JP2012221749A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery Download PDF

Info

Publication number
JP2012221749A
JP2012221749A JP2011086536A JP2011086536A JP2012221749A JP 2012221749 A JP2012221749 A JP 2012221749A JP 2011086536 A JP2011086536 A JP 2011086536A JP 2011086536 A JP2011086536 A JP 2011086536A JP 2012221749 A JP2012221749 A JP 2012221749A
Authority
JP
Japan
Prior art keywords
active material
material layer
layer
positive electrode
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011086536A
Other languages
Japanese (ja)
Inventor
Kentaro Yoshida
健太郎 吉田
Ryoko Kanda
良子 神田
Kazuhiro Goto
和宏 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011086536A priority Critical patent/JP2012221749A/en
Publication of JP2012221749A publication Critical patent/JP2012221749A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte battery having excellent charge/discharge cycle characteristics.SOLUTION: The nonaqueous electrolyte battery 100 comprises a positive electrode active material layer 12, a negative electrode active material layer 22, and a solid electrolyte layer 3 arranged between these active material layer 12, 22. At least one of the positive electrode active material layer 12 or the negative electrode active material layer 22 contains a binder which contains a copolymer of polytetrafluoroethylene and polyvinylidene fluoride, and has a protrusion formed by the binder on the contact surface with the solid electrolyte layer 3. Surface roughness Rz of the contact surface is 2 μm or more. When a protrusion is provided by the binder on the contact surface of the active material layer and the solid electrolyte layer, adhesion of them is enhanced and bonding can be maintained thus ensuring excellent charge/discharge cycle.

Description

本発明は、電気機器等の電源に利用される非水電解質電池に関する。特に、充放電サイクル特性に優れる非水電解質電池に関する。   The present invention relates to a non-aqueous electrolyte battery used as a power source for electrical equipment and the like. In particular, the present invention relates to a nonaqueous electrolyte battery having excellent charge / discharge cycle characteristics.

携帯機器といった比較的小型の電気機器の電源に非水電解質電池が利用されている。非水電解質電池の代表例として、正・負極体間でのリチウムイオンの授受反応を利用したリチウム電池やリチウムイオン二次電池(以下、単にリチウムイオン電池と呼ぶ)が挙げられる。   Nonaqueous electrolyte batteries are used as power sources for relatively small electric devices such as portable devices. Typical examples of the nonaqueous electrolyte battery include a lithium battery and a lithium ion secondary battery (hereinafter simply referred to as a lithium ion battery) using a lithium ion transfer reaction between the positive and negative electrode bodies.

このリチウムイオン電池は、正極体と負極体とこれら電極体の間に配される電解質層とを備える。各電極体はさらに、集電機能を有する集電体と、活物質を含む活物質層とを備える。そして、正極体と負極体との間で電解質層を介してリチウム(Li)イオンが移動することによって充放電を行う方式の二次電池である。また近年では、有機電解液に代えて無機固体電解質を用いた全固体型電池が提案されている(例えば、特許文献1参照)。   This lithium ion battery includes a positive electrode body, a negative electrode body, and an electrolyte layer disposed between these electrode bodies. Each electrode body further includes a current collector having a current collecting function and an active material layer containing an active material. And it is a secondary battery of the system which performs charging / discharging by lithium (Li) ion moving through an electrolyte layer between a positive electrode body and a negative electrode body. In recent years, an all-solid battery using an inorganic solid electrolyte instead of an organic electrolyte has been proposed (see, for example, Patent Document 1).

特許文献1には、正極集電体上に粉末成形体の正極層(正極活物質層)を備える一方のユニット(正極体)と、負極集電体上に粉末成形体の負極層(負極活物質層)を備える他方ユニット(負極体)が開示されている。これら電極体はそれぞれ固体電解質層を備えており、これら固体電解質層を重ね合わせてプレスすることで非水電解質電池が得られることが記載されている。   In Patent Document 1, one unit (positive electrode body) including a positive electrode layer (positive electrode active material layer) of a powder molded body on a positive electrode current collector, and a negative electrode layer (negative electrode active material) of a powder molded body on a negative electrode current collector. The other unit (negative electrode body) having a material layer) is disclosed. Each of these electrode bodies is provided with a solid electrolyte layer, and it is described that a non-aqueous electrolyte battery can be obtained by overlapping and pressing these solid electrolyte layers.

特開2008‐103289号公報JP 2008-103289 A

しかし、従来の非水電解質電池に対しては、充放電サイクル特性の更なる向上が求められている。非水電解質電池で充放電を繰り返すと、正極活物質層あるいは負極活物質層において膨張・収縮が起こり、この体積変化により、当該活物質層と固体電解質層との接合界面で良好な接合を維持することが難しくなる。充放電に伴い、固体電解質層が活物質層から剥離したり、両者の接合が途切れてしまうと、充放電に寄与し得る各活物質層の実効面積が減少し、充放電サイクルの劣化等の問題が生じる。   However, further improvements in charge / discharge cycle characteristics are required for conventional nonaqueous electrolyte batteries. When charging and discharging are repeated in a non-aqueous electrolyte battery, expansion and contraction occur in the positive electrode active material layer or the negative electrode active material layer, and this volume change maintains good bonding at the bonding interface between the active material layer and the solid electrolyte layer. It becomes difficult to do. When the solid electrolyte layer is peeled off from the active material layer along with charging / discharging, or the bonding between both is interrupted, the effective area of each active material layer that can contribute to charging / discharging is reduced, and deterioration of the charging / discharging cycle, etc. Problems arise.

本発明は上記事情に鑑みてなされたものであり、その目的の一つは、充放電を繰り返しても、活物質層と固体電解質層との接合を維持することができ、充放電サイクル特性に優れる非水電解質電池を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to maintain the bonding between the active material layer and the solid electrolyte layer even when charging and discharging are repeated, and to achieve charge and discharge cycle characteristics. The object is to provide an excellent nonaqueous electrolyte battery.

本発明は、活物質層と固体電解質層との接合界面において、両者を密着させる突起部を設けることで、上記目的を達成する。   The present invention achieves the above-described object by providing a protrusion for bringing the active material layer and the solid electrolyte layer into close contact with each other at the bonding interface.

(1)本発明の非水電解質電池は、正極活物質層、負極活物質層、及びこれら活物質層の間に配される固体電解質層を備える。上記正極活物質層及び上記負極活物質層の少なくとも一方は、ポリテトラフルオロエチレンとポリフッ化ビニリデンとの共重合体を含むバインダーを含有し、上記固体電解質層との接触面において、上記バインダーによって形成される突起部を有する。そして、上記接触面の表面粗さRz(JIS B0601 01の最大高さRz)が2μm以上であることを特徴とする。   (1) The nonaqueous electrolyte battery of the present invention includes a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer disposed between these active material layers. At least one of the positive electrode active material layer and the negative electrode active material layer contains a binder containing a copolymer of polytetrafluoroethylene and polyvinylidene fluoride, and is formed by the binder at the contact surface with the solid electrolyte layer. Having a protruding portion. The surface roughness Rz (maximum height Rz of JIS B060101) of the contact surface is 2 μm or more.

この構成によれば、正極活物質層及び負極活物質層の少なくとも一方の活物質層が、固体電解質層との接触面において、バインダーによる突起部を有することで、両者の接触面積が大きくなると共に、アンカー効果によって両者の密着性が向上する。よって、充放電により活物質層が膨張・収縮した場合においても、固体電解質層が活物質層から剥離することを抑制でき、両者の接合を維持することができる。この突起部に起因して、上記接触面の表面粗さRzが2μm以上であることで、両者の間で高い密着性を得ることができる。   According to this configuration, the active material layer of at least one of the positive electrode active material layer and the negative electrode active material layer has the protruding portion by the binder on the contact surface with the solid electrolyte layer, thereby increasing the contact area between the two. The adhesion between the two is improved by the anchor effect. Therefore, even when the active material layer expands / shrinks due to charge / discharge, the solid electrolyte layer can be prevented from being peeled off from the active material layer, and the bonding between the two can be maintained. Due to this protrusion, the surface roughness Rz of the contact surface is 2 μm or more, so that high adhesion can be obtained between them.

バインダーが、ポリテトラフルオロエチレン(PTFE)とポリフッ化ビニリデン(PVDF)との共重合体を含むことで、PTFEとPVDFの各利点をバランスよく引き出すことができる。PVDF自体は、分散性に優れるため、活物質層内で凝集し難く、活物質層の内部抵抗を低減することができ、イオン伝導及び電子伝導のパスを十分に確保することができる。また、PVDFは、融点が低いため、過度に高温にしなくても溶融され易い。一方、PTFE自体は、耐熱性に優れるため、活物質層の成形性を向上させることができる。   When the binder contains a copolymer of polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF), the advantages of PTFE and PVDF can be brought out in a balanced manner. Since PVDF itself is excellent in dispersibility, it is difficult to aggregate in the active material layer, the internal resistance of the active material layer can be reduced, and a sufficient path for ionic conduction and electron conduction can be secured. Moreover, since PVDF has a low melting point, PVDF is easily melted without excessively high temperature. On the other hand, since PTFE itself is excellent in heat resistance, the moldability of the active material layer can be improved.

ここで、本発明の非水電解質電池が備える突起部は、後述する実施形態で詳述するが、バインダーを含有する活物質層を金型で熱間プレス成形する際に形成される。具体的には、この成形時、バインダーが溶融し、その状態で成形体を金型から取り出すと、溶融したバインダーが金型に付着し、引張られることで突起部が形成される。   Here, although the protrusion part with which the nonaqueous electrolyte battery of this invention is provided is explained in full detail by embodiment mentioned later, it forms when hot-press-molding the active material layer containing a binder with a metal mold | die. Specifically, during this molding, the binder is melted, and when the molded body is taken out of the mold in this state, the melted binder adheres to the mold and is pulled to form a protrusion.

そのため、このバインダーの構成材料としてPVDFを用いることで、PTFEのみをバインダーとする場合に比べて、熱間プレス時の温度を低くすることができ、活物質層内の他の構成材料に対して熱による影響を及ぼすことを防止できる。また、バインダーの構成材料としてPTFEを用いることで、PVDFのみをバインダーとする場合に比べて高い成形性を得ることができる。よって、PTFEとPVDFとを共重合させることによって、両者の上記各利点を引き出すことができ、活物質層は、成形性に優れ、かつ所望の突起部を有することができる。   Therefore, by using PVDF as the constituent material of this binder, the temperature during hot pressing can be lowered compared to the case where only PTFE is used as the binder, compared to other constituent materials in the active material layer. The influence by heat can be prevented. Further, by using PTFE as a constituent material of the binder, it is possible to obtain a higher moldability than when only PVDF is used as a binder. Therefore, by copolymerizing PTFE and PVDF, it is possible to bring out the above-mentioned advantages of both, and the active material layer is excellent in moldability and can have a desired protrusion.

(2)本発明の非水電解質電池の一形態として、上記ポリテトラフルオロエチレンとポリフッ化ビニリデンとの共重合比が、モル比で10:90〜40:60であることが挙げられる。   (2) As one form of the nonaqueous electrolyte battery of the present invention, the copolymerization ratio of the polytetrafluoroethylene and the polyvinylidene fluoride is 10:90 to 40:60 in terms of molar ratio.

ポリテトラフルオロエチレン(PTFE)とポリフッ化ビニリデン(PVDF)とを共重合させることで、バインダーの融点は、PVDFの融点(約170℃)超PTFEの融点(約327℃)未満とすることができる。このバインダーの融点は、PTFEとPVDFとの共重合比に由来する。上記共重合体中のPVDFの重合割合が少なくなる(PTFEの重合割合が多くなる)と、バインダーの融点は、PTFEの融点に近づき、上記共重合体中のPVDFの重合割合が多くなる(PTFEの重合割合が少なくなる)と、バインダーの融点はPVDFの融点に近づくと考えられる。   By copolymerizing polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF), the melting point of the binder can be less than the melting point of PVDF (about 170 ° C) and below the melting point of PTFE (about 327 ° C). . The melting point of this binder is derived from the copolymerization ratio of PTFE and PVDF. When the polymerization ratio of PVDF in the copolymer decreases (the polymerization ratio of PTFE increases), the melting point of the binder approaches the melting point of PTFE, and the polymerization ratio of PVDF in the copolymer increases (PTFE It is considered that the melting point of the binder approaches the melting point of PVDF.

共重合体中のPVDFの重合割合が少なくなると、バインダーの融点が高くなるため、突起部が形成され難くなる。突起部を形成するためには、熱間プレス時の温度を該バインダーの融点超とする必要があるが、このバインダーの融点が高すぎる場合、活物質層内の他の構成材料に対して熱による影響を及ぼす虞がある。一方、共重合体中のPVDFの重合割合が多くなると、バインダーの融点は低くなるため、突起部を形成し易くなるが、活物質層の成形性の低下を招く虞がある。   When the polymerization ratio of PVDF in the copolymer decreases, the melting point of the binder increases, so that it is difficult to form protrusions. In order to form the protrusions, the temperature during hot pressing must be higher than the melting point of the binder. If the melting point of the binder is too high, the temperature of the other constituent materials in the active material layer may There is a risk of influence. On the other hand, when the polymerization ratio of PVDF in the copolymer increases, the melting point of the binder decreases, so that it becomes easy to form protrusions, but the moldability of the active material layer may be lowered.

(3)本発明の非水電解質電池の一形態として、上記正極活物質層は、Co,Mn,Ni,及びFeから選択される少なくとも1種の元素とLiとを含む酸化物からなる活物質を含有することが挙げられる。   (3) As one form of the nonaqueous electrolyte battery of the present invention, the positive electrode active material layer is an active material composed of an oxide containing Li and at least one element selected from Co, Mn, Ni, and Fe It may be included.

正極活物質層に上記活物質を含有させることで、非水電解質電池の放電容量を向上させることができる。   By including the active material in the positive electrode active material layer, the discharge capacity of the nonaqueous electrolyte battery can be improved.

(4)本発明の非水電解質電池の一形態として、上記固体電解質層は、少なくともLi2SとP2S5とを含む固体電解質を含有することが挙げられる。 (4) As one form of the nonaqueous electrolyte battery of the present invention, the solid electrolyte layer includes a solid electrolyte containing at least Li 2 S and P 2 S 5 .

固体電解質層に上記固体電解質を含有させることで、Liイオン伝導性を高めることができ、非水電解質電池の放電容量を向上させることができる。   By including the solid electrolyte in the solid electrolyte layer, Li ion conductivity can be increased, and the discharge capacity of the nonaqueous electrolyte battery can be improved.

(5)本発明の非水電解質電池の一形態として、上記負極活物質層は、C,Si,Ge,Sn,Al,及びLiから選択される少なくとも1種の元素を含む活物質、又は少なくともTiとLiとを含む酸化物からなる活物質を含有することが挙げられる。   (5) As one form of the nonaqueous electrolyte battery of the present invention, the negative electrode active material layer is an active material containing at least one element selected from C, Si, Ge, Sn, Al, and Li, or at least The active material which consists of an oxide containing Ti and Li is mentioned.

負極活物質層に上記活物質を含有させることで、非水電解質電池の放電容量を向上させることができる。   By including the active material in the negative electrode active material layer, the discharge capacity of the non-aqueous electrolyte battery can be improved.

本発明の非水電解質電池は、活物質層が、固体電解質層との接触面において、バインダーによる突起部(表面粗さRzが2μm以上)を有することで、両者の密着性を向上して接合を維持することができ、充放電サイクル特性に優れる。特に、バインダーがPTFEとPVDFとの共重合体を含むことで、活物質層は、成形性に優れ、かつ所望の突起部を有する。   In the nonaqueous electrolyte battery of the present invention, the active material layer has a protruding portion made of a binder (surface roughness Rz is 2 μm or more) on the contact surface with the solid electrolyte layer, thereby improving the adhesion between the two and joining. The charge / discharge cycle characteristics are excellent. In particular, since the binder contains a copolymer of PTFE and PVDF, the active material layer has excellent moldability and has a desired protrusion.

図1(A)は、実施形態に係る非水電解質電池の縦断面図であり、図1(B)は、(A)に示す非水電解質電池の組立て前の状態を示す縦断面図である。1A is a longitudinal sectional view of a nonaqueous electrolyte battery according to an embodiment, and FIG. 1B is a longitudinal sectional view showing a state before assembly of the nonaqueous electrolyte battery shown in FIG. .

以下、図1を参照して、本発明の非水電解質電池の実施形態を説明する。本発明の非水電解質電池100は、正極体1、負極体2、及び両電極体1,2の間に配される固体電解質層3を備える。更に、正極体1は正極集電体11と正極活物質層12とを備え、負極体2は負極集電体21と負極活物質層22とを備える。本発明の特徴とするところは、正極活物質層12及び負極活物質層22の少なくとも一方において、特定のバインダーを含有し、このバインダーによって形成される突起部を有することにある。以下、この非水電解質電池100の各構成を詳細に説明する。本実施形態では、上記バインダーは正極活物質層12及び負極活物質層22共に含有している場合を述べる。   Hereinafter, an embodiment of the nonaqueous electrolyte battery of the present invention will be described with reference to FIG. A nonaqueous electrolyte battery 100 of the present invention includes a positive electrode body 1, a negative electrode body 2, and a solid electrolyte layer 3 disposed between both electrode bodies 1 and 2. Further, the positive electrode body 1 includes a positive electrode current collector 11 and a positive electrode active material layer 12, and the negative electrode body 2 includes a negative electrode current collector 21 and a negative electrode active material layer 22. A feature of the present invention is that at least one of the positive electrode active material layer 12 and the negative electrode active material layer 22 contains a specific binder and has a protrusion formed by the binder. Hereinafter, each configuration of the nonaqueous electrolyte battery 100 will be described in detail. In this embodiment, the case where the binder contains both the positive electrode active material layer 12 and the negative electrode active material layer 22 will be described.

≪正極体≫
[基本構成]
(正極集電体)
正極集電体11となる基板は、導電材料のみから構成されていてもよいし、絶縁基板上に導電材料の膜を形成したもので構成されていてもよい。後者の場合、導電材料の膜が集電体として機能する。導電材料としては、AlやNi、これらの合金、ステンレスから選択される1種が好適に利用できる。
≪Positive electrode body≫
[Basic configuration]
(Positive electrode current collector)
The substrate to be the positive electrode current collector 11 may be composed of only a conductive material, or may be composed of a conductive material film formed on an insulating substrate. In the latter case, the conductive material film functions as a current collector. As the conductive material, one selected from Al, Ni, alloys thereof, and stainless steel can be suitably used.

(正極活物質層)
正極活物質層12は、電池反応の主体となる正極活物質粒子を含む粉末を加圧成形することで得られる層である。正極活物質としては、層状岩塩型の結晶構造を有する物質、例えば、LiαXβ(1-X)O2(αはCo,Ni,Mnから選択される1種、βはFe,Al,Ti,Cr,Zn,Mo,Biから選択される1種、Xは0.5以上)で表わされる物質を挙げることができる。その具体例としては、LiCoO2やLiNiO2,LiMnO2,LiCo0.5Fe0.5O2,LiCo0.5Al0.5O2等を挙げることができる。その他、正極活物質として、スピネル型の結晶構造を有する物質(例えば、LiMn2O4等)や、オリビン型の結晶構造を有する物質(例えば、LiXFePO4(0<X<1))を用いることもできる。この正極活物質粒子の好ましい平均粒径は、1〜20μmである。
(Positive electrode active material layer)
The positive electrode active material layer 12 is a layer obtained by pressure-molding a powder containing positive electrode active material particles that are the main component of the battery reaction. As the positive electrode active material, a material having a layered rock salt type crystal structure, for example, Liα X β (1-X) O 2 (α is one selected from Co, Ni, Mn, β is Fe, Al, Ti , Cr, Zn, Mo and Bi, and X is 0.5 or more). Specific examples thereof include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiCo 0.5 Fe 0.5 O 2 , LiCo 0.5 Al 0.5 O 2 and the like. In addition, as the positive electrode active material, a substance having a spinel crystal structure (for example, LiMn 2 O 4 ) or a substance having an olivine crystal structure (for example, Li X FePO 4 (0 <X <1)) is used. It can also be used. A preferable average particle diameter of the positive electrode active material particles is 1 to 20 μm.

正極活物質層12は、この層12内でイオンの伝導を媒介し、イオン伝導性を改善する固体電解質粒子を含有してもよい。この固体電解質粒子としては、例えば、Li2S-P2S5系、Li2S-SiS2系、Li2S-B2S3系等の硫化物を好適に利用することができる。この固体電解質粒子の好ましい平均粒径は、0.5〜2μmである。 The positive electrode active material layer 12 may contain solid electrolyte particles that mediate conduction of ions in the layer 12 and improve ionic conductivity. As the solid electrolyte particles, for example, sulfides such as Li 2 SP 2 S 5 series, Li 2 S—SiS 2 series, Li 2 SB 2 S 3 series can be suitably used. A preferable average particle diameter of the solid electrolyte particles is 0.5 to 2 μm.

正極活物質層12が上記正極活物質粒子及び上記固体電解質粒子を含有する場合、これらの各混合割合は、正極活物質層12全体に対する正極活物質粒子の割合が少なくなると、電池容量の低下を招く虞がある。一方、正極活物質層12全体に対する正極活物質粒子の割合が多くなり過ぎると、相対的に固体電解質粒子の割合が少なくなり、正極活物質層12内でのイオンの伝導を媒介し難くなり内部抵抗の増加を招く虞がある。そのため、正極活物質層12における正極活物質粒子及び固体電解質粒子の好ましい混合比は、体積比で40:60〜90:10であり、より好ましくは、体積比で50:50〜80:20である。   When the positive electrode active material layer 12 contains the positive electrode active material particles and the solid electrolyte particles, the mixing ratio of these decreases the battery capacity when the ratio of the positive electrode active material particles to the entire positive electrode active material layer 12 decreases. There is a risk of inviting. On the other hand, when the ratio of the positive electrode active material particles to the entire positive electrode active material layer 12 is excessively large, the ratio of the solid electrolyte particles is relatively small, and it is difficult to mediate the conduction of ions in the positive electrode active material layer 12. There is a risk of increasing resistance. Therefore, a preferable mixing ratio of the positive electrode active material particles and the solid electrolyte particles in the positive electrode active material layer 12 is 40:60 to 90:10 by volume ratio, and more preferably 50:50 to 80:20 by volume ratio. is there.

正極活物質層12は、ポリテトラフルオロエチレン(PTFE)とポリフッ化ビニリデン(PVDF)との共重合体を含むバインダーを含有する。このバインダーは、正極活物質層12と後述する固体電解質層3との接触面において、突起部を形成するために必要である。この突起部は、正極活物質層12を熱間プレス成形で形成する(後述の正極体の製造方法参照)際に形成される。PTFEとPVDFとの共重合体を形成する重合法としては、従来公知の種々の重合方法を採用することができる。この重合方法としては、例えば、乳化重合法、懸濁重合法、塊状重合法、溶液重合法等が挙げられる。重合には、従来公知の種々の重合開始剤、重合触媒等を使用することができる。また重合法に応じて溶媒、分散媒、分散安定剤、乳化剤等の種々の添加剤を使用することもできる。   The positive electrode active material layer 12 contains a binder containing a copolymer of polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF). This binder is necessary for forming protrusions on the contact surface between the positive electrode active material layer 12 and the solid electrolyte layer 3 described later. This protrusion is formed when the positive electrode active material layer 12 is formed by hot press molding (see the method for manufacturing a positive electrode body described later). As a polymerization method for forming a copolymer of PTFE and PVDF, various conventionally known polymerization methods can be employed. Examples of this polymerization method include an emulsion polymerization method, a suspension polymerization method, a bulk polymerization method, and a solution polymerization method. For polymerization, various conventionally known polymerization initiators, polymerization catalysts, and the like can be used. Various additives such as a solvent, a dispersion medium, a dispersion stabilizer, and an emulsifier can be used depending on the polymerization method.

PTFEとPVDFとの共重合体において、共重合体中のPVDFの重合割合が少なくなると、バインダーの融点が高くなるため、バインダーが溶融し難くなり、突起部が形成され難くなる。突起部を形成するためには、熱間プレス時の温度をバインダーの融点超とする必要があるが、このバインダーの融点が高すぎる場合、正極活物質層12内の他の構成材料に対して熱による影響を及ぼす虞がある。例えば、正極活物質層12が固体電解質粒子を含有する場合、PTFEの融点近傍の温度で熱間プレス成形すると、固体電解質粒子のイオン伝導性が低下する虞がある。一方、共重合体中のPVDFの重合割合が多くなると、正極活物質層12の成形性の低下を招く虞がある。そのため、共重合体中のPTFEとPVDFとの好ましい共重合比は、モル比で10:90〜40:60であることが好ましく、モル比で20:80〜30:70であることがより好ましい。上記共重合比のバインダーを含有する正極活物質層12は、成形性に優れ、かつ所望の突起部を有する。この共重合比は、上記重合方法において、PTFEとPVDFとの粉末を混合する際の混合比によって決まる。PTFEとPVDFとが共重合された共重合体の粒子の好ましい平均粒径は、1〜20μmである。   In the copolymer of PTFE and PVDF, if the polymerization ratio of PVDF in the copolymer decreases, the melting point of the binder increases, so that the binder is difficult to melt and the protrusions are difficult to form. In order to form the protrusions, the temperature during hot pressing must be higher than the melting point of the binder, but if the melting point of the binder is too high, the other constituent materials in the positive electrode active material layer 12 May be affected by heat. For example, when the positive electrode active material layer 12 contains solid electrolyte particles, hot press molding at a temperature near the melting point of PTFE may reduce the ionic conductivity of the solid electrolyte particles. On the other hand, when the polymerization ratio of PVDF in the copolymer increases, the moldability of the positive electrode active material layer 12 may be reduced. Therefore, a preferable copolymerization ratio of PTFE and PVDF in the copolymer is preferably 10:90 to 40:60 in molar ratio, and more preferably 20:80 to 30:70 in molar ratio. . The positive electrode active material layer 12 containing the binder having the copolymerization ratio is excellent in moldability and has a desired protrusion. This copolymerization ratio is determined by the mixing ratio when the powders of PTFE and PVDF are mixed in the polymerization method. A preferable average particle size of the copolymer particles obtained by copolymerizing PTFE and PVDF is 1 to 20 μm.

上記バインダーは、正極活物質層12全体に対する割合が多くなると、相対的に正極活物質粒子及び固体電解質粒子の割合が少なくなり、正極活物質層12内において内部抵抗の増加を招く虞がある。よって、正極活物質層12全体に対するバインダーの混合割合は、1〜10体積%であることが好ましい。   When the ratio of the binder to the entire positive electrode active material layer 12 is increased, the ratio of the positive electrode active material particles and the solid electrolyte particles is relatively decreased, which may increase the internal resistance in the positive electrode active material layer 12. Therefore, the mixing ratio of the binder with respect to the whole positive electrode active material layer 12 is preferably 1 to 10% by volume.

正極活物質層12は、必要に応じて導電助剤を含有してもよい。導電助剤としては、例えば、アセチレンブラック(AB)やケッチェンブラック(KB)といったカーボンブラック等が挙げられる。   The positive electrode active material layer 12 may contain a conductive additive as necessary. Examples of the conductive assistant include carbon black such as acetylene black (AB) and ketjen black (KB).

〈突起部〉
正極活物質層12において、後述する固体電解質層3(正極側固体電解質層(PSE層)13)との接触面には、上記バインダーによって形成される突起部を有する。この突起部の形成方法については、後の正極体の製造方法において詳述する。この突起部によって、上記接触面の表面粗さRz(JIS B0601 01の最大高さRz)が2μm以上となる。この突起部を有することで、正極活物質層12とPSE層13の接触面積が大きくなると共に、アンカー効果によって両者の密着性が向上する。表面粗さRzは、大きい程密着性はよいが、PSE層13の厚みよりも大きくなると、該PSE層13の面積が減少し、電池の実効面積が減少する虞がある。よって、表面粗さRzの上限は、5μmが好ましく、3μmがより好ましい。
<protrusion>
In the positive electrode active material layer 12, a contact surface with a solid electrolyte layer 3 (positive electrode side solid electrolyte layer (PSE layer) 13) to be described later has a protrusion formed by the binder. The method for forming the protrusion will be described in detail later in the method for manufacturing a positive electrode body. Due to this protrusion, the surface roughness Rz (maximum height Rz of JIS B060101) of the contact surface is 2 μm or more. By having this protrusion, the contact area between the positive electrode active material layer 12 and the PSE layer 13 is increased, and the adhesion between the two is improved by the anchor effect. The larger the surface roughness Rz is, the better the adhesion is. However, when the surface roughness Rz is larger than the thickness of the PSE layer 13, the area of the PSE layer 13 decreases and the effective area of the battery may decrease. Therefore, the upper limit of the surface roughness Rz is preferably 5 μm, more preferably 3 μm.

(正極側固体電解質層)
正極側固体電解質層(PSE層)13は、固体電解質で構成されており、イオン伝導性の高い硫化物系固体電解質で構成されていることが好ましい。硫化物固体電解質としては、Li2S-P2S5系、Li2S-SiS2系、Li2S-B2S3系等が挙げられ、更にP2O5やLi3PO4が添加されてもよい。上記正極活物質層12に固体電解質粒子を含有する場合、この固体電解質粒子と同じ材質であってもよい。その他、LiPON等の酸化物系固体電解質で構成してもよい。このPSE層13(図1(B)参照)は、負極体2と接合して非水電解質電池100を製造したときに、固体電解質層(SE層)3(図1(A)参照)の一部となる。
(Positive electrode side solid electrolyte layer)
The positive electrode side solid electrolyte layer (PSE layer) 13 is made of a solid electrolyte, and is preferably made of a sulfide-based solid electrolyte having high ion conductivity. Examples of the sulfide solid electrolyte include Li 2 SP 2 S 5 system, Li 2 S-SiS 2 system, Li 2 SB 2 S 3 system, etc. Even if P 2 O 5 or Li 3 PO 4 is added. Good. When the positive electrode active material layer 12 contains solid electrolyte particles, the same material as the solid electrolyte particles may be used. In addition, you may comprise with oxide type solid electrolytes, such as LiPON. This PSE layer 13 (see FIG. 1 (B)) is a part of the solid electrolyte layer (SE layer) 3 (see FIG. 1 (A)) when the non-aqueous electrolyte battery 100 is manufactured by joining to the negative electrode body 2. Part.

[その他]
(中間層)
上記正極活物質層12とPSE層13の材質によっては、正極活物質層12とPSE層13との間に中間層(図示せず)を有していてもよい。中間層は、正極活物質に酸化物、PSE層に固体状の硫化物系を用いた場合に必要となるものであって、正極活物質層12とPSE層13との間の高抵抗化を抑制する層である。PSE層13に含まれる硫化物系固体電解質と、正極活物質層12に含まれる酸化物系の正極活物質とが反応して、高抵抗層が形成されることがある。中間層を設けることで、この高抵抗層の形成を抑制し、充放電に伴う電池の放電容量の低下を抑制できる。中間層に用いる材料としては、非晶質のLiイオン伝導性酸化物、例えば、LiNbO3やLiTaO3等を利用できる。特にLiNbO3は、正極活物質層12とPSE層13との界面近傍の高抵抗化を効果的に抑制できる。
[Others]
(Middle layer)
Depending on the material of the positive electrode active material layer 12 and the PSE layer 13, an intermediate layer (not shown) may be provided between the positive electrode active material layer 12 and the PSE layer 13. The intermediate layer is required when an oxide is used for the positive electrode active material and a solid sulfide system is used for the PSE layer. The intermediate layer increases the resistance between the positive electrode active material layer 12 and the PSE layer 13. It is a layer to suppress. The sulfide-based solid electrolyte contained in the PSE layer 13 and the oxide-based cathode active material contained in the cathode active material layer 12 may react to form a high resistance layer. By providing the intermediate layer, the formation of the high resistance layer can be suppressed, and the decrease in the discharge capacity of the battery due to charge / discharge can be suppressed. As the material used for the intermediate layer, an amorphous Li ion conductive oxide such as LiNbO 3 or LiTaO 3 can be used. In particular, LiNbO 3 can effectively suppress an increase in resistance in the vicinity of the interface between the positive electrode active material layer 12 and the PSE layer 13.

[正極体の製造方法]
上記構成を備える正極体1は、代表的には、正極集電体11と正極活物質層12の成形体の形成⇒正極側固体電解質層(PSE層)13の形成という工程により製造することができる。
[Method for producing positive electrode body]
The positive electrode body 1 having the above-described configuration is typically manufactured by a process of forming a formed body of the positive electrode current collector 11 and the positive electrode active material layer 12 ⇒ forming a positive electrode side solid electrolyte layer (PSE layer) 13. it can.

まず、正極集電体11と正極活物質層12の成形体を形成する。正極活物質層12の構成材料(ここでは、正極活物質、固体電解質、PTFEとPVDFとの共重合体からなるバインダー)をボールミル等で混合して正極合材を作製する。成形体用の金型として、例えば、正極集電体11が収納でき、上方に開口部を有する容器状の下金型と、下金型の開口部に対して蓋となる上金型とを用いる。下金型内に正極集電体11を配置し、その上から上記正極合材を充填し、上金型で蓋をする。これをプレス圧力200〜600MPa、プレス温度180〜300℃×プレス時間5〜30分で熱間プレス成形する。正極活物質層12が硫化物系の固体電解質粒子を含有する場合、上記プレス温度は、その固体電解質粒子の結晶化温度よりも低温とすることが好ましい。この熱間プレス時の温度が、バインダーの融点(PVDFの融点超PTFEの融点未満)超であるため、バインダーの一部(PVDFに由来する部分)が溶融する。このバインダーの一部が溶融した状態で、正極集電体11と正極活物質層12の成形体を金型から取り出す。このとき、溶融したバインダーは上金型との接触面に付着しており、上金型を取り外す際に、バインダーがこの上金型に引張られて突起部となる部分が形成される。その後、バインダーが硬化することで突起部が形成される。   First, a formed body of the positive electrode current collector 11 and the positive electrode active material layer 12 is formed. A constituent material of the positive electrode active material layer 12 (here, a positive electrode active material, a solid electrolyte, a binder made of a copolymer of PTFE and PVDF) is mixed with a ball mill or the like to produce a positive electrode mixture. As a mold for the molded body, for example, a container-shaped lower mold that can accommodate the positive electrode current collector 11 and has an opening on the upper side, and an upper mold that serves as a lid for the opening of the lower mold Use. The positive electrode current collector 11 is placed in the lower mold, the positive electrode mixture is filled from above, and the upper mold is covered. This is hot press-molded at a press pressure of 200 to 600 MPa, a press temperature of 180 to 300 ° C., and a press time of 5 to 30 minutes. When the positive electrode active material layer 12 contains sulfide-based solid electrolyte particles, the press temperature is preferably lower than the crystallization temperature of the solid electrolyte particles. Since the temperature during the hot pressing is higher than the melting point of the binder (more than the melting point of PVDF and less than the melting point of PTFE), a part of the binder (portion derived from PVDF) is melted. In a state where a part of the binder is melted, the molded body of the positive electrode current collector 11 and the positive electrode active material layer 12 is taken out from the mold. At this time, the melted binder is attached to the contact surface with the upper mold, and when the upper mold is removed, the binder is pulled onto the upper mold to form a portion that becomes a protrusion. Thereafter, the protrusion is formed by curing the binder.

上記突起部の高さや個数、つまり正極活物質層12の正極側固体電解質層(PSE層)13との接触面の表面粗さRzは、熱間プレス時の温度によって変えることができる。上記温度が高いと、バインダーは溶融し易く柔らかくなるため、上金型により引張られるバインダー量が多くなるため、突起部が高く形成され易く、表面粗さRzは大きくなる。一方、上記温度が低いと、バインダーは溶融し難く比較的硬いため、上金型により引張られるバインダー量は少なく、表面粗さRzは小さくなる。また、表面粗さRzは、バインダー粒子の平均粒径の大きさによって変えることもできる。上記平均粒径が大きいと、上金型により引張られる個々の粒子の面積が大きくなるため、突起部が高く形成され易く、表面粗さRzは大きくなる。一方、上記平均粒径が小さいと、上金型により引張られる個々の粒子の面積が小さく、表面粗さRzは小さくなる。   The height and number of the protrusions, that is, the surface roughness Rz of the contact surface of the positive electrode active material layer 12 with the positive electrode-side solid electrolyte layer (PSE layer) 13 can be changed depending on the temperature during hot pressing. When the temperature is high, since the binder is easily melted and softened, the amount of the binder that is pulled by the upper mold is increased, so that the protrusion is easily formed and the surface roughness Rz is increased. On the other hand, when the temperature is low, the binder is difficult to melt and is relatively hard, so that the amount of binder pulled by the upper mold is small and the surface roughness Rz is small. Further, the surface roughness Rz can be changed according to the average particle size of the binder particles. When the average particle size is large, the area of individual particles pulled by the upper mold becomes large, so that the protrusions are easily formed high, and the surface roughness Rz becomes large. On the other hand, when the average particle size is small, the area of individual particles pulled by the upper mold is small, and the surface roughness Rz is small.

次に、上記成形体(正極集電体11と正極活物質層12)の突起部が形成された面に、PSE層13を形成する。この形成方法として、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、レーザーアブレーション法等を利用できる。PSE層13の正極活物質層12との接触面には、突起部が形成されているので、両者の接触面積が大きくなると共に、アンカー効果によって、この突起部にPSE層の蒸着面が入り込み、両者の密着性がよくなる。   Next, the PSE layer 13 is formed on the surface of the molded body (the positive electrode current collector 11 and the positive electrode active material layer 12) where the protrusions are formed. As this formation method, for example, a vacuum deposition method, a sputtering method, an ion plating method, a laser ablation method, or the like can be used. Since the protrusions are formed on the contact surface of the PSE layer 13 with the positive electrode active material layer 12, the contact area between the two becomes large, and the anchoring effect causes the deposition surface of the PSE layer to enter the protrusions. The adhesion between the two is improved.

≪負極体≫
[基本構成]
(負極集電体)
負極集電体21となる基板は、導電材料のみから構成されていてもよいし、絶縁基板上に導電材料の膜を形成したもので構成されていてもよい。後者の場合、導電材料が集電体として機能する。導電材料としては、例えば、Cu,Ni,Fe,Cr及びこれらの合金(例えば、ステンレス等)から選択される1種が好適に利用できる。
≪Negative electrode body≫
[Basic configuration]
(Negative electrode current collector)
The substrate serving as the negative electrode current collector 21 may be composed of only a conductive material, or may be composed of a conductive material film formed on an insulating substrate. In the latter case, the conductive material functions as a current collector. As the conductive material, for example, one selected from Cu, Ni, Fe, Cr and alloys thereof (for example, stainless steel) can be suitably used.

(負極活物質層)
負極活物質層22は、電池反応の主体となる負極活物質粒子を含む粉末を加圧成形することで得られる層である。負極活物質としては、C,Si,Ge,Sn,Al,Li合金、またはLi4Ti5O12等のLiを含む酸化物を利用することができる。この負極活物質粒子の好ましい平均粒径は、1〜20μmである。
(Negative electrode active material layer)
The negative electrode active material layer 22 is a layer obtained by pressure-molding a powder containing negative electrode active material particles that are the main component of the battery reaction. As the negative electrode active material, a C, Si, Ge, Sn, Al, Li alloy, or an oxide containing Li such as Li 4 Ti 5 O 12 can be used. A preferable average particle diameter of the negative electrode active material particles is 1 to 20 μm.

負極活物質層22は、この層22内でイオンの伝導を媒介し、イオン伝導性を改善する固体電解質粒子を含有してもよい。この固体電解質粒子としては、例えば、Li2S-P2S5系、Li2S-SiS2系、Li2S-B2S3系等の硫化物を好適に利用することができる。この固体電解質粒子の好ましい平均粒径は、0.5〜2μmである。また、負極活物質層22における負極活物質粒子及び固体電解質粒子の好ましい混合比は、体積比で40:60〜90:10であり、より好ましくは、体積比で50:50〜80:20である。 The negative electrode active material layer 22 may contain solid electrolyte particles that mediate conduction of ions in the layer 22 and improve ionic conductivity. As the solid electrolyte particles, for example, sulfides such as Li 2 SP 2 S 5 series, Li 2 S—SiS 2 series, Li 2 SB 2 S 3 series can be suitably used. A preferable average particle diameter of the solid electrolyte particles is 0.5 to 2 μm. Moreover, the preferable mixing ratio of the negative electrode active material particles and the solid electrolyte particles in the negative electrode active material layer 22 is 40:60 to 90:10 by volume ratio, more preferably 50:50 to 80:20 by volume ratio. is there.

負極活物質層22は、ポリテトラフルオロエチレン(PTFE)とポリフッ化ビニリデン(PVDF)との共重合体を含むバインダーを含有する。このバインダーの共重合方法や共重合比等については、上記正極活物質層12に含有するバインダーと同様である。このバインダーによって、負極活物質層22において、後述する負極側固体電解質層(NSE層)23との接触面に突起部を有し、表面粗さRzが2μm以上となる。この突起部に関しても、正極活物質層12の突起部と同様である。   The negative electrode active material layer 22 contains a binder containing a copolymer of polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF). The binder copolymerization method and copolymerization ratio are the same as those of the binder contained in the positive electrode active material layer 12. With this binder, the negative electrode active material layer 22 has protrusions on the contact surface with the negative electrode side solid electrolyte layer (NSE layer) 23 described later, and the surface roughness Rz becomes 2 μm or more. This protrusion is the same as the protrusion of the positive electrode active material layer 12.

(負極側固体電解質層)
負極側固体電解質層(NSE層)23(図1(B)参照)は、上述したPSE層13と同様であり、正極体1と接合して非水電解質電池100を製造したときに、固体電解質層(SE層)3(図1(A)参照)の一部となる。このNSE層23は、PSE層13と組成や製造方法等を同じとしておくことが好ましい。これは、NSE層23とPSE層13とを接合してSE層3としたとき、SE層3の厚み方向にイオン伝導性にばらつきが生じないようにするためである。
(Negative electrode solid electrolyte layer)
The negative electrode side solid electrolyte layer (NSE layer) 23 (see FIG. 1 (B)) is the same as the PSE layer 13 described above, and when the nonaqueous electrolyte battery 100 is manufactured by joining with the positive electrode body 1, the solid electrolyte It becomes a part of the layer (SE layer) 3 (see FIG. 1A). The NSE layer 23 preferably has the same composition and manufacturing method as the PSE layer 13. This is to prevent variations in ion conductivity in the thickness direction of the SE layer 3 when the NSE layer 23 and the PSE layer 13 are joined to form the SE layer 3.

[その他]
(界面層)
界面層は、上記負極活物質層22とNSE層23との接合を確保する役割を果たす層である。界面層の材料としては、周期律表第14族元素(特に、Si)を利用することができる。界面層を実質的にSiで構成すると、放電特性に優れた電池とすることができる。
[Others]
(Interface layer)
The interface layer is a layer that plays a role of ensuring the bonding between the negative electrode active material layer 22 and the NSE layer 23. As the material for the interface layer, a group 14 element (particularly, Si) of the periodic table can be used. When the interface layer is substantially composed of Si, a battery having excellent discharge characteristics can be obtained.

[負極体の製造方法]
上記構成を備える負極体2は、代表的には、負極集電体21と負極活物質層22の成形体の形成⇒負極側固体電解質層(NSE層)23の形成という工程により製造することができる。負極体2は、正極体1の製造方法と同様の方法で製造できる。
[Method for producing negative electrode body]
The negative electrode body 2 having the above configuration is typically manufactured by a process of forming a molded body of the negative electrode current collector 21 and the negative electrode active material layer 22 ⇒ forming a negative electrode side solid electrolyte layer (NSE layer) 23. it can. The negative electrode body 2 can be manufactured by the same method as the manufacturing method of the positive electrode body 1.

≪非水電解質電池≫
[非水電解質電池の製造方法]
製造した正極体1と負極体2とにおいて、PSE層13とNSE層23とが互いに対向するように両者を積層して(図1(B)参照)、非水電解質電池100(図1(A)参照)を製造する。その際、上記積層方向にプレス圧力8〜16MPa、プレス温度180〜250℃×プレス時間30〜60分で熱間プレス成形することで、PSE層13とNSE層23とを融着し一体化させる。
≪Nonaqueous electrolyte battery≫
[Method for producing non-aqueous electrolyte battery]
In the produced positive electrode body 1 and negative electrode body 2, the PSE layer 13 and the NSE layer 23 were laminated so that they face each other (see FIG. 1 (B)), and the nonaqueous electrolyte battery 100 (FIG. 1 (A) )). At that time, the PSE layer 13 and the NSE layer 23 are fused and integrated by hot press molding in the laminating direction at a press pressure of 8 to 16 MPa, a press temperature of 180 to 250 ° C. and a press time of 30 to 60 minutes. .

≪試験例≫
本発明の非水電解質電池を作製し、その電池性能を評価した。
≪Test example≫
The nonaqueous electrolyte battery of the present invention was produced and the battery performance was evaluated.

LiCoO2の粉末(体積分布中心粒径D50=10μm)とLi2S-P2S5系固体電解質の粉末(D50=1μm)とバインダー(D50=10μm)とを、質量比で67:29:4の割合で、50rpmで2時間かけてボールミルで混合して正極合材を作製した。バインダーには、PTFEとPVDFとの共重合体を用いた。このPTFEとPVDFとの共重合比はモル比で25:75である。成形用の金型として、上方に開口部を有する容器状の下金型と、下金型の開口部に対して蓋となる上金型とを用いた。まず、下金型内に正極集電体となるAl箔(厚さ10μm)を配置し、その上に上記正極合材を充填し、上金型で蓋をする。これをプレス圧力360MPa、プレス温度200℃×プレス時間20分で熱間プレス成形する。このとき、バインダーの一部(PVDFに由来する部分)が溶融しており、この溶融状態で、上金型を取り外す。溶融したバインダーは、上金型に引張られて突起部となる部分が形成され、その後、そのバインダーを硬化することで突起部が形成される。得られた成形体(直径16mmの円形状)は、正極集電体(Al箔)の上に正極活物質層(LiCoO2+Li2S-P2S5系固体電解質の成形体)が形成されている。正極活物質層の厚さは150μmであった。また、正極活物質層の表面をレーザ顕微鏡(波長405nm青色レーザ光源)を用いて測定したところ、上記表面の表面粗さRzは2μmであった。上記成形体の正極活物質層の上に、真空蒸着法を用いてLi2S‐P2S5系固体電解質を成膜して、正極側固体電解質層(厚さ5μm)を形成し、正極体を得た。 LiCoO 2 powder (volume distribution center particle size D50 = 10 μm), Li 2 SP 2 S 5 solid electrolyte powder (D50 = 1 μm) and binder (D50 = 10 μm) in a mass ratio of 67: 29: 4 A positive electrode mixture was prepared by mixing with a ball mill at a rate of 50 rpm for 2 hours. As the binder, a copolymer of PTFE and PVDF was used. The copolymerization ratio of PTFE and PVDF is 25:75 in terms of molar ratio. As the mold for molding, a container-shaped lower mold having an opening on the upper side and an upper mold serving as a lid for the opening of the lower mold were used. First, an Al foil (thickness: 10 μm) serving as a positive electrode current collector is placed in the lower mold, the positive electrode mixture is filled on the Al foil, and the upper mold is capped. This is hot press-molded at a press pressure of 360 MPa, a press temperature of 200 ° C. and a press time of 20 minutes. At this time, a part of the binder (part derived from PVDF) is melted, and the upper mold is removed in this molten state. The melted binder is pulled by the upper mold to form a portion that becomes a protrusion, and then the protrusion is formed by curing the binder. The obtained molded body (circular shape with a diameter of 16 mm) has a positive electrode active material layer (LiCoO 2 + Li 2 SP 2 S 5 solid electrolyte molded body) formed on a positive electrode current collector (Al foil). . The thickness of the positive electrode active material layer was 150 μm. Further, when the surface of the positive electrode active material layer was measured using a laser microscope (wavelength 405 nm blue laser light source), the surface roughness Rz of the surface was 2 μm. On the positive electrode active material layer of the molded body, a Li 2 S-P 2 S 5 solid electrolyte is formed using a vacuum deposition method to form a positive electrode side solid electrolyte layer (thickness 5 μm). Got the body.

グラファイトの粉末(D50=10μm)とLi2S-P2S5系固体電解質の粉末(D50=1μm)とバインダー(D50=10μm)とを、質量比で47:47:6の割合で、50rpmで2時間かけてボールミルで混合して負極合材を作製した。バインダーには、PTFEとPVDFとの共重合体を用いた。このPTFEとPVDFとの共重合比はモル比で25:75である。上記成形用の金型を用いて、まず、下金型内に負極集電体となるステンレス箔(厚さ10μm)を配置し、その上に上記負極合材を充填し、上金型で蓋をする。これをプレス圧力360MPa、プレス温度200℃×プレス時間20分で熱間プレス成形する。このとき、バインダーの一部(PVDFに由来する部分)が溶融しており、この溶融状態で、上金型を取り外す。溶融したバインダーは、上金型に引張られて突起部となる部分が形成され、その後、そのバインダーを硬化することで突起部が形成される。得られた成形体(直径16mmの円形状)は、負極集電体(ステンレス箔)の上に負極活物質層(グラファイト+Li2S-P2S5系固体電解質の成形体)が形成されている。負極活物質層の厚さは150μmであった。また、負極活物質層の表面をレーザ顕微鏡(波長405nm青色レーザ光源)を用いて測定したところ、上記表面の表面粗さRzは2μmであった。上記成形体の負極活物質層の上に、真空蒸着法を用いてLi2S‐P2S5系固体電解質を成膜して、負極側固体電解質層(厚さ5μm)を形成し、負極体を得た。 A graphite powder (D50 = 10 μm), a Li 2 SP 2 S 5 solid electrolyte powder (D50 = 1 μm) and a binder (D50 = 10 μm) at a mass ratio of 47: 47: 6 and 2 at 50 rpm. A negative electrode mixture was prepared by mixing with a ball mill over time. As the binder, a copolymer of PTFE and PVDF was used. The copolymerization ratio of PTFE and PVDF is 25:75 in terms of molar ratio. Using the molding die, first, a stainless foil (thickness 10 μm) serving as a negative electrode current collector is placed in the lower die, and the negative electrode mixture is filled thereon, and the upper die is covered with the lid. do. This is hot press-molded at a press pressure of 360 MPa, a press temperature of 200 ° C. and a press time of 20 minutes. At this time, a part of the binder (part derived from PVDF) is melted, and the upper mold is removed in this molten state. The melted binder is pulled by the upper mold to form a portion that becomes a protrusion, and then the protrusion is formed by curing the binder. The obtained molded body (circular shape with a diameter of 16 mm) has a negative electrode active material layer (graphite + Li 2 SP 2 S 5 solid electrolyte molded body) formed on a negative electrode current collector (stainless foil). The thickness of the negative electrode active material layer was 150 μm. Further, when the surface of the negative electrode active material layer was measured using a laser microscope (wavelength 405 nm blue laser light source), the surface roughness Rz of the surface was 2 μm. On the negative electrode active material layer of the molded body, a Li 2 S-P 2 S 5 solid electrolyte is formed using a vacuum deposition method to form a negative electrode solid electrolyte layer (thickness 5 μm), and the negative electrode Got the body.

露点温度-50℃の大気中で、上記の正極体と負極体に形成した各固体電解質層同士が対向するように両電極体を積層し、その積層方向にプレス圧力16MPa、プレス温度190℃×プレス時間30分で加圧加熱処理を施すことで、上記各固体電解質層同士を融着し両電極体を接合し、非水電解質電池を作製した。   In an atmosphere with a dew point temperature of −50 ° C., both electrode bodies are laminated so that the solid electrolyte layers formed on the positive electrode body and the negative electrode body face each other, and the pressing pressure is 16 MPa in the laminating direction, the pressing temperature is 190 ° C. × By applying pressure and heat treatment for a press time of 30 minutes, the solid electrolyte layers were fused together to join both electrode bodies, and a nonaqueous electrolyte battery was produced.

以上のようにして作製した非水電解質電池を充放電試験用セルに組み込み、これを試料No.1とした。   The non-aqueous electrolyte battery produced as described above was incorporated into a charge / discharge test cell, and this was designated as sample No. 1.

正極体及び負極体において、各電極活物質層を構成する材料の混合比を変更して各電極体を作製した以外は、試料No.1と同様にして非水電解質電池を作製した。まず、正極体について、正極活物質層は、LiCoO2の粉末とLi2S-P2S5系固体電解質の粉末とバインダーとを、質量比で69:29:2の割合で形成した。このとき、正極活物質層の固体電解質層との接触面の表面粗さRzは2μmであった。次に、負極体について、負極活物質層は、グラファイトの粉末とLi2S-P2S5系固体電解質の粉末とバインダーとを、質量比で48:48:4の割合で形成した。このとき、負極活物質層の固体電解質層との接触面の表面粗さRzは2μmであった。この非水電解質電池を充放電試験用セルに組み込み、これを試料No.2とした。 A nonaqueous electrolyte battery was produced in the same manner as Sample No. 1 except that each electrode body was produced by changing the mixing ratio of the materials constituting each electrode active material layer in the positive electrode body and the negative electrode body. First, for the positive electrode body, the positive electrode active material layer was formed by mixing a LiCoO 2 powder, a Li 2 SP 2 S 5 solid electrolyte powder, and a binder in a mass ratio of 69: 29: 2. At this time, the surface roughness Rz of the contact surface of the positive electrode active material layer with the solid electrolyte layer was 2 μm. Next, with respect to the negative electrode body, the negative electrode active material layer was formed of graphite powder, Li 2 SP 2 S 5 based solid electrolyte powder and binder in a mass ratio of 48: 48: 4. At this time, the surface roughness Rz of the contact surface of the negative electrode active material layer with the solid electrolyte layer was 2 μm. This non-aqueous electrolyte battery was incorporated in a charge / discharge test cell, and this was designated as sample No. 2.

また、正極体について、正極活物質層は、LiCoO2の粉末とLi2S-P2S5系固体電解質の粉末とバインダーとを、質量比で69:30:1の割合で形成した。このとき、正極活物質層の固体電解質層との接触面の表面粗さRzは2μmであった。次に、負極体について、負極活物質層は、グラファイトの粉末とLi2S-P2S5系固体電解質の粉末とバインダーとを、質量比で49:49:2の割合で形成した。このとき、負極活物質層の固体電解質層との接触面の表面粗さRzは2μmであった。この非水電解質電池を充放電試験用セルに組み込み、これを試料No.3とした。 In addition, for the positive electrode body, the positive electrode active material layer was formed of LiCoO 2 powder, Li 2 SP 2 S 5 solid electrolyte powder and binder in a mass ratio of 69: 30: 1. At this time, the surface roughness Rz of the contact surface of the positive electrode active material layer with the solid electrolyte layer was 2 μm. Next, with respect to the negative electrode body, the negative electrode active material layer was formed of graphite powder, Li 2 SP 2 S 5 solid electrolyte powder and binder in a mass ratio of 49: 49: 2. At this time, the surface roughness Rz of the contact surface of the negative electrode active material layer with the solid electrolyte layer was 2 μm. This nonaqueous electrolyte battery was incorporated in a charge / discharge test cell, and this was designated as Sample No. 3.

更に、正極体について、正極活物質層は、LiCoO2の粉末とLi2S-P2S5系固体電解質の粉末とバインダーとを、質量比で70:30:0の割合で形成した。つまり、正極活物質層内にはバインダーが含有されていない。このとき、正極活物質層の固体電解質層との接触面の表面粗さRzは1μmであった。次に、負極体について、負極活物質層は、グラファイトの粉末とLi2S-P2S5系固体電解質の粉末とバインダーとを、質量比で50:50:0の割合で形成した。つまり、負極活物質層内にもバインダーが含有されていない。このとき、負極活物質層の固体電解質層との接触面の表面粗さRzは1μmであった。この非水電解質電池を充放電試験用セルに組み込み、これを試料No.4とした。 Further, for the positive electrode body, the positive electrode active material layer was formed of a LiCoO 2 powder, a Li 2 SP 2 S 5 solid electrolyte powder, and a binder in a mass ratio of 70: 30: 0. That is, the binder is not contained in the positive electrode active material layer. At this time, the surface roughness Rz of the contact surface of the positive electrode active material layer with the solid electrolyte layer was 1 μm. Next, with respect to the negative electrode body, the negative electrode active material layer was formed of graphite powder, Li 2 SP 2 S 5 solid electrolyte powder and binder in a mass ratio of 50: 50: 0. That is, the binder is not contained in the negative electrode active material layer. At this time, the surface roughness Rz of the contact surface of the negative electrode active material layer with the solid electrolyte layer was 1 μm. This nonaqueous electrolyte battery was incorporated into a charge / discharge test cell, and this was designated as Sample No. 4.

[電池の評価]
試料No.1〜4の非水電解質電池について、10サイクルの充放電サイクル試験を行った。試験条件は、電流密度0.05mA/cm2、カットオフ電圧3.0〜4.1Vとした。各電池の充放電10サイクル後の容量維持率(=10サイクル時の放電容量/最大放電容量)を調べた。
[Battery evaluation]
For the non-aqueous electrolyte batteries of Sample Nos. 1 to 4, a 10-cycle charge / discharge cycle test was performed. The test conditions were a current density of 0.05 mA / cm 2 and a cut-off voltage of 3.0 to 4.1V. The capacity retention rate after 10 cycles of charge and discharge of each battery (= discharge capacity at 10 cycles / maximum discharge capacity) was examined.

その結果、各試料の10サイクル後の容量維持率は、試料No.1は83%、試料No.2は82%、試料No.3は83%、試料No.4は68%であった。つまり、活物質層と固体電解質層との接触面の表面粗さRzが2μmであった試料No.1〜3は、10サイクル後の容量維持率が80%以上という良好な充放電サイクル特性が得られることがわかった。   As a result, the capacity maintenance rate after 10 cycles of each sample was 83% for sample No. 1, 82% for sample No. 2, 83% for sample No. 3, and 68% for sample No. 4. In other words, sample Nos. 1 to 3 whose surface roughness Rz of the contact surface between the active material layer and the solid electrolyte layer was 2 μm had good charge / discharge cycle characteristics with a capacity retention rate of 80% or more after 10 cycles. It turns out that it is obtained.

以上の結果から、活物質層にPTFEとPVDFとの共重合体からなるバインダーを含有し、活物質層と固体電解質層との接触面の表面粗さRzを2μmとすることで、両者の密着性が向上し、充放電に伴い活物質層が体積変化しても両者の接合を維持することができ、充放電サイクルに優れると考えられる。   Based on the above results, the active material layer contains a binder made of a copolymer of PTFE and PVDF, and the surface roughness Rz of the contact surface between the active material layer and the solid electrolyte layer is set to 2 μm, thereby allowing the two materials to adhere to each other. Therefore, even if the volume of the active material layer changes with charge / discharge, the bonding between the two can be maintained, and it is considered that the charge / discharge cycle is excellent.

上述した実施形態は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、本発明の範囲は上述した構成に限定されるものではない。   The above-described embodiments can be appropriately changed without departing from the gist of the present invention, and the scope of the present invention is not limited to the above-described configuration.

本発明の非水電解質電池は、種々の電気機器の電源としての非水電解質電池に好適に利用可能である。   The nonaqueous electrolyte battery of the present invention can be suitably used as a nonaqueous electrolyte battery as a power source for various electric devices.

100 非水電解質電池
1 正極体
11 正極集電体 12 正極活物質層 13 正極側固体電解質層(PSE層)
2 負極体
21 負極集電体 22 負極活物質層 23 負極側固体電解質層(NSE層)
3 固体電解質層(SE層)
100 non-aqueous electrolyte battery
1 Positive electrode body
11 Cathode current collector 12 Cathode active material layer 13 Cathode side solid electrolyte layer (PSE layer)
2 Negative electrode body
21 Negative electrode current collector 22 Negative electrode active material layer 23 Negative electrode side solid electrolyte layer (NSE layer)
3 Solid electrolyte layer (SE layer)

Claims (5)

正極活物質層、負極活物質層、及びこれら活物質層の間に配される固体電解質層を備える非水電解質電池であって、
前記正極活物質層及び前記負極活物質層の少なくとも一方は、
ポリテトラフルオロエチレンとポリフッ化ビニリデンとの共重合体を含むバインダーを含有し、
前記固体電解質層との接触面において、前記バインダーによって形成される突起部を有し、
前記接触面の表面粗さRzが2μm以上であることを特徴とする非水電解質電池。
A non-aqueous electrolyte battery comprising a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer disposed between these active material layers,
At least one of the positive electrode active material layer and the negative electrode active material layer is
Containing a binder comprising a copolymer of polytetrafluoroethylene and polyvinylidene fluoride,
In the contact surface with the solid electrolyte layer, having a protrusion formed by the binder,
A nonaqueous electrolyte battery, wherein the contact surface has a surface roughness Rz of 2 μm or more.
前記ポリテトラフルオロエチレンとポリフッ化ビニリデンとの共重合比が、モル比で10:90〜40:60であることを特徴とする請求項1に記載の非水電解質電池。   2. The nonaqueous electrolyte battery according to claim 1, wherein a copolymerization ratio of the polytetrafluoroethylene and the polyvinylidene fluoride is 10:90 to 40:60 in terms of molar ratio. 前記正極活物質層は、Co,Mn,Ni,及びFeから選択される少なくとも1種の元素とLiとを含む酸化物からなる活物質を含有することを特徴とする請求項1又は2に記載の非水電解質電池。   3. The positive electrode active material layer contains an active material made of an oxide containing at least one element selected from Co, Mn, Ni, and Fe and Li. Non-aqueous electrolyte battery. 前記固体電解質層は、少なくともLi2SとP2S5とを含む固体電解質を含有することを特徴とする請求項1〜3のいずれか1項に記載の非水電解質電池。 4. The nonaqueous electrolyte battery according to claim 1, wherein the solid electrolyte layer contains a solid electrolyte containing at least Li 2 S and P 2 S 5 . 前記負極活物質層は、C,Si,Ge,Sn,Al,及びLiから選択される少なくとも1種の元素を含む活物質、又は少なくともTiとLiとを含む酸化物からなる活物質を含有することを特徴とする請求項1〜4のいずれか1項に記載の非水電解質電池。   The negative electrode active material layer contains an active material containing at least one element selected from C, Si, Ge, Sn, Al, and Li, or an active material made of an oxide containing at least Ti and Li. The nonaqueous electrolyte battery according to claim 1, wherein the battery is a nonaqueous electrolyte battery.
JP2011086536A 2011-04-08 2011-04-08 Nonaqueous electrolyte battery Withdrawn JP2012221749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011086536A JP2012221749A (en) 2011-04-08 2011-04-08 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011086536A JP2012221749A (en) 2011-04-08 2011-04-08 Nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2012221749A true JP2012221749A (en) 2012-11-12

Family

ID=47273037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011086536A Withdrawn JP2012221749A (en) 2011-04-08 2011-04-08 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2012221749A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014191917A (en) * 2013-03-26 2014-10-06 Idemitsu Kosan Co Ltd All solid battery
JP2014207104A (en) * 2013-04-11 2014-10-30 トヨタ自動車株式会社 Method of manufacturing battery
JP2015032535A (en) * 2013-08-06 2015-02-16 トヨタ自動車株式会社 Laminated electrode body having dense electrolyte layer on negative electrode layer side before lamination press
WO2015045707A1 (en) * 2013-09-24 2015-04-02 ソニー株式会社 Negative electrode for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool and electronic device
WO2015147280A1 (en) * 2014-03-28 2015-10-01 富士フイルム株式会社 All-solid-state secondary cell, method for manufacturing electrode sheet for cell, and method for manufacturing all-solid-state secondary cell
JP2015222722A (en) * 2014-05-21 2015-12-10 ショット アクチエンゲゼルシャフトSchott AG Electrolyte having multilayer structure, and electricity-storage device
JP2016035867A (en) * 2014-08-04 2016-03-17 トヨタ自動車株式会社 Lithium solid type secondary battery and method for manufacturing the same
JPWO2014185378A1 (en) * 2013-05-15 2017-02-23 株式会社クレハ Non-aqueous electrolyte secondary battery structure, non-aqueous electrolyte secondary battery, and method for producing the structure
JP2017107826A (en) * 2015-12-11 2017-06-15 国立大学法人豊橋技術科学大学 Electrode and method of manufacturing the same, and all-solid-state lithium ion battery
WO2019074075A1 (en) * 2017-10-12 2019-04-18 富士フイルム株式会社 Binder composition for all-solid-state secondary cell, solid-electrolyte-containing sheet, all-solid-state secondary cell, and method for manufacturing solid-electrolyte-containing sheet and all-solid-state secondary cell
WO2020158633A1 (en) * 2019-01-31 2020-08-06 ダイキン工業株式会社 Structure, composite body, battery and method for producing composite body
WO2024034672A1 (en) * 2022-08-10 2024-02-15 ダイキン工業株式会社 Fluororesin for binder for electrochemical devices, binder for electrochemical devices, electrode mixture, electrode, and secondary battery
WO2024069204A1 (en) * 2022-09-27 2024-04-04 日産自動車株式会社 All-solid-state battery

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014191917A (en) * 2013-03-26 2014-10-06 Idemitsu Kosan Co Ltd All solid battery
JP2014207104A (en) * 2013-04-11 2014-10-30 トヨタ自動車株式会社 Method of manufacturing battery
JPWO2014185378A1 (en) * 2013-05-15 2017-02-23 株式会社クレハ Non-aqueous electrolyte secondary battery structure, non-aqueous electrolyte secondary battery, and method for producing the structure
JP2015032535A (en) * 2013-08-06 2015-02-16 トヨタ自動車株式会社 Laminated electrode body having dense electrolyte layer on negative electrode layer side before lamination press
WO2015045707A1 (en) * 2013-09-24 2015-04-02 ソニー株式会社 Negative electrode for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool and electronic device
WO2015147280A1 (en) * 2014-03-28 2015-10-01 富士フイルム株式会社 All-solid-state secondary cell, method for manufacturing electrode sheet for cell, and method for manufacturing all-solid-state secondary cell
JP2015222722A (en) * 2014-05-21 2015-12-10 ショット アクチエンゲゼルシャフトSchott AG Electrolyte having multilayer structure, and electricity-storage device
JP2016035867A (en) * 2014-08-04 2016-03-17 トヨタ自動車株式会社 Lithium solid type secondary battery and method for manufacturing the same
JP2017107826A (en) * 2015-12-11 2017-06-15 国立大学法人豊橋技術科学大学 Electrode and method of manufacturing the same, and all-solid-state lithium ion battery
WO2019074075A1 (en) * 2017-10-12 2019-04-18 富士フイルム株式会社 Binder composition for all-solid-state secondary cell, solid-electrolyte-containing sheet, all-solid-state secondary cell, and method for manufacturing solid-electrolyte-containing sheet and all-solid-state secondary cell
CN111194502A (en) * 2017-10-12 2020-05-22 富士胶片株式会社 Binder composition for all-solid-state secondary battery, solid electrolyte-containing sheet, all-solid-state secondary battery, and solid electrolyte-containing sheet and method for producing all-solid-state secondary battery
JPWO2019074075A1 (en) * 2017-10-12 2020-10-22 富士フイルム株式会社 Binder composition for all-solid-state secondary battery, solid-state electrolyte-containing sheet and all-solid-state secondary battery, and method for producing solid-state electrolyte-containing sheet and all-solid-state secondary battery.
US11489163B2 (en) 2017-10-12 2022-11-01 Fujifilm Corporation Binder composition for all-solid state secondary battery, solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery, method of manufacturing solid electrolyte-containing sheet, and method of manufacturing all-solid state secondary battery
CN111194502B (en) * 2017-10-12 2023-05-05 富士胶片株式会社 Binder composition for all-solid-state secondary battery, solid electrolyte-containing sheet, all-solid-state secondary battery, and method for producing both
WO2020158633A1 (en) * 2019-01-31 2020-08-06 ダイキン工業株式会社 Structure, composite body, battery and method for producing composite body
CN113366683A (en) * 2019-01-31 2021-09-07 大金工业株式会社 Structure, composite, battery, and method for producing composite
WO2024034672A1 (en) * 2022-08-10 2024-02-15 ダイキン工業株式会社 Fluororesin for binder for electrochemical devices, binder for electrochemical devices, electrode mixture, electrode, and secondary battery
JP7460939B2 (en) 2022-08-10 2024-04-03 ダイキン工業株式会社 Fluororesin for binders for electrochemical devices, binders for electrochemical devices, electrode mixtures, electrodes, and secondary batteries
WO2024069204A1 (en) * 2022-09-27 2024-04-04 日産自動車株式会社 All-solid-state battery

Similar Documents

Publication Publication Date Title
KR101774683B1 (en) Electorde active material slurry, preparation method thereof, and all solid secondary battery comprising the same
JP2012221749A (en) Nonaqueous electrolyte battery
CN102356485B (en) All-solid secondary battery with graded electrodes
US11276846B2 (en) Method for manufacturing electrode for secondary battery and electrode manufactured thereby
JP5277859B2 (en) Sulfide-based lithium ion conductive solid electrolyte glass and all-solid lithium secondary battery
JP5516755B2 (en) Electrode body and all-solid battery
JP5413355B2 (en) All solid battery
KR20180091678A (en) Anode for all solid state secondary battery, all solid state secondary battery and method of manufacturing the same
KR101886358B1 (en) All solid state battery having LATP-containing cathode electrode composite and manufacturing method the same
KR20230022199A (en) Anode for all solid state secondary battery, all solid state secondary battery and method of manufacturing the same
JP5626654B2 (en) Nonaqueous electrolyte battery and method for producing nonaqueous electrolyte battery
JP2012227107A (en) Electrode body for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2012164571A (en) Negative electrode body and lithium ion battery
JPWO2011145462A1 (en) Positive electrode body for non-aqueous electrolyte battery, method for producing the same, and non-aqueous electrolyte battery
JP2023101001A (en) All-solid secondary battery
US20130302698A1 (en) Nonaqueous electrolyte battery
US20130065134A1 (en) Nonaqueous-electrolyte battery and method for producing the same
JP2018120710A (en) Method for manufacturing all-solid battery
JP2012160379A (en) Nonaqueous electrolyte battery and method for manufacturing the same
KR20210133085A (en) All-solid-state secondary battery
JPWO2013042421A1 (en) Secondary battery
JP2013054949A (en) Nonaqueous electrolyte battery
JP2022545706A (en) Manufacturing method of lithium metal unit cell for all-solid-state battery and unit cell manufactured by the same
JPWO2018164050A1 (en) Inorganic solid electrolyte material, and slurry using the same, solid electrolyte membrane for all solid secondary battery, solid electrolyte sheet for all solid secondary battery, positive electrode active material film for all solid secondary battery, for all solid secondary battery Negative electrode active material film, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, and method for producing all-solid-state secondary battery
JP6748909B2 (en) All solid state battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701