12 PST101MD4H41LX 株式会社東芝製)(12)のUSBポートに差込み、伸縮伝送線Aと伸縮伝送線Bの他端にUSB変換アダプター(Aタイプメス→Aタイプメス(アイネックス(株)社製ADV−104))を差込み、当該アダプターに、30万画素WEBカメラ(WCU204SV Arvel社製)(11)のUSBコネクターを差込み、作動を調べ、下記基準で判定した。
A:伸縮伝送線Aと伸縮伝送線Bに繋がれた2台のWEBカメラが動作して、動画の動きがスムーズ。
B:伸縮伝送線Aと伸縮伝送線Bに繋がれた2台のWEBカメラが動作するが、動画の動きが不安定。
C:伸縮伝送線Aと伸縮伝送線Bに繋がれた1台もしくは2台ともWEBカメラが動作しない。
(4) USB device operation test Measurement method: Prepare a multi-core telescopic cable for signal transmission that is a bundle of two telescopic transmission lines A and B, which are wound around four conductor wires. Cables were collected. Next, the ends of the conductor wires at both ends of the bundled stretchable transmission line A and the stretchable transmission line B are pulled out by about 5 mm, and the tip of about 3 mm is dipped in a solder bath to enhance the conduction between the thin wires, as shown in FIG. In addition, a signal line (two adjacent conductor lines unless otherwise specified) at the terminal positions 2 and 3 of the USB connector (A type male) (10), and the other two conductor lines at the terminal positions 1 and 4 are provided. Each was soldered, and the joint portion was covered with an insulating vinyl tape to obtain a cable in which USB connectors (A type male) (10) were connected to both ends of the bundled stretchable transmission line A and stretchable transmission line B. Install the software attached to the 300,000 pixel WEB camera (manufactured by WCU204SV Arvel) at one end of the telescopic transmission line A and the telescopic transmission line B to which the USB connector is attached, and connect the WEB camera directly to the personal computer. Plug in the USB port of a personal computer (Dynobook Satellite 12 PST101MD4H41LX manufactured by Toshiba Corporation) (12) that has been confirmed to work, and connect the USB conversion adapter (A type female to the other end of the expansion transmission line A and expansion transmission line B). → Plug in the A type female (ADV-104 manufactured by Anex Corporation), and insert the USB connector of the 300,000 pixel WEB camera (manufactured by WCU204SV Arvel) (11) into the adapter. It was boss.
A: Two web cameras connected to the telescopic transmission line A and the telescopic transmission line B operate, and the motion of the video is smooth.
B: Two WEB cameras connected to the telescopic transmission line A and the telescopic transmission line B operate, but the motion of the moving image is unstable.
C: The WEB camera does not operate in one or two of the extension transmission line A and the extension transmission line B.

[実施例1]
(芯部の作製)
ダブルカバーリング機(カタオカテクノ社製、SP−400型)を用い、940dtex/72fのポリウレタン弾性長繊維(旭化成せんい株式会社製、商品名:ロイカ)を芯にして、伸長倍率3倍で伸長しながら、155dtexのナイロン仮撚糸を500T/mの下撚り(S撚り)及び332T/mの上撚り(Z撚り)で捲回し、ダブルカバー糸を得た。得られたダブルカバー糸を用い、8本打ちの製紐機(株式会社国分社製)を用いて編組加工を行い、ポリウレタン弾性長繊維からなる直径1.8mmの略丸断面の組紐を芯部として得た。
[Example 1]
(Manufacture of core part)
Using a double-covering machine (SPA-400, manufactured by Kataoka Techno Co., Ltd.), stretched at a stretch ratio of 3 times using 940 dtex / 72f polyurethane elastic long fiber (Asahi Kasei Fibers Co., Ltd., trade name: Leuka) as the core. However, a 155 dtex nylon false twisted yarn was wound with a 500 T / m primary twist (S twist) and a 332 T / m primary twist (Z twist) to obtain a double cover yarn. Using the resulting double cover yarn, braiding using an eight-punch stringing machine (made by Kokubun Co., Ltd.), and forming a braided string having a substantially round cross section with a diameter of 1.8 mm made of polyurethane elastic long fibers. Got as.

(導体部の作製)
得られた芯部を用い、16本打ちの製紐機((有)桜井鉄工製)を使用して、芯部を2.0倍に伸長しながら、Z撚り方向に、導体線として銅細線集合線((有)竜野電線社製2USTC、直径0.03mm×90本にポリエステル加工糸をカバーリングしたもの)4本と、ナイロン仮撚糸(240dtexを3本合糸したもの)4本とを1本交互に8本配置し、S撚り方向にポリエステル繊維(56dtex)を8本配置して編組加工を行って導体部を作成し、伸縮伝送線中間体を得た。
(Preparation of conductor part)
Using the obtained core part, a 16-strand stringer (manufactured by Sakurai Tekko Co., Ltd.) was used to expand the core part by a factor of 2.0, and in the Z twist direction, a copper wire as a conductor wire 4 assembly wires (2USTC made by Tatsuno Electric Cable Co., Ltd., with a diameter of 0.03 mm x 90 covered with polyester yarn) and 4 nylon false twisted yarns (3 240 dtex yarns) 8 wires were alternately arranged, 8 polyester fibers (56 dtex) were placed in the S twist direction, and braiding was performed to create a conductor portion to obtain an elastic transmission line intermediate.

(被覆層の作製)
得られた伸縮伝送線中間体を芯にして再度16本打ちの製紐機に仕掛け、1.8倍に伸長しながら、エステル仮撚糸(300dtex×2本引き揃え)をZ撚り方向及びS撚り方向に各々8本ずつ配置して編組加工することによって、被覆層を形成し、4本の導体線を有する被覆層付き伸縮伝送線を得た。
(Preparation of coating layer)
The resulting stretchable transmission line intermediate is placed on a 16-strand stringing machine again and stretched 1.8 times while the ester false twisted yarn (300 dtex x 2 aligned) is Z-twisted and S-twisted. A covering layer was formed by arranging 8 pieces each in the direction and braiding to obtain a stretchable transmission line with a covering layer having four conductor wires.

(信号伝送用多芯型伸縮ケーブルの作製)
被覆層付き伸縮伝送線を2本まとめたものを芯にして32本打ちの製紐機に仕掛け、1.6倍に伸長しながら、エステル仮撚糸(300dtex×2本引き揃え)をZ撚り方向及びS撚り方向に各々16本ずつ配置して編組加工することによって、信号伝送用多芯型伸縮ケーブルを得た。
得られた信号伝送用多芯型伸縮ケーブルの構成と評価結果を表1に示す。なお、Xの値は、導体線間が図3の位置をとっているときのケーブル断面図から算出した。
(Manufacture of multi-core telescopic cable for signal transmission)
Centering two stretchable transmission lines with covering layers on a core of 32 strands and stretching 1.6 times, ester false twisted yarn (300 dtex x 2 aligned) Z twist direction And by arranging 16 pieces each in the S twist direction and braiding, a signal transmission multi-core expansion cable was obtained.
Table 1 shows the structure and evaluation results of the obtained signal transmission multi-core expansion cable. Note that the value of X was calculated from the cable cross-sectional view when the conductor wires are in the position shown in FIG.

[実施例2]
実施例1と同様の方法で直径1.8mmの芯部を得た。得られた芯部に、実施例1と同様の方法で導体部を作製し、伸縮伝送線を2本得た。この2本の伸縮伝送線の間に上記芯部のみを入れ、その3本まとめたものを芯にして32本打ちの製紐機に仕掛け、1.8倍に伸長しながら、エステル仮撚糸(300dtex×2本引き揃え)をZ撚り方向及びS撚り方向に各々16本ずつ配置して編組加工することによって、信号伝送用多芯型伸縮ケーブルを得た。
得られた信号伝送用多芯型伸縮ケーブルの構成と評価結果を表1に示す。
[Example 2]
A core portion having a diameter of 1.8 mm was obtained in the same manner as in Example 1. The conductor part was produced by the method similar to Example 1 in the obtained core part, and two expansion-contraction transmission lines were obtained. Put only the core part between the two stretchable transmission lines, put the three together into a core and place it on a 32-strand stringing machine. By arranging 16 pieces each in the Z twist direction and the S twist direction and braiding them, a signal transmission multi-core expansion cable was obtained.
Table 1 shows the structure and evaluation results of the obtained signal transmission multi-core expansion cable.

[実施例3]
導体線として銅細線集合線((有)竜野電線社製2USTC、直径0.03mm×180本にポリエステル加工糸をカバーリングしたもの)と、ナイロン仮撚糸(240dtexを6本合糸したもの)を用いて、実施例1と同様の方法で被覆層付き伸縮伝送線を得た。この被覆層付き伸縮伝送線を2本まとめたものを芯にして32本打ちの製紐機に仕掛け、1.8倍に伸長しながら、エステル仮撚糸(300dtex×3本引き揃え)をZ撚り方向及びS撚り方向に各々16本ずつ配置して編組加工することによって、信号伝送用多芯型伸縮ケーブルを得た。
得られた信号伝送用多芯型伸縮ケーブルの構成と評価結果を表1に示す。
[Example 3]
Copper conductor assembly wire (2USTC made by Tatsuno Electric Cable Co., Ltd., covered with polyester processed yarn on 0.03 mm diameter x 180 pieces) and nylon false twisted yarn (6 pieces of 240 dtex) as conductor wires Using the same method as in Example 1, a stretchable transmission line with a coating layer was obtained. A set of two stretchable transmission lines with a covering layer is placed on a core and placed on a 32-strand stringing machine. While stretching 1.8 times, ester false twisted yarn (300 dtex x 3 aligned) is Z-twisted By arranging 16 pieces each in the direction and the S twist direction and braiding them, a signal transmission multi-core expansion cable was obtained.
Table 1 shows the structure and evaluation results of the obtained signal transmission multi-core expansion cable.

[比較例1]
実施例1における伸縮伝送線中間体、即ち被覆層のない伸縮伝送線を2本まとめたものを芯にして32本打ちの製紐機に仕掛け、1.6倍に伸長しながら、エステル仮撚糸(300dtex×2本引き揃え)をZ撚り方向及びS撚り方向に各々16本ずつ配置して編組加工することによって、信号伝送用多芯型伸縮ケーブルを得た。
得られた信号伝送用多芯型伸縮ケーブルの構成と評価結果を表1に示す。
[Comparative Example 1]
The stretchable transmission line intermediate in Example 1, that is, a bundle of two stretchable transmission lines without a coating layer, is placed on a 32-strand string making machine and stretched 1.6 times while stretching the ester false twisted yarn By arranging 16 pieces (300 dtex × 2 pieces) in the Z twist direction and the S twist direction, respectively, and braiding them, a multi-core elastic cable for signal transmission was obtained.
Table 1 shows the structure and evaluation results of the obtained signal transmission multi-core expansion cable.

[比較例2]
実施例1と同様な方法で伸縮伝送線中間体を得た。得られた伸縮伝送線中間体を芯にして16本打ちの製紐機に仕掛け、1.8倍に伸長しながら、エステル仮撚糸(56dtex)をZ撚り方向及びS撚り方向に各々8本ずつ配置して編組加工することによって、被覆層を形成し、4本の導体線を有する被覆層付き伸縮伝送線を得た。その被覆層付き伸縮伝送線を2本まとめたものを芯にして32本打ちの製紐機に仕掛け、1.6倍に伸長しながら、エステル仮撚糸(300dtex×2本引き揃え)をZ撚り方向及びS撚り方向に各々16本ずつ配置して編組加工することによって、信号伝送用多芯型伸縮ケーブルを得た。
得られた信号伝送用多芯型伸縮ケーブルの構成と評価結果を表1に示す。
[Comparative Example 2]
A telescopic transmission line intermediate was obtained in the same manner as in Example 1. The resulting stretchable transmission line intermediate is placed on a 16-strand stringing machine and stretched 1.8 times, while eight ester false twisted yarns (56 dtex) each in the Z twist direction and the S twist direction. By arranging and braiding, a covering layer was formed, and a stretchable transmission line with a covering layer having four conductor wires was obtained. Centering the two stretchable transmission lines with coating layers on a core and placing it on a 32-strand stringing machine, stretching the fiber 1.6 times, twisting the ester false twisted yarn (300 dtex x 2) Z-twisted By arranging 16 pieces each in the direction and the S twist direction and braiding them, a signal transmission multi-core expansion cable was obtained.
Table 1 shows the structure and evaluation results of the obtained signal transmission multi-core expansion cable.

[実施例4]
実施例1と同様な方法でダブルカバー糸と伸縮伝送線中間体を得た。2本の伸縮伝送線中間体、即ち被覆層のない伸縮伝送線の間にダブルカバー糸1本を入れ、その3本まとめたものを芯にして32本打ちの製紐機に仕掛け、1.8倍に伸長しながら、エステル仮撚糸(300dtex×2本引き揃え)をZ撚り方向及びS撚り方向に各々16本ずつ配置して編組加工することによって、信号伝送用多芯型伸縮ケーブルを得た。
得られた信号伝送用多芯型伸縮ケーブルの構成と評価結果を表1に示す。
[Example 4]
In the same manner as in Example 1, a double cover yarn and an elastic transmission line intermediate were obtained. Put a double cover thread between two stretchable transmission line intermediates, that is, a stretchable transmission line without a covering layer, and put the three together into a 32-punch stringing machine. While stretching 8 times, arrange 16 pieces of ester false twisted yarn (300dtex × 2) in the Z twist direction and S twist direction, respectively, and braid it to obtain a multi-core stretchable cable for signal transmission It was.
Table 1 shows the structure and evaluation results of the obtained signal transmission multi-core expansion cable.

Figure 2012227061
Figure 2012227061

表1の比較例1および2より、伸縮伝送線間の導体線間距離Xが0.1mm以下であると、伸縮伝送線間で信号が干渉しあい、USBデバイステストより信号品質の悪化が確認される。また繰り返し伸張試験より、伸縮伝送線間の導体線同士が擦れ、断線を引き起こしていることも確認される。
実施例4では、伸縮伝送線間の導体線間距離Xを0.1mm以上にしても、伸縮伝送線内の導体線間距離Yとの関係がY>Xになることにより、伸縮伝送線内ではなく伸縮伝送線間で電磁結合を引き起こし、USBデバイステストより信号品質が若干悪化する。
一方、実施例1〜3から、伸縮伝送線間の導体線間距離Xを0.1mm以上にし、伸縮伝送線間の導体線間距離Xと伸縮伝送線内の導体線間距離Yとの関係をY<Xにすることにより、信号品質および伸縮耐久性に優れる信号伝送用多芯型伸縮ケーブルが得られることがわかる。
From Comparative Examples 1 and 2 in Table 1, when the distance X between conductor lines between the expansion and contraction transmission lines is 0.1 mm or less, signals interfere with each other between the expansion and contraction transmission lines, and the deterioration of the signal quality is confirmed by the USB device test. The In addition, it is also confirmed from repeated stretching tests that the conductor wires between the stretchable transmission lines rub against each other and cause disconnection.
In Example 4, even if the distance X between the conductor lines between the expansion transmission lines is 0.1 mm or more, the relationship with the distance Y between the conductor lines in the expansion transmission line becomes Y> X. Instead, it causes electromagnetic coupling between the telescopic transmission lines, and the signal quality is slightly worse than the USB device test.
On the other hand, from Examples 1 to 3, the distance X between the conductor lines between the extension transmission lines is set to 0.1 mm or more, and the relationship between the conductor line distance X between the extension transmission lines and the conductor line distance Y within the extension transmission lines. It can be seen that by setting Y <X, a signal transmission multi-core expansion cable excellent in signal quality and expansion durability can be obtained.

本発明の伸縮性信号伝送ケーブルは、LANケーブルを中心とした多芯型信号ケーブルをはじめとして、ロボット分野における身体装着機器および衣服装着機器等の曲げ伸ばしなどの屈曲部を有する装置の多芯型信号配線として好適である。その他、各種ロボット(産業用ロボット、家庭用ロボット、ホビーロボット等)、リハビリ用補助具、バイタルデータ測定機器、モーションキャプチャー、電子機器付き防護服、ゲーム用コントローラー(人体装着型を含む)およびマイクロヘッドフォン等の分野の多芯型信号配線へ好適に利用できる。   The stretchable signal transmission cable of the present invention is a multicore type of device having a bending portion such as a bending device such as a body wearing device and a clothing wearing device in the robot field, including a multicore signal cable centered on a LAN cable. It is suitable as a signal wiring. Other robots (industrial robots, home robots, hobby robots, etc.), rehabilitation aids, vital data measuring equipment, motion capture, protective clothing with electronic equipment, game controllers (including human-mounted type) and microphones It can be suitably used for multi-core type signal wiring in such fields.

1 芯部
2 導体線
3 外部被覆層
4 被覆層
5 シールド
6 弾性体
7 試料
8 チャック部
9 チャック部
10 USBコネクター
11 WEBカメラ
12 パーソナルコンピュータ
X 隣接する伸縮伝送線間の導体線間距離
Y 伸縮伝送線内の導体線間距離
DESCRIPTION OF SYMBOLS 1 Core part 2 Conductor wire 3 Outer coating layer 4 Coating layer 5 Shield 6 Elastic body 7 Sample 8 Chuck part 9 Chuck part 10 USB connector 11 WEB camera 12 Personal computer X Distance between conductor lines between adjacent elastic transmission lines Y Elastic transmission Distance between conductor wires in the wire

Claims (7)

弾性体からなる芯部およびその外周に同一方向に捲回された導体線からなる導体部を有する少なくとも2本の伸縮伝送線と、該伸縮伝送線を纏めてその周囲を被覆してなる絶縁繊維及び/又は絶縁樹脂からなる外部被覆層からなり、隣接する伸縮伝送線間の導体線間距離Xが0.1mm以上であることを特徴とする信号伝送用多芯型伸縮ケーブル。   At least two stretchable transmission lines having a core portion made of an elastic body and a conductor portion wound in the same direction on the outer periphery thereof, and an insulating fiber formed by covering the circumference of the stretchable transmission line And / or a conductor-core distance X between adjacent stretchable transmission lines, which is made of an outer covering layer made of an insulating resin, is 0.1 mm or more. 伸縮伝送線の導体線の本数が1〜8本である請求項1に記載の信号伝送用多芯型伸縮ケーブル。   The signal transmission multi-core expansion cable according to claim 1, wherein the number of conductor wires of the expansion / contraction transmission line is 1 to 8. 導体線の本数が2本以上である伸縮伝送線を少なくとも1本含み、隣接する伸縮伝送線間の導体線間距離Xと各伸縮伝送線内の導体線間距離YがY<Xである請求項2に記載の信号伝送用多芯型伸縮ケーブル。   The invention includes at least one stretchable transmission line having two or more conductor lines, and the distance X between conductor lines between adjacent stretchable transmission lines and the distance Y between conductor lines in each stretchable transmission line are Y <X. Item 3. A multi-core telescopic cable for signal transmission according to Item 2. 伸縮伝送線が導体部の外周に絶縁繊維及び/又は絶縁樹脂からなる被覆層を有する請求項1〜3のいずれか一項に記載の信号伝送用多芯型伸縮ケーブル。   The multi-core elastic cable for signal transmission according to any one of claims 1 to 3, wherein the elastic transmission line has a coating layer made of an insulating fiber and / or an insulating resin on the outer periphery of the conductor portion. 伸縮伝送線の周囲及び/又は各伸縮伝送線を纏めた周囲がシールドされている請求項1〜4のいずれか一項に記載の信号伝送用多芯型伸縮ケーブル。   The multicore type | mold expansion cable for signal transmission as described in any one of Claims 1-4 with which the circumference | surroundings of the expansion / contraction transmission line and / or the circumference | surroundings which gathered each expansion / contraction transmission line are shielded. 伸縮伝送線間に少なくとも1本の弾性体が介在する請求項1〜5のいずれか一項に記載の信号伝送用多芯型伸縮ケーブル。   The multicore type | mold expansion cable for signal transmission as described in any one of Claims 1-5 in which at least 1 elastic body interposes between expansion-contraction transmission lines. 導体部が、導体線の外側に導体線と逆方向に捲回された絶縁性糸状体を含む請求項1〜6のいずれか一項に記載の信号伝送用多芯型伸縮ケーブル。   The multi-core elastic cable for signal transmission according to any one of claims 1 to 6, wherein the conductor portion includes an insulating thread-like body wound around the outside of the conductor wire in a direction opposite to the conductor wire.
JP2011095428A 2011-04-21 2011-04-21 Multi-core telescopic cable for signal transmission Expired - Fee Related JP5872787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011095428A JP5872787B2 (en) 2011-04-21 2011-04-21 Multi-core telescopic cable for signal transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011095428A JP5872787B2 (en) 2011-04-21 2011-04-21 Multi-core telescopic cable for signal transmission

Publications (2)

Publication Number Publication Date
JP2012227061A true JP2012227061A (en) 2012-11-15
JP5872787B2 JP5872787B2 (en) 2016-03-01

Family

ID=47276993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011095428A Expired - Fee Related JP5872787B2 (en) 2011-04-21 2011-04-21 Multi-core telescopic cable for signal transmission

Country Status (1)

Country Link
JP (1) JP5872787B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015026476A (en) * 2013-07-25 2015-02-05 旭化成せんい株式会社 Multi-layer type stretchable transmission line
JP2017103096A (en) * 2015-12-01 2017-06-08 旭化成株式会社 Electronic component with cable exhibiting water sealing property
JP2017224395A (en) * 2016-06-13 2017-12-21 日立金属株式会社 Cable unit
JP2018527709A (en) * 2015-09-03 2018-09-20 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. Cable jacket
WO2019098182A1 (en) * 2017-11-15 2019-05-23 日本電信電話株式会社 Composite wiring, capacitance sensor, multiplexing cable, and wiring for incorporation into element
JPWO2019098186A1 (en) * 2017-11-15 2020-04-02 日本電信電話株式会社 Stretchable wiring and method of manufacturing stretchable wiring

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113507A (en) * 1984-06-29 1986-01-21 日本電信電話株式会社 Communication cable
JP2002313145A (en) * 2001-04-12 2002-10-25 Asahi Techno Plus Kk Expanding and contracting wire and its manufacturing method
WO2009157070A1 (en) * 2008-06-25 2009-12-30 旭化成せんい株式会社 Elastic signal transmission cable

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113507A (en) * 1984-06-29 1986-01-21 日本電信電話株式会社 Communication cable
JP2002313145A (en) * 2001-04-12 2002-10-25 Asahi Techno Plus Kk Expanding and contracting wire and its manufacturing method
WO2009157070A1 (en) * 2008-06-25 2009-12-30 旭化成せんい株式会社 Elastic signal transmission cable

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015026476A (en) * 2013-07-25 2015-02-05 旭化成せんい株式会社 Multi-layer type stretchable transmission line
JP2018527709A (en) * 2015-09-03 2018-09-20 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. Cable jacket
JP2017103096A (en) * 2015-12-01 2017-06-08 旭化成株式会社 Electronic component with cable exhibiting water sealing property
JP2017224395A (en) * 2016-06-13 2017-12-21 日立金属株式会社 Cable unit
WO2019098182A1 (en) * 2017-11-15 2019-05-23 日本電信電話株式会社 Composite wiring, capacitance sensor, multiplexing cable, and wiring for incorporation into element
JPWO2019098186A1 (en) * 2017-11-15 2020-04-02 日本電信電話株式会社 Stretchable wiring and method of manufacturing stretchable wiring
JPWO2019098182A1 (en) * 2017-11-15 2020-04-02 日本電信電話株式会社 Composite wiring, capacitance sensor, multiplexed cable and element built-in wiring
CN111315291A (en) * 2017-11-15 2020-06-19 日本电信电话株式会社 Composite wiring, capacitance sensor, multi-path cable, and element-embedded wiring
EP3685742A4 (en) * 2017-11-15 2021-10-27 Nippon Telegraph And Telephone Corporation Composite wiring, capacitance sensor, multiplexing cable, and wiring for incorporation into element
US11678827B2 (en) 2017-11-15 2023-06-20 Nippon Telegraph And Telephone Corporation Composite wiring, capacitance sensor, multiplexing cable, and wiring for incorporation into element
EP4235703A1 (en) * 2017-11-15 2023-08-30 Nippon Telegraph And Telephone Corporation Composite wiring, capacitance sensor, multiplexing cable, and wiring for incorporation into element
CN111315291B (en) * 2017-11-15 2023-09-01 日本电信电话株式会社 Composite wiring, capacitance sensor, multiplexing cable, and wiring with built-in element

Also Published As

Publication number Publication date
JP5872787B2 (en) 2016-03-01

Similar Documents

Publication Publication Date Title
JP4690506B2 (en) Elastic signal transmission cable
AU2007339182B2 (en) Extendable electric cord and production method thereof
JP5576961B2 (en) Elastic optical signal transmission cable
JP5872787B2 (en) Multi-core telescopic cable for signal transmission
JP2011082050A (en) Expansive wire
JP2015026476A (en) Multi-layer type stretchable transmission line
JP5828743B2 (en) Flexible cable
CN107731374A (en) Low friction high strength flexible cable
JP2010040337A (en) Highly durable expansion wire
CN209433899U (en) A kind of overhead traveling crane is mobile to use Weaving type soft rubber cable
JP2016021312A (en) Terminally worked flexible transmission body
JP5339798B2 (en) Telescopic wire
JP2014096262A (en) Shield-fitted telescopic electric wire
CN218826304U (en) Temperature-resistant tensile waterproof wear-resistant silicone rubber sheathed cable
JP6455735B2 (en) Shield wire and shield using the same
JP6600494B2 (en) Telescopic cable with excellent twisting resistance
JP2017183238A (en) Stretchable electrical line
JP2010040339A (en) Expansion wire
JP2012216469A (en) Electrical cable
CN108231248A (en) Resist quiet high intensity electrical shielding data cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160114

R150 Certificate of patent or registration of utility model

Ref document number: 5872787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees