JP2012221556A - Formation method of proton conductor film - Google Patents

Formation method of proton conductor film Download PDF

Info

Publication number
JP2012221556A
JP2012221556A JP2011082491A JP2011082491A JP2012221556A JP 2012221556 A JP2012221556 A JP 2012221556A JP 2011082491 A JP2011082491 A JP 2011082491A JP 2011082491 A JP2011082491 A JP 2011082491A JP 2012221556 A JP2012221556 A JP 2012221556A
Authority
JP
Japan
Prior art keywords
proton conductor
substrate
forming
film
conductor film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011082491A
Other languages
Japanese (ja)
Inventor
Takashi Otsuka
隆 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011082491A priority Critical patent/JP2012221556A/en
Publication of JP2012221556A publication Critical patent/JP2012221556A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To form a proton conductor film having high crystallinity without oxidizing a substrate consisting of Pd that is a hydrogen permeable metal.SOLUTION: The formation method of a proton conductor film represented by BaZrYO(0.3≥x≥0) includes a step for adjusting an aqueous solution containing Ba,ZrY, a step for adjusting a precursor solution by adding KOH to the aqueous solution thereby adjusting the pH, and a step for forming a film under hydrothermal conditions by holding the substrate in the precursor solution subjected to pH adjustment. In particular, a proton conductor film having high crystallinity can be formed by forming it after forming an NiO film on the substrate.

Description

本発明は燃料電池および水素センサー等の電気化学デバイスに応用可能なプロトン伝導体膜の形成方法に関するものである。   The present invention relates to a method for forming a proton conductor membrane applicable to electrochemical devices such as fuel cells and hydrogen sensors.

近年、環境エネルギー分野の注目とともに、エネルギー循環社会の構築にむけて、水素を基本とするエネルギーシステムの構築が現実となりつつある。水素を基本とするエネルギーデバイスの基本となる燃料電池は、水素と酸素の反応から電気を効率的に取り出すデバイスとして開発が盛んになっており、一部固体高分子形燃料電池(PEFC)が実用化されている。   In recent years, with the attention of the environmental energy field, the construction of an energy system based on hydrogen is becoming a reality for the construction of an energy recycling society. Fuel cells, which are the basis of energy devices based on hydrogen, have been actively developed as devices that efficiently extract electricity from the reaction between hydrogen and oxygen. Some polymer electrolyte fuel cells (PEFC) are in practical use. It has become.

PEFCは固体電解質膜の両側に触媒電極層を形成して、アノード電極に水素、カソード電極に酸素を導入することによってカソードで水を生成させることによって電気を取り出すものである。   PEFC takes out electricity by forming catalyst electrode layers on both sides of a solid electrolyte membrane and introducing water into the anode electrode and oxygen into the cathode electrode to generate water at the cathode.

一方でPEFCよりさらに発電効率の高い固体酸化物形燃料電池(SOFC)も開発途上にある。非非特許文献1によるように、SOFCでは、SOFCにおいては、固体酸化物の酸素イオン伝導体を固体電解質として用いて、カソード電極に酸素を導入して、一方アノード電極に水素もしくは炭化水素ガスを導入することによって発電する。   On the other hand, solid oxide fuel cells (SOFC) with higher power generation efficiency than PEFC are also under development. As described in Non-Patent Document 1, in SOFC, in SOFC, a solid oxide oxygen ion conductor is used as a solid electrolyte, oxygen is introduced into the cathode electrode, while hydrogen or hydrocarbon gas is introduced into the anode electrode. Generate electricity by introducing it.

動作原理的には、PEFCではオキソニウムイオン(H3O+)の伝導が生じる固体電解質膜を利用しており、一方SOFCでは酸素イオン伝導(O2-)が生じる固体酸化物電解質膜を用いている。 In principle, PEFC uses a solid electrolyte membrane that generates oxonium ions (H 3 O + ), while SOFC uses a solid oxide electrolyte membrane that generates oxygen ions (O 2− ). ing.

以上のように燃料電池にはいくつかの方式が提案されており、固体電解質として、どのようなイオン伝導体を用いるかによって、動作温度が決定し、それに応じた触媒電極を用いている。   As described above, several types of fuel cells have been proposed. The operating temperature is determined depending on what kind of ionic conductor is used as the solid electrolyte, and a catalyst electrode corresponding to the ionic conductor is used.

また、SOFCの発電効率はPEFCの発電効率よりも高いことが知られている。しかしながらO2-イオン伝導を用いるために、動作温度750℃程度以上と高いという特徴を有している。 In addition, it is known that the power generation efficiency of SOFC is higher than that of PEFC. However, since O 2− ion conduction is used, it has a feature that the operating temperature is as high as about 750 ° C. or higher.

そのために、燃料電池セルを構成する部材には高い耐熱性を有するセラミックスや特殊合金をしようしなければならないとともに、高温での動作に起因する構成部材間の材料拡散や熱応力による破壊など、熱的、機械的な信頼性を得にくいといった欠点をも有している。   For this reason, it is necessary to use ceramics and special alloys with high heat resistance for the members that make up the fuel cell, as well as heat diffusion such as material diffusion between components caused by operation at high temperatures and destruction due to thermal stress. This also has the disadvantage that it is difficult to obtain mechanical and mechanical reliability.

しかしながら、一方では、高温で動作するために触媒材料として、動作温度が100℃以下であるPEFCで使われているようなPtといった貴金属を使用する必要がないといった利点も有している。   However, on the other hand, since it operates at a high temperature, it has an advantage that it is not necessary to use a noble metal such as Pt used in PEFC having an operating temperature of 100 ° C. or less as a catalyst material.

以上のようにO2-イオン伝導を用いたSOFCは効率が高く、貴金属触媒を使用しないといった利点が存在するが動作温度が高いといった問題から低温化への取り組みもなされてきている。 As described above, SOFC using O 2− ion conduction is highly efficient and has the advantage of not using a noble metal catalyst, but efforts have been made to lower the temperature due to the problem of high operating temperature.

低温動作化するためには、固体電解質の実効的なイオン伝導を確保する必要があるため、固体電解質を薄くすることが有効であるが、薄くしすぎると燃料ガスの透過や、機械的強度の低下、電子絶縁性の劣化等といった別の課題がでてくるため、750℃以下での温度領域で良好なイオン伝導性を有する材料としてペロブスカイト型プロトン伝導・酸素伝導混合伝導体を用いた燃料電池が提案されてきている。   In order to operate at low temperatures, it is necessary to ensure effective ionic conduction of the solid electrolyte, so it is effective to make the solid electrolyte thin. However, if it is made too thin, the permeation of fuel gas and mechanical strength will be reduced. Fuel cell using perovskite type proton conduction / oxygen conduction mixed conductor as a material with good ion conductivity in the temperature range below 750 ° C because other problems such as reduction, deterioration of electronic insulation, etc. appear Has been proposed.

特許文献1によれば、一対のガス拡散電極間に固体電解質としてプロトン伝導体を挟み込んだ構造の固体電解質方燃料電池が開示されている。   According to Patent Document 1, a solid electrolyte fuel cell having a structure in which a proton conductor is sandwiched between a pair of gas diffusion electrodes as a solid electrolyte is disclosed.

特許文献1によれば、BaCe1-xGdxO3-α(0.23≧x≧0.16、1.5>α>0)であらわされた固体電解質を用いる事によって、650℃から850℃で燃料電池動作を実現できるとしている。 According to Patent Document 1, by using a solid electrolyte represented by BaCe 1-x Gd x O 3 -α (0.23 ≧ x ≧ 0.16, 1.5>α> 0), the fuel cell operates at 650 ° C. to 850 ° C. Can be realized.

また特許文献2および非特許文献2に、プロトン伝導体膜を水素透過膜上に形成した燃料電池構成が開示されている。   Patent Document 2 and Non-Patent Document 2 disclose fuel cell configurations in which a proton conductor membrane is formed on a hydrogen permeable membrane.

水素透過膜としてPd上にペロブスカイト型プロトン伝導体酸化物をレーザーアブレーション法によって形成して、水素を燃料として燃料電池動作を達成している。   A perovskite proton conductor oxide is formed on Pd as a hydrogen permeable membrane by a laser ablation method to achieve fuel cell operation using hydrogen as a fuel.

以上のようにペロブスカイト型プロトン伝導体はこれまでSOFC型燃料電池に用いられてきたO2-イオン伝導体より低温でイオン伝導を実現されるため、SOFCの低温化にむけた取り組みがなされている。 As described above, perovskite proton conductors can conduct ions at a lower temperature than O 2- ion conductors that have been used in SOFC-type fuel cells, so efforts are being made to lower SOFC temperatures. .

特許第3160993号公報Japanese Patent No. 3160993 特許第4079016号公報Japanese Patent No. 4079016

固体酸化物形燃料電池:SOFCの開発 シーエムシー出版Solid oxide fuel cell: SOFC development Journal of Power Sources 152 (2005) 200〜203Journal of Power Sources 152 (2005) 200-203

しかしながら、ペロブスカイト型プロトン伝導体は、焼結温度が1500℃程度以上と高く、緻密な焼結体が得にくいため、燃料電池として構成させるための共焼結といった手法が使えない。そのため、レーザーアブレーション法やスパッタ法、有機金属プリカーサーの塗布法等の比較的低温で作製できる手法を用いる事が考えられる。   However, since the perovskite proton conductor has a high sintering temperature of about 1500 ° C. or higher and it is difficult to obtain a dense sintered body, a technique such as co-sintering for constituting a fuel cell cannot be used. Therefore, it is conceivable to use a method that can be produced at a relatively low temperature, such as a laser ablation method, a sputtering method, or a coating method of an organic metal precursor.

しかしながら、膜の合成には300℃から800℃程度の温度が必要であるとともに、酸素を成膜中に導入する必要があるため、Pdのような金属水素透過膜上に形成する場合、表面を酸化させてしまい、プロトン伝導体との界面に酸化物が存在することになる。   However, the synthesis of the film requires a temperature of about 300 ° C. to 800 ° C. and oxygen must be introduced during the film formation. Therefore, when the film is formed on a metal hydrogen permeable film such as Pd, the surface is Oxidation causes oxides to exist at the interface with the proton conductor.

そのため燃料電池として動作させた場合に、移動してきたプロトンが、界面に生成した酸化物の酸素と反応して、水が生成してしまい、プロトン伝導体膜が剥離するといった課題も誘発していた。   Therefore, when operated as a fuel cell, the proton that has moved reacts with the oxygen of the oxide generated at the interface, and water is generated, causing problems such as separation of the proton conductor membrane. .

すなわち、ペロブスカイト型プロトン伝導体の合成に高い温度と酸素が必要であるが故、界面への酸化物が挿入されるといった問題が生じてしまい、低温で酸化膜を介さずにプロトン伝導体を形成する手法の実現が望まれていた。   In other words, high temperature and oxygen are required for the synthesis of the perovskite type proton conductor, which causes the problem of the oxide being inserted into the interface, and the proton conductor can be formed at low temperature without going through the oxide film. Realization of the technique to do was desired.

さらに、酸化物プロトン伝導体は酸素原子の周囲をプロトンがホッピング伝導することによって、プロトン伝導性が発現する。 そのため、プロトン伝導性材料の結晶性の向上がプロトン伝導特性向上に影響を与えるため、結晶性の良い膜を作る必要性があった。 したがって、従来の方法では膜を形成する基材の酸化を防ぐためには合成、膜化温度の低温化と酸素分圧の低減が必要であって、一方でプロトン伝導性を確保するためには、結晶性が必要であるために、作製温度の低温化や酸素分圧の低減は相反することとなっていた。   Furthermore, the proton proton conductor exhibits proton conductivity by proton hopping conduction around an oxygen atom. For this reason, the improvement in the crystallinity of the proton conductive material has an effect on the improvement in the proton conductive characteristics, and thus there has been a need to produce a film with good crystallinity. Therefore, in order to prevent oxidation of the base material forming the membrane in the conventional method, it is necessary to lower the temperature of the synthesis, the membrane formation temperature and the oxygen partial pressure. On the other hand, in order to ensure proton conductivity, Since crystallinity is necessary, lowering the manufacturing temperature and reducing the oxygen partial pressure are contradictory.

以上のように、良好な結晶性を有するプロトン伝導体膜を基材表面の酸化を防いだ状態で作製する技術の出現が待たれていた。   As described above, the advent of a technique for producing a proton conductor film having good crystallinity in a state where oxidation of the substrate surface is prevented has been awaited.

前記従来の課題を解決するために、本発明のプロトン伝導体膜の形成方法によれば、BaZr1-xYxO3(0.3≧x≧0)の組成であらわされるプロトン伝導体膜の形成方法であって、Ba2+,Zr4+Y3+を含む水溶液を調整する工程と、前記水溶性液にKOHを添加することによってpH調整し、前駆体溶液を調整する工程と、前記pH調整した前駆体溶液中に基板を保持し、水熱条件で膜形成を行う工程とからなることを特徴とする工程とからなることを特徴としている。 In order to solve the above-mentioned conventional problems, according to the method for forming a proton conductor film of the present invention, formation of a proton conductor film represented by a composition of BaZr 1-x Y x O 3 (0.3 ≧ x ≧ 0) A method of adjusting an aqueous solution containing Ba 2+ , Zr 4+ Y 3+ , a step of adjusting a pH by adding KOH to the aqueous solution, and a step of adjusting a precursor solution; It is characterized by comprising a step characterized by comprising a step of holding a substrate in the prepared precursor solution and forming a film under hydrothermal conditions.

さらに本発明のプロトン伝導体膜の形成方法によれば、基板表面にNiOを形成した基板を用いてプロトン伝導体膜を形成することを特徴としている。   Furthermore, according to the method for forming a proton conductor film of the present invention, the proton conductor film is formed using a substrate having NiO formed on the substrate surface.

以上のようなプロトン伝導体膜の形成方法とすることによって、200℃以下の低温でプロトン伝導体膜を基板の酸化無しに結晶性よく形成することが可能となる。   By using the method for forming a proton conductor film as described above, the proton conductor film can be formed with good crystallinity without oxidation of the substrate at a low temperature of 200 ° C. or lower.

本発明の実施の形態1におけるプロトン伝導体膜の形成方法におけるフロー図Flow chart in the method for forming a proton conductor film in Embodiment 1 of the present invention 本発明の実施の形態1におけるプロトン伝導体薄膜の形成方法における概念図Schematic diagram of the method for forming a proton conductor thin film according to Embodiment 1 of the present invention 本発明の実施例1における、Pd基板上へのプロトン伝導体膜のX線回折図X-ray diffraction pattern of proton conductor film on Pd substrate in Example 1 of the present invention 本発明の実施例2における、Al2O3基板上へ形成したプロトン伝導体膜のX線回折図X-ray diffraction pattern of proton conductor film formed on Al 2 O 3 substrate in Example 2 of the present invention

以下本発明の実施の形態について、図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1におけるプロトン伝導体膜の形成方法における工程フロー図である。また、図2は本発明の実施の形態1におけるプロトン伝導体膜の形成方法を示す概要図である。
(Embodiment 1)
FIG. 1 is a process flow diagram in the method for forming a proton conductor film in the first embodiment of the present invention. FIG. 2 is a schematic diagram showing a method for forming a proton conductor film in the first embodiment of the present invention.

図2において、201は圧力容器、202は基板、203は水溶液、204は前駆体溶液、205はヒーター、206はテフロン(登録商標)製基板支持板である。   In FIG. 2, 201 is a pressure vessel, 202 is a substrate, 203 is an aqueous solution, 204 is a precursor solution, 205 is a heater, and 206 is a Teflon (registered trademark) substrate support plate.

圧力容器201中に基板202をテフロン(登録商標)製基板支持板206によって保持し、圧力容器201中へ金属組成を調整したBa2+,Zr4+Y3+を含む水溶液203を導入する。その後、KOHを用いてpHを調整して前駆体溶液204として、圧力容器中に基板202が前駆体溶液204で隠れるように配置する。圧力容器201をヒーター205で加熱することによって前駆体溶液204と基板を所定の温度に加熱することによってプロトン伝導体膜207が基板203上へ形成される。 A substrate 202 is held in a pressure vessel 201 by a Teflon (registered trademark) substrate support plate 206, and an aqueous solution 203 containing Ba 2+ , Zr 4+ Y 3+ whose metal composition is adjusted is introduced into the pressure vessel 201. Thereafter, the pH is adjusted using KOH to form a precursor solution 204 so that the substrate 202 is hidden by the precursor solution 204 in the pressure vessel. The proton conductor film 207 is formed on the substrate 203 by heating the precursor solution 204 and the substrate to a predetermined temperature by heating the pressure vessel 201 with the heater 205.

(実施の形態1の構成)。   (Configuration of Embodiment 1).

かかる形成方法によれば、KOHによってpH調整した前駆体溶液204中へ基板202を導入して、て、200℃以下の水熱条件とすることによって、基板上へプロトン伝導体膜が形成されることとなり、200℃以下の低温でプロトン伝導体膜が結晶性よく形成されることとなる。   According to such a forming method, the proton conductor film is formed on the substrate by introducing the substrate 202 into the precursor solution 204 adjusted in pH by KOH and setting the hydrothermal condition at 200 ° C. or lower. In other words, the proton conductor film is formed with good crystallinity at a low temperature of 200 ° C. or lower.

特に、基板202をPdとした場合には、Pdの酸化が生じない状態でプロトン伝導体膜が形成できることとなる。   In particular, when the substrate 202 is made of Pd, the proton conductor film can be formed without oxidation of Pd.

次に本発明のプロトン伝導体膜の形成方法について実施例に詳細を説明する。   Next, details of the method for forming a proton conductor membrane of the present invention will be described in Examples.

(実施例1)
以下に本発明のプロトン伝導体膜の形成方法の実施例について図1および図2を用いて説明する。
Example 1
Examples of the method for forming a proton conductor membrane of the present invention will be described below with reference to FIGS.

以下は基板202としてPd基板を用いた例である。板厚みは0.2mm、5mm×5mmのPd板を基板202として用いた。 この基板202を圧力容器内にテフロン(登録商標)板206に固定した。圧力容器201はステンレス製であり、基板202を導入する内面にはテフロン(登録商標)がコーティングしてある(図示なし)。   The following is an example using a Pd substrate as the substrate 202. A Pd plate having a thickness of 0.2 mm and 5 mm × 5 mm was used as the substrate 202. The substrate 202 was fixed to a Teflon (registered trademark) plate 206 in a pressure vessel. The pressure vessel 201 is made of stainless steel, and the inner surface into which the substrate 202 is introduced is coated with Teflon (registered trademark) (not shown).

一方でBa(OH)2、ZrOCl2・8H2O、YCl3・6H2OをそれぞれBa:Zr:Y=1:0.9:0.1となるようにそれぞれ0.01モル秤量した。これらに水を50CC加えてスターラーを用いて溶解させ水溶液203を作製した。 Meanwhile Ba (OH) 2, ZrOCl 2 · 8H 2 O, YCl 3 · 6H 2 O respectively at Ba: Zr: Y = 1: 0.9: were respectively 0.01 mol weighed so that 0.1. 50 CC of water was added to these and dissolved using a stirrer to prepare an aqueous solution 203.

この水溶液203に所定量のKOH(粒状)を加えて前駆体溶液204を作製した。
KOHの量は加えた水に対し、濃度として0Mから10Mまでの範囲で調整して異なるKOH濃度の前駆体溶液204を調整した。
A predetermined amount of KOH (granular) was added to this aqueous solution 203 to prepare a precursor solution 204.
The amount of KOH was adjusted in the range from 0M to 10M as the concentration of the added water to prepare precursor solutions 204 having different KOH concentrations.

この前駆体溶液204を基板202が内部に保持された圧力容器201内部に入れ、ふたを閉めた後、ヒーター205によって加熱するとともに圧力容器201内部の前駆体溶液204は攪拌しながら温度を上昇させた。昇温速度は毎時50℃として150℃になるまで昇温して12時間保持し、その後放冷によって常温まで冷却した。   The precursor solution 204 is placed inside the pressure vessel 201 in which the substrate 202 is held, and after the lid is closed, the precursor solution 204 is heated by the heater 205 and the temperature of the precursor solution 204 inside the pressure vessel 201 is increased while stirring. It was. The heating rate was 50 ° C. per hour, the temperature was raised to 150 ° C. and held for 12 hours, and then cooled to room temperature by cooling.

以上の工程を経てプロトン伝導体膜207が形成された。   The proton conductor membrane 207 was formed through the above steps.

上記の手順を各KOH濃度の前駆体溶液204について同じ条件で行い、基板202上への膜形成の有無および反応容器201内部に沈殿した粉末のX線回折を行い、得られた物質の同定を行うとともに、得られた膜についてX線回折およびEDAXによる組成分析を行った。   The above procedure is performed under the same conditions for the precursor solution 204 of each KOH concentration, and the presence or absence of film formation on the substrate 202 and X-ray diffraction of the powder precipitated in the reaction vessel 201 are performed, and the obtained substance is identified. In addition, the composition of the obtained film was analyzed by X-ray diffraction and EDAX.

その結果を表1に示す。   The results are shown in Table 1.

Figure 2012221556
Figure 2012221556

表1は各反応温度で形成したときに、膜が得られたかどうか、および合成された物質の可否についての一覧である。反応温度が100℃と低い場合には、プロトン伝導体膜は形成されず、また得られた物質もZrO2であった。 Table 1 lists whether films were obtained when formed at each reaction temperature, and the availability of synthesized materials. When the reaction temperature was as low as 100 ° C., the proton conductor film was not formed, and the obtained substance was also ZrO 2 .

150℃の反応温度では、0.2M以上の領域で膜化と合成が可能であった。KOH濃度が高くなると膜厚が厚く、得られた膜の結晶化が進んでいる傾向が認められたが基材の溶解等の影響が出やすくなるため、合成範囲と基材の耐アルカリ性を考慮して条件を選べばよい事が判明した。   At a reaction temperature of 150 ° C, film formation and synthesis were possible in the region of 0.2M or higher. As the KOH concentration increased, the film thickness increased and the crystallization of the resulting film tended to progress, but the effect of dissolution of the base material was likely to occur, so the synthesis range and alkali resistance of the base material were considered. And it turned out that the conditions should be selected.

一方で膜化はすべての領域で確認されたが、KOH濃度が高くなるほど膜厚が厚く、得られた膜の結晶化が進んでいる傾向が認められた。   On the other hand, film formation was confirmed in all regions, but the film thickness increased as the KOH concentration increased, and crystallization of the obtained film tended to progress.

しかしながら、反応温度を200℃にした場合には、いずれのKOH濃度領域においても、膜化は確認されなかった。   However, when the reaction temperature was 200 ° C., film formation was not confirmed in any KOH concentration region.

また、Pd基板上へ形成されたプロトン伝導体膜のX線回折結果を図3に示す。   Further, FIG. 3 shows the X-ray diffraction result of the proton conductor film formed on the Pd substrate.

Pd上へBaZr0.9Y0.1O3に起因するピークが認められるが、Pdの酸化物のピークは一切認められず、Pdの酸化を生じることなく高結晶性のプロトン伝導体膜が形成されていることが判明した。 A peak due to BaZr 0.9 Y 0.1 O 3 is observed on Pd, but no peak of Pd oxide is observed, and a highly crystalline proton conductor film is formed without causing Pd oxidation. It has been found.

以上のように、Pd基板を酸化させることなく150℃という低温にもかかわらず、高結晶性のBaZr0.9Y0.1O3膜をPd基板に形成することが可能となり、燃料電池や水素センサー等へのデバイス応用に最適なプロトン伝導体膜が実現できた。 As described above, it is possible to form a highly crystalline BaZr 0.9 Y 0.1 O 3 film on a Pd substrate despite the low temperature of 150 ° C. without oxidizing the Pd substrate. Proton conductor membranes optimal for device applications have been realized.

(実施例2)
次に基板202としてAl23を用いて、さらに基板202上へNiOを形成した場合についてNiOを用いない場合と比較例を交えながら図2を用いて説明する。
(Example 2)
Next, the case where Al 2 O 3 is used as the substrate 202 and NiO is further formed on the substrate 202 will be described with reference to FIG.

実施例1と同様の工程でプロトン伝導体膜を形成させるが、実施例1と異なる点は、基板202上へNiOを形成した点にある。   A proton conductor film is formed by the same process as in Example 1. However, the difference from Example 1 is that NiO is formed on the substrate 202.

NiOの形成方法について以下に説明する。   A method for forming NiO will be described below.

NiOの形成方法はスパッタリングによる方法、有機プリカーサーによる塗布による方法など既存の方法を選択する事ができるが、以下にスパッタによる方法を説明する。   As a method for forming NiO, an existing method such as a sputtering method or a coating method using an organic precursor can be selected. The sputtering method will be described below.

基板として5mm□×0.5mm厚のAl23基板へNiOをターゲットとしてRFスパッタリングを行った。基板温度を350℃、酸素分圧20%、スパッタ圧力0.1Paで行った。膜厚は10nmとした。 RF sputtering was performed on a 5 mm □ × 0.5 mm thick Al 2 O 3 substrate as a substrate, using NiO as a target. The substrate temperature was 350 ° C., the oxygen partial pressure was 20%, and the sputtering pressure was 0.1 Pa. The film thickness was 10 nm.

次に、NiOを10nm形成した基板202を圧力容器201中のテフロン(登録商標)製基板支持板206で保持して実施例1と同様の条件でプロトン伝導体膜207の形成を行った。 用いた前駆体溶液204のpHは0.2Mのものを用いた。Al23の基板を用いる場合には、2M以下のKOH濃度とすることが別の実験から必要であった。KOHの濃度を上げるとアルカリ性が強くなり、反応容器201中で溶解が認められたからである。 Next, the substrate 202 on which NiO was formed to 10 nm was held by the Teflon (registered trademark) substrate support plate 206 in the pressure vessel 201, and the proton conductor film 207 was formed under the same conditions as in Example 1. The precursor solution 204 used had a pH of 0.2M. In the case of using an Al 2 O 3 substrate, a KOH concentration of 2M or less was required from another experiment. This is because when the concentration of KOH was increased, the alkalinity became stronger and dissolution was observed in the reaction vessel 201.

KOH濃度を0.2Mとして、反応温度を150℃としてプロトン伝導体膜207の形成を行った。   The proton conductor membrane 207 was formed at a KOH concentration of 0.2M and a reaction temperature of 150 ° C.

得られたプロトン伝導体膜207をX線回折によって結晶性の評価を行った。   The obtained proton conductor film 207 was evaluated for crystallinity by X-ray diffraction.

図4にX線回折結果を示す。   FIG. 4 shows the X-ray diffraction results.

比較のためにNiOを形成しない場合との比較を示した。
X線回折からわかるように、NiOを基板202表面に形成することによってX線強度が増大するとともに、回折線がシャープになり結晶性が促進されていることが判明した。
For comparison, a comparison with the case where NiO is not formed is shown.
As can be seen from the X-ray diffraction, it has been found that the formation of NiO on the surface of the substrate 202 increases the X-ray intensity, sharpens the diffraction lines, and promotes the crystallinity.

以上の結果からNiOの基板表面の形成は、プロトン伝導体膜207の形成において、種結晶的な役割を果たす事が判明した。   From the above results, it has been found that the formation of the NiO substrate surface plays a seed crystal role in the formation of the proton conductor film 207.

本実施例で用いたNiOの成膜方法や厚みは上記記述に限定されるわけではなく、10nm程度膜厚があれば、結晶性の良いプロトン伝導体膜207を形成するための種結晶として機能することが判明した。   The film formation method and thickness of NiO used in this example are not limited to the above description, and if it has a film thickness of about 10 nm, it functions as a seed crystal for forming the proton conductor film 207 with good crystallinity. Turned out to be.

本発明にかかるプロトン伝導体膜の形成方法によれば、Pdを酸化させることなく低温で結晶性の良いプロトン伝導体薄膜を形成する手法として有用である。 Pdは水素透過性膜として有用であるため、水素透過機能を有する基板上へのプロトン伝導体膜の形成方法として有用である。 この手法を用いれば、燃料電池の固体電解質膜や水素センサー等のプロトン伝導体膜を利用する電気化学デバイスを低温で結晶性よく作製することが可能となる。   The method for forming a proton conductor film according to the present invention is useful as a technique for forming a proton conductor thin film having good crystallinity at low temperature without oxidizing Pd. Since Pd is useful as a hydrogen permeable membrane, it is useful as a method for forming a proton conductor membrane on a substrate having a hydrogen permeable function. If this method is used, an electrochemical device using a proton conductor membrane such as a solid electrolyte membrane of a fuel cell or a hydrogen sensor can be produced at a low temperature with good crystallinity.

201 圧力容器
202 基板
203 水溶液
204 前駆体溶液
205 ヒーター
206 基板支持板
207 プロトン伝導体膜
201 Pressure vessel 202 Substrate 203 Aqueous solution 204 Precursor solution 205 Heater 206 Substrate support plate 207 Proton conductor membrane

Claims (4)

BaZr1-xYxO3(0.3≧x≧0)の組成であらわされるプロトン伝導体膜の形成方法であって、Ba2+,Zr4+Y3+を含む水溶液を調整する工程と、前記水溶性液に所定の濃度のKOHを添加することによってpH調整し、前駆体溶液を調整する工程と、前記pH調整した前駆体溶液中に基板を保持し、水熱条件下で膜形成を行う工程とからなることを特徴とする、プロトン伝導体膜の形成方法。 A method of forming a proton conductor film represented by a composition of BaZr 1-x Y x O 3 (0.3 ≧ x ≧ 0), comprising adjusting an aqueous solution containing Ba 2+ , Zr 4+ Y 3+ , The pH is adjusted by adding a predetermined concentration of KOH to the water-soluble liquid to prepare a precursor solution, and the substrate is held in the pH-adjusted precursor solution to form a film under hydrothermal conditions. A process for forming a proton conductor film. 前記pH調整したKOH溶液のpHが0.2M以上であることを特徴とする請求項1記載のプロトン伝導体膜の形成方法。   The method of forming a proton conductor membrane according to claim 1, wherein the pH of the KOH solution adjusted to pH is 0.2M or more. 請求項1乃至請求項2記載のプロトン伝導体膜の形成方法であって、基板がPdであることを特徴とするプロトン伝導体薄膜の形成方法。   3. The method for forming a proton conductor film according to claim 1, wherein the substrate is Pd. 表面にNiO膜を形成した基板を用いる事を特徴とする請求項1乃至請求項2記載のプロトン伝導体膜の形成方法。   3. The method for forming a proton conductor film according to claim 1, wherein a substrate having a NiO film formed on a surface thereof is used.
JP2011082491A 2011-04-04 2011-04-04 Formation method of proton conductor film Withdrawn JP2012221556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011082491A JP2012221556A (en) 2011-04-04 2011-04-04 Formation method of proton conductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011082491A JP2012221556A (en) 2011-04-04 2011-04-04 Formation method of proton conductor film

Publications (1)

Publication Number Publication Date
JP2012221556A true JP2012221556A (en) 2012-11-12

Family

ID=47272892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011082491A Withdrawn JP2012221556A (en) 2011-04-04 2011-04-04 Formation method of proton conductor film

Country Status (1)

Country Link
JP (1) JP2012221556A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159584A1 (en) 2017-02-28 2018-09-07 国立研究開発法人産業技術総合研究所 Proton-conducting electrolyte

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159584A1 (en) 2017-02-28 2018-09-07 国立研究開発法人産業技術総合研究所 Proton-conducting electrolyte

Similar Documents

Publication Publication Date Title
Bian et al. Revitalizing interface in protonic ceramic cells by acid etch
Bi et al. Proton-conducting solid oxide fuel cell (SOFC) with Y-doped BaZrO3 electrolyte
Pei et al. Surface restructuring of a perovskite-type air electrode for reversible protonic ceramic electrochemical cells
Sun et al. An easily sintered, chemically stable, barium zirconate‐based proton conductor for high‐performance proton‐conducting solid oxide fuel cells
Yin et al. Tailoring cobalt‐free La0. 5Sr0. 5FeO3‐δ cathode with a nonmetal cation‐doping strategy for high‐performance proton‐conducting solid oxide fuel cells
Serra et al. Thin‐film proton BaZr0. 85Y0. 15O3 conducting electrolytes: toward an intermediate‐temperature solid oxide fuel cell alternative
JP4776369B2 (en) Proton conductor and production method thereof, polymer electrolyte membrane and production method thereof, fuel cell electrode and production method thereof, and fuel cell
Yang et al. La 0.7 Sr 0.3 Fe 0.7 Ga 0.3 O 3− δ as electrode material for a symmetrical solid oxide fuel cell
JP6101398B2 (en) Method for producing solid electrolyte for solid oxide fuel cell and method for producing unit cell
JP2006501626A (en) Solid oxide electrolyte with enhanced ionic conductivity by dislocations
US8026014B2 (en) Solid oxide fuel cell components tuned by atomic layer deposition
Liu et al. Composite ceramic cathode La0. 9Ca0. 1Fe0. 9Nb0. 1O3-δ/Sc0. 2Zr0. 8O2− δ towards efficient carbon dioxide electrolysis in zirconia-based high temperature electrolyser
Wang et al. High‐entropy perovskites for energy conversion and storage: design, synthesis, and potential applications
Hu et al. Visiting the roles of Sr‐or Ca‐doping on the oxygen reduction reaction activity and stability of a perovskite cathode for proton conducting solid oxide fuel cells
Tao et al. A strategy of tailoring stable electrolyte material for high performance proton-conducting solid oxide fuel cells (SOFCs)
Guo et al. Fabrication and performance of a carbon dioxide-tolerant proton-conducting solid oxide fuel cells with a dual-layer electrolyte
Shen Nanostructured and advanced materials for fuel cells
Jin et al. Layered PrBaCo2O5+ δ perovskite as a cathode for proton-conducting solid oxide fuel cells
Radenahmad et al. A new high‐performance proton‐conducting electrolyte for next‐generation solid oxide fuel cells
Wan Yusoff et al. Enhanced performance of lithiated cathode materials of LiCo0. 6X0. 4O2 (X= Mn, Sr, Zn) for proton‐conducting solid oxide fuel cell applications
Yao et al. Characterization of SrFe0. 9‐xCuxMo0. 1O3‐δ (x= 0, 0.1 and 0.2) as cathode for intermediate‐temperature solid oxide fuel cells
Ding et al. Enhanced electrochemical properties of Sm 0.2 Ce 0.8 O 1.9 film for SOFC electrolyte fabricated by pulsed laser deposition
Shin et al. Oxygen-electrode catalysis on oxoperovskites at 700° C versus 20° C
Jiang et al. Sintering and electrochemical performance of Nd2Ce2O7 electrolyte with Bi7WO13. 5 sintering aid for proton conductor solid oxide fuel cells
Huang et al. An excellent bismuth-doped perovskite cathode with high activity and CO2 resistance for solid-oxide fuel cells operating below 700° C

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701