JP2012223807A - Continuous casting method of wear-resistant steel and wear-resistant steel obtained by the same - Google Patents

Continuous casting method of wear-resistant steel and wear-resistant steel obtained by the same Download PDF

Info

Publication number
JP2012223807A
JP2012223807A JP2011095268A JP2011095268A JP2012223807A JP 2012223807 A JP2012223807 A JP 2012223807A JP 2011095268 A JP2011095268 A JP 2011095268A JP 2011095268 A JP2011095268 A JP 2011095268A JP 2012223807 A JP2012223807 A JP 2012223807A
Authority
JP
Japan
Prior art keywords
mass
wear
mold
resistant steel
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011095268A
Other languages
Japanese (ja)
Inventor
Hiroshi Awajiya
浩 淡路谷
Yasuhiro Murota
康宏 室田
Koichi Tsutsumi
康一 堤
Takuya Suga
卓也 須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011095268A priority Critical patent/JP2012223807A/en
Publication of JP2012223807A publication Critical patent/JP2012223807A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a continuous casting method of a wear-resistant steel in which in continuously casting a wear-resistant steel containing Ti, even the reduction reaction of SiOin a mold powder by Ti in a molten steel progresses and SiOin the mold powder decreases, the viscosity rise after the mold powder melts is suppressed, and the molten steel is made to enter between a mold and a solidified shell, thereby a surface defect of a longitudinal crack, slag inclusion, a gas catching bubble or the like can be prevented, and to provide the wear-resistant steel obtained by the same.SOLUTION: In the continuous casting method continuously casting the molten steel of the wear-resistant steel having a composition containing C and Ti in a prescribed amount, a mold that performs the continuous casting is vibrated by the amplitude of 3.0-9.0 mm, the frequency of at least 60 times/minute and less than 120 times/minute, the mold powder containing 0.1-0.5 mass% of a fatty acid is injected in the mold, the casting speed is made 0.6-1.0 m/minute, and the continuous casting is performed.

Description

本発明は、産業機械や輸送機器等に使用される耐摩耗鋼の連続鋳造方法、およびそれによって得られる耐摩耗鋼に関するものである。   The present invention relates to a method for continuously casting wear-resistant steel used in industrial machinery, transportation equipment, and the like, and to wear-resistant steel obtained thereby.

産業機械や輸送機器等の摩擦を受ける部材には、その寿命を延長するために耐摩耗性に優れる鋼材(すなわち耐摩耗鋼)が使用される。鋼材の硬さを高めると耐摩耗性が向上することは知られており、Cr,Mo等の合金元素を多量に添加した鋼材に、焼入れ等の熱処理を施して硬さを高めた耐摩耗鋼が開発されている。
たとえば特許文献1には、Cを0.10〜0.19質量%含有し、さらにSi,Mnを所定量含有し、残部がFeおよび不可避的不純物であり、かつCeqを0.35〜0.44とした鋼材に熱間圧延を施した後、直接焼入れまたは900〜950℃に再加熱して焼入れを行ない、引き続き焼戻しを行なって表面硬さ300HV(ビッカース硬さ)以上の耐摩耗鋼を得る技術が開示されている。
Steel members having excellent wear resistance (that is, wear-resistant steel) are used for members that receive friction, such as industrial machines and transportation equipment, in order to extend their life. It is known that increasing the hardness of steel improves wear resistance, and wear-resistant steel that has been hardened by heat treatment such as quenching is applied to steel with a large amount of alloying elements such as Cr and Mo. Has been developed.
For example, Patent Document 1 includes hot rolling into a steel material containing 0.10 to 0.19% by mass of C, further containing a predetermined amount of Si and Mn, the balance being Fe and inevitable impurities, and Ceq of 0.35 to 0.44. , And a technique of obtaining a wear-resistant steel having a surface hardness of 300 HV (Vickers hardness) or more by performing direct quenching or quenching by reheating to 900 to 950 ° C. and subsequent tempering.

特許文献2には、Cを0.10〜0.20質量%含有し、さらにSi,Mn,P,S,N,Al,Oを所定量含有し、あるいはさらにCu,Ni,Cr,Mo,Bのうちの1種以上を含有し、残部がFeおよび不可避的不純物である鋼材に熱間圧延を施した後、直接焼入れまたは放冷した後に再加熱して焼入れを行なって、表面硬さ340HB(ブリネル硬さ)以上の耐摩耗鋼を得る技術が開示されている。   Patent Document 2 contains 0.10 to 0.20% by mass of C, and further contains a predetermined amount of Si, Mn, P, S, N, Al, and O, or more of Cu, Ni, Cr, Mo, and B. After hot rolling the steel material containing one or more, the balance being Fe and inevitable impurities, directly quenching or allowing to cool, then reheating and quenching, surface hardness 340HB (Brinell hardness ) A technique for obtaining the above wear-resistant steel is disclosed.

特許文献3には、Cを0.07〜0.17質量%含有し、さらにSi,Mn,V,B,Alを所定量含有し、あるいはさらにCu,Ni,Cr,Moのうちの1種以上を含有し、残部がFeおよび不可避的不純物である鋼材に熱間圧延を施した後、直接焼入れまたは空冷した後に再加熱して焼入れを行なって、表面硬さ321HB(ブリネル硬さ)以上の耐摩耗鋼を得る技術が開示されている。   Patent Document 3 contains 0.07 to 0.17% by mass of C, further contains a predetermined amount of Si, Mn, V, B, and Al, or further contains one or more of Cu, Ni, Cr, and Mo. After the steel material with the balance Fe and unavoidable impurities is hot-rolled, it is directly hardened or air-cooled and then re-heated and hardened to obtain a wear-resistant steel with a surface hardness of 321HB (Brinell hardness) or higher. Obtaining techniques are disclosed.

これら特許文献1〜3に開示された技術は、鋼材に合金元素を多量に添加して、固溶硬化,変態硬化,析出硬化等を活用することによって硬さを高め、その結果、鋼材の耐摩耗性を向上させるものである。しかし合金元素を多量に添加すれば、溶接性および加工性が著しく低下するので、産業機械や輸送機器等の様々な形状を有する部材の製作が困難になる。   These techniques disclosed in Patent Documents 1 to 3 increase the hardness by adding a large amount of alloying elements to steel materials and utilizing solid solution hardening, transformation hardening, precipitation hardening, etc. Abrasion is improved. However, if a large amount of alloy element is added, weldability and workability are remarkably deteriorated, making it difficult to produce members having various shapes such as industrial machines and transportation equipment.

これに対して特許文献4には、Cを0.10〜0.45質量%,Tiを0.10〜1.0質量%含有し、さらにSi,Mn,P,S,N,Alを所定量含有し、あるいはさらにCu,Ni,Cr,Mo,Bのうちの1種以上を含有し、残部がFeおよび不可避的不純物である溶鋼に、連続鋳造を施して、粒径0.5μm以上のTiCを主体とする析出物を単位面積1mm2あたり400個以上析出させた耐摩耗鋼を得る技術が開示されている。この技術では、連続鋳造の凝固時に硬質のTiCを析出させて耐摩耗性を向上させるので、鋼材のマトリックスの硬さを過度に高める必要はなく、溶接性や加工性の低下を抑制できる。 On the other hand, Patent Document 4 contains 0.10 to 0.45% by mass of C, 0.10 to 1.0% by mass of Ti, further contains a predetermined amount of Si, Mn, P, S, N, and Al, or further contains Cu, Unit of precipitates mainly composed of TiC with a particle size of 0.5μm or more by continuous casting on molten steel containing one or more of Ni, Cr, Mo, B, the balance being Fe and inevitable impurities A technique for obtaining a wear-resistant steel having 400 or more deposited per 1 mm 2 is disclosed. In this technique, since hard TiC is precipitated during solidification of continuous casting to improve wear resistance, it is not necessary to excessively increase the hardness of the steel matrix, and it is possible to suppress a decrease in weldability and workability.

ところが高濃度のTiを含有する鋼材は、炭素鋼に比べて表面欠陥(たとえば縦割れ,ノロカミ等)が生じ易いという問題がある。
そこで特許文献5には、高濃度のTiを含有する鋼材の表面欠陥を低減するために、Tiを0.05〜1.5質量%含有する溶鋼を連続鋳造するにあたって、鋳型の振幅Sを2〜5mm,振動数fを120回/分以上とし、かつf×S≦600を満たす範囲で、鋳造速度を0.8〜1.2m/分として連続鋳造を行なう技術が開示されている。この技術では、鋳型を低振幅かつ高振動数とすることによって、通常のモールドパウダーを使用してもオシレーションマークを浅くするとともに、ノロカミ等の表面欠陥を防止する。
However, steel materials containing a high concentration of Ti have a problem that surface defects (for example, vertical cracks, blades, etc.) are more likely to occur than carbon steel.
Therefore, in Patent Document 5, in order to reduce surface defects of a steel material containing a high concentration of Ti, when continuously casting a molten steel containing 0.05 to 1.5 mass% of Ti, the mold amplitude S is 2 to 5 mm, vibration A technique is disclosed in which continuous casting is performed at a casting speed of 0.8 to 1.2 m / min within a range where the number f is 120 times / min or more and f × S ≦ 600 is satisfied. In this technique, by setting the mold to have a low amplitude and a high frequency, the oscillation mark can be made shallow even when normal mold powder is used, and surface defects such as scabs can be prevented.

また特許文献6には、ステンレス鋼の連続鋳造にて、高粘性のモールドパウダーを鋳型に投入すると同時に、鋳型の湯面下における鋳型と凝固シェルとの間に、植物油,脂肪酸エステル類,鉱物油あるいはこれらの混合物等からなる液体潤滑剤を流し込んで、鋳型と凝固シェルとの潤滑不良を防止しつつ連続鋳造を行なう技術が開示されている。なお、ステンレス鋼は、Ti含有鋼と同様に、連続鋳造によって表面欠陥を生じ易いことが知られている。   In Patent Document 6, high-viscosity mold powder is poured into a mold by continuous casting of stainless steel, and at the same time, vegetable oil, fatty acid esters, mineral oil are placed between the mold and the solidified shell under the mold surface. Alternatively, a technique is disclosed in which a liquid lubricant made of a mixture of these is poured to perform continuous casting while preventing poor lubrication between the mold and the solidified shell. In addition, it is known that stainless steel is likely to cause a surface defect by continuous casting, like Ti-containing steel.

特開昭62-142726号公報JP-A-62-142726 特開昭63-169359号公報JP 63-169359 A 特開平1-142023号公報Japanese Unexamined Patent Publication No. 1-142023 特開平6-256896号公報Japanese Patent Laid-Open No. 6-259696 特開平7-251251号公報Japanese Unexamined Patent Publication No. 7-251251 特開昭61-165253号公報JP-A-61-165253

高濃度のTiを含有する溶鋼の連続鋳造では、溶鋼中のTiがモールドパウダー中のSiO2を還元してTiO2を生成する。その結果、モールドパウダー中のSiO2が減少して、その特性が変化するので、連続鋳造を安定して行なうことが困難になる。特にSiO2が減少すれば、モールドパウダーが溶融した後の粘度が上昇して、鋳型と凝固シェルとの間に流入し難くなる。その結果、鋼材の表面に縦割れが発生する、あるいは鋳型と凝固シェルとの焼付きによる拘束性ブレークアウトが発生する等の問題が生じる。また、溶融したモールドパウダーの粘度が上昇すれば、ノズル閉塞防止のために浸漬ノズル内孔に吹き込んだ不活性ガス(たとえばArガス等)がモールドパウダー溶融層へ離脱するのを妨げるので、凝固シェルに捕捉される不活性ガスの気泡が増加する。さらに、溶融したモールドパウダーと凝固シェルとの界面張力や濡れ角等の物性値も変化するので、ノロカミが発生し易くなる。 In the continuous casting of molten steel containing a high concentration of Ti, Ti in the molten steel to produce a TiO 2 by reducing SiO 2 in the mold powder. As a result, SiO 2 in the mold powder is reduced and its characteristics are changed, making it difficult to perform continuous casting stably. In particular, if SiO 2 decreases, the viscosity after the mold powder has melted increases and it becomes difficult to flow between the mold and the solidified shell. As a result, there are problems such as vertical cracks occurring on the surface of the steel material, or constraining breakout due to seizure between the mold and the solidified shell. Further, if the viscosity of the molten mold powder increases, the solidified shell prevents the inert gas (for example, Ar gas) blown into the immersion nozzle inner hole from being separated from the mold powder molten layer in order to prevent nozzle clogging. The number of inert gas bubbles trapped in the gas increases. Furthermore, physical properties such as the interfacial tension and the wetting angle between the melted mold powder and the solidified shell also change, so that it becomes easy to generate scabs.

また、溶融したモールドパウダーが鋳型と凝固シェルとの間に流入し難くなることによって、鋳型の湯面上の溶融した層状のモールドパウダー(以下、モールドパウダー溶融層という)が厚くなる。そのため、モールドパウダー溶融層の上部では温度が低下し、モールドパウダーの一部が再度凝固して浮遊する。そして鋳型内の湯面変動によって、溶鋼中に凝固したモールドパウダーが巻き込まれる現象(いわゆるディッケル)が発生し易くなる。   Further, since the molten mold powder hardly flows between the mold and the solidified shell, the molten layered mold powder (hereinafter referred to as mold powder molten layer) on the molten metal surface of the mold becomes thick. Therefore, the temperature is lowered at the upper part of the mold powder melt layer, and a part of the mold powder is solidified again and floats. And the phenomenon (what is called deckle) in which the solidified mold powder is wound in molten steel becomes easy to generate | occur | produce by the molten metal surface fluctuation | variation in a casting_mold | template.

ディッケルが発生すると、凝固したモールドパウダーが凝固シェルに付着してノロカミを誘発する、あるいは溶融したモールドパウダーが鋳型と凝固シェルとの間に流入し難くなるという問題が生じる。
このようなTi含有鋼の連続鋳造における問題点に対して、特許文献5に開示された技術は、鋳型を低振幅かつ高振動数に制御するのみで解決を図るものであり、溶鋼中のTiがモールドパウダー中のSiO2を還元してTiO2を生成することによって、モールドパウダー中のSiO2が減少して、その特性が変化するという化学反応に起因する問題を解消するには十分とは言えない。しかも、鋳型を低振幅かつ高振動数として連続鋳造を行なうので、溶融したモールドパウダーが鋳型と凝固シェルとの間に流入し難くなり、拘束性ブレークアウトを防止するためには不利となる。
When Dickel is generated, there is a problem that the solidified mold powder adheres to the solidified shell and induces scab or the molten mold powder hardly flows between the mold and the solidified shell.
In order to solve such problems in continuous casting of Ti-containing steel, the technique disclosed in Patent Document 5 aims to solve the problem only by controlling the mold to have a low amplitude and a high frequency. Is sufficient to eliminate the problem caused by the chemical reaction of reducing the SiO 2 in the mold powder and reducing its properties by reducing the SiO 2 in the mold powder to produce TiO 2. I can not say. Moreover, since continuous casting is performed with the mold having a low amplitude and a high frequency, the molten mold powder is difficult to flow between the mold and the solidified shell, which is disadvantageous for preventing a restrictive breakout.

特許文献6に開示された技術では、液体潤滑剤による鋳型と凝固シェルとの潤滑効果が向上して、ディッケルを抑制することが期待できる。しかし鋳型の湯面下で鋳型と凝固シェルとの間に液体潤滑剤を流し込むので、鋳型の構造が複雑になる。また、鋳型の壁面に液体潤滑剤の供給孔が開口しているので、連続鋳造の開始時に溶鋼がその供給孔に浸入して閉塞させる。その結果、液体潤滑剤を供給できない、あるいは凝固シェルの引抜き抵抗となってブレークアウトが発生する等の問題が生じる惧れがある。   With the technique disclosed in Patent Document 6, it can be expected that the lubrication effect between the mold and the solidified shell by the liquid lubricant is improved and the deckle is suppressed. However, since the liquid lubricant is poured between the mold and the solidified shell under the mold surface, the structure of the mold becomes complicated. Further, since the liquid lubricant supply hole is opened in the wall surface of the mold, the molten steel enters the supply hole and closes at the start of continuous casting. As a result, there may be a problem that the liquid lubricant cannot be supplied or that the solidified shell is pulled out and breakout occurs.

本発明は、このような問題点に鑑みてなされたものであり、その目的とするところは、Tiを含有する耐摩耗鋼を連続鋳造するにあたり、溶鋼中のTiによるモールドパウダー中のSiO2の還元反応が進行してモールドパウダー中のSiO2が減少しても、モールドパウダーが溶融した後の粘度の上昇を抑えて鋳型と凝固シェルとの間に流入し易くすることによって、縦割れ,ノロカミ,捕捉ガス気泡等の表面欠陥を防止できる耐摩耗鋼の連続鋳造方法、およびそれによって得られる耐摩耗鋼を提供することである。 The present invention has been made in view of such problems, and the purpose of the present invention is to provide a continuous casting of wear-resistant steel containing Ti, and the SiO 2 in the mold powder by Ti in the molten steel. Even if the reduction reaction progresses and the SiO 2 in the mold powder decreases, it suppresses the increase in viscosity after the mold powder melts, making it easier to flow between the mold and the solidified shell. The present invention provides a continuous casting method of wear-resistant steel capable of preventing surface defects such as trapped gas bubbles and the wear-resistant steel obtained thereby.

本発明は、耐摩耗鋼の溶鋼の連続鋳造を行なう連続鋳造方法において、耐摩耗鋼がC:0.05〜0.35質量%,Ti:0.1〜1.0質量%を含有する組成を有し、連続鋳造を行なう鋳型を振幅3.0〜9.0mm,振動数60回/分以上120回/分未満で振動させ、かつ脂肪酸を0.1〜5.0質量%含有するモールドパウダーを鋳型に投入し、鋳造速度を0.6〜1.0m/分として連続鋳造を行なう耐摩耗鋼の連続鋳造方法である。   The present invention relates to a continuous casting method for continuously casting molten steel of wear resistant steel, wherein the wear resistant steel has a composition containing C: 0.05 to 0.35 mass%, Ti: 0.1 to 1.0 mass%, and performs continuous casting. The mold is vibrated at an amplitude of 3.0 to 9.0 mm, a vibration frequency of 60 times / min or more and less than 120 times / min, and a mold powder containing 0.1 to 5.0% by mass of fatty acid is put into the mold, and the casting speed is 0.6 to 1.0 m / This is a continuous casting method of wear-resistant steel in which continuous casting is performed as a minute.

本発明の耐摩耗鋼の連続鋳造方法においては、耐摩耗鋼が、前記した組成に加えて、Si:0.05〜1.0質量%,Mn:0.1〜2.0質量%,B:0.0003〜0.0030質量%,Al:0.002〜0.1質量%, Cr:0.1〜1.0質量%,Mo:0.05〜1.0質量%,W:0.05〜1.0質量%を含有し、さらに、Nb:0.005〜1.0質量%,V:0.005〜1.0質量%のうちから選ばれた1種または2種を含有し、残部がFeおよび不可避的不純物からなる組成を有することが好ましい。   In the continuous casting method for wear-resistant steel of the present invention, the wear-resistant steel contains, in addition to the above-described composition, Si: 0.05 to 1.0 mass%, Mn: 0.1 to 2.0 mass%, B: 0.0003 to 0.0030 mass%, Al : 0.002 to 0.1 mass%, Cr: 0.1 to 1.0 mass%, Mo: 0.05 to 1.0 mass%, W: 0.05 to 1.0 mass%, Nb: 0.005 to 1.0 mass%, V: 0.005 to 1.0 mass% It is preferable that it has 1 or 2 types chosen from%, and has the composition which remainder consists of Fe and an unavoidable impurity.

また本発明は、上記した溶鋼の連続鋳造によって得られた鋳片に熱間圧延を施した耐摩耗鋼材である。   Moreover, this invention is an abrasion-resistant steel material which gave hot rolling to the slab obtained by continuous casting of the above-mentioned molten steel.

本発明によれば、耐摩耗鋼の連続鋳造にて、モールドパウダーに配合された脂肪酸が鋳型内で燃焼するので、その燃焼熱によって、溶鋼と溶融したモールドパウダーとの界面温度が上昇し、ひいては、溶融したモールドパウダーの粘度の上昇を抑えて鋳型と凝固シェルとの間に流入し易くすることが可能である。その結果、縦割れ,ノロカミ,捕捉ガス気泡等の表面欠陥を防止して耐摩耗鋼を得ることができる。   According to the present invention, in continuous casting of wear-resistant steel, the fatty acid blended in the mold powder burns in the mold, so that the heat of combustion increases the interface temperature between the molten steel and the molten mold powder. It is possible to prevent the molten mold powder from increasing in viscosity and to easily flow between the mold and the solidified shell. As a result, wear resistant steel can be obtained while preventing surface defects such as vertical cracks, blades, trapped gas bubbles, and the like.

本発明で得られる耐摩耗鋼は、硬質のTiCを主体とする析出物(粒径0.5μm以上)を連続鋳造における凝固シェルの凝固時に析出させ、かつその析出物を熱間加工における加熱,圧延の際に可能な限り固溶させずに残留させて、鋼材の耐摩耗性を向上させるものである。したがって、鋼材のマトリックスの硬さを過度に高める必要はないので、溶接性や加工性は損なわれない。なお、TiCを主体とする析出物とは、TiC単体からなる析出物、あるいはTiCとTiNやTiSとの複合析出物等を指す。   The wear-resistant steel obtained by the present invention deposits precipitates (grain size 0.5 μm or more) mainly composed of hard TiC at the time of solidification of the solidified shell in continuous casting, and the precipitates are heated and rolled in hot working In this case, it is made to remain as solid solution as possible to improve the wear resistance of the steel material. Therefore, it is not necessary to excessively increase the hardness of the steel matrix, so that weldability and workability are not impaired. In addition, the precipitate mainly composed of TiC refers to a precipitate made of TiC alone or a composite precipitate of TiC and TiN or TiS.

以下に、耐摩耗鋼の成分を限定した理由を説明する。
C:0.05〜0.35質量%
Cは、耐摩耗鋼のマトリックスの硬さを高めて耐摩耗性を向上する作用を有するとともに、硬質な第2相としてのTiCを析出させて耐摩耗性のさらなる向上を可能とする元素である。このような効果を得るためには、Cを0.05質量%以上含有する必要がある。一方、0.35質量%を超えると、TiCが粗大になり、曲げ加工を施す際にそのTiCが起点となって割れが発生し易くなる。したがって、C含有量は0.05〜0.35質量%の範囲内とする。好ましくは0.15〜0.30質量%である。
The reason why the components of the wear resistant steel are limited will be described below.
C: 0.05-0.35 mass%
C is an element that has the effect of improving the wear resistance by increasing the hardness of the matrix of the wear-resistant steel, and that allows further improvement of the wear resistance by precipitating TiC as a hard second phase. . In order to acquire such an effect, it is necessary to contain 0.05 mass% or more of C. On the other hand, if it exceeds 0.35 mass%, TiC becomes coarse, and cracking is likely to occur when the TiC is used as a starting point when bending. Therefore, the C content is in the range of 0.05 to 0.35 mass%. Preferably it is 0.15-0.30 mass%.

Si:0.05〜1.0質量%
Siは、溶鋼の脱酸を行なうために必要な元素であり、かつ耐摩耗鋼のマトリックスに固溶して硬さを高める(すなわち固溶硬化)ことによって耐摩耗性を向上する作用も有する。Si含有量が0.05質量%未満では、溶鋼の脱酸が十分に進行しない。一方、1.0質量%を超えると、マトリックスの固溶硬化が著しく促進されて延性,靭性が低下するばかりでなく、介在物が増加するので、加工性が損なわれる。したがって、Si含有量は0.05〜1.0質量%の範囲内とすることが好ましい。より好ましくは0.05〜0.40質量%である。
Si: 0.05-1.0 mass%
Si is an element necessary for deoxidizing molten steel, and also has an effect of improving wear resistance by increasing the hardness by dissolving in a matrix of wear-resistant steel (ie, solid solution hardening). When the Si content is less than 0.05% by mass, deoxidation of molten steel does not proceed sufficiently. On the other hand, if it exceeds 1.0% by mass, solid solution hardening of the matrix is remarkably promoted and not only ductility and toughness are lowered, but also inclusions are increased, so that workability is impaired. Therefore, the Si content is preferably in the range of 0.05 to 1.0 mass%. More preferably, it is 0.05-0.40 mass%.

Mn:0.1〜2.0質量%
Mnは、耐摩耗鋼のマトリックスに固溶硬化を発現させて耐摩耗鋼の耐摩耗性を向上する作用を有する元素である。その効果を得るためには、Mnを0.1質量%以上含有する必要がある。一方、2.0質量%を超えると、溶接性が劣化する。したがって、Mn含有量は0.1〜2.0質量%の範囲内とすることが好ましい。より好ましくは0.1〜1.60質量%である。
Mn: 0.1-2.0 mass%
Mn is an element having an action of improving the wear resistance of the wear-resistant steel by causing solid solution hardening in the matrix of the wear-resistant steel. In order to acquire the effect, it is necessary to contain Mn 0.1 mass% or more. On the other hand, when it exceeds 2.0 mass%, weldability will deteriorate. Therefore, the Mn content is preferably in the range of 0.1 to 2.0% by mass. More preferably, it is 0.1-1.60 mass%.

B:0.0003〜0.0030質量%
Bは、耐摩耗鋼のマトリックスの粒界に偏析し、粒界を強化して靭性の向上に寄与する元素である。その効果を得るためには、Bを0.0003質量%以上含有する必要がある。一方、0.0030質量%を超えると、溶接性が劣化する。したがって、B含有量は0.0003〜0.0030質量%の範囲内とすることが好ましい。より好ましくは0.0003〜0.0015質量%である。
B: 0.0003 to 0.0030 mass%
B is an element that segregates at the grain boundaries of the matrix of the wear-resistant steel and contributes to the improvement of toughness by strengthening the grain boundaries. In order to acquire the effect, it is necessary to contain B 0.0003 mass% or more. On the other hand, when it exceeds 0.0030 mass%, weldability will deteriorate. Therefore, the B content is preferably in the range of 0.0003 to 0.0030 mass%. More preferably, it is 0.0003-0.0015 mass%.

Al:0.002〜0.1質量%
Alは、溶鋼の脱酸を行なうために必要な元素である。その効果を得るためには、Alを0.002質量%以上含有する必要がある。一方、0.1質量%を超えると、Al酸化物を析出して溶鋼の清浄性を低下させる。したがって、Al含有量は0.002〜0.1質量%の範囲内とすることが好ましい。
Al: 0.002 to 0.1% by mass
Al is an element necessary for deoxidizing molten steel. In order to acquire the effect, it is necessary to contain Al 0.002 mass% or more. On the other hand, when it exceeds 0.1 mass%, Al oxide will precipitate and the cleanliness of molten steel will be reduced. Therefore, the Al content is preferably in the range of 0.002 to 0.1% by mass.

Ti:0.1〜1.0質量%
Tiは、硬質な第2相としてのTiCを析出させて耐摩耗性を向上する元素である。このような効果を得るためには、Tiを0.1質量%以上含有する必要がある。一方、1.0質量%を超えると、TiCが粗大になり、曲げ加工を施す際にそのTiCが起点となって割れが発生し易くなる。さらには、高価なTiを多量に添加することによって、耐摩耗鋼の製造コストの上昇を招く。したがって、Ti含有量は0.1〜1.0質量%の範囲内とする。好ましくは0.1〜0.5質量%である。
Ti: 0.1-1.0 mass%
Ti is an element that improves the wear resistance by precipitating TiC as a hard second phase. In order to obtain such an effect, it is necessary to contain 0.1% by mass or more of Ti. On the other hand, if it exceeds 1.0% by mass, TiC becomes coarse, and cracking tends to occur from the TiC as a starting point when bending. Furthermore, the addition of a large amount of expensive Ti causes an increase in the production cost of wear-resistant steel. Therefore, Ti content shall be in the range of 0.1-1.0 mass%. Preferably it is 0.1-0.5 mass%.

Cr:0.1〜1.0質量%
Crは、焼入れ性を高める作用を有する元素である。この効果を得るためにはCrを0.1質量%以上含有する必要がある。一方、1.0質量%を超えると、溶接性が低下する。したがって、Cr含有量は0.1〜1.0質量%の範囲内とすることが好ましい。より好ましくは0.1〜0.4質量%である。
Cr: 0.1-1.0 mass%
Cr is an element having an effect of improving hardenability. In order to obtain this effect, it is necessary to contain 0.1% by mass or more of Cr. On the other hand, when it exceeds 1.0 mass%, weldability will fall. Therefore, the Cr content is preferably in the range of 0.1 to 1.0 mass%. More preferably, it is 0.1-0.4 mass%.

Mo:0.05〜1.0質量%
Moは、焼入れ性を高めるとともに、硬質な第2相としてのTiCに固溶して硬さを高める(すなわち固溶硬化)ことによって耐摩耗性を向上する作用も有する元素である。これらの効果を得るためにはMoを0.05質量%以上含有する必要がある。一方、1.0質量%を超えると、溶接性が低下する。したがって、Mo含有量は0.05〜1.0質量%の範囲内とすることが好ましい。より好ましくは0.05〜0.4質量%である。
Mo: 0.05-1.0 mass%
Mo is an element that enhances hardenability and also has an effect of improving wear resistance by solid-dissolving in TiC as a hard second phase to increase hardness (that is, solid solution hardening). In order to obtain these effects, it is necessary to contain 0.05% by mass or more of Mo. On the other hand, when it exceeds 1.0 mass%, weldability will fall. Therefore, the Mo content is preferably in the range of 0.05 to 1.0 mass%. More preferably, it is 0.05-0.4 mass%.

W:0.05〜1.0質量%
Wは、耐摩耗鋼のマトリックスに固溶して焼入れ性を高めるとともに、硬質な第2相としてのTiCに固溶して硬さを高める(すなわち固溶硬化)ことによって耐摩耗性を向上する作用も有する元素である。これらの効果を得るためにはWを0.05質量%以上含有する必要がある。一方、1.0質量%を超えると、溶接性が低下する。したがって、W含有量は0.05〜1.0質量%の範囲内とすることが好ましい。より好ましくは0.05〜0.40質量%である。
W: 0.05-1.0 mass%
W dissolves in the wear-resistant steel matrix to improve hardenability, and also improves wear resistance by increasing the hardness by dissolving in TiC as the hard second phase (ie, solid solution hardening). It is an element that also has an action. In order to acquire these effects, it is necessary to contain 0.05 mass% or more of W. On the other hand, when it exceeds 1.0 mass%, weldability will fall. Therefore, the W content is preferably in the range of 0.05 to 1.0 mass%. More preferably, it is 0.05-0.40 mass%.

本発明では、上記した組成に加えてNbおよびVから選ばれた1種または2種を含有することが好ましい。
Nb:0.005〜1.0質量%
Nbは、Tiと複合して含有することによってTi,Nbの複合炭化物(すなわち(NbTi)C)を形成して硬質な第2相としてのTiCに分散することによって、耐摩耗性を向上する作用も有する元素である。この効果を得るためにはNbを0.005質量%以上含有する必要がある。一方、1.0質量%を超えると、TiCが粗大になり、曲げ加工を施す際にそのTiCが起点となって割れが発生し易くなる。したがってNbを含有する場合は、Nb含有量は0.005〜1.0質量%の範囲内が好ましい。より好ましくは0.1〜0.5質量%である。
In this invention, it is preferable to contain 1 type or 2 types chosen from Nb and V in addition to the above-mentioned composition.
Nb: 0.005 to 1.0 mass%
Nb is combined with Ti to form Ti and Nb composite carbides (ie, (NbTi) C) and is dispersed in TiC as a hard second phase, thereby improving wear resistance. It is also an element. In order to acquire this effect, it is necessary to contain Nb 0.005 mass% or more. On the other hand, if it exceeds 1.0% by mass, TiC becomes coarse, and cracking tends to occur from the TiC as a starting point when bending. Therefore, when Nb is contained, the Nb content is preferably in the range of 0.005 to 1.0 mass%. More preferably, it is 0.1-0.5 mass%.

V:0.005〜1.0質量%
Vは、Tiと複合して含有することによってTi,Vの複合炭化物(すなわち(VTi)C)を形成して硬質な第2相としてのTiCに分散することによって、耐摩耗性を向上する作用も有する元素である。この効果を得るためにはVを0.005質量%以上含有する必要がある。一方、1.0質量%を超えると、TiCが粗大になり、曲げ加工を施す際にそのTiCが起点となって割れが発生し易くなる。したがってVを含有する場合は、V含有量は0.005〜1.0質量%の範囲内が好ましい。より好ましくは0.1〜0.5質量%である。
V: 0.005 to 1.0 mass%
V is combined with Ti to form a composite carbide of Ti and V (ie, (VTi) C) and is dispersed in TiC as a hard second phase, thereby improving the wear resistance. It is also an element. In order to acquire this effect, it is necessary to contain V 0.005 mass% or more. On the other hand, if it exceeds 1.0% by mass, TiC becomes coarse, and cracking tends to occur from the TiC as a starting point when bending. Therefore, when V is contained, the V content is preferably in the range of 0.005 to 1.0 mass%. More preferably, it is 0.1-0.5 mass%.

本発明の耐摩耗鋼の上記した成分以外は、Feおよび不可避的不純物である。
本発明では、転炉およびRH真空脱ガス装置等の精錬設備を用いて、溶鋼を上記した成分に調整した後、スラブ連続鋳造機やブルーム連続鋳造機で連続鋳造を行なう。
本発明における連続鋳造で使用するモールドパウダーは、一般的に用いられているモールドパウダーに脂肪酸を配合したものを鋳型に投入する。すなわち一般的に用いられているモールドパウダーは、酸化物(CaO,SiO2,Al23,Fe23,MgO,MnO,BaO,B23等)を基材として、これらの基材にアルカリ金属の酸化物(Na2O,K2O,Li2O等)、フッ化物(NaF,KF,LiF,CaF2,MgF2,AlF3,Na3AlF3等)、およびこれらの金属の炭酸化物や硝酸化物等の基材の物性を調整するための物性調整材に加えて、カーボンブラックや人造黒鉛等のモールドパウダーの溶融速度を調整するための溶融速度調整材を添加したものであり、溶融状態(1300〜1400℃)の粘度は4.0〜0.1 Poiseである。本発明では、さらに脂肪酸を配合したモールドパウダーを使用する。脂肪酸としては、ステアリン酸(融点69〜70℃),パルミチン酸(融点63〜64℃)が好ましい。
Other than the above-described components of the wear-resistant steel of the present invention, Fe and unavoidable impurities.
In the present invention, the molten steel is adjusted to the above-described components using a refining facility such as a converter and an RH vacuum degassing apparatus, and then continuous casting is performed with a slab continuous casting machine or a bloom continuous casting machine.
The mold powder used in the continuous casting in the present invention is prepared by adding a fatty acid to a commonly used mold powder into a mold. That is, generally used mold powder is based on oxide (CaO, SiO 2 , Al 2 O 3 , Fe 2 O 3 , MgO, MnO, BaO, B 2 O 3 etc.) as a base material. Alkali metal oxides (Na 2 O, K 2 O, Li 2 O, etc.), fluorides (NaF, KF, LiF, CaF 2 , MgF 2 , AlF 3 , Na 3 AlF 3 etc.), and these In addition to physical property adjusting materials for adjusting the physical properties of base materials such as metal carbonates and nitrates, addition of melting rate adjusting materials for adjusting the melting rate of mold powder such as carbon black and artificial graphite The viscosity in the molten state (1300 to 1400 ° C.) is 4.0 to 0.1 Poise. In the present invention, a mold powder further containing a fatty acid is used. As the fatty acid, stearic acid (melting point: 69 to 70 ° C.) and palmitic acid (melting point: 63 to 64 ° C.) are preferable.

モールドパウダー中の脂肪酸の含有量が、0.1質量%未満では、脂肪酸の燃焼による発熱効果を十分に得られない。一方、脂肪酸の含有量が5.0質量%を超えると、モールドパウダーが溶解し難くなり、鋳型と凝固シェルとの間に流入し難くなる。その結果、縦割れ,ノロカミ等の表面欠陥の発生を招く。したがって、モールドパウダー中の脂肪酸の含有量は0.1〜5.0質量%の範囲内とする。好ましくは1.0〜3.0質量%である。   If the content of the fatty acid in the mold powder is less than 0.1% by mass, the heat generation effect due to the burning of the fatty acid cannot be sufficiently obtained. On the other hand, when the fatty acid content exceeds 5.0 mass%, the mold powder is difficult to dissolve and hardly flows between the mold and the solidified shell. As a result, surface defects such as vertical cracks and blades are generated. Therefore, the content of fatty acid in the mold powder is in the range of 0.1 to 5.0% by mass. Preferably it is 1.0-3.0 mass%.

脂肪酸を配合したモールドパウダーを鋳型内の溶鋼湯面に投入すると、モールドパウダーが溶融する際に、脂肪酸が燃焼する。したがって、溶融したモールドパウダーと溶鋼との界面の温度が、脂肪酸の燃焼によって上昇する。
本発明においても、溶融したモールドパウダー中のSiO2は、溶鋼中のTiによって還元されるので、溶融したモールドパウダー中のSiO2が減少し、その粘度が上昇する。しかし溶融すればその粘度は温度上昇とともに低下するので、溶融したモールドパウダーの粘度の上昇は、脂肪酸の燃焼によって抑制される。
When mold powder containing fatty acid is put into the molten steel surface in the mold, the fatty acid burns when the mold powder melts. Therefore, the temperature at the interface between the molten mold powder and the molten steel rises due to the burning of fatty acids.
In the present invention, SiO 2 in the mold powder has melted, so is reduced by Ti in the molten steel, SiO 2 in the mold powder melted is reduced, the viscosity increases. However, since the viscosity of the melted mold powder decreases as the temperature increases, the increase in the viscosity of the melted mold powder is suppressed by the burning of fatty acids.

このようにして、Tiを高濃度で含有する耐摩耗鋼の連続鋳造においても、溶融したモールドパウダーの粘度の上昇を抑えて鋳型と凝固シェルとの間に流入し易くすることが可能である。その結果、縦割れ,ノロカミ,捕捉ガス気泡等の表面欠陥を防止して耐摩耗鋼を得ることができる。また、鋳型と凝固シェルとの潤滑が維持されるので、拘束性ブレークアウトは発生せず、連続鋳造を安定して操業できる。   In this way, even in continuous casting of wear-resistant steel containing Ti at a high concentration, it is possible to suppress an increase in the viscosity of the molten mold powder and to easily flow between the mold and the solidified shell. As a result, wear resistant steel can be obtained while preventing surface defects such as vertical cracks, blades, trapped gas bubbles, and the like. Further, since the lubrication between the mold and the solidified shell is maintained, no constraining breakout occurs, and the continuous casting can be stably operated.

なおスラブ連続鋳造機では、鋳型と凝固シェルとの潤滑を維持して拘束性ブレークアウトを防止するためのモールドパウダーの消費量は、凝固シェルの単位表面積あたり0.20kg/m2以上、好ましくは0.25 kg/m2以上必要であることが知られている。
本発明では、耐摩耗鋼が高合金鋼であることから、高温での凝固シェルの脆化を考慮して、鋳造速度を近年の操業に比べて比較的遅くして0.6〜1.0m/分の範囲内とする。鋳造速度が0.6m/分未満では、連続鋳造の生産性が低下する。一方、1.0m/分を超えると、凝固シェルの亀裂や割れが生じ易くなる。
In the slab continuous casting machine, the consumption of mold powder for maintaining the lubrication between the mold and the solidified shell and preventing the constraining breakout is 0.20 kg / m 2 or more per unit surface area of the solidified shell, preferably 0.25. It is known that kg / m 2 or more is necessary.
In the present invention, since the wear-resistant steel is a high alloy steel, considering the embrittlement of the solidified shell at a high temperature, the casting speed is relatively slow compared with the operation in recent years to be 0.6 to 1.0 m / min. Within range. When the casting speed is less than 0.6 m / min, the productivity of continuous casting decreases. On the other hand, if it exceeds 1.0 m / min, cracks and cracks in the solidified shell tend to occur.

鋳型は、振動波形を正弦波あるいは偏移正弦波として、振幅3.0〜9.0mm,振動数60回/分以上120回/分未満で振動させる。このような条件で鋳型を振動させることによって、鋳型と凝固シェルとの間に溶融したモールドパウダーが流入し易くなり、縦割れ,ノロカミ,捕捉ガス気泡等の表面欠陥を防止するとともに、拘束性ブレークアウトを防止することが可能となる。なお鋳型の振幅は、鋳型の変位の上限位置から下限位置までの距離(すなわち鋳型の振動ストローク)の1/2の値を指す。   The mold is vibrated with a vibration waveform as a sine wave or a shifted sine wave with an amplitude of 3.0 to 9.0 mm and a vibration frequency of 60 times / minute or more and less than 120 times / minute. By vibrating the mold under these conditions, the molten mold powder can easily flow between the mold and the solidified shell, preventing surface defects such as vertical cracks, slosh and trapped gas bubbles, and restraining breaks. It becomes possible to prevent out. The mold amplitude indicates a value that is ½ of the distance from the upper limit position to the lower limit position of the mold displacement (that is, the vibration stroke of the mold).

このようにして耐摩耗鋼の連続鋳造を行なって得た鋳片は、必要に応じて表面手入れを施した後、次工程の熱間圧延設備にて熱間圧延されて厚鋼板,薄鋼板,形鋼等の鋼材となる。
以上に説明したように、本発明によれば、モールドパウダー中の脂肪酸の燃焼熱によって、溶融したモールドパウダーの粘度の上昇が抑制される。その結果、鋳型と凝固シェルとの間に溶融したモールドパウダーが流入し易くなり、表面欠陥を防止するとともに、拘束性ブレークアウトを防止することが可能となる。
The slab obtained by continuous casting of the wear-resistant steel in this way is subjected to surface care as necessary, and then hot-rolled in the hot rolling equipment in the next process to obtain a thick steel plate, a thin steel plate, Steel material such as shape steel.
As described above, according to the present invention, an increase in the viscosity of molten mold powder is suppressed by the heat of combustion of fatty acids in the mold powder. As a result, the melted mold powder easily flows between the mold and the solidified shell, thereby preventing surface defects and preventing restrictive breakout.

垂直曲げ型スラブ連続鋳造機(機長26m)を用いて、表1に示す成分の耐摩耗鋼の連続鋳造を行なって、厚み250mm,幅1500〜1900mmのスラブを製造した。モールドパウダーは、脂肪酸としてステアリン酸を含有する脂肪酸含有パウダーと、脂肪酸を含有しない通常パウダーを使用した。モールドパウダーの脂肪酸の含有量は表2に示す通りである。鋳造速度は0.6〜1.0m/分とし、鋳型の振幅,振動数は表2に示すように設定した。   Using a vertical bending slab continuous casting machine (machine length: 26 m), wear-resistant steels having the components shown in Table 1 were continuously cast to produce slabs having a thickness of 250 mm and a width of 1500 to 1900 mm. As the mold powder, a fatty acid-containing powder containing stearic acid as a fatty acid and a normal powder containing no fatty acid were used. The fatty acid content of the mold powder is as shown in Table 2. The casting speed was 0.6 to 1.0 m / min, and the mold amplitude and frequency were set as shown in Table 2.

Figure 2012223807
Figure 2012223807

Figure 2012223807
Figure 2012223807

表2に示すように、鋳型の振動数60回/分未満で連続鋳造を行なっていない。これは、振動数が60回/分未満では、溶融したモールドパウダーが鋳型と凝固シェルとの間に流入し難いので、拘束性ブレークアウトの発生頻度が高くなるからである。また、鋳型の振動数を180回/分とした比較例6では、連続鋳造機全体が異常な振動を起こしたため、連続鋳造を停止した。   As shown in Table 2, continuous casting was not performed at a mold frequency of less than 60 times / minute. This is because when the frequency is less than 60 times / minute, the molten mold powder hardly flows between the mold and the solidified shell, and thus the frequency of occurrence of restrictive breakout increases. In Comparative Example 6 in which the frequency of the mold was 180 times / minute, the continuous casting machine was abnormally vibrated, so that continuous casting was stopped.

このようにして連続鋳造を行なった後、得られたスラブの表面を手入れせず、長辺面と短辺面の全ての面から面積1.95m2を対象として目視で観察し、直径0.5mm以上の気泡の個数を測定した。そして、気泡の密度が200個/m2未満のものを良(○),200個/m2以上のものを不可(×)として評価した。その結果を、スラブの気泡欠陥評価として表2に示す。ここで気泡の密度200個/m2を閾値として評価した理由は、200個/m2以上では、熱間圧延した後の表面性状が著しく悪化するからである。 After performing continuous casting in this way, the surface of the obtained slab is not cared for, and the entire area of the long side surface and the short side surface is visually observed for an area of 1.95 m 2 and the diameter is 0.5 mm or more. The number of bubbles was measured. Then, the good ones density is less than 200 atoms / m 2 of bubble (○), were evaluated 200 / m 2 or more of the disabled (×). The results are shown in Table 2 as the bubble defect evaluation of the slab. The reason why the bubble density of 200 / m 2 was evaluated as a threshold value is that the surface quality after hot rolling is significantly deteriorated at 200 / m 2 or more.

また、得られたスラブの表面を手入れせず、熱間圧延を行なって厚鋼板とした。その厚鋼板を目視で観察して深さ0.2mm以上の表面欠陥を調査し、さらにその表面欠陥の面積を測定した。そして、表面欠陥の合計面積が、厚鋼板の単位面積当たり25cm2/m2未満のものを良(○),25cm2/m2以上のものを不可(×)として評価した。その結果を厚鋼板の表面性状評価として表2に示す。 Moreover, without rolling the surface of the obtained slab, hot rolling was performed to obtain a thick steel plate. The thick steel plate was visually observed to investigate a surface defect having a depth of 0.2 mm or more, and the area of the surface defect was measured. Then, the total area of surface defects, a good those in unit less than the area per 25 cm 2 / m 2 of steel plates (○), were evaluated 25 cm 2 / m 2 or more of the disabled (×). The results are shown in Table 2 as the surface property evaluation of the thick steel plate.

さらに、パワーショベル,ブルドーザー,ホッパー,バケット等の産業機械や輸送機器等に求められる耐摩耗性を調査した。摩耗砂として100質量%SiO2砂を使用し、ASTM G−65に準拠して摩耗試験を行なって得た耐摩耗性を、SS400(軟鋼)の耐摩耗性に対する比率(以下、耐摩耗比という)で評価した。耐摩耗比は、数値が大きいほど耐摩耗性に優れていることを意味する。表2の厚鋼板の耐摩耗性評価には、SS400(軟鋼)の耐摩耗性を1.0として、耐摩耗比が5.0を超えるものを良(○),5.0未満のものを不可(×)として示す。 Furthermore, we investigated the wear resistance required for industrial machines such as power shovels, bulldozers, hoppers, buckets, and transportation equipment. The wear resistance obtained by conducting a wear test in accordance with ASTM G-65 using 100% by mass SiO 2 sand as the wear sand is the ratio to the wear resistance of SS400 (mild steel) (hereinafter referred to as the wear resistance ratio). ). The wear resistance ratio means that the larger the value, the better the wear resistance. In the wear resistance evaluation of thick steel plates in Table 2, the wear resistance of SS400 (mild steel) is 1.0, the wear resistance ratio is more than 5.0 (good), and less than 5.0 is not possible (x). .

表2から明らかなように、発明例では、スラブの気泡欠陥評価,厚鋼板の表面性状評価,厚鋼板の耐摩耗性評価がいずれも良と評価されており、材料特性の優れた耐摩耗鋼を得ることができた。   As is clear from Table 2, in the invention examples, the evaluation of bubble defects in slabs, the evaluation of surface properties of thick steel plates, and the evaluation of wear resistance of thick steel plates are all evaluated as good, and wear resistant steel with excellent material properties. Could get.

本発明によれば、耐摩耗鋼の連続鋳造にて、縦割れ,ノロカミ,捕捉ガス気泡等の表面欠陥を防止して耐摩耗鋼を得ることができるので、産業上格段の効果を奏する。
According to the present invention, wear-resistant steel can be obtained by preventing surface defects such as vertical cracks, blades, trapped gas bubbles, and the like by continuous casting of wear-resistant steel, and thus has a remarkable industrial effect.

Claims (3)

耐摩耗鋼の溶鋼の連続鋳造を行なう連続鋳造方法において、前記耐摩耗鋼がC:0.05〜0.35質量%、Ti:0.1〜1.0質量%を含有する組成を有し、前記連続鋳造を行なう鋳型を振幅3.0〜9.0mm、振動数60回/分以上120回/分未満で振動させ、かつ脂肪酸を0.1〜5.0質量%含有するモールドパウダーを前記鋳型に投入し、鋳造速度を0.6〜1.0m/分として連続鋳造を行なうことを特徴とする耐摩耗鋼の連続鋳造方法。   In a continuous casting method for continuously casting molten steel of wear-resistant steel, the wear-resistant steel has a composition containing C: 0.05 to 0.35 mass% and Ti: 0.1 to 1.0 mass%, and a mold for performing the continuous casting is provided. A mold powder containing an amplitude of 3.0 to 9.0 mm, a vibration frequency of 60 times / min or more and less than 120 times / min and containing 0.1 to 5.0% by mass of fatty acid is put into the mold, and a casting speed is 0.6 to 1.0 m / min. A continuous casting method of wear-resistant steel, characterized in that continuous casting is performed as follows. 前記耐摩耗鋼が、前記組成に加えて、Si:0.05〜1.0質量%、Mn:0.1〜2.0質量%、B:0.0003〜0.0030質量%、Al:0.002〜0.1質量%、Cr:0.1〜1.0質量%、Mo:0.05〜1.0質量%、W:0.05〜1.0質量%を含有し、さらに、Nb:0.005〜1.0質量%、V:0.005〜1.0質量%のうちから選ばれた1種または2種を含有し、残部がFeおよび不可避的不純物からなる組成を有することを特徴とする請求項1に記載の耐摩耗鋼の連続鋳造方法。   In addition to the above composition, the wear-resistant steel is Si: 0.05 to 1.0 mass%, Mn: 0.1 to 2.0 mass%, B: 0.0003 to 0.0030 mass%, Al: 0.002 to 0.1 mass%, Cr: 0.1 to 1.0 mass% %, Mo: 0.05-1.0% by mass, W: 0.05-1.0% by mass, Nb: 0.005-1.0% by mass, V: 0.005-1.0% by mass The continuous casting method for wear-resistant steel according to claim 1, comprising a composition comprising Fe and the balance of inevitable impurities. 請求項1または2に記載の溶鋼の連続鋳造によって得られた鋳片に熱間圧延を施したことを特徴とする耐摩耗鋼材。
A wear-resistant steel material obtained by hot-rolling a slab obtained by continuous casting of molten steel according to claim 1 or 2.
JP2011095268A 2011-04-21 2011-04-21 Continuous casting method of wear-resistant steel and wear-resistant steel obtained by the same Withdrawn JP2012223807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011095268A JP2012223807A (en) 2011-04-21 2011-04-21 Continuous casting method of wear-resistant steel and wear-resistant steel obtained by the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011095268A JP2012223807A (en) 2011-04-21 2011-04-21 Continuous casting method of wear-resistant steel and wear-resistant steel obtained by the same

Publications (1)

Publication Number Publication Date
JP2012223807A true JP2012223807A (en) 2012-11-15

Family

ID=47274584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011095268A Withdrawn JP2012223807A (en) 2011-04-21 2011-04-21 Continuous casting method of wear-resistant steel and wear-resistant steel obtained by the same

Country Status (1)

Country Link
JP (1) JP2012223807A (en)

Similar Documents

Publication Publication Date Title
JP6169025B2 (en) Steel plates and line pipe steel pipes with excellent hydrogen-induced crack resistance and toughness
AU2013223629B2 (en) Method of manufacturing forged steel roll
JP5477522B1 (en) Centrifugal cast composite roll and manufacturing method thereof
KR102219332B1 (en) Centrifugally cast composite roll and its production method
WO1994022606A1 (en) Wear- and seizure-resistant roll for hot rolling
JP5277315B2 (en) Environmentally friendly lead-free free-cutting steel and method for producing the same
TWI741145B (en) Composite roll for rolling and manufacturing method thereof
CN102218622B (en) High-manganese steel surfacing solid-core welding wire and manufacturing method thereof
JP5445723B1 (en) Ultra high strength steel plate for welding
JP6787238B2 (en) Manufacturing method of steel for machine structure
JP2011068949A (en) High-toughness steel plate
JP7063180B2 (en) Outer layer material of centrifugal casting composite roll for rolling, and centrifugal casting composite roll for rolling
KR102647292B1 (en) Composite roll for centrifugal casting and manufacturing method thereof
JP3089882B2 (en) Abrasion-resistant steel having excellent surface properties and method for producing the same
JPWO2018147367A1 (en) Composite roll for rolling and manufacturing method thereof
JP2000319750A (en) High tensile strength steel for large heat input welding excellent in toughness of heat-affected zone
JP2015062936A (en) Centrifugally cast composite roll and manufacturing method thereof
JP6809243B2 (en) Continuously cast steel slabs and their manufacturing methods
WO2019045068A1 (en) Composite roll for rolling and method for producing same
JP2012223806A (en) Continuous casting method of wear-resistant steel
JP2009214122A (en) Composite roll for hot rolling and its manufacturing method
JP4160103B1 (en) Steel ingot for forging
JP2012223807A (en) Continuous casting method of wear-resistant steel and wear-resistant steel obtained by the same
JP2012020316A (en) Continuous casting method of wear resisting steel and wear resisting steel
JP2016196031A (en) Method for producing continuously cast slab

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130702

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140326

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701