JP2012219866A - Thrust supporting device - Google Patents

Thrust supporting device Download PDF

Info

Publication number
JP2012219866A
JP2012219866A JP2011084204A JP2011084204A JP2012219866A JP 2012219866 A JP2012219866 A JP 2012219866A JP 2011084204 A JP2011084204 A JP 2011084204A JP 2011084204 A JP2011084204 A JP 2011084204A JP 2012219866 A JP2012219866 A JP 2012219866A
Authority
JP
Japan
Prior art keywords
collar
sliding surface
thrust
surface roughness
land portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011084204A
Other languages
Japanese (ja)
Other versions
JP5761560B2 (en
Inventor
Masaaki Yamane
正明 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2011084204A priority Critical patent/JP5761560B2/en
Publication of JP2012219866A publication Critical patent/JP2012219866A/en
Application granted granted Critical
Publication of JP5761560B2 publication Critical patent/JP5761560B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/047Sliding-contact bearings for exclusively rotary movement for axial load only with fixed wedges to generate hydrodynamic pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/1075Wedges, e.g. ramps or lobes, for generating pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thrust supporting device capable of significantly lowering a friction factor at the time of startup and stop even if a low viscosity liquid (for example, water) is used for lubrication, and significantly reducing friction and wear amount across the entire speed range during operation.SOLUTION: A thrust bearing 14 has: a land part 16 which is parallel to a sliding surface 11 of a collar 12; and a tapered part 17 which is tilted relative to the sliding surface 11 to generate a dynamic pressure on a lubricating liquid present between itself and the collar by relative rotation. A synthesized surface roughness calculated from an average surface roughness of the sliding surface 11 and that of the land part 16 is set to be smaller than the film thickness of the lubricating liquid formed between the sliding surface and the land part over a used rotation speed range.

Description

本発明は、スクリュー圧縮機、水中ポンプ、燃料ポンプ等のスラストを支持するスラスト支持装置に関する。   The present invention relates to a thrust support device that supports thrust such as a screw compressor, a submersible pump, and a fuel pump.

水噴射式スクリュー圧縮機において、軸受部にも潤滑油を使用しないものが既に提案されている(例えば、特許文献1,2)。
また、水又は水のような低粘度液で潤滑してスラストを支持するスラスト軸受として、例えば特許文献3〜8が既に提案されている。
In the water injection type screw compressor, a bearing that does not use lubricating oil has already been proposed (for example, Patent Documents 1 and 2).
For example, Patent Documents 3 to 8 have already been proposed as thrust bearings that are lubricated with water or a low-viscosity liquid such as water to support the thrust.

特開2002−310079号公報、「水潤滑式スクリュー圧縮機」JP 2002-310079 A, “Water-Lubricated Screw Compressor” 特表2004−531666号公報、「水噴射式スクリュー圧縮機」Japanese translation of PCT publication No. 2004-53666, “Water injection screw compressor” 特開平6−288411号公報、「スラスト軸受装置」JP-A-6-288411, “Thrust Bearing Device” 特許第3963994号公報、「水潤滑軸受又は水潤滑シール及び流体機械」Japanese Patent No. 3963994, “Water lubricated bearing or water lubricated seal and fluid machine” 特開平11−351242号公報、「低粘度液潤滑軸受」JP-A-11-351242, “Low-viscosity liquid lubricated bearing” 特開昭61−99718号公報、「スラスト軸受」Japanese Patent Application Laid-Open No. 61-99718, “Thrust Bearing” 特開2002−206522号公報、「スラスト軸受」Japanese Patent Application Laid-Open No. 2002-206522, “Thrust Bearing” 特開2011−7243号公報、「水潤滑用スラスト軸受の構造」Japanese Unexamined Patent Publication No. 2011-7243, “Structure of Thrust Bearing for Water Lubrication”

上述した従来の水噴射式スクリュー圧縮機、及びスラスト軸受は、以下の3種に大別することができる。
(1) 摺動面にセラミック材、カーボン、PEEK(ポリエーテル・エーテル・ケトン)、フェノール樹脂、軟質金属、等を用いたもの(特許文献1〜3)。
(2) 摺動面に耐摩耗性の高い材料やコーティングを用いたもの(特許文献4)。
(3) 摺動面に凹凸や動圧を発生させる溝を設けたもの(特許文献5〜8)。
The conventional water jet screw compressor and thrust bearing described above can be roughly classified into the following three types.
(1) A ceramic material, carbon, PEEK (polyether ether ketone), phenol resin, soft metal, etc. are used on the sliding surface (Patent Documents 1 to 3).
(2) A material using a highly wear-resistant material or coating on the sliding surface (Patent Document 4).
(3) What provided the groove | channel which generate | occur | produces an unevenness | corrugation and dynamic pressure in a sliding surface (patent documents 5-8).

しかし、PEEK、フェノール樹脂などの樹脂材料は、摺動面同士が直接接触する境界潤滑領域で使用するため、摩擦係数が比較的高く(例えば0.1以上)、かつ低強度、低ヤング率、及び膨潤性により変形や摩耗が生じやすいため寿命が短い問題点がある。   However, since resin materials such as PEEK and phenol resin are used in the boundary lubrication region where the sliding surfaces are in direct contact with each other, the friction coefficient is relatively high (for example, 0.1 or more), low strength, low Young's modulus, In addition, deformation and wear are likely to occur due to the swelling property, and there is a problem that the life is short.

また、セラミック材やカーボンは、水中での摺動特性には優れているが、同様に境界潤滑領域で使用するため、摩擦係数が比較的高く(例えば0.1以上)、相手面となる材料の耐摩耗性が問題点となる。   Ceramic materials and carbon are excellent in sliding properties in water, but are similarly used in the boundary lubrication region, so that the friction coefficient is relatively high (for example, 0.1 or more), and the mating material. Abrasion resistance is a problem.

さらに、摺動面に耐摩耗性の高い材料やコーティングを用いた場合(特許文献4)や摺動部に微細な凹凸を付与した場合(特許文献5)も、境界潤滑領域で使用するため、摩擦係数が比較的高く(例えば0.1〜0.4)、耐摩耗性が問題となる。
特に微細な凹凸を付与した場合、摩耗によって凹凸が減少することや摩耗粉が凹部に堆積し、動圧効果が発揮されない状態に陥る可能性がある。
Furthermore, when using a highly wear-resistant material or coating on the sliding surface (Patent Document 4) or when providing fine irregularities on the sliding part (Patent Document 5), because it is used in the boundary lubrication region, The friction coefficient is relatively high (for example, 0.1 to 0.4), and wear resistance becomes a problem.
In particular, when fine unevenness is imparted, the unevenness may be reduced due to wear, or wear powder may accumulate in the recess, resulting in a state where the dynamic pressure effect is not exhibited.

また、摺動面に動圧を発生させる溝を設けた場合(特許文献6〜8)には、流体潤滑領域では摩擦係数が低く(例えば0.01以下)、摩耗が生じないが、起動・停止時に境界潤滑領域となり、摩擦係数が比較的高く(例えば0.1以上)、耐摩耗性が問題となる。   Further, when a groove for generating dynamic pressure is provided on the sliding surface (Patent Documents 6 to 8), the friction coefficient is low in the fluid lubrication region (for example, 0.01 or less), and no wear occurs. A boundary lubrication region is obtained when the engine is stopped, the friction coefficient is relatively high (for example, 0.1 or more), and wear resistance becomes a problem.

本発明は、上述した問題点を解決するために創案されたものである。すなわち、本発明の目的は、潤滑に低粘度液(例えば水)を用いても起動・停止時における摩擦係数を大幅に低減することができ、運転中の全速度範囲における摩擦・摩耗を大幅に低減することができるスラスト支持装置を提供することにある。   The present invention has been developed to solve the above-described problems. That is, the object of the present invention is to greatly reduce the coefficient of friction at the start and stop even when a low-viscosity liquid (for example, water) is used for lubrication, and to greatly reduce the friction and wear in the entire speed range during operation. An object of the present invention is to provide a thrust support device that can be reduced.

本発明によれば、回転軸に直交する摺動面を有するカラーと、該摺動面に沿って相対的に回転するスラスト軸受とを備え、回転軸のスラスト荷重を支持するスラスト支持装置であって、
前記スラスト軸受は、前記摺動面と平行なランド部と、前記摺動面に対し傾斜し前記相対的回転によりカラーとの間の潤滑液に動圧を発生させるテーパ部とを有し、
前記摺動面の平均面粗さと前記ランド部の平均面粗さから算出される合成面粗さが、使用回転速度域において摺動面とランド部との間に形成される潤滑液の膜厚さより小さく設定されている、ことを特徴とするスラスト支持装置が提供される。
According to the present invention, there is provided a thrust support device that includes a collar having a sliding surface orthogonal to the rotating shaft and a thrust bearing that relatively rotates along the sliding surface, and supports the thrust load of the rotating shaft. And
The thrust bearing has a land portion parallel to the sliding surface, and a tapered portion that is inclined with respect to the sliding surface and generates a dynamic pressure in the lubricating liquid between the collar by the relative rotation,
The synthetic surface roughness calculated from the average surface roughness of the sliding surface and the average surface roughness of the land portion is the film thickness of the lubricating liquid formed between the sliding surface and the land portion in the operating rotational speed range. There is provided a thrust support device characterized in that the thrust support device is set smaller than the above.

カラーの摺動面とスラスト軸受のランド部との間に発生する潤滑液の動圧は、起動・停止時には小さいので、その間が直接接触する境界潤滑領域となる可能性がある。   Since the dynamic pressure of the lubricating liquid generated between the sliding surface of the collar and the land portion of the thrust bearing is small at the time of starting and stopping, there is a possibility that a boundary lubrication region is in direct contact between the two.

しかし、本発明の構成によれば、カラーの摺動面の平均面粗さとスラスト軸受のランド部の平均面粗さから算出される合成面粗さが、使用回転速度域において摺動面とランド部との間に形成される潤滑液の膜厚さより小さく設定されているので、その間を起動・停止時においても流体潤滑に近い状態に保つことができる。   However, according to the configuration of the present invention, the combined surface roughness calculated from the average surface roughness of the sliding surface of the collar and the average surface roughness of the land portion of the thrust bearing is such that the sliding surface and the land in the operating rotational speed range. Since it is set smaller than the film thickness of the lubricating liquid formed between the two parts, it can be kept close to fluid lubrication even when starting and stopping.

また、この設定は、カラーが樹脂を含浸したカーボン材である場合、その表面粗さは一般に金属面より粗いが、カラーより硬く、かつ平均面粗さがカラーに対して同等以下の金属面であるランド部を用いて、摩擦係数が0.02以下になるまで使用回転速度域において慣らし運転によりなじませることにより、容易に達成することができる。   In addition, when the collar is a carbon material impregnated with a resin, the surface roughness is generally rougher than the metal surface, but is harder than the color and the average surface roughness is equal to or less than that of the color. This can be easily achieved by using a certain land portion and acclimatizing by running-in operation in the operating rotational speed range until the friction coefficient becomes 0.02 or less.

従って、本発明の構成によれば、潤滑に低粘度液(例えば水)を用いても起動・停止時における摩擦係数を大幅に低減することができ、運転中の全速度範囲における摩擦・摩耗量を大幅に低減することができる。
Therefore, according to the configuration of the present invention, even when a low-viscosity liquid (for example, water) is used for lubrication, the friction coefficient at the time of starting and stopping can be greatly reduced, and the amount of friction and wear in the entire speed range during operation Can be greatly reduced.

本発明によるスラスト支持装置の実施形態図である。It is an embodiment figure of a thrust support device by the present invention. 図1のA−A矢視図とそのB−B矢視図である。It is an AA arrow view of FIG. 1 and its BB arrow view. 使用した試験装置の部分断面図である。It is a fragmentary sectional view of the used testing apparatus. スラスト荷重(横軸)と水膜厚さ(縦軸)との関係図である。It is a related figure of thrust load (horizontal axis) and water film thickness (vertical axis). 試験前後における表面粗さの比較図である。It is a comparison figure of the surface roughness before and behind a test. スラスト荷重を徐々に増加させた場合の摩擦係数の変化を示す図である。It is a figure which shows the change of the friction coefficient at the time of making a thrust load increase gradually. 起動・停止の繰返し数と摩耗量との関係図である。FIG. 6 is a relationship diagram between the number of start / stop repetitions and the amount of wear.

以下、本発明の好ましい実施形態を添付図面に基づいて詳細に説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted.

図1は、本発明によるスラスト支持装置の実施形態図である。なお、この図は主要部を断面で示している。
この図において、本発明のスラスト支持装置10は、カラー12とスラスト軸受14とを備える。
この例において、スラスト軸受14は、固定部材4にボルト等で固定されており、カラー12は、回転軸1に固定された中空円形の回転円板3の表面(図で右側面)にボルト等で固定されている。
FIG. 1 is a diagram showing an embodiment of a thrust support device according to the present invention. In addition, this figure has shown the principal part with the cross section.
In this figure, a thrust support device 10 of the present invention includes a collar 12 and a thrust bearing 14.
In this example, the thrust bearing 14 is fixed to the fixing member 4 with bolts or the like, and the collar 12 is bolted to the surface (right side in the figure) of the hollow circular rotating disk 3 fixed to the rotating shaft 1. It is fixed with.

カラー12は、回転軸1に直交する摺動面11を有し、スラスト軸受14は、カラー12の摺動面11に沿って相対的に回転する。以下、カラー12の摺動面11を「カラー摺動面」と呼ぶ。   The collar 12 has a sliding surface 11 orthogonal to the rotation shaft 1, and the thrust bearing 14 rotates relatively along the sliding surface 11 of the collar 12. Hereinafter, the sliding surface 11 of the collar 12 is referred to as a “color sliding surface”.

カラー12とスラスト軸受14の対向面には、潤滑液が供給され、潤滑液で潤滑しながら回転軸1のスラスト荷重2を支持するようになっている。
潤滑液は、好ましくは潤滑水であるが、その他の液体(エマルジョン液、潤滑油)でもよい。また、スラスト支持装置10を潤滑液中で使用するのが好ましいが、カラー12とスラスト軸受14の対向面に向けて潤滑液を連続的又は断続的に供給してもよい。
A lubricating liquid is supplied to the opposed surfaces of the collar 12 and the thrust bearing 14 so as to support the thrust load 2 of the rotary shaft 1 while being lubricated with the lubricating liquid.
The lubricating liquid is preferably lubricating water, but may be other liquid (emulsion liquid, lubricating oil). Although the thrust support device 10 is preferably used in the lubricating liquid, the lubricating liquid may be supplied continuously or intermittently toward the facing surfaces of the collar 12 and the thrust bearing 14.

図2(A)は、図1のA−A矢視図であり、図2(B)は、図2(A)のB−B矢視図である。
図2(A)(B)に示すように、スラスト軸受14は、摺動面11(カラー摺動面)に対向する対向面15に、複数のランド部16、複数のテーパ部17、及び複数の溝18を有する。以下、スラスト軸受14のランド部16を「軸受ランド部」と呼ぶ。
2A is a view taken along the line AA in FIG. 1, and FIG. 2B is a view taken along the line BB in FIG. 2A.
As shown in FIGS. 2A and 2B, the thrust bearing 14 has a plurality of land portions 16, a plurality of taper portions 17, and a plurality of portions on a facing surface 15 that faces the sliding surface 11 (collar sliding surface). The groove 18 is provided. Hereinafter, the land portion 16 of the thrust bearing 14 is referred to as a “bearing land portion”.

この例でスラスト軸受14は、固定部材4(図1参照)に固定された中空円板(中空円形の固定円板)であり、中央に回転軸1(図1参照)が貫通する貫通孔を有する。しかしスラスト軸受14は、固定部材4に固定された円形の固定円板であってもよい。   In this example, the thrust bearing 14 is a hollow disk (hollow circular fixed disk) fixed to the fixing member 4 (see FIG. 1), and has a through-hole through which the rotating shaft 1 (see FIG. 1) passes. Have. However, the thrust bearing 14 may be a circular fixed disk fixed to the fixed member 4.

この例において、ランド部16(軸受ランド部)、テーパ部17、溝18の順で、周方向に等間隔(60°毎)に6つずつ6組設けられている。しかし、本発明は等間隔に限定されず、不等間隔でもよい。また、軸受ランド部16、テーパ部17、及び溝18は2組以上であればよい。   In this example, six sets of six are provided at regular intervals (every 60 °) in the circumferential direction in the order of the land portion 16 (bearing land portion), the tapered portion 17 and the groove 18. However, the present invention is not limited to equal intervals, and may be irregular intervals. Moreover, the bearing land part 16, the taper part 17, and the groove | channel 18 should just be 2 or more sets.

複数(この例で6)のテーパ部17は、カラー摺動面11に対向し、カラー摺動面11の相対的な回転方向5(この例で回転軸1の回転方向)に沿ってカラー摺動面11との隙間がテーパ状に狭くなっている。この例でテーパ部17の周方向角度は約40°(図中θ1)である。またテーパ部17の軸方向距離(図中のC)は、約0.02mmである。なおテーパ部17の角度と長さは、任意であり、使用回転速度域においてカラー摺動面11との間の潤滑液に動圧を発生させ、流体潤滑状態が得られるように設定するのがよい。   A plurality of (six in this example) taper portions 17 are opposed to the collar sliding surface 11 and are moved along the relative rotational direction 5 of the collar sliding surface 11 (the rotational direction of the rotary shaft 1 in this example). A gap with the moving surface 11 is tapered and narrowed. In this example, the circumferential angle of the tapered portion 17 is about 40 ° (θ1 in the figure). The axial distance (C in the figure) of the taper portion 17 is about 0.02 mm. The angle and the length of the taper portion 17 are arbitrary, and are set so that a dynamic pressure is generated in the lubricating liquid between the collar sliding surface 11 and the fluid lubrication state in the operating rotational speed range. Good.

複数(この例で6)の軸受ランド部16は、各テーパ部17に連結して位置し、カラー摺動面11との隙間が一定になっている。この例で軸受ランド部16の周方向角度は約20°(図中θ2)である。なお軸受ランド部16の大きさは、任意であり、カラー摺動面11との間に発生する液圧によりスラスト荷重を支持する所望の負荷容量が得られるように設定するのがよい。   A plurality (six in this example) of bearing land portions 16 are connected to the respective tapered portions 17 and have a constant gap with the collar sliding surface 11. In this example, the circumferential angle of the bearing land portion 16 is about 20 ° (θ2 in the figure). The size of the bearing land portion 16 is arbitrary, and is preferably set so that a desired load capacity for supporting a thrust load can be obtained by a hydraulic pressure generated between the bearing land portion 16 and the collar sliding surface 11.

複数(この例で6)の溝18は、テーパ部17の隙間が最大の位置とランド部18の間に設けられ、半径方向内端から外端まで延びる。
溝18は、この例において、内方端から外方端まで直線的に延びる半径溝である。
なお、溝18はこの例に限定されず、例えばスパイラル形状であってもよい。
The plurality of (six in this example) grooves 18 are provided between the position where the gap of the taper portion 17 is maximum and the land portion 18 and extend from the radially inner end to the outer end.
In this example, the groove 18 is a radial groove extending linearly from the inner end to the outer end.
In addition, the groove | channel 18 is not limited to this example, For example, a spiral shape may be sufficient.

図1において、カラー12は、樹脂を含浸したカーボン材であることが好ましい。   In FIG. 1, the collar 12 is preferably a carbon material impregnated with a resin.

表1は、後述する実施例で使用したカーボン材A,B,Cの特性比較表である。
この表において、Aは、本発明で使用した樹脂含浸カーボン材(東洋炭素株式会社製の型式KC−673)、Bは、炭素黒鉛質のカーボン材、Cは、Aと同様の樹脂含浸カーボン材である。
この表から、カーボン材Aは、カーボン材B,Cと比較して、硬さが20%以上硬く、曲げ強さが35%以上強く、圧縮強さが65%以上強いことがわかる。
Table 1 is a characteristic comparison table of carbon materials A, B, and C used in examples described later.
In this table, A is a resin-impregnated carbon material (model KC-673 manufactured by Toyo Tanso Co., Ltd.) used in the present invention, B is a carbon-graphite carbon material, and C is a resin-impregnated carbon material similar to A. It is.
From this table, it can be seen that the carbon material A has a hardness of 20% or more, a bending strength of 35% or more, and a compressive strength of 65% or more compared to the carbon materials B and C.

上述したカーボン材A,B,Cの平均面粗さRaは、通常の機械加工後において、それぞれAは0.1〜0.2μm、Bは0.7〜1.4μm、Cは2.4〜2.8μmであり、カーボン材Aは、カーボン材B,Cと比較して、最大でも1/3以下である。   The average surface roughness Ra of the carbon materials A, B, and C described above is 0.1 to 0.2 μm for A, 0.7 to 1.4 μm for B, and 2.4 to C for C after normal machining. The carbon material A is 1/3 or less at most as compared with the carbon materials B and C.

また、後述する実施例において、スラスト軸受14の素材として、耐腐食性を有する析出効果系のステンレス材(SUS630)を用いた。
また、軸受ランド部16に、固溶化熱処理と析出効果熱処理(H900)を施し、軸受ランド部16をカーボン材Aより硬く、かつ平均面粗さをカーボン材Aと同等以下の金属面に形成した。
後述する実施例における軸受ランド部16のロックウェル硬さはHRC42であり、軸受ランド部16の平均面粗さRaは、0.1〜0.15μmであった。
Moreover, in the Example mentioned later, the stainless steel material (SUS630) of the precipitation effect type | system | group which has corrosion resistance was used as a raw material of the thrust bearing 14.
Further, the bearing land portion 16 was subjected to solution heat treatment and precipitation effect heat treatment (H900) to form the bearing land portion 16 on a metal surface that is harder than the carbon material A and has an average surface roughness equal to or less than that of the carbon material A. .
The Rockwell hardness of the bearing land portion 16 in Examples described later was HRC42, and the average surface roughness Ra of the bearing land portion 16 was 0.1 to 0.15 μm.

本発明のスラスト支持装置10は、カラー摺動面11の平均面粗さRaと軸受ランド部16の平均面粗さRaから算出される合成面粗さσが、使用回転速度域においてカラー摺動面11と軸受ランド部16との間に形成される潤滑液の膜厚さHより小さく設定されている。   In the thrust support device 10 of the present invention, the combined surface roughness σ calculated from the average surface roughness Ra of the collar sliding surface 11 and the average surface roughness Ra of the bearing land 16 has a color sliding in the operating rotational speed range. It is set smaller than the film thickness H of the lubricating liquid formed between the surface 11 and the bearing land 16.

さらに、合成面粗さσの3倍が潤滑液の膜厚さHより小さいことが好ましい。
合成面粗さσは、近似的に平均面粗さRaから以下の式で算出できる。
Furthermore, it is preferable that three times the synthetic surface roughness σ is smaller than the film thickness H of the lubricating liquid.
The synthetic surface roughness σ can be approximately calculated from the average surface roughness Ra by the following equation.

σ/Ra=(π/2)0.5≒1.25・・・(1)
σ/Ra=(π/2)0.5≒1.25・・・(2)
σ=(σ +σ 0.5・・・(3)
ここで、σ(n=1,2)は自乗平均平方根粗さ、σは合成粗さである。
σ 1 / Ra 1 = (π / 2) 0.5 ≈1.25 (1)
σ 2 / Ra 2 = (π / 2) 0.5 ≈1.25 (2)
σ = (σ 1 2 + σ 2 2 ) 0.5 (3)
Here, σ n (n = 1, 2) is the root mean square roughness, and σ is the combined roughness.

また、本発明では、カラー12と軸受ランド部16は、摩擦係数が0.02以下になるまで使用回転速度域において慣らし運転によりなじませてある。
この慣らし運転によるなじみにより、カラー12と軸受ランド部16の両方の平均面粗さRaをより小さくすることができ、合成面粗さσが使用回転速度域においてカラー摺動面11と軸受ランド部16との間に形成される潤滑液の膜厚さHより小さくなり、その間を起動・停止時においても流体潤滑状態に近い状態に保つことができることが後述する実施例により確認された。
In the present invention, the collar 12 and the bearing land 16 are conditioned by running-in operation in the operating rotational speed range until the friction coefficient becomes 0.02 or less.
By the familiarity by this running-in operation, the average surface roughness Ra of both the collar 12 and the bearing land portion 16 can be further reduced, and the combined surface roughness σ is within the operating rotational speed range and the collar sliding surface 11 and the bearing land portion. It was confirmed by an example described later that the film thickness is smaller than the film thickness H of the lubricating liquid formed between the two and 16 and can be kept close to the fluid lubrication state even when starting and stopping.

以下、本発明の実施例を説明する。
図3は、使用した試験装置の部分断面図である。なお、この図は主要部を断面で示している。この試験装置は、図1に示したスラスト支持装置10を模擬したものである。
カラー12は、回転軸1に固定された中空円形の回転円板3の表面(図で右側面)に固定(例えば、あて板とボルト等の固定手段20aで固定)し、回転軸1をモータ(図示せず)で軸線を中心に回転駆動した。
スラスト軸受14は、固定部材4に固定(例えば、ボルト等の固定手段20bで固定)し、固定部材4を介してスラスト荷重2を負荷した。
潤滑液として潤滑水を用い、固定部材4に設けた貫通穴からスラスト支持装置10の内側に潤滑水を供給した。この潤滑水は、図に破線の矢印で示す経路を経て、カラー12とスラスト軸受14の対向面に供給され、遠心力により、スラスト支持装置10の外方に排出される。
Examples of the present invention will be described below.
FIG. 3 is a partial cross-sectional view of the test apparatus used. In addition, this figure has shown the principal part with the cross section. This test apparatus simulates the thrust support apparatus 10 shown in FIG.
The collar 12 is fixed to the surface (right side surface in the figure) of the hollow circular rotating disk 3 fixed to the rotating shaft 1 (for example, fixed by a fixing means 20a such as an address plate and a bolt), and the rotating shaft 1 is motored. (Not shown) and rotated about the axis.
The thrust bearing 14 was fixed to the fixing member 4 (for example, fixed by a fixing means 20b such as a bolt), and a thrust load 2 was applied via the fixing member 4.
Lubricating water was used as the lubricating liquid, and the lubricating water was supplied to the inside of the thrust support device 10 from the through hole provided in the fixing member 4. The lubricating water is supplied to the opposed surfaces of the collar 12 and the thrust bearing 14 through a path indicated by a broken-line arrow in the drawing, and is discharged to the outside of the thrust support device 10 by centrifugal force.

図4は、図3の試験装置におけるスラスト荷重(横軸)と水膜厚さ(縦軸)との関係図である。なお図中の4本の曲線は、回転軸1の回転速度(5400、3750、675、500rpm)に対応している。
この図における500〜5400rpmの回転速度は、スラスト支持装置10の使用回転速度域に相当する。また、スラスト荷重4kN(約400kgf)はスラスト支持装置10の定格面圧0.67MPaに相当する。
図4から、使用回転速度域においてカラー摺動面11と軸受ランド部16との間に形成される潤滑液の膜厚さは、最低回転速度(500rpm)において、1.0〜4.5μmの範囲にあることがわかる。
FIG. 4 is a relationship diagram between the thrust load (horizontal axis) and the water film thickness (vertical axis) in the test apparatus of FIG. Note that the four curves in the figure correspond to the rotational speeds (5400, 3750, 675, and 500 rpm) of the rotating shaft 1.
The rotation speed of 500 to 5400 rpm in this figure corresponds to the use rotation speed region of the thrust support device 10. A thrust load of 4 kN (about 400 kgf) corresponds to a rated surface pressure of the thrust support device 10 of 0.67 MPa.
From FIG. 4, the film thickness of the lubricating liquid formed between the collar sliding surface 11 and the bearing land 16 in the operating rotational speed range is 1.0 to 4.5 μm at the minimum rotational speed (500 rpm). You can see that it is in range.

一般的に、潤滑液の膜厚さHが軸受の合成面粗さσの3倍を超える場合に流体潤滑状態となる。従って、図4から最低回転速度(500rpm)において、合成面粗さσが0.3〜1.5μmの範囲にあれば流体潤滑状態となることが予想される。   Generally, when the film thickness H of the lubricating liquid exceeds three times the combined surface roughness σ of the bearing, the fluid lubrication state is reached. Therefore, it can be expected from FIG. 4 that the fluid lubrication state is obtained when the combined surface roughness σ is in the range of 0.3 to 1.5 μm at the minimum rotational speed (500 rpm).

図5は、試験前後における表面粗さの比較図であり、(A)は軸受ランド部16の表面粗さ、(B)はカラー摺動面の表面粗さである。なお図5(A)(B)において、軸受ランド部16はステンレス材(SUS630)であり、図中のA,B,Cは、対向するカーボン材を示している。   FIG. 5 is a comparison diagram of the surface roughness before and after the test, in which (A) shows the surface roughness of the bearing land 16 and (B) shows the surface roughness of the collar sliding surface. 5A and 5B, the bearing land portion 16 is a stainless material (SUS630), and A, B, and C in the figure indicate carbon materials that face each other.

図5(A)に示すように、軸受ランド部16の平均面粗さRaは、試験前に0.10〜0.15μmの範囲であった。
しかし、対向するカーボン材がCの場合、最低回転速度(500rpm)における試験後の平均面粗さRaが、約0.34μmまで大幅に増大している。これは、カーボン材Cの構成材の一部が軸受ランド部16に付着し、軸受ランド部16の平均面粗さRaを悪化させたためと考えられる。
As shown in FIG. 5A, the average surface roughness Ra of the bearing land portion 16 was in the range of 0.10 to 0.15 μm before the test.
However, when the opposing carbon material is C, the average surface roughness Ra after the test at the minimum rotational speed (500 rpm) is greatly increased to about 0.34 μm. This is presumably because a part of the constituent material of the carbon material C adheres to the bearing land 16 and deteriorates the average surface roughness Ra of the bearing land 16.

また図5(B)に示すように、カーボン材A,B,Cの平均面粗さRaは、試験前にカーボン材Aが0.1〜0.2μm、カーボン材Bが1.3〜1.4μm、カーボン材Cが2.7〜2.8μmの範囲であった。
一方、試験後の平均面粗さRaは、カーボン材Aが試験前とほぼ同一であるのに対し、カーボン材B,Cでは、大幅に小さくなっている。これは、試験によりカーボン材B,Cの凸部が摩耗し、凹凸高さが低くなったためと考えられる。
Further, as shown in FIG. 5B, the average surface roughness Ra of the carbon materials A, B, and C is 0.1 to 0.2 μm for the carbon material A and 1.3 to 1 for the carbon material B before the test. The carbon material C was in the range of 2.7 to 2.8 μm.
On the other hand, the average surface roughness Ra after the test is substantially the same as that before the test for the carbon material A, whereas it is significantly smaller for the carbon materials B and C. This is considered to be because the convex portions of the carbon materials B and C were worn by the test, and the height of the irregularities was lowered.

上述した結果から、カーボン材Cは、軸受ランド部16の平均面粗さRaを悪化させるため、本発明のカラー12には不適当であることがわかる。
また、この例において、カーボン材Aの平均面粗さRaは0.1〜0.2μm、軸受ランド部16の平均面粗さRaは0.10〜0.15μmであるので、合成面粗さσは近似的に0.18〜0.31μmとなる。
従って、カーボン材Aの場合、合成面粗さσの3倍(0.54〜0.93μm)が潤滑液の膜厚さH(1.0〜4.5μm)より実質的に小さくなっており、流体潤滑状態となることが予想される。
From the above-described results, it can be seen that the carbon material C is unsuitable for the collar 12 of the present invention because it deteriorates the average surface roughness Ra of the bearing land portion 16.
Further, in this example, the average surface roughness Ra of the carbon material A is 0.1 to 0.2 μm, and the average surface roughness Ra of the bearing land portion 16 is 0.10 to 0.15 μm. σ is approximately 0.18 to 0.31 μm.
Therefore, in the case of the carbon material A, 3 times (0.54 to 0.93 μm) of the synthetic surface roughness σ is substantially smaller than the film thickness H (1.0 to 4.5 μm) of the lubricating liquid. A fluid lubrication state is expected.

図6は、スラスト荷重2を徐々に増加させた場合の摩擦係数μの変化を示す図である。この図において、(A)は回転速度500rpmでスラスト荷重が0.4kN〜6.5kNの範囲の場合、(B)は回転速度2000rpmでスラスト荷重が0.4kN〜19kNの範囲の場合であり、図中の各曲線は、カーボン材A,B,Cである場合を示している。
この図において、摩擦係数μが0.1を超える範囲は、摺動面が直接接触する境界潤滑領域であり、0.1以下、0.01以上の範囲は混合潤滑領域であり、0.01未満の範囲は流体潤滑領域である。
FIG. 6 is a diagram illustrating a change in the friction coefficient μ when the thrust load 2 is gradually increased. In this figure, (A) is the case where the rotational speed is 500 rpm and the thrust load is in the range of 0.4 kN to 6.5 kN, (B) is the case where the rotational speed is 2000 rpm and the thrust load is in the range of 0.4 kN to 19 kN, Each curve in the figure shows the case of carbon materials A, B, and C.
In this figure, the range where the friction coefficient μ exceeds 0.1 is the boundary lubrication region where the sliding surface is in direct contact, the range of 0.1 or less and 0.01 or more is the mixed lubrication region, and 0.01 The range below is the fluid lubrication region.

図6(A)(B)において、スラスト荷重2が小さい範囲(0.4kN〜1.0kN)では、いずれのカーボン材でも摩擦係数μが0.1を超える境界潤滑領域になっている。この境界潤滑領域では、カラー12と軸受ランド部16が起動・停止時に直接接触する可能性があり、硬さの低いカラー12が摩耗する可能性がある。   6A and 6B, in the range where the thrust load 2 is small (0.4 kN to 1.0 kN), any carbon material is a boundary lubrication region where the friction coefficient μ exceeds 0.1. In this boundary lubrication region, there is a possibility that the collar 12 and the bearing land portion 16 are in direct contact when starting and stopping, and the collar 12 having low hardness may be worn.

図6(A)において、スラスト荷重2を徐々に増加させると、カーボン材A,Bでは徐々に摩擦係数μが低下するが、カーボン材Cでは一旦は下降するが、その後、5kN付近から急激に上昇した。
同様に図6(B)において、スラスト荷重2を徐々に増加させると、カーボン材Aでは徐々に摩擦係数μが低下し0.01以下に達するが、カーボン材B,Cは一旦は下降するが、その後、3kN付近から急激に上昇した。
In FIG. 6A, when the thrust load 2 is gradually increased, the friction coefficient μ gradually decreases in the carbon materials A and B, but once decreases in the carbon material C, but then suddenly increases from around 5 kN. Rose.
Similarly, in FIG. 6B, when the thrust load 2 is gradually increased, the friction coefficient μ gradually decreases in the carbon material A and reaches 0.01 or less, but the carbon materials B and C once decrease. After that, it rose rapidly from around 3kN.

上述した結果から、カーボン材Aは、使用回転速度域(この例では、500rpmと2000rpm)において、スラスト荷重を最小の0.4kNから徐々に増加させる慣らし運転によりなじませることにより、摩擦係数μを0.01以下まで低下させることができることがわかる。
また、この慣らし運転による「なじみ」により、その後は、カラー摺動面11の平均面粗さとスラスト軸受14のランド部の平均面粗さから算出される合成面粗さσが、使用回転速度域において摺動面とランド部との間に形成される潤滑液の膜厚さより小さく設定されるので、その間を起動・停止時においても流体潤滑状態に保つことができる。
From the results described above, the carbon material A has a friction coefficient μ obtained by being conditioned by a running-in operation in which the thrust load is gradually increased from the minimum 0.4 kN in the use rotation speed range (in this example, 500 rpm and 2000 rpm). It turns out that it can be reduced to 0.01 or less.
In addition, after the “familiarity” by the running-in operation, after that, the combined surface roughness σ calculated from the average surface roughness of the collar sliding surface 11 and the average surface roughness of the land portion of the thrust bearing 14 is a used rotational speed range. Is set smaller than the film thickness of the lubricating liquid formed between the sliding surface and the land portion, so that the fluid lubrication state can be maintained even during start / stop.

一方、カーボン材B,Cは、使用回転速度域において慣らし運転を行った場合でも、スラスト荷重を最小の0.4kNから徐々に増加させると、摩擦係数が途中から急増するため、本発明のカラー12には不適当であることがわかる。   On the other hand, even when the carbon materials B and C are subjected to a break-in operation in the operating rotational speed range, if the thrust load is gradually increased from the minimum of 0.4 kN, the friction coefficient increases rapidly from the middle. 12 is inappropriate.

図7は、起動・停止の繰返し数と摩耗量との関係図である。この図における2本の線は、カーボン材A,Bの場合を示している。なお、この試験は、上述した慣らし運転後に実施した。
起動・停止の条件は、回転速度を最低回転速度(500rpm)、スラスト荷重を定格(400kgf)、面圧を定格面圧(0.67MPa)とした。
この図から、カーボン材Aの場合、繰返し数1000サイクル以降は、摩耗量が増加せず、そのまま長期間使用できることがわかる。また、カーボン材Bの場合は、繰返し数3000サイクルまでは摩耗量が増加するが、それ以降は、摩耗量が増加せず、そのまま長期間使用できることがわかる。
FIG. 7 is a relationship diagram between the number of start / stop repetitions and the amount of wear. The two lines in this figure show the case of carbon materials A and B. This test was performed after the above-described break-in operation.
The starting / stopping conditions were as follows: the rotational speed was the minimum rotational speed (500 rpm), the thrust load was rated (400 kgf), and the surface pressure was rated surface pressure (0.67 MPa).
From this figure, it can be seen that, in the case of the carbon material A, the wear amount does not increase after 1000 cycles and can be used for a long time. In the case of the carbon material B, the wear amount increases up to 3000 cycles, but thereafter, the wear amount does not increase and can be used as it is for a long time.

上述したように、本発明の構成によれば、カラー摺動面11の平均面粗さとスラスト軸受14の軸受ランド部16の平均面粗さから算出される合成面粗さσが、使用回転速度域においてカラー摺動面11と軸受ランド部16との間に形成される潤滑液(例えば潤滑水)の膜厚さより小さく設定されているので、その間を起動・停止時においても流体潤滑に近い状態に保つことができる。   As described above, according to the configuration of the present invention, the combined surface roughness σ calculated from the average surface roughness of the collar sliding surface 11 and the average surface roughness of the bearing land portion 16 of the thrust bearing 14 is the rotation speed used. Since it is set smaller than the film thickness of the lubricating liquid (for example, lubricating water) formed between the collar sliding surface 11 and the bearing land portion 16 in the region, it is close to fluid lubrication even during start / stop Can be kept in.

また、この設定は、カラー12が樹脂を含浸したカーボン材である場合、その表面粗さは一般に金属面より粗いが、カラー12より硬く、かつ平均面粗さがカラー12に対して同等以下の金属面である軸受ランド部16を用いて、カラー12と軸受ランド部16を、摩擦係数が0.02以下になるまで使用回転速度域において慣らし運転によりなじませることにより、容易に達成することができる。   Further, in this setting, when the collar 12 is a carbon material impregnated with resin, the surface roughness is generally rougher than the metal surface, but is harder than the collar 12 and the average surface roughness is equal to or less than that of the collar 12. This can be easily achieved by using the bearing land portion 16 that is a metal surface to allow the collar 12 and the bearing land portion 16 to become familiar by running-in in the operating rotational speed range until the friction coefficient becomes 0.02 or less. it can.

従って、起動・停止時は、軸受の軸受ランド部16とカーボン材が接触するが、摩擦係数が小さいため、流体潤滑状態に近く、摩耗がほとんど発生しない。また回転速度が高くなるにつれて、テーパ部17のくさび効果により潤滑膜ができ、流体潤滑状態となるため、さらに摩擦係数が小さくなる。   Therefore, at the time of starting and stopping, the bearing land portion 16 of the bearing and the carbon material come into contact with each other, but since the friction coefficient is small, the fluid is in a lubrication state and wear hardly occurs. Further, as the rotational speed increases, a lubricating film is formed due to the wedge effect of the tapered portion 17 and a fluid lubrication state is obtained, so that the friction coefficient is further reduced.

従って、本発明の構成によれば、潤滑に低粘度液(例えば水)を用いても起動・停止時における摩擦係数を大幅に低減することができ、運転中の全速度範囲における摩擦・摩耗量を大幅に低減することができる。   Therefore, according to the configuration of the present invention, even when a low-viscosity liquid (for example, water) is used for lubrication, the friction coefficient at the time of starting and stopping can be greatly reduced, and the amount of friction and wear in the entire speed range during operation Can be greatly reduced.

なお、スラスト軸受14は、上述したテーパランド型に限定されず、外周部に壁を設けて潤滑液を漏れにくくしたダム付のテーパランド型であってもよい。
ダム付とは、軸受である。
The thrust bearing 14 is not limited to the taper land type described above, and may be a taper land type with a dam in which a wall is provided on the outer peripheral portion to make it difficult for the lubricating liquid to leak.
With a dam is a bearing.

なお、本発明は上述した実施形態に限定されず、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。   In addition, this invention is not limited to embodiment mentioned above, is shown by description of a claim, and also includes all the changes within the meaning and range equivalent to description of a claim.

1 回転軸、2 スラスト荷重、
3 回転円板、4 固定部材、
10 スラスト支持装置、
11 摺動面(カラー摺動面)、
12 カラー、14 スラスト軸受、
15 対向面、
16 ランド部(軸受ランド部)、
17 テーパ部、18 溝
1 rotating shaft, 2 thrust load,
3 rotating disc, 4 fixing member,
10 Thrust support device,
11 Sliding surface (color sliding surface),
12 collars, 14 thrust bearings,
15 opposite surface,
16 Land part (bearing land part),
17 Taper, 18 grooves

Claims (3)

回転軸に直交する摺動面を有するカラーと、該摺動面に沿って相対的に回転するスラスト軸受とを備え、回転軸のスラスト荷重を支持するスラスト支持装置であって、
前記スラスト軸受は、前記摺動面と平行なランド部と、前記摺動面に対し傾斜し前記相対的回転によりカラーとの間の潤滑液に動圧を発生させるテーパ部とを有し、
前記摺動面の平均面粗さと前記ランド部の平均面粗さから算出される合成面粗さが、使用回転速度域において摺動面とランド部との間に形成される潤滑液の膜厚さより小さく設定されている、ことを特徴とするスラスト支持装置。
A thrust support device comprising a collar having a sliding surface orthogonal to the rotation shaft and a thrust bearing that rotates relatively along the sliding surface, and supports a thrust load of the rotation shaft,
The thrust bearing has a land portion parallel to the sliding surface, and a tapered portion that is inclined with respect to the sliding surface and generates a dynamic pressure in the lubricating liquid between the collar by the relative rotation,
The synthetic surface roughness calculated from the average surface roughness of the sliding surface and the average surface roughness of the land portion is the film thickness of the lubricating liquid formed between the sliding surface and the land portion in the operating rotational speed range. A thrust support device, wherein the thrust support device is set smaller than the above.
前記合成面粗さの3倍が前記潤滑液の膜厚さより小さい、ことを特徴とする請求項1に記載のスラスト支持装置。   The thrust support device according to claim 1, wherein three times the synthetic surface roughness is smaller than a film thickness of the lubricating liquid. 前記カラーは、樹脂を含浸したカーボン材であり、
前記ランド部は、前記カラーより硬く、かつ平均面粗さがカラーに対して同等以下の金属面であり、
前記カラーとランド部は、摩擦係数が0.02以下になるまで前記使用回転速度域において慣らし運転によりなじませてある、ことを特徴とする請求項1に記載のスラスト支持装置。
The collar is a carbon material impregnated with a resin,
The land portion is a metal surface that is harder than the collar and has an average surface roughness equal to or less than that of the collar,
2. The thrust support device according to claim 1, wherein the collar and the land portion are adapted by a running-in operation in the operating rotational speed range until a friction coefficient becomes 0.02 or less.
JP2011084204A 2011-04-06 2011-04-06 Thrust support device Active JP5761560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011084204A JP5761560B2 (en) 2011-04-06 2011-04-06 Thrust support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011084204A JP5761560B2 (en) 2011-04-06 2011-04-06 Thrust support device

Publications (2)

Publication Number Publication Date
JP2012219866A true JP2012219866A (en) 2012-11-12
JP5761560B2 JP5761560B2 (en) 2015-08-12

Family

ID=47271622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011084204A Active JP5761560B2 (en) 2011-04-06 2011-04-06 Thrust support device

Country Status (1)

Country Link
JP (1) JP5761560B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015163389A1 (en) * 2014-04-24 2015-10-29 国立大学法人東北大学 Sliding method, production method for sliding structure, sliding structure, and device
US10125818B2 (en) 2014-12-19 2018-11-13 Cummins Ltd. Turbomachine shaft and journal bearing assembly
EP3630387A4 (en) * 2017-06-03 2021-01-06 Saradva, Atulkumar Raghavjibhai A process of manufacturing of segments for carbon thrust bearing
WO2022107524A1 (en) * 2020-11-17 2022-05-27 株式会社Ihi Bearing and supercharger

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4105487A4 (en) 2020-02-10 2024-06-05 Ntn Toyo Bearing Co Ltd Rotor for electric water pumps, and slide bearing device for water pumps

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199718A (en) * 1984-10-20 1986-05-17 Ebara Corp Thrust bearing
JPH0216820U (en) * 1988-07-19 1990-02-02
JPH11183329A (en) * 1997-12-19 1999-07-09 Sankyo Seiki Mfg Co Ltd Life inspecting device and inspecting method for dynamic pressure bearing device
JP2002206522A (en) * 2001-01-05 2002-07-26 Mitsubishi Heavy Ind Ltd Thrust bearing
JP2008088846A (en) * 2006-09-29 2008-04-17 Denso Corp Scroll type compressor
JP2010174902A (en) * 2010-04-23 2010-08-12 Denso Corp Compressor
JP2010255755A (en) * 2009-04-24 2010-11-11 Ntn Corp Shaft member for fluid dynamic-pressure bearing device and manufacturing method for the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199718A (en) * 1984-10-20 1986-05-17 Ebara Corp Thrust bearing
JPH0216820U (en) * 1988-07-19 1990-02-02
JPH11183329A (en) * 1997-12-19 1999-07-09 Sankyo Seiki Mfg Co Ltd Life inspecting device and inspecting method for dynamic pressure bearing device
JP2002206522A (en) * 2001-01-05 2002-07-26 Mitsubishi Heavy Ind Ltd Thrust bearing
JP2008088846A (en) * 2006-09-29 2008-04-17 Denso Corp Scroll type compressor
JP2010255755A (en) * 2009-04-24 2010-11-11 Ntn Corp Shaft member for fluid dynamic-pressure bearing device and manufacturing method for the same
JP2010174902A (en) * 2010-04-23 2010-08-12 Denso Corp Compressor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015163389A1 (en) * 2014-04-24 2015-10-29 国立大学法人東北大学 Sliding method, production method for sliding structure, sliding structure, and device
JP6095090B2 (en) * 2014-04-24 2017-03-15 国立大学法人東北大学 Sliding method, manufacturing method of sliding structure, sliding structure and device
JPWO2015163389A1 (en) * 2014-04-24 2017-04-20 国立大学法人東北大学 Sliding method, manufacturing method of sliding structure, sliding structure and device
US10125818B2 (en) 2014-12-19 2018-11-13 Cummins Ltd. Turbomachine shaft and journal bearing assembly
EP3630387A4 (en) * 2017-06-03 2021-01-06 Saradva, Atulkumar Raghavjibhai A process of manufacturing of segments for carbon thrust bearing
WO2022107524A1 (en) * 2020-11-17 2022-05-27 株式会社Ihi Bearing and supercharger
US11898457B2 (en) 2020-11-17 2024-02-13 Ihi Corporation Bearing and turbocharger
JP7468696B2 (en) 2020-11-17 2024-04-16 株式会社Ihi Bearings and turbochargers

Also Published As

Publication number Publication date
JP5761560B2 (en) 2015-08-12

Similar Documents

Publication Publication Date Title
WO2019139107A1 (en) Sliding component
JP6080845B2 (en) Sliding parts
JP5761560B2 (en) Thrust support device
US9784372B2 (en) Sealing device
US9328736B2 (en) Motor pump bearing
Martsinkovsky et al. Designing radial sliding bearing equipped with hydrostatically suspended pads
CN203822685U (en) Fluoroplastic magnetic drive pump capable of approximate zero inner leakage
JP2012031979A (en) Thrust bearing
KR20180017044A (en) Mixed dynamic pressure gas journal bearing
RU2573150C1 (en) Support assembly
JP5831131B2 (en) Roller bearing and manufacturing method thereof
Litwin et al. Assessment of possible application of waterlubricated sintered brass slide bearing for marine propeller shaft
JP4527183B2 (en) Water lubrication segment type bearing device and water turbine
US9188157B2 (en) Axial sliding bearing
CN201723572U (en) Thrust bearing structure with oil slinger
JPH11351242A (en) Low viscosity fluid lubricating bearing
CN203822650U (en) Dry milling resistant fluoroplastic magnetic drive pump
JP2002303297A (en) Horizontal shaft type pump
CN113565708A (en) Fluid film bearing and wind turbine
US10962054B2 (en) Half bearing
CN206972599U (en) A kind of thrust bearing for magnetic pumps structure and magnetic drive pump
JP2017172732A (en) Water lubrication thrust bearing, bearing device and rotary machine
RU2090783C1 (en) Hydraulic seal for shaft
CN215257401U (en) Novel bearing structure of magnetic sliding vane pump
CN107084149A (en) A kind of thrust bearing for magnetic pumps structure and magnetic drive pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150527

R151 Written notification of patent or utility model registration

Ref document number: 5761560

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250