JP2012218992A - Method for producing water dispersion of carbon nanotube - Google Patents

Method for producing water dispersion of carbon nanotube Download PDF

Info

Publication number
JP2012218992A
JP2012218992A JP2011087884A JP2011087884A JP2012218992A JP 2012218992 A JP2012218992 A JP 2012218992A JP 2011087884 A JP2011087884 A JP 2011087884A JP 2011087884 A JP2011087884 A JP 2011087884A JP 2012218992 A JP2012218992 A JP 2012218992A
Authority
JP
Japan
Prior art keywords
surfactant
aqueous dispersion
cnt
solution
urea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011087884A
Other languages
Japanese (ja)
Inventor
Kazuaki Nishio
和晃 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011087884A priority Critical patent/JP2012218992A/en
Publication of JP2012218992A publication Critical patent/JP2012218992A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a stable water dispersion of carbon nanotube.SOLUTION: The carbon nanotube is dispersed by using aqueous solution comprising a nonionic surfactant or anionic surfactant and urea.

Description

本発明は、界面活性剤および尿素を利用したカーボンナノチューブの水分散液の製造方法に関するものである。   The present invention relates to a method for producing an aqueous dispersion of carbon nanotubes using a surfactant and urea.

カーボンナノチューブ(CNT)は複合材料や電子機器などへの応用で注目されているが、その電気的特性、生体分子との親和性、比表面積の大きさなどから生体分子を用いた製品においても応用が期待され、検討されている。CNTの分散溶媒として有機溶媒が多用されるが(例えば、特許文献1参照)、有機溶媒は生体分子に対して悪影響を及ぼすことが多く生物分野での使用に向かない。そこで生体分子に対する影響を低減するため、水系溶媒でのCNTの分散液が求められた(水分散液)。CNTは疎水性が高く、水のみではCNTを分散させることが困難である。そのため分散剤として界面活性剤が活発に検討された(例えば、特許文献2、特許文献3参照)。   Carbon nanotubes (CNT) are attracting attention for their application to composite materials and electronic devices, but they are also applied to products using biomolecules due to their electrical properties, affinity with biomolecules, and the size of specific surface area. Is expected and studied. An organic solvent is frequently used as a dispersion solvent for CNT (see, for example, Patent Document 1). However, organic solvents often have adverse effects on biomolecules and are not suitable for use in the biological field. Therefore, in order to reduce the influence on biomolecules, a dispersion of CNTs in an aqueous solvent was required (aqueous dispersion). CNT is highly hydrophobic, and it is difficult to disperse CNT only with water. For this reason, surfactants have been actively studied as dispersants (see, for example, Patent Document 2 and Patent Document 3).

特開2004‐261713号公報JP 2004-261713 A 特表2004‐534714号公報Special table 2004-534714 特開2003‐238126号公報Japanese Patent Laid-Open No. 2003-238126

しかし、前記界面活性剤により製造されたCNTの分散液は、長期の保存においてCNTが凝集し、沈殿を生じるため、有効なCNTの表面積が時間経過に伴って大きく変動するという課題を有していた。   However, the dispersion of CNTs produced with the surfactant has the problem that the effective surface area of CNTs varies greatly over time because CNTs aggregate and precipitate during long-term storage. It was.

本発明の目的は、カーボンナノチューブの安定な水分散液の製造方法を提供することである。   An object of the present invention is to provide a method for producing a stable aqueous dispersion of carbon nanotubes.

前記従来の課題を解決するために、本発明のカーボンナノチューブの水分散液の製造方法は、非イオン性界面活性剤または陰イオン性界面活性剤と尿素からなる水溶液を用いてカーボンナノチューブを分散する。本構成によって、長期の保存において分散状態を維持したカーボンナノチューブの水分散液を製造することができる。   In order to solve the above-mentioned conventional problems, the method for producing an aqueous dispersion of carbon nanotubes of the present invention disperses carbon nanotubes using an aqueous solution comprising a nonionic surfactant or an anionic surfactant and urea. . With this configuration, it is possible to produce an aqueous dispersion of carbon nanotubes that maintains a dispersed state during long-term storage.

長期の保存において分散状態を維持したカーボンナノチューブの水分散液の製造方法を提供する。   Provided is a method for producing an aqueous dispersion of carbon nanotubes that maintains a dispersed state during long-term storage.

本発明によるCNT水分散液の経時測定の結果を示すグラフThe graph which shows the result of the time measurement of the CNT aqueous dispersion by this invention

以下、図面を参照しながら、本発明の実施の形態が説明される。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明は非イオン性界面活性剤または陰イオン性界面活性剤と尿素からなる水溶液を用いてカーボンナノチューブ(CNT)を分散することを特徴とする、CNT水分散液の製造方法である。   The present invention is a method for producing a CNT aqueous dispersion, wherein carbon nanotubes (CNT) are dispersed using an aqueous solution comprising a nonionic surfactant or an anionic surfactant and urea.

界面活性剤は疎水性の物質を水系溶媒に分散させる効果を有する。本発明では界面活性剤として非イオン性界面活性剤や陰イオン性界面活性剤を用いることができる。   The surfactant has an effect of dispersing a hydrophobic substance in an aqueous solvent. In the present invention, a nonionic surfactant or an anionic surfactant can be used as the surfactant.

前記非イオン性界面活性剤はポリオキシエチレンアルキルエーテルまたはポリオキシエチレンアルキルフェニルエーテルが好ましく用いられる。ポリ(オキシエチレン)ソルビタンモノラウレートがより好ましく用いられる。   As the nonionic surfactant, polyoxyethylene alkyl ether or polyoxyethylene alkylphenyl ether is preferably used. Poly (oxyethylene) sorbitan monolaurate is more preferably used.

前記陰イオン性界面活性剤はアルキル硫酸エステル塩、コール酸、デオキシコール酸が好ましく用いられる。   The anionic surfactant is preferably an alkyl sulfate ester salt, cholic acid, or deoxycholic acid.

前記非イオン性界面活性剤および陰イオン性界面活性剤の濃度は臨界ミセル濃度の70%以上が好ましい。70%以下ではCNTを分散することが困難となる。   The concentration of the nonionic surfactant and the anionic surfactant is preferably 70% or more of the critical micelle concentration. If it is 70% or less, it becomes difficult to disperse CNTs.

前記界面活性剤溶液に尿素を含めることによりCNTの分散状態が安定化される。前記溶液の尿素は5M以上の濃度を有することが好ましい。   By containing urea in the surfactant solution, the dispersion state of CNTs is stabilized. The urea in the solution preferably has a concentration of 5M or more.

本発明により分散されるCNTは、単層CNTおよび多層CNTである。   The CNTs dispersed according to the present invention are single-walled CNTs and multilayered CNTs.

前記界面活性剤と尿素からなる溶液に乾燥状態の前記CNTを浸漬し、物理的手段でホモジナイズ処理することで、水溶液中にCNTを分散させることができる。前記ホモジナイズ処理によりCNTの水分散液が調製される。   The CNTs can be dispersed in the aqueous solution by immersing the CNTs in a dry state in a solution comprising the surfactant and urea and performing a homogenization treatment by physical means. An aqueous dispersion of CNTs is prepared by the homogenization treatment.

分散されるCNTの濃度は1mg/mL以下が好ましい。   The concentration of the dispersed CNT is preferably 1 mg / mL or less.

ホモジナイズ処理には超音波ホモジナイザー、擂潰機を用いることができる。超音波ホモジナイザーがより好ましい。   An ultrasonic homogenizer and a crusher can be used for the homogenization treatment. An ultrasonic homogenizer is more preferable.

CNTの水分散液の分散の安定性は吸光度の測定により評価できる。分散されたCNTの濃度と波長500nmの吸光度は相関しており、CNTの濃度が高いと吸光度も高い。CNTの水分散液の分散の安定性が低いと凝集、沈殿を起こし、分散したCNTの濃度が低下するため吸光度も低下する。波長500nmの吸光度の経時変化を測定することでCNTの水分散液の分散の安定性が評価される。   The dispersion stability of the aqueous dispersion of CNTs can be evaluated by measuring absorbance. The concentration of the dispersed CNT and the absorbance at a wavelength of 500 nm are correlated, and the absorbance is high when the concentration of CNT is high. If the dispersion stability of the aqueous dispersion of CNTs is low, aggregation and precipitation occur, and the concentration of dispersed CNTs decreases, so the absorbance also decreases. The stability of the dispersion of the CNT aqueous dispersion is evaluated by measuring the change with time in absorbance at a wavelength of 500 nm.

以下の実施例1を用いて、本発明はより詳細に説明される。   The following example 1 is used to explain the invention in more detail.

(実施例1)
(界面活性剤溶液の調製)
ポリ(オキシエチレン)ソルビタンモノラウレート(ANAPOE‐20、10%(w/v)水溶液;Anatrace社製)を超純水で希釈し、0.36%(w/v)の濃度を有するANAPOE‐20溶液を調製した。
Example 1
(Preparation of surfactant solution)
Poly (oxyethylene) sorbitan monolaurate (ANAPOE-20, 10% (w / v) aqueous solution; manufactured by Anatrac) is diluted with ultrapure water and has a concentration of 0.36% (w / v). 20 solutions were prepared.

(尿素溶液の調製)
尿素(特級;和光純薬工業社製)の粉末を超純水で溶解し、8Mの濃度を有する尿素溶液を調製した。
(Preparation of urea solution)
Urea (special grade; manufactured by Wako Pure Chemical Industries, Ltd.) powder was dissolved in ultrapure water to prepare a urea solution having a concentration of 8M.

(界面活性剤と尿素からなる溶液の調製)
10%(w/v)の濃度を有するANAPOE‐20と溶液8Mの濃度を有する尿素溶液および超純水を混合し、0.36%(w/v)の濃度のANAPOE‐20および6Mの濃度の尿素を含む溶液を調製した。
(Preparation of solution consisting of surfactant and urea)
ANAPOOE-20 having a concentration of 10% (w / v) is mixed with urea solution having a concentration of 8M and ultrapure water, and the concentrations of ANAPOE-20 and 6M having a concentration of 0.36% (w / v) are mixed. A solution containing urea was prepared.

(カーボンナノチューブ(CNT)の水分散の調製)
4mLの前記界面活性剤と尿素からなる溶液に2mgのCNT(単層CNT;Nanointegris社製)が添加された。その後、超音波ホモジナイザー(sonifier 150;Branson社製)を用いて、出力10 Watts (RMS)で5分間処理した。0.5mLの前記溶液に4.5mLの前記界面活性剤と尿素からなる溶液を添加した。その後、超音波ホモジナイザーを用いて、出力10 Watts (RMS)で5分間処理し、前記界面活性剤と尿素からなる溶液で処理したCNTの水分散液を得た。
(Preparation of water dispersion of carbon nanotube (CNT))
2 mg of CNT (single-walled CNT; manufactured by Nanointegris) was added to 4 mL of the surfactant and urea solution. Then, it processed for 5 minutes by output 10 Watts (RMS) using the ultrasonic homogenizer (sonifier 150; Branson company make). To 0.5 mL of the solution was added 4.5 mL of the surfactant and urea solution. Then, using an ultrasonic homogenizer, it was treated with an output of 10 Watts (RMS) for 5 minutes to obtain an aqueous dispersion of CNT treated with a solution comprising the surfactant and urea.

同様に、前記0.36%(w/v)の濃度を有するANAPOE‐20溶液(界面活性剤溶液)を用いてCNTを処理することでCNTの水分散液を得た。   Similarly, an aqueous dispersion of CNTs was obtained by treating CNTs with the ANAPOE-20 solution (surfactant solution) having a concentration of 0.36% (w / v).

同様に、前記6Mの濃度を有する尿素溶液を用いてCNTを処理することでCNTの水分散液を得た。
(吸光度測定によるCNT水分散液の安定性評価)
(測定装置)
CNT水分散液の安定性は吸光度により測定された。吸光度測定には、紫外可視分光光度計(UV-1600PC;島津製作所社製)を使用した。測定容器は光路長1cmのセル(セミマイクロブラックセル、石英;GEヘルスケア社製)が用いられた。
Similarly, an aqueous dispersion of CNTs was obtained by treating CNTs with a urea solution having a concentration of 6M.
(Stability evaluation of CNT aqueous dispersion by measuring absorbance)
(measuring device)
The stability of the CNT aqueous dispersion was measured by absorbance. An ultraviolet-visible spectrophotometer (UV-1600PC; manufactured by Shimadzu Corporation) was used for the absorbance measurement. As the measurement container, a cell having a light path length of 1 cm (semi-micro black cell, quartz; manufactured by GE Healthcare) was used.

(吸光度の測定)
前記界面活性剤と尿素からなる溶液で処理したCNTの水分散液及び前記界面活性剤溶液で処理したCNTの水分散液について、波長500nmの吸光度を前記水分散液の調製後、2時間後、3日後および60日後の時点について測定した。目視により確認できる沈殿を生じた場合は沈殿を残し、上清だけを測定に用いた。
(Measurement of absorbance)
For an aqueous dispersion of CNT treated with a solution comprising the surfactant and urea and an aqueous dispersion of CNT treated with the surfactant solution, the absorbance at a wavelength of 500 nm was measured for 2 hours after the preparation of the aqueous dispersion, Measurements were made at 3 and 60 days. When a precipitate that could be visually confirmed was generated, the precipitate was left and only the supernatant was used for the measurement.

図1はCNT水分散液の経時測定の結果を示す。界面活性剤で分散したCNTは時間の経過に従い吸光度が低下し、60日が経過した後では調製直後(2時間)の吸光度の値に対して値が57%に低下した。一方、界面活性剤と尿素からなる溶液で分散したCNTは調製直後の値に対して90%を維持した。   FIG. 1 shows the results of measurement over time of a CNT aqueous dispersion. The CNT dispersed with the surfactant decreased in absorbance as time passed, and after 60 days, the value decreased to 57% with respect to the absorbance value immediately after preparation (2 hours). On the other hand, CNT dispersed in a solution comprising a surfactant and urea maintained 90% of the value immediately after preparation.

従って、界面活性剤と尿素からなる溶液で分散したCNTは、長期の保存において分散状態を維持したCNTの水分散液であることを当業者は図1に基づいて理解するであろう。   Therefore, those skilled in the art will understand based on FIG. 1 that a CNT dispersed in a solution composed of a surfactant and urea is an aqueous dispersion of CNT that maintains a dispersed state during long-term storage.

本発明は、バイオセンサやバイオリアクターに用いられ得る。本発明は、バイオセンサやバイオリアクターにおける生体分子の担体や電極として特に有用である。   The present invention can be used for biosensors and bioreactors. The present invention is particularly useful as a biomolecule carrier or electrode in a biosensor or bioreactor.

Claims (5)

カーボンナノチューブ水分散液の製造方法であって、界面活性剤と尿素からなる水溶液を用いてカーボンナノチューブを分散することを特徴とする、カーボンナノチューブ水分散液の製造方法。   A method for producing an aqueous dispersion of carbon nanotubes, wherein the carbon nanotubes are dispersed using an aqueous solution comprising a surfactant and urea. 前記界面活性剤が非イオン性界面活性剤または陰イオン性界面活性剤である請求項1に記載のカーボンナノチューブ水分散液の製造方法。   The method for producing an aqueous dispersion of carbon nanotubes according to claim 1, wherein the surfactant is a nonionic surfactant or an anionic surfactant. 前記非イオン性界面活性剤がポリオキシエチレンアルキルエーテルまたはポリオキシエチレンアルキルフェニルエーテルである請求項1に記載のカーボンナノチューブ水分散液の製造方法。   The method for producing a carbon nanotube aqueous dispersion according to claim 1, wherein the nonionic surfactant is polyoxyethylene alkyl ether or polyoxyethylene alkyl phenyl ether. 前記陰イオン性界面活性剤がアルキル硫酸エステル塩である請求項1に記載のカーボンナノチューブ水分散液の製造方法。   The method for producing a carbon nanotube aqueous dispersion according to claim 1, wherein the anionic surfactant is an alkyl sulfate ester salt. 前記陰イオン性界面活性剤がコール酸またはデオキシコール酸である請求項1に記載のカーボンナノチューブ水分散液の製造方法。   The method for producing an aqueous dispersion of carbon nanotubes according to claim 1, wherein the anionic surfactant is cholic acid or deoxycholic acid.
JP2011087884A 2011-04-12 2011-04-12 Method for producing water dispersion of carbon nanotube Withdrawn JP2012218992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011087884A JP2012218992A (en) 2011-04-12 2011-04-12 Method for producing water dispersion of carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011087884A JP2012218992A (en) 2011-04-12 2011-04-12 Method for producing water dispersion of carbon nanotube

Publications (1)

Publication Number Publication Date
JP2012218992A true JP2012218992A (en) 2012-11-12

Family

ID=47270900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011087884A Withdrawn JP2012218992A (en) 2011-04-12 2011-04-12 Method for producing water dispersion of carbon nanotube

Country Status (1)

Country Link
JP (1) JP2012218992A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112675317A (en) * 2020-12-24 2021-04-20 广东药科大学 CO2/N2Switch type fluorescent liquid-liquid phase separation nano liquid drop and preparation method thereof
US11479469B2 (en) 2018-03-23 2022-10-25 Nec Corporation Method for storing a nanocarbon dispersion liquid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11479469B2 (en) 2018-03-23 2022-10-25 Nec Corporation Method for storing a nanocarbon dispersion liquid
CN112675317A (en) * 2020-12-24 2021-04-20 广东药科大学 CO2/N2Switch type fluorescent liquid-liquid phase separation nano liquid drop and preparation method thereof
CN112675317B (en) * 2020-12-24 2023-03-14 广东药科大学 CO2/N2 switch type fluorescent liquid-liquid phase separation nano liquid drop and preparation method thereof

Similar Documents

Publication Publication Date Title
Hartmann et al. Techniques and protocols for dispersing nanoparticle powders in aqueous media—is there a rationale for harmonization?
Xing et al. Ultrasmall bismuth quantum dots: facile liquid-phase exfoliation, characterization, and application in high-performance UV–Vis photodetector
Borode et al. Surfactant-aided dispersion of carbon nanomaterials in aqueous solution
Jiang et al. MoS2/nitrogen doped graphene hydrogels pn heterojunction: Efficient charge transfer property for highly sensitive and selective photoelectrochemical analysis of chloramphenicol
Zhao et al. Large-scale, highly efficient, and green liquid-exfoliation of black phosphorus in ionic liquids
Ouyang et al. Poly-l-lysine-modified reduced graphene oxide stabilizes the copper nanoparticles with higher water-solubility and long-term additively antibacterial activity
Zhang et al. Self-assembly of graphitic carbon nitride nanosheets–carbon nanotube composite for electrochemical simultaneous determination of catechol and hydroquinone
Singh et al. Functionalized MoS2 nanosheets assembled microfluidic immunosensor for highly sensitive detection of food pathogen
Rashmi et al. Stability and thermal conductivity enhancement of carbon nanotube nanofluid using gum arabic
Liu et al. Aniline as a dispersing and stabilizing agent for reduced graphene oxide and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection
CN103935998B (en) A kind of preparation method of graphene aqueous solution
Cai et al. Sodium 1‐naphthalenesulfonate‐functionalized reduced graphene oxide stabilizes silver nanoparticles with lower cytotoxicity and long‐term antibacterial activity
Wu et al. Investigating the influence of MoS2 nanosheets on E. coli from metabolomics level
Chen et al. L-Cysteine-assisted controlled synthesis of selenium nanospheres and nanorods
Wang et al. Black phosphorus-based field effect transistor devices for Ag ions detection
Wang et al. Preparation and characterization of TIO2/SPI composite film
Bomboi et al. Interactions between single-walled carbon nanotubes and lysozyme
Voge et al. Wrapping and dispersion of multiwalled carbon nanotubes improves electrical conductivity of protein–nanotube composite biomaterials
Praus et al. Precipitation, stabilization and molecular modeling of ZnS nanoparticles in the presence of cetyltrimethylammonium bromide
Koyama et al. Ultrafast energy transfer of one-dimensional excitons between carbon nanotubes: a femtosecond time-resolved luminescence study
Deka et al. Piezo-photocatalytic and photocatalytic bismuth vanadate nanorods with antibacterial property
Chen et al. Black phosphorus quantum dots as novel electrogenerated chemiluminescence emitters for the detection of Cu 2+
Guo et al. Efficient mixed-solvent exfoliation of few-quintuple layer Bi2S3 and its photoelectric response
Bobrowska et al. Carbon nano-onion composites: Physicochemical characteristics and biological activity
Han et al. Highly sensitive and rapidly responding room-temperature NH3 gas sensor that is based on exfoliated black phosphorus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701