JP2012222140A - Wiring sheet for solar cell - Google Patents

Wiring sheet for solar cell Download PDF

Info

Publication number
JP2012222140A
JP2012222140A JP2011086237A JP2011086237A JP2012222140A JP 2012222140 A JP2012222140 A JP 2012222140A JP 2011086237 A JP2011086237 A JP 2011086237A JP 2011086237 A JP2011086237 A JP 2011086237A JP 2012222140 A JP2012222140 A JP 2012222140A
Authority
JP
Japan
Prior art keywords
solar cell
wiring sheet
base material
circuit pattern
aluminum layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011086237A
Other languages
Japanese (ja)
Inventor
Shigeki Kudo
茂樹 工藤
Minoru Kawasaki
実 川▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2011086237A priority Critical patent/JP2012222140A/en
Publication of JP2012222140A publication Critical patent/JP2012222140A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wiring sheet for a solar cell which prevents creases and curls from being generated in a lamination process between a solar cell and the wiring sheet for the solar cell in production of a back contact type solar cell module.SOLUTION: A wiring sheet of a solar cell is formed by sequentially laminating an aluminum layer and a weather-resistant base material on the rear surface of an insulating base material having a circuit pattern formed on the surface via an adhesive layer. Moreover, the thickness of the aluminum layer is 6 μm to 70 μm.

Description

本発明は、バックコンタクト型太陽電池モジュールの配線シートに関する。   The present invention relates to a wiring sheet for a back contact solar cell module.

近年、地球温暖化問題に対する内外各方面の関心が高まる中、二酸化炭素の排出抑制のために、様々な努力が続けられている。化石燃料の消費量の増大は大気中の二酸化炭素の増加をもたらし、その温室効果により地球の気温が上昇し、地球環境に重大な影響を及ぼす。この地球規模の問題を解決するために様々な検討が行われており、特に太陽光発電については、そのクリーン性や無公害性という点から期待が高まっている。   In recent years, various efforts have been made to suppress carbon dioxide emissions while interest from various countries both inside and outside Japan has increased. Increasing fossil fuel consumption leads to an increase in atmospheric carbon dioxide, and the greenhouse effect raises the Earth's temperature, significantly affecting the global environment. Various studies have been carried out to solve this global problem, and in particular, solar power generation is highly expected in terms of cleanliness and non-pollution.

太陽電池は、太陽光のエネルギーを直接電気に換える太陽光発電システムの心臓部を構成するものであり、単結晶、多結晶、又はアモルファスシリコン系の半導体からできている。太陽電池素子は、その単体での電気出力が小さい為に、太陽電池素子(セル)単体をそのままの状態で使用することはなく、一般的には、各太陽電池セルに接続されたインターコネクタ同士を接続することにより、数枚〜数十枚の太陽電池セルを直列、並列に配線し、長期間(約20年)に亘ってセルを保護するために種々パッケージングが行われ、ユニット化されている。このパッケージに組み込まれたユニットを「太陽電池モジュール」と呼んでいる。   A solar cell constitutes the heart of a photovoltaic power generation system that directly converts sunlight energy into electricity, and is made of a single crystal, polycrystalline, or amorphous silicon semiconductor. Since the solar cell element has a small electrical output, the solar cell element (cell) is not used as it is. In general, interconnectors connected to each solar cell are connected to each other. By connecting, several to dozens of solar cells are wired in series and in parallel, and various packaging is performed to protect the cells over a long period (about 20 years). ing. The unit incorporated in this package is called a “solar cell module”.

現在も最も多く生産されている太陽電池は、太陽光を受ける受光面がn電極で、その裏面がp電極から構成されている。受光面側に設けられるn電極は電流の取り出しの為には必要不可欠であるが、一方で、その電極の下の基板には太陽光が入射しないため、その部分では発電しない問題がある。従って、変換効率を上げるためには、この受光面側の電極面積を限りなく小さくすることが重要であり、その一つの方法として、n電極およびp電極の両電極を裏面に形成したバックコンタクト型太陽電池モジュールが提案されている。   The solar cells that are produced most frequently today have an n-electrode on the light-receiving surface that receives sunlight, and a p-electrode on the back surface. The n-electrode provided on the light-receiving surface side is indispensable for taking out current, but on the other hand, since sunlight does not enter the substrate under the electrode, there is a problem that power is not generated in that portion. Therefore, in order to increase the conversion efficiency, it is important to reduce the electrode area on the light receiving surface side as much as possible. As one of the methods, a back contact type in which both an n electrode and a p electrode are formed on the back surface. Solar cell modules have been proposed.

上記バックコンタクト型太陽電池モジュールの太陽電池セルの接続方法として、例えばインターコネクタでの接続方法が提案されている(特許文献1参照)。しかしながら、インターコネクタでの接続方法では、半田付けによる熱の影響で太陽電池セルに反りが生じ接続精度に問題がある。また、複数の太陽電池セルの配置部を有する配線シートに、バックコンタクト型太陽電池セルを載置して、配線シートにより各太陽電池セル間を電気的に接続する方法も提案されている(特許文献2参照)。この提案の配線シートは、金属箔と絶縁性を有するフレキシブルな基材(プラスチックフィルム基材)の積層体からなり、該金属箔に各太陽電池セル間を接続するための回路パターンが形成されている。   As a method for connecting solar cells of the back contact solar cell module, for example, a connection method using an interconnector has been proposed (see Patent Document 1). However, the connection method using the interconnector has a problem in connection accuracy due to warpage of the solar battery cells due to the influence of heat due to soldering. In addition, a method has been proposed in which back contact solar cells are placed on a wiring sheet having a plurality of solar cell arrangement portions, and the solar cells are electrically connected by the wiring sheet (patent). Reference 2). The proposed wiring sheet is composed of a laminate of a metal foil and a flexible base material (plastic film base material) having an insulating property, and a circuit pattern for connecting the solar cells is formed on the metal foil. Yes.

しかしながら、上記配線シートと太陽電池セルを熱ラミネートによりモジュール化する際に、前記フレキシブルな基材(プラスチックフィルム基材)と金属箔はいずれも熱収縮するが、前記フレキシブルな基材(プラスチックフィルム基材)は金属箔に比べて極めて大きな熱収縮をおこす。そのために、金属箔側にシワが発生する。また、特に回路パターンがけ形成されていない部分、すなわちプラスチックフィルム基材の面積に比べて金属箔の面積比率が小さい部分では、応力が集中してシワが発生し易く、また配線シート全体にカールが発生し易く問題である。   However, when the wiring sheet and solar cells are modularized by thermal lamination, both the flexible base material (plastic film base material) and the metal foil are thermally shrunk, but the flexible base material (plastic film base material) The material) causes extremely large heat shrinkage compared to the metal foil. Therefore, wrinkles are generated on the metal foil side. In particular, in a portion where the circuit pattern is not formed, that is, a portion where the area ratio of the metal foil is small compared to the area of the plastic film substrate, stress is concentrated and wrinkles are easily generated, and the entire wiring sheet is curled. It is a problem that easily occurs.

特開2005−11869号公報JP 2005-11869 A 特開2010−258158号公報JP 2010-258158 A

太陽電池セルは急速に薄膜化が進んでおり、従来にも増して各太陽電池セル間を正確に接続できる生産性と高い信頼性が要求されている。本発明は上記問題に鑑みてなされたものであり、バックコンタクト方式の太陽電池モジュールを生産する際に、シワやカールが発生しない太陽電池用配線シートの提供を目的とする。   Solar cells are rapidly becoming thinner, and higher productivity and higher reliability are required to connect solar cells more accurately than ever before. The present invention has been made in view of the above problems, and an object of the present invention is to provide a solar cell wiring sheet that does not generate wrinkles or curls when a back contact solar cell module is produced.

本発明は、上記課題を解決することを目的としたものであり、本発明の請求項1に係る発明は、表面に回路パターンが形成された絶縁性基材の裏面に、接着剤層を介して、アルミニウム層、耐候性基材を順次積層してなることを特徴とする太陽電池用配線シートである。   The present invention aims to solve the above problems, and the invention according to claim 1 of the present invention provides an adhesive layer on the back surface of an insulating substrate having a circuit pattern formed on the surface. A solar cell wiring sheet comprising an aluminum layer and a weather-resistant substrate which are sequentially laminated.

本発明の請求項2に係る発明は、前記アルミニウム層の厚みが、6μm〜70μmであることを特徴とする請求項1に記載の太陽電池用配線シートである。   Invention of Claim 2 of this invention is the wiring sheet for solar cells of Claim 1 whose thickness of the said aluminum layer is 6 micrometers-70 micrometers.

本発明の配線シートを用いることで、シワやカールがなく、各太陽電池セル間を正確に接続することでき、高い生産性と信頼性を保持したバッコンタクト型太陽電池を製造することができる。   By using the wiring sheet of the present invention, there is no wrinkle or curl, and each solar cell can be accurately connected, and a back contact type solar cell having high productivity and reliability can be manufactured.

本発明の太陽電池用配線シートの模式的断面図を示す。The typical sectional view of the wiring sheet for solar cells of the present invention is shown. 従来の太陽電池用配線シートの模式的断面図を示す。The typical sectional view of the conventional wiring sheet for solar cells is shown.

以下、本発明の太陽電池用配線シートについて、図面を参照して詳細に説明する。   Hereinafter, the wiring sheet for solar cells of the present invention will be described in detail with reference to the drawings.

図1は本発明の太陽電池用配線シートの模式的断面図、図2は従来の太陽電池用配線シートの模式的構成断面図を示す。   FIG. 1 is a schematic sectional view of a solar cell wiring sheet of the present invention, and FIG. 2 is a schematic sectional view of a conventional solar cell wiring sheet.

従来の太陽電池用配線シートは図2に示すように、絶縁性基材2と回路パターン1の積層体からなり、そのために、プラスチックフィルム基材からなる絶縁性基材2と金属箔からなる回路パターン1の、それぞれの熱収縮率の著しい違いにより、太陽電池モジュールの作製工程である熱ラミネーションにおいて、太陽電池用配線シートにシワやカールが発生して各セル間での正確な接続が出来難い問題があった。   As shown in FIG. 2, a conventional solar cell wiring sheet is composed of a laminate of an insulating substrate 2 and a circuit pattern 1, and for this purpose, a circuit comprising an insulating substrate 2 made of a plastic film substrate and a metal foil. Due to the significant difference in the thermal contraction rate of each pattern 1, wrinkles and curls are generated in the solar cell wiring sheet in the thermal lamination process, which is a manufacturing process of the solar cell module, and it is difficult to accurately connect the cells. There was a problem.

本発明は、図1に示すように、表面に回路パターン1が形成された絶縁性基材2の裏面に、接着剤層を介して、アルミニウム層3、耐候性基材4を順次積層した積層体からなる太陽電池用配線シートである。本発明は前記アルミニウム層3の剛性を活かし、太陽電池用配線シートの中間層として構成することで、シワやカールの発生を防ぐ作用効果を得ることができる。   As shown in FIG. 1, the present invention is a laminate in which an aluminum layer 3 and a weather-resistant substrate 4 are sequentially laminated on the back surface of an insulating substrate 2 having a circuit pattern 1 formed on the front surface via an adhesive layer. It is a wiring sheet for solar cells made of a body. The present invention can obtain the effect of preventing the generation of wrinkles and curls by making use of the rigidity of the aluminum layer 3 and constituting it as an intermediate layer of a wiring sheet for solar cells.

<回路パターン>
本発明に係る回路パターン1の形成に用いられる金属層は、回路パターンの形成のし易さから銅、アルミニウムが望ましい。また、回路パターン形成はフォトエッチング法や金属ペーストからなるインクを用いたスクリーン印刷法などが適用できる。また、前記金属層の厚みは、10μm〜100μmが好ましい。10μm未満であると、過電流や温度変化による影響で断線が生じる可能性があり、100μmを超えるとコスト的に望ましくな
い。
<Circuit pattern>
The metal layer used for forming the circuit pattern 1 according to the present invention is preferably copper or aluminum because of the ease of forming the circuit pattern. The circuit pattern can be formed by a photo etching method or a screen printing method using an ink made of a metal paste. The thickness of the metal layer is preferably 10 μm to 100 μm. If it is less than 10 μm, disconnection may occur due to the influence of overcurrent or temperature change, and if it exceeds 100 μm, it is not desirable in terms of cost.

<絶縁性基材>
本発明に係る絶縁性基材2としては、太陽電池モジュール化の一般的な加工条件、特に加工温度で変形しない優れた耐熱性を有することが重要であり、融点が150℃以上の高分子延伸フィルムまたは該高分子延伸フィルムの複合体を使用することができる。好ましくはポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド(PI)、ポリアミド(PA)などである。また、これらの高分子延伸フィルムに耐候性、水蒸気や酸素ガスバリア性、あるいは易接着性を付加した層を設けた複合体であってもよい。前記絶縁性基材の融点が150℃未満であると寸法安定性に欠け、太陽電池セルの配置部と回路シートとの接続位置合わせの精度が低下し、太陽電池モジュールに求められる性能が発揮できない。また、前記絶縁性基材の厚みは、6μm〜400μmが好ましい。厚みが6μm未満であると絶縁性が不足し、400μmを超えると熱収縮が大きくなり、太陽電池用配線シートの変形をアルミニウム層の作用効果で防ぐことが難しく、また、コストの問題が生じる。
<Insulating base material>
As the insulating base material 2 according to the present invention, it is important to have an excellent heat resistance that is not deformed at a general processing condition for solar cell modularization, particularly at a processing temperature, and a polymer stretch having a melting point of 150 ° C. or higher. A film or a composite of the polymer stretched film can be used. Polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide (PI), polyamide (PA) and the like are preferable. Moreover, the composite_body | complex which provided the layer which added weather resistance, water vapor | steam and oxygen gas barrier property, or easy-adhesiveness to these polymer stretched films may be sufficient. If the melting point of the insulating base material is less than 150 ° C., the dimensional stability is lacking, the accuracy of connection alignment between the solar cell arrangement part and the circuit sheet is lowered, and the performance required for the solar cell module cannot be exhibited. . Moreover, the thickness of the insulating substrate is preferably 6 μm to 400 μm. If the thickness is less than 6 μm, the insulation is insufficient, and if it exceeds 400 μm, thermal shrinkage increases, and it is difficult to prevent the deformation of the solar cell wiring sheet by the effect of the aluminum layer, and there is a problem of cost.

<アルミニウム層>
本発明に係るアルミニウム層3は、その剛性により、太陽電池モジュール作製工程の熱ラミネート工程において発生するシワやカールを防ぐことに加えて、バリア性による信頼性向上の作用効果をもたらすことができる。前記アルミニウム層3の厚さは、6μm〜70μmが好ましく、6μm未満であると剛性が不足して太陽電池用配線シートの変形を防ぐことができない。また、70μmを超えるとコストや重量の問題が生じる。
<Aluminum layer>
Due to its rigidity, the aluminum layer 3 according to the present invention can bring about the effect of improving the reliability due to the barrier property in addition to preventing wrinkles and curls that occur in the thermal lamination process of the solar cell module manufacturing process. The thickness of the aluminum layer 3 is preferably 6 μm to 70 μm, and if it is less than 6 μm, the rigidity is insufficient and deformation of the solar cell wiring sheet cannot be prevented. Moreover, when it exceeds 70 micrometers, the problem of cost or a weight will arise.

<耐候性基材>
本発明に係る耐候性基材4としては、長期間、太陽光や風雨に暴露されても著しい劣化が生じない耐候性を有するプラスチックフィルムが好ましく、要求される耐候性の程度によっては前記絶縁性基材を用いることもできるが、特にパーフルオロアルコキシ樹脂(PFA)、4フッ化エチレン−6フッ化プロピレン共重合体(FEP)、エチレン−4フッ化エチレン共重合体(ETFE)、塩化−3フッ化エチレン樹脂(PCTFE)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)等のフッ素樹脂や低オリゴマーPETをフィルム化したもの等が好ましい。前記耐候性基材4の厚みは、6μm〜100μmが好ましく、6μm未満であると強度と耐候性が不足し、100μmを超えると熱収縮が大きくなり、太陽電池用配線シートの変形をアルミニウム層の作用効果で防ぐことが難しく、また、コストの問題が生じる。
<Weather-resistant substrate>
As the weather resistant substrate 4 according to the present invention, a plastic film having a weather resistance that does not significantly deteriorate even when exposed to sunlight or wind and rain for a long period of time is preferable. Although a base material can also be used, in particular, perfluoroalkoxy resin (PFA), tetrafluoroethylene-6 fluoropropylene copolymer (FEP), ethylene-4 fluoroethylene copolymer (ETFE), chloride-3 A fluororesin such as ethylene fluoride resin (PCTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), or a material obtained by forming a film of low oligomer PET is preferable. The thickness of the weather-resistant substrate 4 is preferably 6 μm to 100 μm. If the thickness is less than 6 μm, the strength and weather resistance are insufficient, and if it exceeds 100 μm, thermal shrinkage increases, and the deformation of the solar cell wiring sheet is caused by the deformation of the aluminum layer. It is difficult to prevent due to the effect, and a cost problem arises.

<接着剤層>
本発明に係わる接着剤層は、2液硬化型のポリウレタン系接着剤が好ましい。また接着剤の塗布量は、乾燥後で3〜20g/mが望ましい。3g/m未満では、接着強度の不足となり、20g/mを超えると接着強度などの問題はないが経済的ではない。
<Adhesive layer>
The adhesive layer according to the present invention is preferably a two-component curable polyurethane adhesive. The amount of adhesive applied is preferably 3 to 20 g / m 2 after drying. If it is less than 3 g / m 2 , the adhesive strength is insufficient. If it exceeds 20 g / m 2 , there is no problem such as adhesive strength, but it is not economical.

以下に、本発明の具体的実施例を説明する。   Hereinafter, specific examples of the present invention will be described.

<実施例1>
絶縁性基材として、厚さ25μmのポリエチレンテレフタレートフィルム(フタムラ化学社製:商品名「FE2001」)を用い、その一方の面に、厚さ20μmのアルミ箔(サンアルミ社製:商品名「8079合金AL」)、耐候性基材として前記ポリエチレンテレフタレートフィルムを、2液硬化型高分子ポリウレタン系ドライラミネート接着剤(三井化学社製:商品名「A511」)を介して、順次貼り合せ、さらに、前記絶縁性基材の他方の面に、前記接着剤を介して、厚さ35μmの銅箔(三井金属社製:商品名「TPIII(M)」)を貼り合せて積層体を得た。なお、前記接着剤の塗布量は、乾燥時で8g/mに調製した。
<Example 1>
A polyethylene terephthalate film having a thickness of 25 μm (trade name “FE2001” manufactured by Phthamura Chemical Co., Ltd.) was used as an insulating substrate, and an aluminum foil having a thickness of 20 μm (trade name “8079” manufactured by Sun Aluminum Co., Ltd.) was used on one surface thereof. Alloy AL "), the polyethylene terephthalate film as a weather-resistant substrate, sequentially bonded via a two-component curable polymer polyurethane-based dry laminate adhesive (Mitsui Chemical Co., Ltd .: trade name" A511 "), A laminated body was obtained by bonding a 35 μm-thick copper foil (manufactured by Mitsui Kinzoku Co., Ltd .: trade name “TPIII (M)”) to the other surface of the insulating base material via the adhesive. The application amount of the adhesive was adjusted to 8 g / m 2 at the time of drying.

次に、上記積層体に、フォトエッチング法により回路パターンを形成し、太陽電池用配線シートを作製した。   Next, the circuit pattern was formed in the said laminated body by the photo-etching method, and the wiring sheet for solar cells was produced.

<比較例1>
絶縁性基材として、厚さ50μmのポリエチレンテレフタレートフィルム(東レ社製:商品名「KX10」)を用い、厚さ35μmの銅箔(三井金属社製:商品名「TPIII(M)」)と、2液硬化型高分子ポリウレタン系ドライラミネート接着剤(三井化学社製:商品名「A511」)を介して貼り合せ、積層体を得た。なお、前記接着剤の塗布量は、乾燥時で8g/mに調製した。
<Comparative Example 1>
As an insulating substrate, a polyethylene terephthalate film having a thickness of 50 μm (manufactured by Toray Industries, Inc .: trade name “KX10”), a copper foil having a thickness of 35 μm (trade name “TPIII (M)”, manufactured by Mitsui Kinzoku Co., Ltd.), The laminate was obtained by bonding through a two-component curable polymer polyurethane-based dry laminate adhesive (manufactured by Mitsui Chemicals, trade name “A511”). The application amount of the adhesive was adjusted to 8 g / m 2 at the time of drying.

次に、上記積層体に、実施例1と同様にして、フォトエッチング法により回路パターンを形成し、太陽電池用配線シートを作製した。   Next, in the same manner as in Example 1, a circuit pattern was formed on the above laminate by a photoetching method to produce a solar cell wiring sheet.

<比較例2>
絶縁性基材として、厚さ75μmのポリエチレンテレフタレートフィルム(南亜社製:商品名「BD11」)を用い、厚さ35μmの銅箔(三井金属社製:商品名「TPIII(M)」)と、2液硬化型高分子ポリウレタン系ドライラミネート接着剤(三井化学社製:商品名「A511」)を介して貼り合せ、積層体を得た。なお、前記接着剤の塗布量は、乾燥時で8g/mに調製した。
<Comparative example 2>
A 75 μm thick polyethylene terephthalate film (manufactured by Nanya Co., Ltd .: trade name “BD11”) is used as the insulating substrate, and a 35 μm thick copper foil (manufactured by Mitsui Kinzoku Co., Ltd .: trade name “TPIII (M)”) A laminated body was obtained by bonding through a two-component curable polymer polyurethane-based dry laminate adhesive (manufactured by Mitsui Chemicals: trade name “A511”). The application amount of the adhesive was adjusted to 8 g / m 2 at the time of drying.

次に、上記積層体に、実施例1と同様にして、フォトエッチング法により回路パターンを形成し、太陽電池用配線シートを作製した。   Next, in the same manner as in Example 1, a circuit pattern was formed on the above laminate by a photoetching method to produce a solar cell wiring sheet.

<比較例3>
絶縁性基材として、厚さ125μmのポリエチレンテレフタレートフィルム(南亜社製:商品名「BD11」)を用い、厚さ35μmの銅箔(三井金属社製:商品名「TPIII(M)」)と、2液硬化型高分子ポリウレタン系ドライラミネート接着剤(三井化学社製:商品名「A511」)を介して貼り合せ、積層体を得た。なお、前記接着剤の塗布量は、乾燥時で8g/mに調製した。
<Comparative Example 3>
A 125 μm thick polyethylene terephthalate film (manufactured by Nanya: trade name “BD11”) is used as an insulating substrate, and a 35 μm thick copper foil (trade name “TPIII (M)”) by Mitsui Kinzoku Co., Ltd. A laminated body was obtained by bonding through a two-component curable polymer polyurethane-based dry laminate adhesive (manufactured by Mitsui Chemicals: trade name “A511”). The application amount of the adhesive was adjusted to 8 g / m 2 at the time of drying.

次に、上記積層体に、実施例1と同様にして、フォトエッチング法により回路パターンを形成し、太陽電池用配線シートを作製した。   Next, in the same manner as in Example 1, a circuit pattern was formed on the above laminate by a photoetching method to produce a solar cell wiring sheet.

<評価項目>
実施例1および比較例1〜3で得られた太陽電池用配線シートの、通常の太陽電池モジュール作製時の条件下におけるシワ及びカールを評価した。評価結果を下記表1に示す。
<Evaluation items>
The wrinkles and curls of the solar cell wiring sheets obtained in Example 1 and Comparative Examples 1 to 3 were evaluated under the conditions for producing a normal solar cell module. The evaluation results are shown in Table 1 below.

<評価方法>
実施例1および比較例1〜3で得られた太陽電池用配線シートを、それぞれ1000mm×1600mmに断裁して評価用試料を作製し、通常の太陽電池モジュール作製時の条件下(ラミネート加熱温度:165℃、圧力:130Pa、時間:9分)に放置した後、シワ及びカールを観察した。
(シワ) :配線シート全体を観察し、シワが全く無い状態を○、シワが発生した
状態を×と判定した。
(カール) :配線シートを銅箔面下置き及び銅箔面上置きの両方で観察し、シート
端部の浮きが無い状態を○、端部が浮くまたは筒状にカールした状態
を×と判定した。
(総合評価) :シワ、カール両方の判定が○の場合を○、いずれか一方の判定が×の
場合を△、両方の判定が×の場合を×とした。
<Evaluation method>
The solar cell wiring sheets obtained in Example 1 and Comparative Examples 1 to 3 were cut into 1000 mm × 1600 mm, respectively, to prepare evaluation samples, and the conditions under which normal solar cell modules were manufactured (lamination heating temperature: After standing at 165 ° C., pressure: 130 Pa, time: 9 minutes, wrinkles and curls were observed.
(Wrinkle): The whole wiring sheet was observed.
The state was determined as x.
(Curl): The sheet is observed both on the copper foil surface and on the copper foil surface.
○ when the end is not lifted, when the end is floated or curled into a cylinder
Was determined as x.
(Comprehensive evaluation): When the judgment of both wrinkles and curls is ○, when either judgment is ×
The case was marked with Δ, and the case where both judgments were x was marked with ×.

<比較評価>
実施例1の本発明品は比較例1〜3の比較例品に比べて、いずれにおいても良好な結果を示した。
<Comparison evaluation>
The product of the present invention of Example 1 showed good results in all cases as compared with the comparative products of Comparative Examples 1-3.

1・・・回路パターン
2・・・絶縁性基材
3・・・アルミニウム層
4・・・耐候性基材
DESCRIPTION OF SYMBOLS 1 ... Circuit pattern 2 ... Insulating base material 3 ... Aluminum layer 4 ... Weather-resistant base material

Claims (2)

表面に回路パターンが形成された絶縁性基材の裏面に、接着剤層を介して、アルミニウム層、耐候性基材を順次積層してなることを特徴とする太陽電池用配線シート。   A wiring sheet for solar cells, wherein an aluminum layer and a weather-resistant substrate are sequentially laminated on the back surface of an insulating substrate having a circuit pattern formed on the surface, with an adhesive layer interposed therebetween. 前記アルミニウム層の厚みが、6μm〜70μmであることを特徴とする請求項1に記載の太陽電池用配線シート。   The thickness of the said aluminum layer is 6 micrometers-70 micrometers, The wiring sheet for solar cells of Claim 1 characterized by the above-mentioned.
JP2011086237A 2011-04-08 2011-04-08 Wiring sheet for solar cell Pending JP2012222140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011086237A JP2012222140A (en) 2011-04-08 2011-04-08 Wiring sheet for solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011086237A JP2012222140A (en) 2011-04-08 2011-04-08 Wiring sheet for solar cell

Publications (1)

Publication Number Publication Date
JP2012222140A true JP2012222140A (en) 2012-11-12

Family

ID=47273341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011086237A Pending JP2012222140A (en) 2011-04-08 2011-04-08 Wiring sheet for solar cell

Country Status (1)

Country Link
JP (1) JP2012222140A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015109307A (en) * 2013-12-03 2015-06-11 大日本印刷株式会社 Method for manufacturing solar battery collector sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213560A (en) * 1985-07-11 1987-01-22 Showa Alum Corp Manufacture of fine-grained al-fe alloy foil
JPS6217157A (en) * 1985-07-12 1987-01-26 Showa Alum Corp Manufacture of fine-grained al-fe alloy foil
WO2009134939A2 (en) * 2008-04-29 2009-11-05 Advent Solar, Inc. Photovoltaic modules manufactured using monolithic module assembly techniques
JP2011049228A (en) * 2009-08-25 2011-03-10 Dainippon Printing Co Ltd Reverse integrated sheet for solar cell module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213560A (en) * 1985-07-11 1987-01-22 Showa Alum Corp Manufacture of fine-grained al-fe alloy foil
JPS6217157A (en) * 1985-07-12 1987-01-26 Showa Alum Corp Manufacture of fine-grained al-fe alloy foil
WO2009134939A2 (en) * 2008-04-29 2009-11-05 Advent Solar, Inc. Photovoltaic modules manufactured using monolithic module assembly techniques
JP2011049228A (en) * 2009-08-25 2011-03-10 Dainippon Printing Co Ltd Reverse integrated sheet for solar cell module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015109307A (en) * 2013-12-03 2015-06-11 大日本印刷株式会社 Method for manufacturing solar battery collector sheet

Similar Documents

Publication Publication Date Title
JP4838827B2 (en) Solar cell module and manufacturing method thereof
JP6286736B2 (en) Back contact type solar cell module
JP5445419B2 (en) Solar cell module and manufacturing method thereof
JP2009043872A (en) Solar cell module, and manufacturing method thereof
US20090078301A1 (en) Solar cell module
JP2015057811A (en) Solar cell module
KR20160053390A (en) Electrodes integrated solar cell protection sheet and thereof manufacturing method, and solar cell modules manufactured using that
JP2012222140A (en) Wiring sheet for solar cell
JP5406900B2 (en) Solar cell module and manufacturing method thereof
JP2012079838A (en) Solar cell module and method for manufacturing the same
JP2008204997A (en) Rear surface protective sheet for solar cell
JP2010109038A (en) Solar cell back sheet, and solar cell module
JP5652911B2 (en) Manufacturing method of solar cell module
TWM416200U (en) Solar cell module
JP5942136B2 (en) Solar cell module and manufacturing method thereof
JP2015185680A (en) Solar battery module
JP5636967B2 (en) Back contact type solar cell module
US20180122966A1 (en) Solar cell module
JP2011181619A (en) Solar cell module
JP2012195491A (en) Sheet for flexible solar cells
WO2011151897A1 (en) Solar cell and method for manufacturing same
JP2018125369A (en) Solar cell module and manufacturing method for the same
JP2017017170A (en) Solar battery module
JP2008135573A (en) Solar battery element, solar-battery module and its manufacturing method
JP2011187818A (en) Solar cell module using superconducting sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150310