JP2012226890A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP2012226890A
JP2012226890A JP2011091764A JP2011091764A JP2012226890A JP 2012226890 A JP2012226890 A JP 2012226890A JP 2011091764 A JP2011091764 A JP 2011091764A JP 2011091764 A JP2011091764 A JP 2011091764A JP 2012226890 A JP2012226890 A JP 2012226890A
Authority
JP
Japan
Prior art keywords
secondary battery
ion secondary
lithium ion
lithium
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011091764A
Other languages
Japanese (ja)
Other versions
JP5668585B2 (en
Inventor
Yuki Maehara
有貴 前原
Hirosuke Yamamoto
裕輔 山本
Kayoko Okimoto
佳代子 沖本
Kazuhito Kawasumi
一仁 川澄
Nobuhiro Aida
信弘 合田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2011091764A priority Critical patent/JP5668585B2/en
Publication of JP2012226890A publication Critical patent/JP2012226890A/en
Application granted granted Critical
Publication of JP5668585B2 publication Critical patent/JP5668585B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery, in which a combination of positive electrode active materials having different battery characteristics with each other is used, and thereby mutual characteristics can be complemented with good balance.SOLUTION: A lithium ion secondary battery of the present invention includes: a positive electrode containing a positive electrode active material including a sulfur-containing organic compound and a lithium-containing inorganic compound; a negative electrode containing a negative electrode active material including a silicon-based material which is preliminarily doped with lithium and comprises silicon and/or a silicon compound; and a nonaqueous electrolyte.

Description

本発明は、非水電解質二次電池、特にリチウムイオン二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery, particularly a lithium ion secondary battery.

リチウムイオン二次電池などの非水電解質二次電池は、小型で大容量であるため、携帯電話やノートパソコンといった幅広い分野で用いられている。リチウムイオン二次電池は、リチウム(Li)を挿入および脱離することができる活物質を正極と負極にそれぞれ有する。そして、両極間に設けられた電解液内をLiイオンが移動することによって動作する。   Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries are small and have a large capacity, and are therefore used in a wide range of fields such as mobile phones and notebook computers. A lithium ion secondary battery has an active material capable of inserting and removing lithium (Li) in each of a positive electrode and a negative electrode. And it operate | moves because Li ion moves in the electrolyte solution provided between both electrodes.

二次電池の性能は、二次電池を構成する正極、負極および電解質の材料に左右される。そのなかでも、電子の受け渡しに直接寄与して活物質として作用する活物質材料の研究開発が活発に行われている。   The performance of the secondary battery depends on the materials of the positive electrode, the negative electrode, and the electrolyte constituting the secondary battery. Among them, active research and development of active material that directly contributes to the delivery of electrons and acts as an active material is being actively conducted.

たとえば、負極活物質として、珪素(Si)またはSiを含む珪素系材料が、これまでに検討されている。たとえば、珪素や酸化珪素などの珪素系材料は、リチウムの吸蔵および放出が可能であり、炭素系材料よりも容量が大きいため実用化が期待されている。本来、珪素系材料はリチウムを含まないため、リチウムを十分に含まない正極活物質と組み合わせての使用は困難である。しかし、近年、珪素系材料に予めリチウムを吸蔵(プレドープ)させることで、珪素系材料の負極活物質としての適用の幅が広がりつつある。   For example, silicon (Si) or a silicon-based material containing Si has been studied as a negative electrode active material. For example, silicon-based materials such as silicon and silicon oxide can occlude and release lithium and are expected to be put to practical use because of their larger capacity than carbon-based materials. Originally, since silicon-based materials do not contain lithium, it is difficult to use them in combination with a positive electrode active material that does not contain lithium sufficiently. However, in recent years, the range of application of silicon-based materials as negative electrode active materials has been expanding by preliminarily occluding (pre-doping) lithium into silicon-based materials.

また、現在実用化されているリチウムイオン二次電池の正極活物質としては、リチウム遷移金属酸化物が用いられている。このような正極活物質には、リチウムの他、コバルトやニッケルなどの希少資源を用いるものが多い。また、負極活物質として珪素系材料を含む負極を使用した場合、コバルト酸リチウムで180mAh/g程度の容量しか得られない。そこで、資源的に豊富で安価な材料を用いた正極活物質として、硫黄(S)を含む正極活物質の実用化が検討されている。硫黄の理論容量は、コバルト酸リチウムを遙かに凌ぐ。現在、−CS−CS−結合または−S−S−結合をもつ硫黄系ポリマー材料の他、硫黄とポリアクリロニトリルとを反応させた硫黄変性ポリアクリロニトリル(特許文献1および特許文献2参照)などの硫黄を含有する有機化合物(硫黄含有有機化合物)が、正極活物質として提案されている。   Moreover, lithium transition metal oxide is used as a positive electrode active material of the lithium ion secondary battery currently in practical use. Many of these positive electrode active materials use rare resources such as cobalt and nickel in addition to lithium. Further, when a negative electrode containing a silicon-based material is used as the negative electrode active material, only a capacity of about 180 mAh / g can be obtained with lithium cobalt oxide. Therefore, practical application of a positive electrode active material containing sulfur (S) has been studied as a positive electrode active material using a resource-rich and inexpensive material. The theoretical capacity of sulfur far exceeds that of lithium cobaltate. At present, sulfur such as sulfur-modified polymer materials obtained by reacting sulfur with polyacrylonitrile (see Patent Document 1 and Patent Document 2) as well as sulfur-based polymer materials having -CS-CS- bonds or -SS- bonds. An organic compound containing sulfur (a sulfur-containing organic compound) has been proposed as a positive electrode active material.

国際公開第2010−044437号パンフレットInternational Publication No. 2010-044437 Pamphlet 特開2010−153296号公報JP 2010-153296 A

しかし、上記特許文献に開示されている硫黄変性ポリアクリロニトリル等の硫黄含有有機化合物は、汎用材料よりも高容量であるが、作動電圧が低い。また、硫黄含有有機化合物は元々リチウムを含まないため、負極活物質として珪素系材料を使用する場合には、珪素系材料に対してプレドープが必要となる。一方、リチウム遷移金属酸化物は、作動電圧は高いが、負極活物質として珪素系材料を使用する場合に十分な容量が得られていないのが実状である。   However, sulfur-containing organic compounds such as sulfur-modified polyacrylonitrile disclosed in the above patent document have a higher capacity than general-purpose materials, but have a lower operating voltage. In addition, since the sulfur-containing organic compound does not originally contain lithium, when a silicon-based material is used as the negative electrode active material, pre-doping is required for the silicon-based material. On the other hand, the lithium transition metal oxide has a high operating voltage, but in reality, a sufficient capacity is not obtained when a silicon-based material is used as the negative electrode active material.

本発明は、上記の問題点に鑑み、異なる特性を示す正極活物質を組み合わせて用いることで、互いの性質をバランス良く補完することが可能なリチウムイオン二次電池を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a lithium ion secondary battery that can complement each other in a well-balanced manner by using positive electrode active materials having different characteristics in combination. .

本発明者らは、硫黄を含む有機化合物の作動電圧および容量が、汎用の無機化合物と比較して低作動電圧で高容量であっても、硫黄を含む有機化合物と汎用の無機化合物とをエネルギー的にバランス良く組み合わせて使用できることに着目し、以下に述べるリチウムイオン二次電池を完成させるに至った。   The inventors of the present invention have found that an organic compound containing sulfur and a general-purpose inorganic compound are energized even if the operating voltage and capacity of the organic compound containing sulfur are lower than that of a general-purpose inorganic compound and have a high capacity. In view of the fact that they can be used in a well-balanced combination, the present inventors have completed the lithium ion secondary battery described below.

すなわち、本発明のリチウムイオン二次電池は、
硫黄を含む有機化合物およびリチウムを含む無機化合物を含む正極活物質を含有する正極と、
リチウムが予めドープされた珪素および/または珪素化合物からなる珪素系材料を含む負極活物質を含有する負極と、
非水電解質と、
を備えることを特徴とする。
That is, the lithium ion secondary battery of the present invention is
A positive electrode containing a positive electrode active material containing an organic compound containing sulfur and an inorganic compound containing lithium;
A negative electrode containing a negative electrode active material comprising a silicon-based material consisting of silicon and / or silicon compounds pre-doped with lithium;
A non-aqueous electrolyte,
It is characterized by providing.

本発明のリチウムイオン二次電池は、
(1)正極活物質に含まれる硫黄を含む有機化合物の作動電圧が十分に低く、硫黄を含む有機化合物とリチウムを含む無機化合物とで作動電圧に差があること。さらには、
(2)硫黄を含む有機化合物の単位質量あたりの容量が非常に大きく、これに起因して硫黄を含む有機化合物とリチウムを含む無機化合物とのエネルギー密度の差が小さいこと。により、従来のリチウムイオン二次電池とは全く異なる効果を発現する。
The lithium ion secondary battery of the present invention is
(1) The operating voltage of the organic compound containing sulfur contained in the positive electrode active material is sufficiently low, and the operating voltage is different between the organic compound containing sulfur and the inorganic compound containing lithium. Moreover,
(2) The capacity per unit mass of the organic compound containing sulfur is very large, and due to this, the difference in energy density between the organic compound containing sulfur and the inorganic compound containing lithium is small. Thus, an effect completely different from that of the conventional lithium ion secondary battery is exhibited.

具体的には、上記(1)から、本発明のリチウムイオン二次電池は、高い作動電圧でも低い作動電圧でも使用可能である。さらに、(2)から、たとえば作動電圧を低い領域で使用した後、高い領域に切り替えて使用しても、切り替えの前後でエネルギー容量の変化を容易に抑制することができる。図1に、リチウムを含む無機化合物としてLiMnO(作動電圧:約4.5V、理論容量:約300mAh/g)および硫黄を含む有機化合物として後述の硫黄変性ポリアクリロニトリル(作動電圧:約1.5V、理論容量:約1600mAh/g)のエネルギー密度を模式的に示す。なお、「硫黄を含む有機化合物」を「有機化合物」、「リチウムを含む無機化合物」を「無機化合物」と略記することもある。いずれも、対極としてSiOを含む負極を想定した値である。図1の斜線部の面積がエネルギー密度に相当する。無機化合物は高作動電圧で低容量、一方、有機化合物は低作動電圧で高容量、であるため、両者のエネルギー密度には大きな差は生じない。したがって、作動電圧が低い有機化合物と作動電圧が高い無機化合物とをバランスの良い質量比で配合することができる。このような正極活物質を含有する正極を備えるリチウムイオン二次電池は、たとえば一つのリチウムイオン二次電池において充放電の電圧を電圧の低い領域から高い領域に切り替えて使用しても、エネルギー容量にほとんど変化がないため、ほぼ一定の出力を保つことができる。 Specifically, from the above (1), the lithium ion secondary battery of the present invention can be used at a high operating voltage or a low operating voltage. Furthermore, from (2), for example, even if the operating voltage is used in a low region and then switched to a high region, a change in energy capacity can be easily suppressed before and after switching. In FIG. 1, Li 2 MnO 3 (operating voltage: about 4.5 V, theoretical capacity: about 300 mAh / g) as an inorganic compound containing lithium and sulfur-modified polyacrylonitrile (operating voltage: about 1) described later as an organic compound containing sulfur. .5V, theoretical capacity: about 1600 mAh / g) is schematically shown. “Organic compound containing sulfur” may be abbreviated as “organic compound”, and “inorganic compound containing lithium” may be abbreviated as “inorganic compound”. All are values assuming a negative electrode containing SiO as a counter electrode. The shaded area in FIG. 1 corresponds to the energy density. Since the inorganic compound has a low capacity at a high operating voltage and the organic compound has a high capacity at a low operating voltage, there is no great difference in energy density between the two. Therefore, an organic compound having a low operating voltage and an inorganic compound having a high operating voltage can be blended at a well-balanced mass ratio. A lithium ion secondary battery including a positive electrode containing such a positive electrode active material can be used even if the charge / discharge voltage is switched from a low voltage region to a high voltage region in one lithium ion secondary battery. Since there is almost no change, the output can be kept almost constant.

なお、「作動電圧」とは、リチウムイオン二次電池に負荷をかけた状態(実使用時)における両端子間の電圧であって、50%放電時の電圧である。また、エネルギー容量は、リチウムイオン二次電池から取り出せるエネルギー(単位:Wh)、エネルギー密度は、単位質量あたりのエネルギー容量(単位:Wh/g)であって、作動電圧と理論容量との積にほぼ等しい。なお、本明細書では、いずれの数値も、負極にSiOを用いた場合の値である。   The “operating voltage” is a voltage between both terminals when a load is applied to the lithium ion secondary battery (in actual use), and is a voltage at 50% discharge. The energy capacity is the energy that can be extracted from the lithium ion secondary battery (unit: Wh), and the energy density is the energy capacity per unit mass (unit: Wh / g), which is the product of the operating voltage and the theoretical capacity. Almost equal. In the present specification, all numerical values are values when SiO is used for the negative electrode.

また、正極活物質として硫黄を含む有機化合物を使用すると、硫黄を含む有機化合物にはリチウムが含まれないため、充放電に寄与するリチウム量を十分に確保することができない。そこで、リチウムが予めドープされた珪素系材料を含む負極活物質を含有する負極を使用する。珪素系材料に予めリチウムがドープされ、そのリチウムの少なくとも一部が充放電に寄与することで、有機化合物の使用により生じるリチウムの不足が補われる。特に、珪素酸化物は高容量であるため、有機化合物を含有する正極の対極に配合される活物質として好適である。   In addition, when an organic compound containing sulfur is used as the positive electrode active material, lithium is not included in the organic compound containing sulfur, so that a sufficient amount of lithium contributing to charge / discharge cannot be ensured. Therefore, a negative electrode containing a negative electrode active material containing a silicon-based material previously doped with lithium is used. The silicon material is preliminarily doped with lithium, and at least a part of the lithium contributes to charge and discharge, so that the shortage of lithium caused by the use of the organic compound is compensated. In particular, since silicon oxide has a high capacity, it is suitable as an active material blended in the counter electrode of the positive electrode containing an organic compound.

本発明のリチウムイオン二次電池は、異なる電池特性を示す正極活物質を組み合わせて用いても、互いの特性をバランス良く補完することが可能である。本発明のリチウムイオン二次電池は、電圧の低い領域でも高い領域でも充放電可能であって、いずれの充放電においても出力をほぼ一定に保つことも容易である。   The lithium ion secondary battery of the present invention can complement each other in a well-balanced manner even when used in combination with positive electrode active materials exhibiting different battery characteristics. The lithium ion secondary battery of the present invention can be charged / discharged both in a low voltage region and in a high voltage region, and it is easy to keep the output substantially constant in any charge / discharge.

本発明のリチウムイオン二次電池に使用可能な正極活物質のエネルギー密度を模式的に示す。The energy density of the positive electrode active material which can be used for the lithium ion secondary battery of this invention is shown typically.

以下に、本発明のリチウムイオン二次電池を実施するための最良の形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「a〜b」は、下限aおよび上限bをその範囲に含む。また、その数値範囲内において、本明細書に記載した数値を任意に組み合わせることで数値範囲を構成し得る。   Below, the best form for implementing the lithium ion secondary battery of this invention is demonstrated. Unless otherwise specified, the numerical range “ab” described herein includes the lower limit “a” and the upper limit “b”. In addition, the numerical range can be configured by arbitrarily combining the numerical values described in the present specification within the numerical range.

<正極活物質>
正極は、硫黄を含む有機化合物およびリチウムを含む無機化合物を含む正極活物質を含有する。
<Positive electrode active material>
The positive electrode contains a positive electrode active material containing an organic compound containing sulfur and an inorganic compound containing lithium.

すでに述べた通り、硫黄(S)は、リチウムイオンの吸蔵および放出が可能である。非水電解質二次電池材料としては、非水電解液に可溶なSが非水電解液へ溶出するのを抑制するために、Sを含む有機化合物の形態としている。また、S単独では導電性が低いため、導電性を示す構造をもつ有機化合物の一部にSを存在させることで導電性を付与することも可能である。   As already mentioned, sulfur (S) can occlude and release lithium ions. The non-aqueous electrolyte secondary battery material is in the form of an organic compound containing S in order to suppress the dissolution of S soluble in the non-aqueous electrolyte into the non-aqueous electrolyte. In addition, since the conductivity of S alone is low, it is possible to impart conductivity by allowing S to exist in a part of an organic compound having a structure exhibiting conductivity.

Sが導入される有機化合物に特に限定はないが、(ポリ)アクリロニトリル等のニトリル類、ナフタレン、アントラセン等のアセン類、などが好ましく、ゴムやピッチ等であってもよい。これらの有機化合物の一部を硫黄に変性させた化合物を使用するとよい。これらの硫黄を含む有機化合物は、負極にSiOを用いた場合の作動電圧が2V以下さらに具体的には1.4〜1.6Vであり低いが、理論容量は1500〜2000mAh/gであり非常に高容量である。正極活物質は、これらの有機化合物のうちの一種あるいは二種以上を含むのが好ましいが、中でも、ポリアクリロニトリルの一部が硫黄に変性した硫黄変性ポリアクリロニトリルを含むとよい。特に、特許文献1および2に開示されている粉末状またはシート状の硫黄変性ポリアクリロニトリルは、負極にSiOを用いた場合の作動電圧が1.5V、理論容量が1600mAh/gであるため、正極活物質として望ましい。   The organic compound into which S is introduced is not particularly limited, but nitriles such as (poly) acrylonitrile and acenes such as naphthalene and anthracene are preferable, and rubber, pitch, and the like may be used. A compound obtained by modifying a part of these organic compounds to sulfur may be used. These organic compounds containing sulfur have an operating voltage of 2 V or less when SiO is used for the negative electrode, more specifically, 1.4 to 1.6 V, but the theoretical capacity is 1500 to 2000 mAh / g. High capacity. The positive electrode active material preferably contains one or more of these organic compounds. Among them, it is preferable that the positive electrode active material contains sulfur-modified polyacrylonitrile in which part of polyacrylonitrile is modified to sulfur. In particular, the powder-like or sheet-like sulfur-modified polyacrylonitrile disclosed in Patent Documents 1 and 2 has an operating voltage of 1.5 V and a theoretical capacity of 1600 mAh / g when SiO is used for the negative electrode. Desirable as an active material.

リチウムを含む無機化合物は、リチウムを吸蔵および放出可能な無機化合物であれば特に限定はない。少なくともリチウムを含み、正極活物質に使用可能な既存の無機化合物を使用すればよい。こうした無機化合物は、リチウム(Li)含有遷移金属系酸化物が主流であって、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)のような遷移金属元素を含む遷移金属系の複合酸化物の他、これらの遷移金属元素とともにアルミニウム(Al)、マグネシウム(Mg)等を含んでもよい。また、Liと遷移金属元素のリン酸塩、ケイ酸塩なども使用可能である。   The inorganic compound containing lithium is not particularly limited as long as it is an inorganic compound capable of inserting and extracting lithium. An existing inorganic compound that contains at least lithium and can be used for the positive electrode active material may be used. These inorganic compounds are mainly lithium (Li) -containing transition metal oxides, and include transition metals containing transition metal elements such as manganese (Mn), iron (Fe), cobalt (Co), and nickel (Ni). In addition to these complex oxides, aluminum (Al), magnesium (Mg), and the like may be included together with these transition metal elements. Further, Li and transition metal elements such as phosphates and silicates can also be used.

具体的に正極活物質は、無機化合物として、LiMnO(理論容量:250mAh/g)、LiMn1/3Co1/3Ni1/3(理論容量:180mAh/g)、LiMn(理論容量:100〜120mAh/g)、LiMPO(MはFe、Mn、NiまたはCo(理論容量:100〜120mAh/g))、LiNi1−ZCoZ1 Z2(MはAl、FeまたはMnであって、0.9≦X≦1.3、Z=Z1+Z2、0<Z≦0.5、0<Z1<0.5かつ0<Z2<0.5(理論容量:100〜120mAh/g))、LiY−Z3NiY−Z4 Z’(MはAl、Fe、Co、MnまたはMgであって、0.9≦Y≦1.3、Z’=Z3+Z4、MがAlまたはFeのとき0<Z’≦0.2、Z3=0かつZ4=Z’、MがCoまたはMnのとき0<Z’≦0.5、Z3=0かつZ4=Z’、MがMgのとき0<Z’≦0.2、0<Z3<0.2かつ0<Z4<0.2(理論容量:150mAh/g))、LiSiO(MはFeまたはMn(理論容量は160mAh/g))、LiCoO(理論容量:180mAh/g)、およびLiNiO(理論容量:180mAh/g)を基本組成とするリチウム含有複合酸化物のうちの少なくとも一種を含むのが好ましい。LiNi1−ZCoZ1 Z2の具体例としてLiNi0.8Co0.15Al0.05が挙げられる。これらの無機化合物は、負極にSiOを用いた場合の作動電圧が4V以上、理論容量が100〜250mAh/gであり、前述の硫黄を含む有機化合物と比べて、作動電圧は高く、理論容量は小さい。 Specifically, the positive electrode active material is an inorganic compound such as Li 2 MnO 3 (theoretical capacity: 250 mAh / g), LiMn 1/3 Co 1/3 Ni 1/3 O 2 (theoretical capacity: 180 mAh / g), LiMn 2 O 4 (theoretical capacity: 100 to 120 mAh / g), LiMPO 4 (M is Fe, Mn, Ni or Co (theoretical capacity: 100 to 120 mAh / g)), Li X Ni 1-Z Co Z1 M 1 Z2 O 2 (M 1 is Al, Fe or Mn, 0.9 ≦ X ≦ 1.3, Z = Z1 + Z2, 0 <Z ≦ 0.5, 0 <Z1 <0.5 and 0 <Z2 <0.5. (theoretical capacity: 100~120mAh / g)), a Li Y-Z3 Ni Y-Z4 M 2 Z 'O 2 (M 2 is Al, Fe, Co, Mn or Mg, 0.9 ≦ Y ≦ 1 .3, Z ′ = Z3 + Z4, M 2 is Al or F When e is 0 <Z ′ ≦ 0.2, Z3 = 0 and Z4 = Z ′, and when M 2 is Co or Mn, 0 <Z ′ ≦ 0.5, Z3 = 0 and Z4 = Z ′, and M 2 is When Mg, 0 <Z ′ ≦ 0.2, 0 <Z3 <0.2 and 0 <Z4 <0.2 (theoretical capacity: 150 mAh / g)), Li 2 M 3 SiO 4 (M 3 is Fe or Mn (Theoretical capacity is 160 mAh / g)), LiCoO 2 (theoretical capacity: 180 mAh / g), and LiNiO 2 (theoretical capacity: 180 mAh / g). Is preferred. Specific examples of Li X Ni 1-Z Co Z1 M 1 Z2 O 2 include LiNi 0.8 Co 0.15 Al 0.05 O 2 . These inorganic compounds have an operating voltage of 4 V or more and a theoretical capacity of 100 to 250 mAh / g when SiO is used for the negative electrode. The operating voltage is higher than that of the organic compound containing sulfur, and the theoretical capacity is small.

なお、列挙した無機化合物は、上記組成を基本組成とすればよく、不可避的に生じる各元素の欠損により、上記組成式からわずかにずれた無機化合物であってもよいことは言うまでもない。また、上記の基本組成のうちの一部を意図的に他の元素で置換した無機化合物であってもよい。このような具体例として、LiNiOのNiの一部をAlで置換したLiNi3/4Al1/4などが挙げられる。 In addition, it is needless to say that the listed inorganic compounds may be based on the above composition, and may be slightly shifted from the above composition formula due to the unavoidable loss of each element. Further, an inorganic compound in which a part of the basic composition is intentionally substituted with another element may be used. Specific examples include LiNi 3/4 Al 1/4 O 2 in which a part of Ni in LiNiO 2 is replaced with Al.

上記の有機化合物および上記の無機化合物を含む正極活物質を含有する正極を備える本発明のリチウムイオン二次電池は、4V以上および2V以下に作動電圧を有する。低電圧側と高電圧側とでバランス良く充放電を行うためには、正極活物質は、本発明のリチウムイオン二次電池における無機化合物のエネルギー容量(Wh)に対する有機化合物のエネルギー容量(Wh)の比が0.1以上さらには0.1以上2.0以下となる質量比に有機化合物および無機化合物が配合されているのが好ましい。なお、有機化合物は、高電圧側での使用により劣化することがあるため、有機化合物の劣化量を見込んで有機化合物が多めになるように配合するとよい。   The lithium ion secondary battery of this invention provided with the positive electrode containing the positive electrode active material containing said organic compound and said inorganic compound has an operating voltage in 4V or more and 2V or less. In order to charge and discharge in a balanced manner between the low voltage side and the high voltage side, the positive electrode active material has an energy capacity (Wh) of the organic compound relative to the energy capacity (Wh) of the inorganic compound in the lithium ion secondary battery of the present invention. It is preferable that the organic compound and the inorganic compound are blended in a mass ratio of 0.1 or more, further 0.1 or more and 2.0 or less. In addition, since an organic compound may deteriorate by use on the high voltage side, it is preferable to mix so that the amount of organic compound is increased in anticipation of the deterioration amount of the organic compound.

<負極活物質>
負極は、リチウムを吸蔵および放出可能な珪素および/または珪素化合物からなる珪素系材料を含む負極活物質を含有する。本発明のリチウムイオン二次電池では、正極活物質にリチウムを含まない有機化合物を使用するため、有機化合物に含まれる硫黄が吸蔵するリチウム量を確保するために、珪素系材料に予めリチウムがドープ(プレドープ)されている必要がある。
<Negative electrode active material>
The negative electrode contains a negative electrode active material containing a silicon-based material made of silicon and / or silicon compounds capable of inserting and extracting lithium. In the lithium ion secondary battery of the present invention, since an organic compound that does not contain lithium is used as the positive electrode active material, the silicon-based material is doped with lithium in advance in order to secure the amount of lithium occluded by the sulfur contained in the organic compound. It must be (pre-doped).

珪素系材料は、SiO(0.5≦n≦1.5)等と表される珪素酸化物であるとよい。特に、一酸化珪素は、熱処理することで不均化反応を起こし、Si相とSiO相の二相に分離する。分離して得られるSi相は非常に微細である。また、Si相を覆うSiO相が電解液の分解を抑制する働きをもつ。したがって、SiとSiOとに分解されたSiOからなる負極活物質を用いた本発明のリチウムイオン二次電池は、サイクル特性に優れる。SiOにリチウムをプレドープすると、リチウムはSi相と優先的に反応し、理論的には約4Ah/gまでリチウムをドープすることが可能である。 The silicon-based material may be a silicon oxide represented by SiO n (0.5 ≦ n ≦ 1.5) or the like. In particular, silicon monoxide undergoes a disproportionation reaction by heat treatment, and is separated into two phases of Si phase and SiO 2 phase. The Si phase obtained by separation is very fine. Further, the SiO 2 phase covering the Si phase has a function of suppressing decomposition of the electrolytic solution. Therefore, the lithium ion secondary battery of the present invention using the negative electrode active material composed of SiO n decomposed into Si and SiO 2 has excellent cycle characteristics. When SiO n is pre-doped with lithium, lithium reacts preferentially with the Si phase, and theoretically it is possible to dope lithium to about 4 Ah / g.

このとき、珪素系材料に予めドープされるリチウム量は、珪素系材料に対する質量比で1以上さらには1.3以上であるのが好ましい。なお、SiOの理論容量をCSiO、SiO量をMSiO、リチウムの理論容量をCLi、ドープされるリチウム量をMLiとしたとき、MLi/MSiO=CSiO/CLiの関係が成立する。CSiOが4Ah/g、CLiが3.86Ah/gであることから、MLi/MSiO=1.04となる。つまり、目安として、珪素系材料に対するリチウムの質量比が1.04を越えれば、珪素系材料の理論容量を越えるリチウムがプレドープされたことになる。珪素系材料の理論容量以上にリチウムがドープされていれば、硫黄を含む有機化合物が吸蔵および放出する分のリチウムを十分に確保できる。珪素系材料に予めドープされたリチウムの量は、発光分光分析(ICP)により得られるLiとSi(SiOと密度が同じである)との質量比から算出することが可能である。 At this time, the amount of lithium previously doped in the silicon-based material is preferably 1 or more, more preferably 1.3 or more in terms of mass ratio with respect to the silicon-based material. When the theoretical capacity of SiO is C SiO 2 , the amount of SiO is M SiO , the theoretical capacity of lithium is C Li , and the amount of lithium to be doped is M Li , the relationship of M Li / M SiO = C SiO / C Li is established. To establish. Since C 2 SiO is 4 Ah / g and C Li is 3.86 Ah / g, M Li / M SiO = 1.04. That is, as a guide, if the mass ratio of lithium to silicon-based material exceeds 1.04, lithium that exceeds the theoretical capacity of silicon-based material is pre-doped. If lithium is doped in excess of the theoretical capacity of the silicon-based material, sufficient lithium can be secured for the storage and release of the organic compound containing sulfur. The amount of lithium previously doped in the silicon-based material can be calculated from the mass ratio of Li and Si (which has the same density as SiO) obtained by emission spectral analysis (ICP).

プレドープは、対極に金属リチウムを用いる電気化学的手法が一般的である。また、珪素系材料は、その表面を炭素で被覆されていてもよい。炭素の皮膜は、導電助剤の役割を果たし、負極活物質の導電性が向上する。   The pre-doping is generally performed by an electrochemical method using metallic lithium as a counter electrode. Further, the surface of the silicon-based material may be covered with carbon. The carbon film serves as a conductive aid, and improves the conductivity of the negative electrode active material.

<リチウムイオン二次電池>
リチウムイオン二次電池は、上記の正極活物質を含有する正極と、上記の負極活物質を含有する負極と、非水電解質と、で構成される。このリチウムイオン二次電池は、一般の二次電池と同様、正極と負極の間に挟装されるセパレータを含む。
<Lithium ion secondary battery>
A lithium ion secondary battery is comprised by the positive electrode containing said positive electrode active material, the negative electrode containing said negative electrode active material, and a non-aqueous electrolyte. This lithium ion secondary battery includes a separator sandwiched between a positive electrode and a negative electrode, as in a general secondary battery.

正極は、上記の正極活物質と、正極活物質を結着する結着剤と、を含む。さらに、導電助剤を含んでもよい。結着剤および導電助剤に特に限定はなく、一般の非水電解質二次電池で使用可能なものであればよい。導電助剤は、電極の電気伝導性を確保するためのものであり、たとえば、カーボンブラック、アセチレンブラック、黒鉛、カーボンファイバなどの粉末状の炭素物質から選ばれる一種または二種以上を混合したものを用いることができる。結着剤は、正極活物質および導電助剤を繋ぎ止める役割を果たすもので、たとえば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂などを用いることができる。   The positive electrode includes the positive electrode active material described above and a binder that binds the positive electrode active material. Furthermore, you may include a conductive support agent. There are no particular limitations on the binder and the conductive additive, and any binder that can be used in a general non-aqueous electrolyte secondary battery may be used. The conductive auxiliary agent is for ensuring the electrical conductivity of the electrode, for example, one or a mixture of two or more selected from powdered carbon materials such as carbon black, acetylene black, graphite, and carbon fiber. Can be used. The binder plays a role of connecting the positive electrode active material and the conductive auxiliary agent. For example, a fluorine-containing resin such as polyvinylidene fluoride, polytetrafluoroethylene, and fluororubber, and a thermoplastic resin such as polypropylene and polyethylene are used. Can be used.

正極に対向させる負極は、上記の負極活物質と、負極活物質を結着する結着剤と、を含む。さらに、導電助剤を含んでもよい。結着剤および導電助剤に特に限定はなく、一般の非水電解質二次電池で使用可能なものであればよい。導電助剤は、正極と同様に、炭素物質を用いることができる。結着剤は、正極同様、含フッ素樹脂、熱可塑性樹脂などを用いることができる。   The negative electrode facing the positive electrode includes the negative electrode active material and a binder that binds the negative electrode active material. Furthermore, you may include a conductive support agent. There are no particular limitations on the binder and the conductive additive, and any binder that can be used in a general non-aqueous electrolyte secondary battery may be used. As the conductive assistant, a carbon substance can be used as in the positive electrode. As the positive electrode, a fluorine-containing resin, a thermoplastic resin, or the like can be used as the binder.

正極および負極は、少なくとも正極活物質または負極活物質が結着剤で結着されてなる活物質層が、集電体に付着してなるのが一般的である。そのため、正極および負極は、活物質および結着剤、必要に応じて導電助剤を含む電極合材層形成用組成物を調製し、さらに適当な溶剤を加えてペースト状にしてから集電体の表面に塗布後、乾燥し、必要に応じて電極密度を高めるべく圧縮して形成することができる。この製造方法によれば、作製された電極は、シート状の電極となる。このシート状の電極は、作製する二次電池の仕様に応じた寸法に裁断して用いればよい。   The positive electrode and the negative electrode generally have an active material layer formed by binding at least a positive electrode active material or a negative electrode active material with a binder attached to a current collector. Therefore, the positive electrode and the negative electrode are prepared by preparing an electrode mixture layer forming composition containing an active material, a binder, and, if necessary, a conductive additive, and further adding a suitable solvent to form a paste, and then collecting the current collector After coating on the surface of the film, it can be dried and, if necessary, compressed to increase the electrode density. According to this manufacturing method, the produced electrode becomes a sheet-like electrode. This sheet-like electrode may be cut into dimensions according to the specifications of the secondary battery to be manufactured.

集電体は、金属製のメッシュや金属箔を用いることができる。集電体としては、ステンレス鋼、チタン、ニッケル、アルミニウム、銅などの金属材料または導電性樹脂からなる多孔性または無孔の導電性基板が挙げられる。多孔性導電性基板としては、たとえば、メッシュ体、ネット体、パンチングシート、ラス体、多孔質体、発泡体、不織布などの繊維群成形体、などが挙げられる。無孔の導電性基板としては、たとえば、箔、シート、フィルムなどが挙げられる。電極合材層形成用組成物の塗布方法としては、ドクターブレード、バーコーターなどの従来から公知の方法を用いればよい。   A metal mesh or metal foil can be used for the current collector. Examples of the current collector include a porous or non-porous conductive substrate made of a metal material such as stainless steel, titanium, nickel, aluminum, or copper, or a conductive resin. Examples of the porous conductive substrate include a mesh body, a net body, a punching sheet, a lath body, a porous body, a foamed body, a fiber group molded body such as a nonwoven fabric, and the like. Examples of the non-porous conductive substrate include a foil, a sheet, and a film. As a method for applying the composition for forming an electrode mixture layer, a conventionally known method such as a doctor blade or a bar coater may be used.

粘度調整のための溶剤としては、N−メチル−2−ピロリドン(NMP)、メタノール、メチルイソブチルケトン(MIBK)などが使用可能である。   As a solvent for adjusting the viscosity, N-methyl-2-pyrrolidone (NMP), methanol, methyl isobutyl ketone (MIBK) and the like can be used.

セパレータは、正極と負極とを分離し非水電解液を保持するものであり、ポリエチレン、ポリプロピレン等の薄い微多孔膜を用いることができる。   The separator separates the positive electrode and the negative electrode and holds the non-aqueous electrolyte, and a thin microporous film such as polyethylene or polypropylene can be used.

非水電解質としての非水電解液は、有機溶媒に電解質であるアルカリ金属塩を溶解させたものである。本発明のリチウムイオン二次電池で使用される非水電解液の種類に特に限定はない。非水電解液としては、非プロトン性有機溶媒、たとえばプロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等から選ばれる一種以上を用いることができる。また、溶解させる電解質としては、LiPF、LiBF、LiAsF、LiI、LiClO、NaPF、NaBF、NaAsF、LiBOB等の有機溶媒に可溶なアルカリ金属塩を用いることができる。 The non-aqueous electrolyte as the non-aqueous electrolyte is obtained by dissolving an alkali metal salt as an electrolyte in an organic solvent. There is no particular limitation on the type of non-aqueous electrolyte used in the lithium ion secondary battery of the present invention. As the non-aqueous electrolyte, one or more selected from aprotic organic solvents such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC) and the like. Can be used. As the electrolyte to be dissolved, an alkali metal salt that is soluble in an organic solvent such as LiPF 6 , LiBF 4 , LiAsF 6 , LiI, LiClO 4 , NaPF 6 , NaBF 4 , NaAsF 6 , LiBOB can be used.

リチウムイオン二次電池の形状に特に限定はなく、円筒型、積層型、コイン型等、種々の形状を採用することができる。いずれの形状を採る場合であっても、正極および負極にセパレータを挟装させ電極体とし、正極集電体および負極集電体から外部に通ずる正極端子および負極端子までの間を、集電用リード等を用いて接続した後、この電極体を非水電解質とともに電池ケースに密閉して電池となる。   The shape of the lithium ion secondary battery is not particularly limited, and various shapes such as a cylindrical shape, a stacked shape, and a coin shape can be employed. Regardless of the shape, a separator is sandwiched between the positive electrode and the negative electrode to form an electrode body, and the space between the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal is used for current collection. After connection using a lead or the like, this electrode body is sealed in a battery case together with a nonaqueous electrolyte to form a battery.

以上、本発明のリチウムイオン二次電池の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。   As mentioned above, although embodiment of the lithium ion secondary battery of this invention was described, this invention is not limited to the said embodiment. The present invention can be implemented in various forms without departing from the gist of the present invention, with modifications and improvements that can be made by those skilled in the art.

また、以上説明した本発明のリチウムイオン二次電池は、正極活物質として、高作動電圧で低容量である無機化合物および低作動電圧で高容量である有機化合物を含むため、高電圧(たとえば作動電圧4V以上)での使用にも、低電圧(たとえば作動電圧2V以下)での使用にも、どちらにも対応できる。また、有機化合物と無機化合物との配合割合を調整することで、充放電に要するエネルギーを作動電圧の大小に関わらず一定に維持することが可能である。そのため、電圧の低い領域で充放電した後に、さらに電圧の高い領域で充放電させる、というように、低電圧での使用と高電圧での使用とを経時的に切り替えてもよい。これにより、電圧の低い領域での充放電特性が低下しても、電圧の高い領域で充放電を行うことができ、有機化合物が劣化しても継続的に使用が可能となる。この際、充放電を行う電圧の領域は、高電圧側と低電圧側とで重ならない方がよい。   In addition, since the lithium ion secondary battery of the present invention described above includes, as the positive electrode active material, an inorganic compound having a high operating voltage and a low capacity and an organic compound having a low operating voltage and a high capacity, a high voltage (for example, operating) It can be used both for use at a voltage of 4 V or higher and for use at a low voltage (for example, an operating voltage of 2 V or lower). Further, by adjusting the blending ratio of the organic compound and the inorganic compound, it is possible to keep the energy required for charging / discharging constant regardless of the magnitude of the operating voltage. For this reason, the use at a low voltage and the use at a high voltage may be switched over time, such as charging / discharging in a higher voltage region after charging / discharging in a low voltage region. As a result, even if the charge / discharge characteristics in the low voltage region are lowered, the charge / discharge can be performed in the high voltage region, and it can be continuously used even if the organic compound is deteriorated. At this time, it is preferable that the voltage regions for charging and discharging do not overlap on the high voltage side and the low voltage side.

ただし、有機化合物は、高電圧を長時間あるいは繰り返し負荷されることにより分解などして劣化する可能性がある。したがって、電圧を切り替えて使用する際は、有機化合物の分解をできるだけ抑制できる方法とするのがよい。たとえば、先に低電圧で繰り返し充放電させてから、その後高電圧で繰り返し充放電させるとよい。また、電圧の低い領域と高い領域とを交互に繰り返して使用してもよいが、その場合には、高電圧での使用時間をできる限り短くして有機化合物の劣化を抑制するとよい。具体的には、通常は低電圧で使用し、高電圧で使用する必要が生じた場合にのみ高電圧で作動させる、といった使用も可能である。   However, the organic compound may be degraded due to decomposition or the like when a high voltage is applied for a long time or repeatedly. Therefore, when switching the voltage, it is preferable to use a method that can suppress decomposition of the organic compound as much as possible. For example, it is preferable to charge / discharge repeatedly at a low voltage first and then repeatedly charge / discharge at a high voltage. In addition, a low voltage region and a high voltage region may be used alternately and repeatedly. In that case, it is preferable to suppress the deterioration of the organic compound by shortening the use time at a high voltage as much as possible. Specifically, it is also possible to use such that it is normally used at a low voltage and is operated at a high voltage only when it is necessary to use it at a high voltage.

Claims (10)

硫黄を含む有機化合物およびリチウムを含む無機化合物を含む正極活物質を含有する正極と、
リチウムが予めドープされた珪素および/または珪素化合物からなる珪素系材料を含む負極活物質を含有する負極と、
非水電解質と、
を備えることを特徴とするリチウムイオン二次電池。
A positive electrode containing a positive electrode active material containing an organic compound containing sulfur and an inorganic compound containing lithium;
A negative electrode containing a negative electrode active material comprising a silicon-based material consisting of silicon and / or silicon compounds pre-doped with lithium;
A non-aqueous electrolyte,
A lithium ion secondary battery comprising:
4V以上および2V以下に作動電圧を有する請求項1に記載のリチウムイオン二次電池。   The lithium ion secondary battery of Claim 1 which has an operating voltage in 4V or more and 2V or less. 前記正極活物質は、前記無機化合物のエネルギー容量(Wh)に対する前記有機化合物のエネルギー容量(Wh)の比が0.1以上となる質量比で該有機化合物および該無機化合物が配合されている請求項1または2に記載のリチウムイオン二次電池。   The positive electrode active material is blended with the organic compound and the inorganic compound at a mass ratio where the ratio of the energy capacity (Wh) of the organic compound to the energy capacity (Wh) of the inorganic compound is 0.1 or more. Item 3. The lithium ion secondary battery according to Item 1 or 2. 前記正極活物質は、前記無機化合物のエネルギー容量(Wh)に対する前記有機化合物のエネルギー容量(Wh)の比が0.1以上2.0以下となる質量比で該有機化合物および該無機化合物が配合されている請求項3に記載のリチウムイオン二次電池。   The positive electrode active material is blended with the organic compound and the inorganic compound at a mass ratio such that the ratio of the energy capacity (Wh) of the organic compound to the energy capacity (Wh) of the inorganic compound is 0.1 to 2.0. The lithium ion secondary battery according to claim 3. 電圧の低い領域で充放電した後に、さらに電圧の高い領域で充放電させて用いる請求項1〜4のいずれかに記載のリチウムイオン二次電池。   The lithium ion secondary battery according to any one of claims 1 to 4, wherein the lithium ion secondary battery is used after being charged / discharged in a low voltage region and then charged and discharged in a higher voltage region. 前記珪素系材料は、珪素酸化物を含む請求項1〜5のいずれかに記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, wherein the silicon-based material includes silicon oxide. 前記珪素酸化物は、SiO(0.5≦n≦1.5)である請求項6記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 6, wherein the silicon oxide is SiO n (0.5 ≦ n ≦ 1.5). 前記珪素系材料に予めドープされるリチウム量は、該珪素系材料に対する質量比で1以上である請求項1〜7のいずれかに記載のリチウムイオン二次電池。   The lithium ion secondary battery according to any one of claims 1 to 7, wherein an amount of lithium previously doped in the silicon-based material is 1 or more in terms of a mass ratio with respect to the silicon-based material. 前記正極活物質は、前記有機化合物としてポリアクリロニトリルの一部が硫黄に変性した硫黄変性ポリアクリロニトリルを含む請求項1〜8のいずれかに記載のリチウムイオン二次電池。   The lithium ion secondary battery according to any one of claims 1 to 8, wherein the positive electrode active material includes sulfur-modified polyacrylonitrile in which a part of polyacrylonitrile is modified to sulfur as the organic compound. 前記正極活物質は、前記無機化合物としてLiMnO、LiMn1/3Co1/3Ni1/3、LiMn、LiMPO(MはFe、Mn、NiまたはCo)、LiNi1−ZCoZ1 Z2(MはAl、FeまたはMnであって、0.9≦X≦1.3、Z=Z1+Z2、0<Z≦0.5、0<Z1<0.5かつ0<Z2<0.5)、LiY−Z3NiY−Z4 Z’(MはAl、Fe、Co、MnまたはMgであって、0.9≦Y≦1.3、Z’=Z3+Z4、MがAlまたはFeのとき0<Z’≦0.2、Z3=0かつZ4=Z’、MがCoまたはMnのとき0<Z’≦0.5、Z3=0かつZ4=Z’、MがMgのとき0<Z’≦0.2、0<Z3<0.2かつ0<Z4<0.2)、LiSiO(MはFeまたはMn)、LiCoO、およびLiNiOを基本組成とするリチウム含有複合酸化物のうちの少なくとも一種を含む請求項1〜9のいずれかに記載のリチウムイオン二次電池。 The positive electrode active material includes Li 2 MnO 3 , LiMn 1/3 Co 1/3 Ni 1/3 O 2 , LiMn 2 O 4 , LiMPO 4 (M is Fe, Mn, Ni or Co), Li as the inorganic compound. X Ni 1-Z Co Z1 M 1 Z2 O 2 (M 1 is a Al, Fe, or Mn, 0.9 ≦ X ≦ 1.3, Z = Z1 + Z2,0 <Z ≦ 0.5,0 <Z1 <0.5 and 0 <Z2 <0.5), Li Y-Z3 Ni Y-Z4 M 2 Z 'O 2 (M 2 is an Al, Fe, Co, Mn or Mg, 0.9 ≦ Y ≦ 1.3, Z '= Z3 + Z4, when M 2 is Al or Fe 0 <Z' ≦ 0.2, Z3 = 0 and Z4 = Z ', when M 2 is Co or Mn 0 <Z' ≦ 0 .5, Z3 = 0 and Z4 = Z ', when M 2 is Mg 0 <Z' ≦ 0.2,0 < Z3 <0.2 and 0 <Z4 0.2), Li 2 M 3 SiO 4 (M 3 is Fe or Mn), any of claims 1 to 9 containing at least one of LiCoO 2, and LiNiO 2 and lithium-containing composite oxide having a basic composition A lithium ion secondary battery according to any one of the above.
JP2011091764A 2011-04-18 2011-04-18 Lithium ion secondary battery Expired - Fee Related JP5668585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011091764A JP5668585B2 (en) 2011-04-18 2011-04-18 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011091764A JP5668585B2 (en) 2011-04-18 2011-04-18 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2012226890A true JP2012226890A (en) 2012-11-15
JP5668585B2 JP5668585B2 (en) 2015-02-12

Family

ID=47276864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011091764A Expired - Fee Related JP5668585B2 (en) 2011-04-18 2011-04-18 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5668585B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111837263A (en) * 2018-03-30 2020-10-27 株式会社艾迪科 Lithium ion secondary battery and method for operating the same
JP2020202083A (en) * 2019-06-11 2020-12-17 日産自動車株式会社 Lithium secondary battery control method, and control device, and lithium secondary battery system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280076A (en) * 2001-03-15 2002-09-27 Hitachi Ltd Lithium secondary battery, module using lithium secondary battery and device using these
JP2003183030A (en) * 2001-12-18 2003-07-03 National Institute For Materials Science Lithium-nickel-titanium oxide having ramsdellite-type crystal structure and method for producing the same, and lithium secondary battery using the same
JP2006004813A (en) * 2004-06-18 2006-01-05 Nec Corp Non-aqueous electrolytic solution for secondary battery, and secondary battery using it
JP2007165097A (en) * 2005-12-13 2007-06-28 Fuji Heavy Ind Ltd Positive electrode material for nonaqueous lithium secondary battery, and nonaqueous lithium secondary battery using the same
JP2009076372A (en) * 2007-09-21 2009-04-09 Shin Etsu Chem Co Ltd Non-aqueous secondary battery
WO2010044437A1 (en) * 2008-10-17 2010-04-22 独立行政法人産業技術総合研究所 Sulfur-modified polyacrylonitrile, manufacturing method therefor, and application thereof
WO2010050507A1 (en) * 2008-10-31 2010-05-06 日立マクセル株式会社 Nonaqueous secondary battery
JP2010129481A (en) * 2008-11-28 2010-06-10 Mitsui Mining & Smelting Co Ltd Positive electrode for nonaqueous electrolyte secondary battery
JP2010153296A (en) * 2008-12-26 2010-07-08 National Institute Of Advanced Industrial Science & Technology Sulfur modified polyacrylonitrile sheet, method for manufacturing the same, and application of the same
JP2010160986A (en) * 2009-01-08 2010-07-22 Nissan Motor Co Ltd Anode for lithium-ion secondary battery and lithium-ion secondary battery using this

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280076A (en) * 2001-03-15 2002-09-27 Hitachi Ltd Lithium secondary battery, module using lithium secondary battery and device using these
JP2003183030A (en) * 2001-12-18 2003-07-03 National Institute For Materials Science Lithium-nickel-titanium oxide having ramsdellite-type crystal structure and method for producing the same, and lithium secondary battery using the same
JP2006004813A (en) * 2004-06-18 2006-01-05 Nec Corp Non-aqueous electrolytic solution for secondary battery, and secondary battery using it
JP2007165097A (en) * 2005-12-13 2007-06-28 Fuji Heavy Ind Ltd Positive electrode material for nonaqueous lithium secondary battery, and nonaqueous lithium secondary battery using the same
JP2009076372A (en) * 2007-09-21 2009-04-09 Shin Etsu Chem Co Ltd Non-aqueous secondary battery
WO2010044437A1 (en) * 2008-10-17 2010-04-22 独立行政法人産業技術総合研究所 Sulfur-modified polyacrylonitrile, manufacturing method therefor, and application thereof
WO2010050507A1 (en) * 2008-10-31 2010-05-06 日立マクセル株式会社 Nonaqueous secondary battery
JP2010129481A (en) * 2008-11-28 2010-06-10 Mitsui Mining & Smelting Co Ltd Positive electrode for nonaqueous electrolyte secondary battery
JP2010153296A (en) * 2008-12-26 2010-07-08 National Institute Of Advanced Industrial Science & Technology Sulfur modified polyacrylonitrile sheet, method for manufacturing the same, and application of the same
JP2010160986A (en) * 2009-01-08 2010-07-22 Nissan Motor Co Ltd Anode for lithium-ion secondary battery and lithium-ion secondary battery using this

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111837263A (en) * 2018-03-30 2020-10-27 株式会社艾迪科 Lithium ion secondary battery and method for operating the same
JP2020202083A (en) * 2019-06-11 2020-12-17 日産自動車株式会社 Lithium secondary battery control method, and control device, and lithium secondary battery system
JP7202977B2 (en) 2019-06-11 2023-01-12 日産自動車株式会社 Lithium secondary battery control method and control device, and lithium secondary battery system

Also Published As

Publication number Publication date
JP5668585B2 (en) 2015-02-12

Similar Documents

Publication Publication Date Title
US10511049B2 (en) Electrolyte system including alkali metal bis(fluorosulfonyl)imide and dimethyoxyethane for improving anodic stability of electrochemical cells
JP5558351B2 (en) Core-shell structure electrode active material
JP5910627B2 (en) Secondary battery
KR101876826B1 (en) Cathode composite and all solid lithium secondary battery comprising the same
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP5099168B2 (en) Lithium ion secondary battery
JP2008091236A (en) Nonaqueous electrolyte secondary battery
WO2011117992A1 (en) Active material for battery, and battery
JP6056955B2 (en) Lithium secondary battery
JP2020123460A (en) Pre-doping material, positive electrode including pre-doping material, and method for producing non-aqueous electrolyte secondary battery including positive electrode thereof, and method for producing metal oxide
JP2005281128A (en) Method for producing lithium-containing iron oxyhydroxide and nonaqueous electrolyte electrochemical cell using electrode containing lithium-containing iron oxyhydroxide obtained by the same
JP2012174535A (en) Electrode active material, and metal secondary battery comprising negative electrode containing the electrode active material
JP2012099316A (en) Cathode active material for lithium-ion secondary battery, and lithium-ion secondary battery
JP5586116B2 (en) Positive electrode mixture for lithium secondary battery and use thereof
CN111081991A (en) Positive electrode material for lithium ion secondary battery, positive electrode, and lithium ion secondary battery
JP4798951B2 (en) Non-aqueous electrolyte battery positive electrode and battery using this positive electrode
CN108365171A (en) Lithium ion secondary battery cathode and its manufacturing method and lithium rechargeable battery
KR20220046267A (en) Anodeless lithium secondary battery and preparing method thereof
JP5668585B2 (en) Lithium ion secondary battery
KR20210137547A (en) Use of lithium batteries and germanium organyl-based electrolyte additives contained therein as electrolyte additives
JP6933260B2 (en) Non-aqueous electrolyte solution for lithium ion secondary battery and lithium ion secondary battery using it
JP5482303B2 (en) Non-aqueous secondary battery active material and non-aqueous secondary battery
JP2009087946A (en) Lithium secondary cell
JP4581525B2 (en) Positive electrode active material, method for producing the same, and lithium secondary battery
JP6337019B2 (en) Electrochemical cell for lithium ion battery having negative electrode made of silicon and specific electrolyte

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141201

R151 Written notification of patent or utility model registration

Ref document number: 5668585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees