JP2012218945A - Method for producing raw material for silicon carbide single crystal promotion - Google Patents

Method for producing raw material for silicon carbide single crystal promotion Download PDF

Info

Publication number
JP2012218945A
JP2012218945A JP2011082534A JP2011082534A JP2012218945A JP 2012218945 A JP2012218945 A JP 2012218945A JP 2011082534 A JP2011082534 A JP 2011082534A JP 2011082534 A JP2011082534 A JP 2011082534A JP 2012218945 A JP2012218945 A JP 2012218945A
Authority
JP
Japan
Prior art keywords
silicon carbide
single crystal
carbon crucible
carbide single
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011082534A
Other languages
Japanese (ja)
Inventor
Takao Sawada
隆夫 沢田
Tomoaki Kosho
智明 古庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011082534A priority Critical patent/JP2012218945A/en
Publication of JP2012218945A publication Critical patent/JP2012218945A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a raw material for a silicon carbide single crystal promotion which improves the trade-off relationship between the improvement of the purity and the decline of the yield.SOLUTION: Recrystallization precipitate which is formed at the crystal growth by the sublimation recrystallization method that uses the carbon crucible and bonds to carbon crucible 1 is crushed together with carbon crucible 1. Water is penetrated to the carbon crucible material which becomes broken pieces in the state that the recrystallization precipitates are bonded. After repeating the temperature cycle in the freeze and the melting temperature plural times to the broken-piece state carbon crucible material to which water is penetrated, the carbon crucible material to which the temperature cycles are given is crushed and is made to be the raw material for growing the silicon carbide single crystal.

Description

本発明は半導体装置の製造に用いる炭化珪素単結晶育成用原料の製造方法に関する。   The present invention relates to a method for manufacturing a raw material for growing a silicon carbide single crystal used for manufacturing a semiconductor device.

炭化珪素単結晶の製造方法として、現在、工業的に一般的な方法は改良レーリー法(または昇華再結晶法)と呼ばれる方法である。この方法は炭素材質の坩堝(炭素坩堝)中に炭化珪素単結晶育成用原料を充填し、坩堝内部の上部には炭化珪素種結晶(炭化珪素基板)が設置される。   As a method for producing a silicon carbide single crystal, an industrially general method is a method called an improved Rayleigh method (or sublimation recrystallization method). In this method, a carbon carbide crucible (carbon crucible) is filled with a raw material for growing silicon carbide single crystal, and a silicon carbide seed crystal (silicon carbide substrate) is placed in the upper part of the crucible.

炭素坩堝は、不純物の少ない多孔質の通気性材料で構成され、坩堝の上部に種結晶を取り付け、坩堝内部への炭化珪素原料の充填が終わった時点で密閉される。   The carbon crucible is made of a porous air-permeable material with few impurities. A seed crystal is attached to the upper portion of the crucible, and the carbon crucible is sealed when the silicon carbide raw material is filled into the crucible.

坩堝を配置する容器内の雰囲気を排気し、一旦、高真空状態にして、酸素分圧を下げた後、不活性ガス(例えばアルゴンガス)を導入して不活性ガス雰囲気とし、大気圧程度まで圧力を上昇させる。   The atmosphere in the container in which the crucible is placed is evacuated, once brought into a high vacuum state, the oxygen partial pressure is lowered, and then an inert gas (for example, argon gas) is introduced to create an inert gas atmosphere. Increase pressure.

その後、所定の温度(1800℃以上2500℃程度)まで坩堝を加熱し、所定温度に達した状態で不活性ガス雰囲気の圧力を1.333×103Pa(10Torr)以下まで低下させる。 Thereafter, the crucible is heated to a predetermined temperature (1800 ° C. or more and about 2500 ° C.), and the pressure of the inert gas atmosphere is reduced to 1.333 × 10 3 Pa (10 Torr) or less when the temperature reaches the predetermined temperature.

このとき、坩堝底部と上部には、上部が底部よりも温度が低くなるように、20℃以上200℃以下の温度差で温度勾配が形成されるように、坩堝全体の温度状態を設定する。この状態で、所定の温度(底部が1800℃以上2500℃程度となる温度)で、所定の圧力状態(1.333×103Pa以下)を所定の時間(成長に要する時間)保持する。 At this time, the temperature state of the entire crucible is set so that a temperature gradient is formed at a temperature difference of 20 ° C. or more and 200 ° C. or less so that the temperature of the upper portion is lower than that of the bottom portion. In this state, a predetermined pressure state (1.333 × 10 3 Pa or less) is maintained for a predetermined time (a time required for growth) at a predetermined temperature (a temperature at which the bottom is about 1800 ° C. to 2500 ° C.).

これにより、炭化珪素単結晶育成用原料は坩堝内で昇華し、温度の低い種結晶上に炭化珪素の結晶が成長する。結晶成長が終了した後は、不活性ガス雰囲気の圧力を上昇させた後、坩堝全体の温度をゆっくり下げる。   Thereby, the silicon carbide single crystal growth raw material is sublimated in the crucible, and a silicon carbide crystal grows on the seed crystal having a low temperature. After the crystal growth is completed, the pressure of the inert gas atmosphere is raised, and then the temperature of the entire crucible is slowly lowered.

坩堝全体の温度が室温まで温度が下がった後、坩堝は取り出されて解体される。坩堝は密閉構造のため、炭素系接着剤で密閉されている。そのために、炭化珪素の結晶取り出し時は、坩堝を破壊する。炭化珪素の単結晶を取り出した後の坩堝内に残留する再結晶により析出した多結晶体や、蓋部に析出した多結晶体は、精製された原料として、次回の結晶成長原料として、再利用可能である。   After the temperature of the entire crucible has dropped to room temperature, the crucible is taken out and disassembled. Since the crucible is sealed, it is sealed with a carbon-based adhesive. Therefore, the crucible is destroyed when the silicon carbide crystal is taken out. The polycrystalline body deposited by recrystallization remaining in the crucible after taking out the silicon carbide single crystal and the polycrystalline body deposited on the lid are reused as refined raw materials for the next crystal growth. Is possible.

ここで、上述した炭素坩堝に充填する炭化珪素単結晶育成用原料には、炭化珪素研磨剤の製造方法として知られるアチソン法で製造された炭化珪素を精製したものを使用することが一般的である。   Here, as the silicon carbide single crystal growth raw material filled in the carbon crucible described above, it is common to use a refined silicon carbide produced by the Atchison method known as a method for producing a silicon carbide abrasive. is there.

アチソン法は、珪石とコークスの混合物を炉の両端に固定したグラファイトなどの炭素ヒーターで加熱し反応させる炭化珪素研磨剤の製造方法として知られている。アチソン法で製造された原料は、純度が低いので精製する必要があり、精製方法としては、真空状態で加熱することにより、揮発しやすい元素を蒸発させる方法が採られる。   The Atchison method is known as a method for producing a silicon carbide abrasive in which a mixture of silica and coke is heated and reacted with a carbon heater such as graphite fixed at both ends of the furnace. Since the raw material produced by the Atchison method has a low purity, it is necessary to purify the raw material. As a purification method, a method of evaporating an easily volatile element by heating in a vacuum state is employed.

特許文献1には、これらの方法で得られた炭化珪素単結晶育成用原料を更に精製するために、改良レーリー法により単結晶を形成し、それを粉砕して再び炭化珪素単結晶育成用原料とし、再び単結晶を形成するという工程を複数回繰り返すことにより、高純度の炭化珪素原料を得る方法が開示されている。   In Patent Document 1, in order to further refine the silicon carbide single crystal growth raw material obtained by these methods, a single crystal is formed by an improved Rayleigh method, pulverized, and again a silicon carbide single crystal growth raw material. And the method of obtaining a high purity silicon carbide raw material by repeating the process of forming a single crystal a plurality of times is disclosed.

特開2005−239496号公報JP 2005-239396 A

以上説明したように、従来の炭化珪素単結晶育成用原料の製造方法では、改良レーリー法を繰り返すたびに、良質ではあるが結晶ではない炭化珪素や、炭素坩堝に固着した状態の炭化珪素単結晶や炭化珪素多結晶が多く発生する。それらは、回収が難しく、回収できないものは廃棄されるため、高純度化工程を繰り返すほど、純度は向上するものの、収率は低下すると言うトレードオフ関係が生じる。   As described above, in the conventional method for producing a silicon carbide single crystal growth material, each time the improved Rayleigh method is repeated, silicon carbide that is of good quality but not a crystal, or a silicon carbide single crystal fixed to a carbon crucible is used. Many silicon carbide polycrystals are generated. Since they are difficult to recover and those that cannot be recovered are discarded, there is a trade-off relationship that the higher the purity, the higher the purity but the lower the yield.

本発明は上記のような問題点を解消するためになされたもので、純度の向上と、収率の低下とのトレードオフ関係を改善した炭化珪素単結晶育成用原料の製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a method for producing a raw material for growing silicon carbide single crystal with improved trade-off relationship between improvement in purity and reduction in yield. With the goal.

本発明に係る炭化珪素単結晶育成用原料の製造方法の態様は、炭化珪素単結晶の製造のための炭化珪素単結晶育成用原料の製造方法であって、炭素坩堝《1》を用いた昇華再結晶法による結晶成長に際して形成され、前記炭素坩堝に結合した再結晶析出物を、前記炭素坩堝ごと粉砕し、前記再結晶析出物が結合した状態で破片となった炭素坩堝材に水を浸透させる工程(a)と、前記工程(a)の後、水が浸透した破片状の前記炭素坩堝材に対して、水が凍結、溶解する温度での温度サイクルを複数回繰り返す工程(b)と、前記工程(b)の後、前記温度サイクルをかけられた前記炭素坩堝材を粉砕して前記炭化珪素単結晶育成用原料とする工程(c)とを備えている。   An aspect of a method for producing a raw material for growing a silicon carbide single crystal according to the present invention is a method for producing a raw material for growing a silicon carbide single crystal for producing a silicon carbide single crystal, which is a sublimation using a carbon crucible << 1 >>. The recrystallized precipitate formed during the crystal growth by the recrystallization method and bonded to the carbon crucible is pulverized together with the carbon crucible, and water is penetrated into the carbon crucible material that is broken in the state where the recrystallized precipitate is bonded. A step (a), and a step (b) of repeating the temperature cycle at a temperature at which water freezes and melts after the step (a) at a temperature at which water is frozen and melted. After the step (b), there is a step (c) of crushing the carbon crucible material subjected to the temperature cycle to obtain the silicon carbide single crystal growth raw material.

本発明に係る炭化珪素単結晶育成用原料の製造方法の態様によれば、水が浸透した破片状の炭素坩堝材に対して、水が凍結、溶解する温度での温度サイクルを複数回繰り返すことで、炭素坩堝材が微小クラックよる強度低下を起こし、短時間で、確実に粉砕される。このため、従来の炭素坩堝材の粉砕に長時間を要する場合に比べて、炭化珪素材料と、炭素材料の強度を大きく異ならせるため、炭化珪素単結晶育成用原料の収率を高めることができ、純度の向上と、収率の低下とのトレードオフ関係を改善できる。   According to the aspect of the method for producing a raw material for growing a silicon carbide single crystal according to the present invention, a temperature cycle at a temperature at which water freezes and melts is repeated a plurality of times for a piece-like carbon crucible material into which water has permeated. Thus, the strength of the carbon crucible material is reduced due to microcracks, and the carbon crucible material is reliably pulverized in a short time. For this reason, since the strength of the silicon carbide material and the carbon material are greatly different from those in the case where a long time is required for pulverizing the conventional carbon crucible material, the yield of the silicon carbide single crystal growth raw material can be increased. The trade-off relationship between the increase in purity and the decrease in yield can be improved.

炭素坩堝に蓋部を被せた状態の断面形状を示す図である。It is a figure which shows the cross-sectional shape of the state which covered the cover part on the carbon crucible. 単結晶成長装置の構成を示す図である。It is a figure which shows the structure of a single crystal growth apparatus. 蓋部と一体化して取り出された炭化珪素単結晶を示す図である。It is a figure which shows the silicon carbide single crystal taken out integrally with the cover part. 実施の形態に係る炭化珪素単結晶育成用原料の製造方法を説明するフローチャートである。It is a flowchart explaining the manufacturing method of the raw material for silicon carbide single crystal growth which concerns on embodiment. 実施の形態の変形例に係る炭化珪素単結晶育成用原料の製造方法を説明するフローチャートである。It is a flowchart explaining the manufacturing method of the raw material for silicon carbide single crystal growth which concerns on the modification of embodiment.

<実施の形態>
本発明に係る炭化珪素単結晶育成用原料の製造方法の実施の形態について図1〜図4を用いて説明する。
<Embodiment>
An embodiment of a method for producing a raw material for growing a silicon carbide single crystal according to the present invention will be described with reference to FIGS.

図1は、改良レーリー法により炭化珪素単結晶を製造する際に使用する炭素坩堝1に蓋部6を被せた状態の断面形状を示す図である。なお、炭素坩堝1は円筒形をなしている。   FIG. 1 is a view showing a cross-sectional shape of a carbon crucible 1 used when producing a silicon carbide single crystal by an improved Rayleigh method with a lid 6 covered. The carbon crucible 1 has a cylindrical shape.

図1に示すように、不純物の少ない多孔質で通気性材料を有する炭素材で構成される炭素坩堝1の内部には、炭化珪素単結晶育成用原料の出発材料として、アチソン法で製造され、セラミック用原料として精製された、市販の純度99%以上の炭化珪素粉末2が充填されている。   As shown in FIG. 1, a carbon crucible 1 made of a carbon material having a porous and air-permeable material with few impurities is manufactured by the Atchison method as a starting material for growing silicon carbide single crystal, Commercially available silicon carbide powder 2 having a purity of 99% or more purified as a ceramic raw material is filled.

ここで、出発材料としては、アチソン法により得られた炭化珪素の他に、半導体グレードの5ナイン(5N)以上の珪素粉末と、高純度炭素粉末(5N以上)を等モル比で混合したものを不活性ガス中で高温で反応させて、高純度の炭化珪素再結晶粉末としたものを使用することもできる。   Here, as a starting material, in addition to silicon carbide obtained by the Atchison method, a semiconductor grade silicon powder of 5 Nine (5N) or higher and high purity carbon powder (5N or higher) mixed in an equimolar ratio It is also possible to use a high-purity silicon carbide recrystallized powder obtained by reacting at a high temperature in an inert gas.

なお、炭化珪素粉末2は、炭素坩堝1の上部側に空間が形成されるように充填され、炭素坩堝1に蓋部6を被せることで、蓋部6の内側に取付けられた炭化珪素種結晶(炭化珪素基板)4が炭素坩堝1の上部側の空間内に位置することとなる。   Silicon carbide powder 2 is filled so that a space is formed on the upper side of carbon crucible 1, and silicon carbide seed crystal attached inside lid portion 6 by covering lid portion 6 with carbon crucible 1. (Silicon carbide substrate) 4 is located in the space on the upper side of carbon crucible 1.

蓋部6は、その中央部において突出する基板取付け台61を有し、その端面に炭化珪素種結晶4の主面が平行するように炭化珪素種結晶4を接着により取り付け、基板取付け台61が炭素坩堝1内部に挿入されるように炭素坩堝1に被せられる。なお、基板取付け台61と炭化珪素種結晶4とは炭素系接着剤で接着され、炭素坩堝1と蓋部6も、炭素系接着剤で接着され、炭素坩堝1は密閉される。なお、炭素坩堝1は多孔質で通気性材料を有するので、炭素坩堝1を密閉しても内部と外とで気体の出入りは可能である。   The lid 6 has a substrate mounting base 61 protruding at the center thereof, and the silicon carbide seed crystal 4 is attached by adhesion so that the main surface of the silicon carbide seed crystal 4 is parallel to the end face. The carbon crucible 1 is placed so as to be inserted into the carbon crucible 1. The substrate mounting base 61 and the silicon carbide seed crystal 4 are bonded with a carbon-based adhesive, the carbon crucible 1 and the lid 6 are also bonded with the carbon-based adhesive, and the carbon crucible 1 is sealed. In addition, since the carbon crucible 1 has a porous and air-permeable material, gas can enter and exit inside and outside even if the carbon crucible 1 is sealed.

蓋部6を取り付けて密閉した炭素坩堝1を、図2に示す単結晶成長装置10に搭載し、加熱を行う。図2に示す単結晶成長装置10は、石英菅11と、石英菅11が搭載され、真空排気のための真空排気装置13に結合される真空チャンバー12と、石英菅11の上部フランジ14を貫通するように取付けられたガス導入菅15を介して石英菅11内に不活性ガスを導入する流量制御装置(マスフローコントローラ)16と、石英菅11の外周に巻き付けられたワークコイル(加熱コイル)18とを有している。この、ワークコイル18に高周波電流を流すことにより炭素坩堝1が誘導加熱されることとなる。なお、炭素坩堝1は熱シールドのための部材(炭素繊維断熱材)で包まれるが、便宜的に図示は省略している。また、石英菅11中で炭素坩堝1を支持する部材も図示を省略している。   The carbon crucible 1 with the lid 6 attached and sealed is mounted on the single crystal growth apparatus 10 shown in FIG. 2 and heated. A single crystal growth apparatus 10 shown in FIG. 2 penetrates through a quartz trough 11, a vacuum chamber 12 on which the quartz trough 11 is mounted and coupled to a vacuum exhaust apparatus 13 for vacuum exhaust, and an upper flange 14 of the quartz trough 11. A flow control device (mass flow controller) 16 that introduces an inert gas into the quartz rod 11 through a gas introduction rod 15 that is attached to the workpiece, and a work coil (heating coil) 18 that is wound around the outer periphery of the quartz rod 11. And have. The carbon crucible 1 is induction-heated by passing a high-frequency current through the work coil 18. The carbon crucible 1 is wrapped with a heat shield member (carbon fiber heat insulating material), but is not shown for convenience. Further, a member that supports the carbon crucible 1 in the quartz trough 11 is not shown.

石英菅11内に炭素坩堝1を搭載した後、上部フランジ14を取り付けて石英菅11を密閉し、炭素坩堝1内の気圧が1Pa以下となる真空状態となるまで真空排気装置13を用いて石英菅11内の空気を排気する。炭素坩堝1は多孔質で通気性材料を有するので、石英菅11内の空気の排気とともに、炭素坩堝1の空気も排気される。従って、真空チャンバー12内の気圧が所定値に達することで炭素坩堝1内の気圧が1Pa以下になったものと見積もることができる。   After mounting the carbon crucible 1 in the quartz crucible 11, the upper flange 14 is attached to seal the quartz crucible 11, and the quartz crucible 1 is quartzed using the vacuum exhaust device 13 until the pressure in the carbon crucible 1 becomes 1 Pa or less. Exhaust the air in the tub 11. Since the carbon crucible 1 is porous and has a breathable material, the air in the carbon crucible 1 is exhausted together with the exhaust of air in the quartz crucible 11. Therefore, it can be estimated that the atmospheric pressure in the carbon crucible 1 is 1 Pa or less when the atmospheric pressure in the vacuum chamber 12 reaches a predetermined value.

真空チャンバー12内の気圧が所定値に達した後、真空チャンバー12と真空排気装置13とを結合する真空配管17の途中に設けた真空バルブ19を閉じ、流量制御装置16を用いて真空チャンバー12内に不活性ガスとしてアルゴンガスを導入する。この場合、1〜2時間かけて、真空チャンバー12内の気圧を6000〜8000Paまで高める。   After the atmospheric pressure in the vacuum chamber 12 reaches a predetermined value, the vacuum valve 19 provided in the middle of the vacuum pipe 17 connecting the vacuum chamber 12 and the vacuum exhaust device 13 is closed, and the vacuum chamber 12 is used by using the flow rate control device 16. Argon gas is introduced into the inside as an inert gas. In this case, the atmospheric pressure in the vacuum chamber 12 is increased to 6000 to 8000 Pa over 1 to 2 hours.

次に、ワークコイル18を用いた誘導加熱により、炭素坩堝1の温度を1800℃〜2400℃まで上昇させて、圧力を1333Paから133.3Pa程度に低下させ、その状態を5〜20時間保持して炭化珪素を炭素坩堝1内で昇華させ、再結晶化を行う。   Next, the temperature of the carbon crucible 1 is increased from 1800 ° C. to 2400 ° C. by induction heating using the work coil 18, the pressure is reduced from about 1333 Pa to about 133.3 Pa, and the state is maintained for 5 to 20 hours. Then, silicon carbide is sublimated in the carbon crucible 1 and recrystallized.

その後、ワークコイル18に流す高周波電流を徐々に少なくし、炭素坩堝1をゆっくり冷却する。なお、加熱には、ワークコイルを用いた高周波加熱法だけでなく、炭素発熱体を用いた抵抗加熱法を用いても良い。   Thereafter, the high-frequency current flowing through the work coil 18 is gradually reduced, and the carbon crucible 1 is slowly cooled. For heating, not only a high-frequency heating method using a work coil but also a resistance heating method using a carbon heating element may be used.

図2においては、石英菅11内の炭素坩堝1内において炭化珪素種結晶4の主面上に、生成結晶として炭化珪素単結晶3が形成され、蓋部6の表面には再結晶析出した炭化珪素多結晶5が形成されている。また、図示はしていないが炭化珪素粉末2の上部にも再結晶析出した炭化珪素多結晶が形成され、また、温度勾配によっては炭素坩堝1の底部側の炭化珪素粉末2も再結晶して炭化珪素多結晶となっている場合もある。   In FIG. 2, silicon carbide single crystal 3 is formed as a generated crystal on the main surface of silicon carbide seed crystal 4 in carbon crucible 1 in quartz cage 11, and carbonized by recrystallization and precipitation on the surface of lid portion 6. A silicon polycrystal 5 is formed. Although not shown, polycrystalline silicon carbide that is recrystallized and precipitated is formed on the silicon carbide powder 2, and the silicon carbide powder 2 on the bottom side of the carbon crucible 1 is also recrystallized depending on the temperature gradient. It may be silicon carbide polycrystal.

このようにして得られた再結晶体は、炭化珪素多結晶5に見られるように焼結された状態で炭素坩堝1と一体化している。また、炭素坩堝1は蓋部6と炭素系接着剤で接着され、加熱により炭素坩堝1と蓋部6とは一体化しているので、炭素坩堝1を物理的に破壊することで蓋部6と炭素坩堝1とを分離し、蓋部6ごと、炭化珪素種結晶4の主面上に形成された炭化珪素単結晶3を取り出す。   The recrystallized body thus obtained is integrated with the carbon crucible 1 in a sintered state as seen in the silicon carbide polycrystal 5. The carbon crucible 1 is bonded to the lid 6 with a carbon-based adhesive, and the carbon crucible 1 and the lid 6 are integrated with each other by heating. The carbon crucible 1 is separated, and the silicon carbide single crystal 3 formed on the main surface of the silicon carbide seed crystal 4 is taken out together with the lid 6.

図3には、蓋部6の基板取付け台61と一体化して取り出された炭化珪素単結晶3を示しており、炭化珪素種結晶4は炭化珪素単結晶3と区別できない状態となっている。   FIG. 3 shows silicon carbide single crystal 3 taken out integrally with substrate mounting base 61 of lid portion 6, and silicon carbide seed crystal 4 is in a state indistinguishable from silicon carbide single crystal 3.

引用文献1では、この炭化珪素単結晶3を、ダイヤモンドスラリーを用いたワイヤーソーにより切断し、厚さ0.4mm程度の炭化珪素ウエハを複数枚切り出し、それらを砕いて1mm程度の粉末として2回目の結晶成長のための炭化珪素粉末とすることが特徴であるが、本発明の特徴は以下の工程にある。   In Cited Document 1, this silicon carbide single crystal 3 is cut with a wire saw using a diamond slurry, and a plurality of silicon carbide wafers having a thickness of about 0.4 mm are cut out and crushed to form a powder of about 1 mm for the second time. A feature of the present invention is that the silicon carbide powder is used for crystal growth of the present invention.

以下、図4に示すフローチャートを用いて、実施の形態に係る炭化珪素単結晶育成用原料の製造方法について説明する。   Hereinafter, the manufacturing method of the raw material for silicon carbide single crystal growth which concerns on embodiment is demonstrated using the flowchart shown in FIG.

まず、先に説明したように、炭化珪素単結晶3を取り除いた蓋部6と、炭素坩堝1を機械的方法により粗く砕く(ステップS1)。なお、蓋部6および炭素坩堝1の材質は同じであるので、両者を総称して炭素坩堝材と呼称する。   First, as described above, the lid 6 from which the silicon carbide single crystal 3 is removed and the carbon crucible 1 are roughly crushed by a mechanical method (step S1). In addition, since the material of the cover part 6 and the carbon crucible 1 is the same, both are named generically and a carbon crucible material is called.

蓋部6および炭素坩堝1に結合した再結晶析出物(炭化珪素多結晶や炭化珪素単結晶)の分離は、衝撃などによる機械的方法では困難であるので、従来は、炭素材と炭化珪素とが結合した状態でボールミルに入れ、ボールミル内でボールが衝突する際の衝撃によって、炭素を粉砕して粉末化する。炭化珪素は硬いため、粉砕されずに炭素と分離される。   Separation of recrystallized precipitates (silicon carbide polycrystal or silicon carbide single crystal) bonded to the lid 6 and the carbon crucible 1 is difficult by a mechanical method by impact or the like. Are put in a ball mill in a bonded state, and carbon is pulverized and pulverized by impact when the ball collides in the ball mill. Since silicon carbide is hard, it is separated from carbon without being pulverized.

ここで、ボールミルに用いる容器およびボールは炭化珪素材質のものを用いる。また、ボールは入れないで、寸法10mm角以上の炭化珪素多結晶の塊を入れ、それ自身の互いの衝突による衝撃で、炭素坩堝材を粉砕する方法も採られる。炭素坩堝材の分離後は、得られた再結晶析出物の粉砕物を純水で洗浄し、表面付着物を除去するために、フッ酸洗浄および純水洗浄を行う。   Here, the container and ball used for the ball mill are made of silicon carbide. In addition, a method of putting a silicon carbide polycrystal lump having a size of 10 mm square or more without grinding a ball and pulverizing the carbon crucible material by impacts caused by collision with each other is also adopted. After separation of the carbon crucible material, the pulverized recrystallized precipitate obtained is washed with pure water, and hydrofluoric acid washing and pure water washing are performed in order to remove surface deposits.

この工程における、ボールミルによる炭素坩堝材の粉砕は、再結晶時の高温加熱および、炭化珪素の分解により生じた珪素成分と炭素坩堝材との反応により、炭素坩堝材の硬度が高まって硬化しているために長時間を要する。すなわち、多孔質の炭素坩堝材は、硬度の低い柔らかい材質なので、硬い炭化珪素多結晶や炭化珪素単結晶とは粉砕により容易に分離することができるはずであるが、再結晶化や、昇華再結晶法による結晶成長時の高温、低圧力の条件では、炭化珪素の成分である珪素成分の分離が発生し、それが、炭素坩堝材の炭素や、さらに炭素坩堝1の外側を覆う熱シールドのための部材(炭素繊維断熱材)と反応し、より硬度の高い材料に変質するため、炭化珪素多結晶や炭化珪素単結晶との分離が困難となる。   In this process, the pulverization of the carbon crucible material by the ball mill is performed by increasing the hardness of the carbon crucible material by the high temperature heating during recrystallization and the reaction between the silicon component generated by the decomposition of silicon carbide and the carbon crucible material. It takes a long time. In other words, since the porous carbon crucible material is a soft material with low hardness, it should be easily separated from hard silicon carbide polycrystal or silicon carbide single crystal by pulverization. Under conditions of high temperature and low pressure during crystal growth by the crystal method, separation of the silicon component, which is a component of silicon carbide, occurs, which is caused by the heat shield covering the carbon of the carbon crucible material and further the outside of the carbon crucible 1. Therefore, separation from silicon carbide polycrystal and silicon carbide single crystal becomes difficult.

また、長時間、炭化珪素(再結晶析出物)と炭素坩堝材をボールミルにかけているために、炭化珪素自体の消耗も多くなり、粉末状になった部分は廃棄されるので、炭化珪素単結晶育成用原料の収率の低下を招く。   In addition, since silicon carbide (recrystallized precipitate) and carbon crucible material are applied to a ball mill for a long time, silicon carbide itself is consumed more and the powdered part is discarded. The yield of raw materials is reduced.

そこで、本発明に係る炭化珪素単結晶育成用原料の製造方法では、ステップS1で得られた炭素坩堝1の破片を、純水とともにボールミルに入れ、ボールミルによる粉砕を1時間程度行う(ステップS2)。一例としては、1kg分のボール(炭化珪素材質)と炭素坩堝1の破片とで、容量2リットルのボールミルポットが八分目となるように入れ、純水を満たしてボールミルによる粉砕を行った。   Therefore, in the method for producing a raw material for growing a silicon carbide single crystal according to the present invention, the pieces of the carbon crucible 1 obtained in step S1 are put in a ball mill together with pure water and pulverized by the ball mill for about 1 hour (step S2). . As an example, 1 kg of balls (silicon carbide material) and pieces of carbon crucible 1 were placed so that a ball mill pot with a capacity of 2 liters became the eighth minute, filled with pure water, and pulverized by a ball mill.

この方法で、炭化珪素多結晶および炭化珪素単結晶の鋭角部分を粉砕すると共に、結合している炭素坩堝材に、純水を充分に浸透させる。炭素坩堝材は多孔質なので、1時間も純水に浸されていれば純水が充分に浸透すると考えられるが、この時間はさらに短くても良く、10分〜30分でも良いと考えられる。しかし、炭化珪素多結晶および炭化珪素単結晶の鋭角部分を粉砕するという目的からは、1時間程度が適切と言える。   By this method, the acute angle portions of the silicon carbide polycrystal and the silicon carbide single crystal are pulverized, and pure water is sufficiently permeated into the bonded carbon crucible material. Since the carbon crucible material is porous, it can be considered that pure water will permeate sufficiently if it is immersed in pure water for 1 hour, but this time may be even shorter, and it may be 10 to 30 minutes. However, it can be said that about one hour is appropriate for the purpose of pulverizing the acute angle portion of the silicon carbide polycrystal and the silicon carbide single crystal.

ステップS2のボールミルによる粉砕を行った後、炭化珪素多結晶や炭化珪素単結晶が結合している炭素坩堝材の破片の表面の水分を除去する(ステップS3)。この作業は、半導体装置製造のクリーンルームで使用されるようなふき取り布を用いて、破片の表面の水分をふき取る作業であるが、省略することもできる。   After pulverization by the ball mill in step S2, moisture on the surface of the carbon crucible material fragment to which silicon carbide polycrystal or silicon carbide single crystal is bonded is removed (step S3). This operation is an operation of wiping off moisture on the surface of the debris by using a wiping cloth used in a clean room for manufacturing a semiconductor device, but can be omitted.

次に、水分をふき取った破片を樹脂容器に密閉し、零下20℃と20℃の温度状態を1時間ごとに繰り返す温度サイクル装置に入れ、零下20℃と20℃の温度サイクルを繰り返しかける(ステップS4)。これにより、炭素坩堝材に浸透させた水分が、凍結と融解を繰り返すこととなる。なお、上述した零下20℃と20℃の温度サイクルは一例であり、これに限定されるものではなく、炭素坩堝材に浸透させた水分が、凍結と融解を繰り返す温度サイクルであれば良く、より低い温度とより高い温度での温度サイクルであっても良い。   Next, the debris from which moisture has been wiped off is sealed in a resin container, placed in a temperature cycle device that repeats the temperature state at 20 ° C. and 20 ° C. every hour, and the temperature cycle at 20 ° C. and 20 ° C. is repeated (step) S4). Thereby, the water infiltrated into the carbon crucible material is repeatedly frozen and thawed. The temperature cycle of 20 ° C. and 20 ° C. described above is an example, and the temperature cycle is not limited to this, and it is sufficient that the moisture permeated into the carbon crucible material is a temperature cycle in which freezing and thawing are repeated. It may be a temperature cycle at a lower temperature and a higher temperature.

上記温度サイクルを20回程度繰り返してかけた後、破片を常温に戻して、再びボールミルに入れて炭素坩堝材の粉砕を行う(ステップS5)。   After the above temperature cycle is repeated about 20 times, the debris is returned to room temperature and placed in a ball mill again to pulverize the carbon crucible material (step S5).

温度サイクルにより、浸透した水分が、凍結と融解を繰り返した後の炭素坩堝材のボールミルによる粉砕は、これを行わない従来の方法と比較して、半分以下の時間で、炭素坩堝材を粉砕することができた。   Crushing the carbon crucible material by the ball mill after repeated freezing and thawing of the infiltrated water due to the temperature cycle pulverizes the carbon crucible material in less than half the time compared to the conventional method that does not do this. I was able to.

このように、炭素坩堝材の粉砕に要する時間が短縮されるのは、炭素坩堝材に浸透した水分が内部で凍結する際に、まず表面から凍結が発生し、さらに、凍結時の堆積膨張で、炭素坩堝材内部に、微小クラックが多数発生することに起因している。凍結と融解を繰り返すことで、硬度が高くなった炭素坩堝材でも微小クラックよる強度低下が発生し、炭素坩堝材の強度が、弱くなるためである。   In this way, the time required for pulverizing the carbon crucible material is shortened because the water that has penetrated the carbon crucible material freezes first from the surface. This is because a large number of microcracks are generated inside the carbon crucible material. This is because by repeating the freezing and thawing, the strength of the carbon crucible material is weakened due to a decrease in strength caused by microcracks even in the carbon crucible material having increased hardness.

また、所要時間が半分になるだけではなく、炭化珪素自体が、炭化珪素どうしの衝突による粉砕で粉末状になり、廃棄されることで発生する消耗量も減らすことができる。   In addition, the required time is not only halved, but the silicon carbide itself is pulverized by the collision between the silicon carbides, and the amount of wear generated by being discarded can be reduced.

このように、本発明に係る炭化珪素単結晶育成用原料の製造方法によれば、炭素坩堝材のボールミルによる粉砕に費やす時間が従来の半分で済むことで、廃棄される炭化珪素の量が減って炭化珪素単結晶育成用原料の収率が高まり、また、炭素坩堝材が微小クラックよる強度低下で確実に粉砕されるので、この点でも炭化珪素単結晶育成用原料の収率が高まる。   Thus, according to the method for producing a silicon carbide single crystal growth raw material according to the present invention, the amount of silicon carbide to be discarded can be reduced because the time spent for pulverizing the carbon crucible material with a ball mill can be halved. As a result, the yield of the raw material for growing silicon carbide single crystal is increased, and the carbon crucible material is reliably pulverized with a decrease in strength due to microcracks, so that the yield of the raw material for growing silicon carbide single crystal is also increased in this respect.

従って、図4に示したステップS1〜S5の工程で実現される高純度化工程を繰り返した場合でも、収率の低下を抑制することができ、純度の向上と、収率の低下とのトレードオフ関係を改善することができる。   Therefore, even when the purification step realized in the steps S1 to S5 shown in FIG. 4 is repeated, a decrease in yield can be suppressed, and a trade-off between an increase in purity and a decrease in yield is achieved. The off relationship can be improved.

なお、以上の説明においては、蓋部6の内側には炭化珪素種結晶4を取付け、炭化珪素種結晶4上に炭化珪素単結晶3を成長させるものとして説明したが、蓋部6の内側には炭化珪素種結晶4を取付けない状態とし、蓋部6の内側には炭化珪素多結晶5のみを形成する構成としても良い。なお、炭化珪素種結晶4を取付けて、炭化珪素単結晶3を成長させた場合には、得られた炭化珪素単結晶3を砕いて炭化珪素単結晶育成用原料として用いることができる。   In the above description, the silicon carbide seed crystal 4 is attached to the inside of the lid portion 6 and the silicon carbide single crystal 3 is grown on the silicon carbide seed crystal 4. May be configured such that the silicon carbide seed crystal 4 is not attached and only the silicon carbide polycrystal 5 is formed inside the lid portion 6. In addition, when silicon carbide seed crystal 4 is attached and silicon carbide single crystal 3 is grown, the obtained silicon carbide single crystal 3 can be crushed and used as a raw material for growing silicon carbide single crystal.

<変形例>
図2に示したように蓋部6の内側、すなわち基板取付け台61を設けた側には、炭化珪素多結晶5が形成されている。これは、高純度の多結晶体であり、改良レーリー法により炭化珪素単結晶を製造する際にも形成され、次の結晶成長の材料として、充分使用できるものであるが、蓋部材に対して、強固に結合していて、分離が困難であるため、従来は炭化珪素単結晶を製造する際には、炭化珪素単結晶3を切断した後は廃棄されていた。
<Modification>
As shown in FIG. 2, silicon carbide polycrystal 5 is formed inside lid portion 6, that is, on the side where substrate mounting base 61 is provided. This is a high-purity polycrystal, which is also formed when a silicon carbide single crystal is produced by an improved Rayleigh method, and can be used as a material for the next crystal growth. Since it is firmly bonded and difficult to separate, conventionally, when a silicon carbide single crystal is produced, the silicon carbide single crystal 3 is cut and discarded.

本発明に係る変形例では、これも実施の形態と同じ方法で収率良く回収する方法について、図5に示すフローチャートを用いて説明する。   In the modification according to the present invention, a method for recovering the product with high yield using the same method as that of the embodiment will be described with reference to the flowchart shown in FIG.

なお、以下においては、改良レーリー法により炭化珪素単結晶を製造することを目的として、炭素坩堝1を使用したものとして説明するものである。   In the following description, it is assumed that the carbon crucible 1 is used for the purpose of producing a silicon carbide single crystal by the improved Rayleigh method.

基板取付け台61に結合した炭化珪素単結晶3(図3)を回収した後の蓋部6を機械的方法により数十mm角程度の大きさに粗く砕く(ステップS11)。この場合、蓋部6に結合した炭化珪素多結晶5の分離は困難であるので、ステップS11で得られた蓋部6の破片を、純水とともにボールミルに入れる。なお、蓋部6は粗く砕いているので、破片どうしの衝突により互いに粉砕されるものと考えられるが、場合によっては、炭化珪素材質のボールミル用のボールを入れる。なお、破片の量や純水の量は実施の形態と同じである。   The lid 6 after recovering the silicon carbide single crystal 3 (FIG. 3) bonded to the substrate mounting base 61 is roughly crushed into a size of about several tens of mm square by a mechanical method (step S11). In this case, since it is difficult to separate the silicon carbide polycrystal 5 bonded to the lid 6, the pieces of the lid 6 obtained in step S11 are put in a ball mill together with pure water. In addition, since the cover part 6 is roughly crushed, it is considered that the lid parts 6 are pulverized with each other by collision between pieces, but in some cases, balls for a ball mill made of silicon carbide are used. The amount of debris and the amount of pure water are the same as in the embodiment.

そして、ボールミルによる粉砕を2〜3時間程度行う(ステップS12)。この方法で、炭化珪素多結晶の鋭角部分を粉砕すると共に、結合している蓋部材(炭素坩堝材と同じ)に、純水を充分に浸透させる。炭素坩堝材は多孔質なので、1時間も純水に浸されていれば純水が充分に浸透すると考えられるが、蓋部6の破片が大きいので、炭化珪素多結晶の鋭角部分を粉砕するという目的からは、この程度の時間が適切と言える。   And the grinding | pulverization by a ball mill is performed for about 2 to 3 hours (step S12). By this method, the acute angle portion of the silicon carbide polycrystal is pulverized, and pure water is sufficiently permeated into the bonded lid member (the same as the carbon crucible material). Since the carbon crucible material is porous, it can be considered that pure water will permeate sufficiently if it is immersed in pure water for 1 hour. However, because the fragments of the lid 6 are large, the acute angle portion of the silicon carbide polycrystal is crushed. For the purpose, this time is appropriate.

ステップS12のボールミルによる粉砕を行った後、炭化珪素多結晶が結合している蓋部材の破片の表面の水分を除去する(ステップS13)。この作業は、半導体装置製造のクリーンルームで使用されるようなふき取り布を用いて、破片の表面の水分をふき取る作業であるが、省略することもできる。   After pulverization by the ball mill in step S12, moisture on the surface of the fragment of the lid member to which the silicon carbide polycrystal is bonded is removed (step S13). This operation is an operation of wiping off moisture on the surface of the debris by using a wiping cloth used in a clean room for manufacturing a semiconductor device, but can be omitted.

次に、水分をふき取った破片を樹脂容器に密閉し、零下20℃と20℃の温度状態を1時間ごとに繰り返す温度サイクル装置に入れ、零下20℃と20℃の温度サイクルを繰り返しかける(ステップS14)。これにより、蓋部材に浸透させた水分が、凍結と融解を繰り返すこととなる。なお、上述した零下20℃と20℃の温度サイクルは一例であり、これに限定されるものではなく、より低い温度とより高い温度での温度サイクルであっても良い。   Next, the debris from which moisture has been wiped off is sealed in a resin container, placed in a temperature cycle device that repeats the temperature state at 20 ° C. and 20 ° C. every hour, and the temperature cycle at 20 ° C. and 20 ° C. is repeated (step) S14). Thereby, the water permeated into the lid member repeats freezing and thawing. In addition, the temperature cycle of 20 degreeC and 20 degreeC mentioned above is an example, and is not limited to this, The temperature cycle in lower temperature and higher temperature may be sufficient.

上記温度サイクルを20回程度繰り返してかけた後、破片を常温に戻して、再びボールミルに入れて蓋部材の粉砕を行う(ステップS15)。   After the above temperature cycle is repeated about 20 times, the debris is returned to room temperature and put again into a ball mill to crush the lid member (step S15).

温度サイクルにより、浸透した水分が、凍結と融解を繰り返した蓋部材のボールミルによる粉砕は、これを行わない従来の方法と比較して、半分以下の時間で、蓋部材を粉砕することができた。   Due to the temperature cycle, the lid member, which has been frozen and thawed by permeating moisture, was crushed by the ball mill, and the lid member could be crushed in less than half the time compared to the conventional method in which this was not performed. .

また、所要時間が半分になるだけではなく、炭化珪素自体が、炭化珪素どうしの衝突による粉砕で粉末状になり、廃棄されることで発生する消耗量も減らすことができる。   In addition, the required time is not only halved, but the silicon carbide itself is pulverized by the collision between the silicon carbides, and the amount of wear generated by being discarded can be reduced.

このように、本発明に係る炭化珪素単結晶育成用原料の製造方法によれば、炭化珪素単結晶を製造する際には、炭化珪素単結晶3を切断した後は廃棄されていた蓋部材に結合していた炭化珪素多結晶を炭化珪素単結晶育成用原料として効率的に回収できる。   Thus, according to the manufacturing method of the raw material for silicon carbide single crystal growth which concerns on this invention, when manufacturing a silicon carbide single crystal, after cutting silicon carbide single crystal 3, it is attached to the lid member discarded. The bonded silicon carbide polycrystal can be efficiently recovered as a raw material for growing silicon carbide single crystal.

また、ボールミルによる粉砕に費やす時間が従来の半分で済むことで、廃棄される炭化珪素の量が減って炭化珪素単結晶育成用原料の収率が高まり、また、蓋部材が微小クラックよる強度低下で確実に粉砕されるので、この点でも炭化珪素単結晶育成用原料の収率が高まる。   In addition, the time spent for grinding by the ball mill can be reduced to half of the conventional amount, so the amount of silicon carbide to be discarded is reduced, the yield of the raw material for growing silicon carbide single crystal is increased, and the strength of the lid member is reduced due to microcracks. Therefore, the yield of the raw material for growing silicon carbide single crystal is also increased in this respect.

なお、上述した変形例では蓋部6に結合した炭化珪素多結晶の分離について説明したが、炭化珪素単結晶を製造するために使用した炭素坩堝1も、蓋部1と共に粗く砕いて純水と共にボールミルに入れて粉砕を行っても良いことは言うまでもない。   In the modification described above, the separation of the polycrystalline silicon carbide bonded to the lid portion 6 has been described. However, the carbon crucible 1 used for producing the silicon carbide single crystal is also roughly crushed together with the lid portion 1 together with pure water. Needless to say, it may be pulverized in a ball mill.

1 炭素坩堝、2 炭化珪素粉末、3 炭化珪素単結晶、4 炭化珪素種結晶、5 炭化珪素多結晶、6 蓋部。   1 carbon crucible, 2 silicon carbide powder, 3 silicon carbide single crystal, 4 silicon carbide seed crystal, 5 silicon carbide polycrystal, 6 lid.

Claims (4)

炭化珪素単結晶の製造のための炭化珪素単結晶育成用原料の製造方法であって、
(a)炭素坩堝を用いた昇華再結晶法による結晶成長に際して形成され、前記炭素坩堝に結合した再結晶析出物を、前記炭素坩堝ごと粉砕し、前記再結晶析出物が結合した状態で破片となった炭素坩堝材に水を浸透させる工程と、
(b)前記工程(a)の後、水が浸透した破片状の前記炭素坩堝材に対して、水が凍結、融解する温度での温度サイクルを複数回繰り返す工程と、
(c)前記工程(b)の後、前記温度サイクルをかけられた前記炭素坩堝材を粉砕して前記炭化珪素単結晶育成用原料とする工程と、を備える、炭化珪素単結晶育成用原料の製造方法。
A method for producing a silicon carbide single crystal raw material for producing a silicon carbide single crystal,
(A) The recrystallized precipitate formed during crystal growth by the sublimation recrystallization method using a carbon crucible and bonded to the carbon crucible is pulverized together with the carbon crucible, and the recrystallized precipitate is bonded to the fragments. A step of infiltrating water into the carbon crucible material,
(B) After the step (a), a step of repeating a temperature cycle at a temperature at which water freezes and melts a plurality of times with respect to the piece-like carbon crucible material into which water has permeated;
(C) After the step (b), the step of pulverizing the carbon crucible material subjected to the temperature cycle to form the silicon carbide single crystal growth raw material, Production method.
前記再結晶析出物は、
前記炭素坩堝内に設けた炭化珪素種結晶上での炭化珪素単結晶の結晶成長に付随して形成された炭化珪素多結晶である、請求項1記載の炭化珪素単結晶育成用原料の製造方法。
The recrystallized precipitate is
2. The method for producing a silicon carbide single crystal growth raw material according to claim 1, wherein the silicon carbide single crystal is a polycrystalline silicon carbide formed in association with crystal growth of a silicon carbide single crystal on a silicon carbide seed crystal provided in the carbon crucible. .
前記(b)は、水が浸透した前記炭素坩堝材に対して、零下20℃と、20℃での温度サイクルを複数回繰り返す工程を含む、請求項1記載の炭化珪素単結晶育成用原料の製造方法。   The said (b) includes the process of repeating the temperature cycle in 20 degreeC and 20 degreeC several times with respect to the said carbon crucible material which water penetrate | infiltrated, The raw material for silicon carbide single crystal growth of Claim 1 Production method. 前記工程(a)〜(c)を経て得られた前記炭化珪素単結晶育成用原料を用いて、前記工程(a)〜(c)を繰り返す、請求項1記載の炭化珪素単結晶育成用原料の製造方法。   The silicon carbide single crystal growth raw material according to claim 1, wherein the steps (a) to (c) are repeated using the silicon carbide single crystal growth raw material obtained through the steps (a) to (c). Manufacturing method.
JP2011082534A 2011-04-04 2011-04-04 Method for producing raw material for silicon carbide single crystal promotion Withdrawn JP2012218945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011082534A JP2012218945A (en) 2011-04-04 2011-04-04 Method for producing raw material for silicon carbide single crystal promotion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011082534A JP2012218945A (en) 2011-04-04 2011-04-04 Method for producing raw material for silicon carbide single crystal promotion

Publications (1)

Publication Number Publication Date
JP2012218945A true JP2012218945A (en) 2012-11-12

Family

ID=47270862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011082534A Withdrawn JP2012218945A (en) 2011-04-04 2011-04-04 Method for producing raw material for silicon carbide single crystal promotion

Country Status (1)

Country Link
JP (1) JP2012218945A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015048294A (en) * 2013-09-04 2015-03-16 太平洋セメント株式会社 Silicon carbide granule and production method thereof
JP2016098162A (en) * 2014-11-26 2016-05-30 太平洋セメント株式会社 Production method of reclaimed silicon carbide powder, and production method of silicon carbide single crystal
CN114182357A (en) * 2021-12-10 2022-03-15 中国电子科技集团公司第四十六研究所 Method for regrowing silicon carbide single crystal by using broken crystal grains of silicon carbide crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015048294A (en) * 2013-09-04 2015-03-16 太平洋セメント株式会社 Silicon carbide granule and production method thereof
JP2016098162A (en) * 2014-11-26 2016-05-30 太平洋セメント株式会社 Production method of reclaimed silicon carbide powder, and production method of silicon carbide single crystal
CN114182357A (en) * 2021-12-10 2022-03-15 中国电子科技集团公司第四十六研究所 Method for regrowing silicon carbide single crystal by using broken crystal grains of silicon carbide crystal

Similar Documents

Publication Publication Date Title
KR101413653B1 (en) A method for manufacturing SiC powders with high purity
JP6742183B2 (en) Method for producing silicon carbide single crystal ingot
CN102958834A (en) Silicon carbide powder and method for producing silicon carbide powder
US20120171848A1 (en) Method and System for Manufacturing Silicon and Silicon Carbide
JP3497355B2 (en) Silicon purification method
JP4230035B2 (en) Silicon carbide single crystal and method for producing the same
JP2013103848A (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL
CN110217796A (en) A kind of high-pure SiC power and preparation method thereof
US20130327265A1 (en) Method for producing silicon carbide crystal
EP2565301B1 (en) Silicon carbide crystal and method for producing silicon carbide crystal
JP2012218945A (en) Method for producing raw material for silicon carbide single crystal promotion
CN102464320A (en) Metallurgical chemical refining method of silicon
JP2012136391A (en) Method for producing silicon carbide single crystal
WO2011120598A1 (en) Method for production of semiconductor grade silicon ingots, reusable crucibles and method for manufacturing them
KR102187817B1 (en) Recycling method of SiC by-product from the deposition process into the source of single crystal
US8236066B2 (en) Method and configuration for melting silicon
JP2000327488A (en) Production of silicon substrate for solar battery
JP6337389B2 (en) Method for producing silicon carbide powder
CN109437148B (en) Method for preparing high-purity carbon material from silicon carbide crystal growth residues
RU2393112C1 (en) Method of producing silicon carbide nanofibre
JP2001123232A (en) Method for refining gallium
JPH0132165B2 (en)
JP2015113252A (en) Reaction vessel used for production of polycrystal silicon by zinc reduction method
KR102581526B1 (en) silicon carbide powder, method for manufacturing the same and method for manufacturing silicon carbide ingot using the same
EP4212480A2 (en) Silicon carbide powder, method for manufacturing silicon carbide ingot using the same, and silicon carbide wafer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701