JP2012215399A - Displacement sensor system and displacement sensor - Google Patents

Displacement sensor system and displacement sensor Download PDF

Info

Publication number
JP2012215399A
JP2012215399A JP2011079238A JP2011079238A JP2012215399A JP 2012215399 A JP2012215399 A JP 2012215399A JP 2011079238 A JP2011079238 A JP 2011079238A JP 2011079238 A JP2011079238 A JP 2011079238A JP 2012215399 A JP2012215399 A JP 2012215399A
Authority
JP
Japan
Prior art keywords
light
peak
light reception
pixel
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011079238A
Other languages
Japanese (ja)
Inventor
Yoji Nakahara
陽司 中原
Hisanori Imai
寿教 今井
Yasushi Sakakibara
靖志 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Industrial Devices SUNX Co Ltd
Original Assignee
Panasonic Industrial Devices SUNX Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Industrial Devices SUNX Co Ltd filed Critical Panasonic Industrial Devices SUNX Co Ltd
Priority to JP2011079238A priority Critical patent/JP2012215399A/en
Publication of JP2012215399A publication Critical patent/JP2012215399A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a displacement sensor which allows constraints to a detectable object to be suppressed compared to the configuration always using a light reception signal from a peak pixel with the maximum amount of light received.SOLUTION: A displacement sensor system comprises: a peak selection part which selects one pixel from a plurality of peak pixels in existence having the maximum amount of light received in at least one region specified based on a light reception signal; a sensitivity setting part which sets light transmitting and receiving sensitivity for at least one region based on the light reception signal from the pixel selected at the peak selection part; and a light reception control part which allows the light processing part to acquire the light reception signal of a scanning line in each region under the light transmitting and receiving sensitivity corresponding to the region, so as to perform the detection processing in response to the acquired light reception signal.

Description

本発明は、対象物の表面形状等を測定するための変位センサに関する。   The present invention relates to a displacement sensor for measuring the surface shape and the like of an object.

従来より、対象物の表面形状等を測定するための変位センサが知られている(特許文献1参照)。この変位センサは、投光部及び二次元CCDを有し、投光部から出射した線状の光を対象物の表面に照射させ、その反射光を二次元CCDの撮像面にて受光する。反射光が撮像面上に形成する受光像は、対象物の表面形状に応じた形状となるため、撮像面上の受光位置に基づき対象物の表面形状等を測定することができる。   Conventionally, a displacement sensor for measuring the surface shape and the like of an object is known (see Patent Document 1). This displacement sensor has a light projecting unit and a two-dimensional CCD, irradiates the surface of the object with linear light emitted from the light projecting unit, and receives the reflected light on the imaging surface of the two-dimensional CCD. Since the received light image formed on the imaging surface by the reflected light has a shape corresponding to the surface shape of the object, the surface shape of the object can be measured based on the light receiving position on the imaging surface.

ところが、表面形状等を測定したい対象物は、表面全体が均一な反射率であるものに限られず、反射率が互いに異なる複数の領域を有するものもある。このような反射率が不均一な対象物の表面形状等を、上記従来の変位センサにより測定しようとすると、反射率の高い領域からの反射光を受光する画素では受光量が飽和してしまう一方で、反射率の低い領域からの反射光を受光する画素では受光量が小さく耐ノイズ性が低くなるため、表面形状等を精度よく測定することができないという問題があった。   However, an object whose surface shape or the like is to be measured is not limited to one having a uniform reflectivity over the entire surface, but may include a plurality of regions having different reflectivities. When trying to measure the surface shape or the like of such an object with non-uniform reflectivity using the above-described conventional displacement sensor, the amount of light received is saturated in the pixel that receives the reflected light from the region with high reflectivity. Thus, a pixel that receives reflected light from a region having a low reflectance has a problem that the surface shape or the like cannot be measured accurately because the amount of received light is small and noise resistance is low.

そこで、本願出願人は、撮像面上の異なる領域ごとに対応して個別の投受光感度を設定可能とし、各領域内の走査線の受光信号を、当該領域に対応する投受光感度下で取り出す変位センサを創作した(特許文献1)。   Therefore, the applicant of the present application can set individual light projecting / receiving sensitivity corresponding to each different area on the imaging surface, and takes out the light reception signal of the scanning line in each area under the light projecting / receiving sensitivity corresponding to the area. A displacement sensor was created (Patent Document 1).

特開2010−237176号公報JP 2010-237176 A

ところが、上記本願出願人の変位センサを利用した場合、少なくとも1つの領域内において、受光量がピークを示す画素であるピーク画素が複数存在する場合がある。例えば、対象物が、基準部材の上に光透過性部材が配置されたものである場合、少なくとも基準部材の表面及び光透過性部材の表面での反射光が撮像面にて受光されることにより、ピーク画素が複数存在することがある。この場合、基準部材の表面形状を測定するときには、基準部材の表面での反射光に対応するピーク画素からの受光信号を利用して投受光感度を調整することが好ましい。一方、光透過性部材の表面形状を測定するときには、光透過性部材の表面での反射光に対応するピーク画素からの受光信号を利用して投受光感度を調整することが好ましい。   However, when the displacement sensor of the applicant of the present application is used, there may be a plurality of peak pixels in which at least one region has a peak in received light amount. For example, when the object is a light transmissive member disposed on a reference member, at least reflected light from the surface of the reference member and the surface of the light transmissive member is received by the imaging surface. There may be a plurality of peak pixels. In this case, when measuring the surface shape of the reference member, it is preferable to adjust the light projecting / receiving sensitivity using the light reception signal from the peak pixel corresponding to the reflected light on the surface of the reference member. On the other hand, when measuring the surface shape of the light transmissive member, it is preferable to adjust the light projecting / receiving sensitivity using the light reception signal from the peak pixel corresponding to the reflected light on the surface of the light transmissive member.

しかし、上記変位センサでは、領域ごとに個別に投受光感度を設定できるものの、どの領域も、ピーク画素が複数存在するかどうかにかかわらず、常に、それら複数のピーク画素のうち受光量が最大値を示すピーク画素からの受光信号を利用して投受光感度を調整する構成であった。このため、例えば、一の領域では1番目に受光量が多いピーク画素を利用し、他の領域では2番目に受光量が多いピーク画素を利用して投受光感度を調整すべき対象物については、投受光感度が適正に調整できず、変位センサで適正に検出可能な対象物に制約があった。   However, in the above displacement sensor, although the light projecting / receiving sensitivity can be individually set for each region, the light reception amount is always the maximum value among the plurality of peak pixels regardless of whether there are a plurality of peak pixels in each region. In this configuration, the light projecting / receiving sensitivity is adjusted using the light receiving signal from the peak pixel. For this reason, for example, a peak pixel having the first largest amount of received light is used in one area, and a peak pixel having the second largest amount of received light is used in another area. However, the light projecting / receiving sensitivity cannot be adjusted properly, and there is a restriction on the object that can be detected properly by the displacement sensor.

本発明は上記のような事情に基づいて完成されたものであって、その目的は、常に、受光量が最大値を示すピーク画素からの受光信号を利用する構成に比べて、検出可能な対象物の制約を抑制することが可能な技術を提供するところにある。   The present invention has been completed on the basis of the above-described circumstances, and the object thereof is always a detectable object as compared with a configuration using a light reception signal from a peak pixel in which a light reception amount shows a maximum value. The present invention is to provide a technology capable of suppressing restrictions on objects.

上記の目的を達成するための手段として、第1の発明に係る変位センサシステムは、対象物に線状の光を照射する投光部と、前記投光部から照射され前記対象物で反射した線状の反射光を受光する撮像面を有する二次元撮像素子と、前記撮像面上の各画素での受光量に応じた受光信号を、前記線状の反射光の受光像に交差する走査線ごとに取り出す受光処理部と、前記撮像面上の複数の領域を走査線単位で指定する領域指定部と、前記受光処理部で取り出された受光信号に基づき、前記領域指定部で指定された少なくとも1つの領域について、当該領域内において受光量がピークを示す画素であるピーク画素が複数存在する場合、当該複数のピーク画素の中からいずれかを、選択画素として選択するピーク選択部と、前記少なくとも1つの領域について、前記ピーク選択部で選択された前記選択画素からの受光信号に基づき投受光感度を設定する感度設定部と、前記各領域内の走査線の受光信号を、当該領域に対応する投受光感度下で前記受光処理部に取り出させ、その取り出された受光信号に応じた検出処理を実行する受光制御部と、を備える。   As means for achieving the above object, a displacement sensor system according to a first aspect of the present invention is a light projecting unit that irradiates a target with linear light, and is irradiated from the light projecting unit and reflected by the target. A two-dimensional imaging device having an imaging surface that receives linear reflected light, and a scanning line that intersects a light reception signal corresponding to the amount of light received by each pixel on the imaging surface with the light reception image of the linear reflected light A light receiving processing unit to be taken out every time, a region designating unit for designating a plurality of regions on the imaging surface in units of scanning lines, and at least designated by the region designating unit based on a light receiving signal taken out by the light receiving processing unit A peak selection unit that selects one of the plurality of peak pixels as a selection pixel when there are a plurality of peak pixels that are pixels in which the amount of received light has a peak in the region; One territory A sensitivity setting unit for setting the light projecting / receiving sensitivity based on the light receiving signal from the selected pixel selected by the peak selecting unit, and the light receiving / receiving sensitivity of the scanning line in each region corresponding to the region A light receiving control unit that causes the light receiving processing unit to take out the light and to perform a detection process according to the extracted light receiving signal.

本構成によれば、指定された少なくとも1つの領域について、複数のピーク画素の中からいずれかを、選択画素として選択し、その選択画素からの受光信号に基づき投受光感度が設定される。従って、常に、受光量が最大値を示すピーク画素からの受光信号のみを利用する構成に比べて、検出可能な対象物の制約を抑制することが可能である。   According to this configuration, for at least one specified region, one of the plurality of peak pixels is selected as a selected pixel, and the light projecting / receiving sensitivity is set based on the light reception signal from the selected pixel. Therefore, it is possible to suppress the restriction of the detectable object as compared with the configuration in which only the light reception signal from the peak pixel in which the light reception amount has the maximum value is always used.

第2の発明は、第1の発明の変位センサシステムであって、前記ピーク選択部は、前記複数のピーク画素を受光量が大きい順或いは小さい順に順位付けた場合、予め定められた規定順位になるピーク画素を、選択画素として選択する。
本構成によれば、受光量が小さいノイズ成分、或いは、受光量の大きいノイズ成分による影響を抑制することができる。
2nd invention is the displacement sensor system of 1st invention, Comprising: When the said peak selection part ranks these peak pixels in order with the largest received light quantity, or a small order, it will be in a predetermined regulation order. Is selected as the selected pixel.
According to this configuration, it is possible to suppress the influence of a noise component with a small amount of received light or a noise component with a large amount of received light.

第3の発明は、第1の発明の変位センサシステムであって、前記ピーク選択部は、前記複数のピーク画素を基準画素に近い順或いは遠い順に順位付けた場合、予め定められた規定順位になるピーク画素を、選択画素として選択する。
本構成によれば、基準画素から遠い位置で発生するノイズ成分、或いは、基準画素に近い位置で発生するノイズ成分による影響を抑制することができる。
3rd invention is a displacement sensor system of 1st invention, Comprising: When the said peak selection part ranks the said some peak pixel in the order close to a reference pixel, or a distant order, it will be in a predetermined regulation order. Is selected as the selected pixel.
According to this configuration, it is possible to suppress the influence of a noise component generated at a position far from the reference pixel or a noise component generated at a position close to the reference pixel.

第4の発明の変位センサは、対象物に線状の光を照射する投光部と、前記投光部から照射され前記対象物で反射した線状の反射光を受光する撮像面を有する二次元撮像素子と、前記撮像面上の各画素での受光量に応じた受光信号を、前記線状の反射光の受光像に交差する走査線ごとに取り出す受光処理部と、前記受光処理部で取り出された受光信号に基づき、前記撮像面上の異なる領域のうち少なくとも1つの領域について、当該領域内において受光量がピークを示す画素であるピーク画素が複数存在する場合、当該複数のピーク画素の中からいずれかを、選択画素として選択するピーク選択部と、前記少なくとも1つの領域について、前記ピーク選択部で選択された前記選択画素からの受光信号に基づき投受光感度を設定する感度設定部と、前記各領域内の走査線の受光信号を、当該領域に対応する投受光感度下で前記受光処理部に取り出させ、その取り出された受光信号に基づく検出処理を実行する受光制御部と、を備える。   A displacement sensor according to a fourth aspect of the present invention includes a light projecting unit that irradiates a target with linear light, and an imaging surface that receives linear reflected light that is irradiated from the light projecting unit and reflected by the target. A light receiving processing unit that extracts a light receiving signal corresponding to the amount of light received by each pixel on the imaging surface for each scanning line that intersects the light receiving image of the linear reflected light, and the light receiving processing unit. Based on the extracted light reception signal, when there are a plurality of peak pixels, which are pixels whose light reception amount shows a peak, in at least one of the different regions on the imaging surface, the plurality of peak pixels A peak selection unit that selects one of the selected pixels as a selected pixel, and a sensitivity setting unit that sets light projection / reception sensitivity for the at least one region based on a light reception signal from the selection pixel selected by the peak selection unit; A light reception control unit that causes the light reception signal of the scanning line in each region to be extracted by the light reception processing unit under the light projection / reception sensitivity corresponding to the region, and executes a detection process based on the extracted light reception signal. .

第5の発明は、第4の発明の変位センサであって、前記領域ごとに対応する投受光感度で取り出された受光信号に基づく受光位置及び受光量の少なくとも一方に関する情報を外部出力する出力部を備える。
この発明によれば、領域ごとに対応する投受光感度で取り出された受光信号に基づく受光位置及び受光量の少なくとも一方に関する情報を、例えば上位機器等に伝送することができる。
5th invention is the displacement sensor of 4th invention, Comprising: The output part which externally outputs the information regarding at least one of the light reception position based on the light reception signal taken out with the light projection / reception sensitivity corresponding to every said area | region, and light reception amount Is provided.
According to the present invention, information on at least one of the light receiving position and the amount of received light based on the light receiving signal extracted with the light projecting / receiving sensitivity corresponding to each region can be transmitted to, for example, a host device.

本発明によれば、常に、受光量が最大値を示すピーク画素からの受光信号を利用する構成に比べて、検出可能な対象物の制約を抑制することが可能である。   According to the present invention, it is possible to suppress the restriction of the detectable object as compared with the configuration that always uses the light reception signal from the peak pixel in which the light reception amount shows the maximum value.

本発明の一実施形態に係る変位センサの一部を示す概要構成図1 is a schematic configuration diagram showing a part of a displacement sensor according to an embodiment of the present invention. 図1のX−X面で切断した対象物の断面図Sectional drawing of the target object cut | disconnected by the XX plane of FIG. 受光像と走査線との関係を示す模式図Schematic diagram showing the relationship between the received light image and the scanning line 変位センサシステムの電気的構成を示すブロック図Block diagram showing electrical configuration of displacement sensor system 領域指定処理を示すフローチャートFlow chart showing area designation processing 領域E2の一走査線Lの受光量分布曲線を示すグラフA graph showing a received light amount distribution curve of one scanning line L in the region E2 領域別投受光処理を示すフローチャートFlowchart showing area-specific light emitting / receiving processing

<実施形態>
本発明の一実施形態について図1〜図7を参照しつつ説明する。
本実施形態の変位センサシステム1は、変位センサ10とコントローラ30とが通信可能に接続された構成である。
<Embodiment>
An embodiment of the present invention will be described with reference to FIGS.
The displacement sensor system 1 of the present embodiment has a configuration in which the displacement sensor 10 and the controller 30 are connected to be communicable.

(変位センサの概要構成)
図1は変位センサ10の一部を示す概要構成図である。
図1に示すように、変位センサ10は、表面形状検出器であって、レーザ光源11(投光部の一例)及び二次元CCD15(二次元撮像素子の一例)を備え、レーザ光源11から出射された光Bを挿通板12のスリット12Aを通過させて線状にし、それを対象物Wの表面に照射させる。そして、その反射光Rを二次元CCD15の撮像面15A上にて受光するものである。
(Outline configuration of displacement sensor)
FIG. 1 is a schematic configuration diagram showing a part of the displacement sensor 10.
As shown in FIG. 1, the displacement sensor 10 is a surface shape detector, and includes a laser light source 11 (an example of a light projecting unit) and a two-dimensional CCD 15 (an example of a two-dimensional image sensor), and is emitted from the laser light source 11. The light B is passed through the slit 12A of the insertion plate 12 to be linear, and the surface of the object W is irradiated with it. The reflected light R is received on the imaging surface 15A of the two-dimensional CCD 15.

反射光Bが撮像面15A上に形成する受光像Fは、対象物Wの表面(被照射面)が平坦であれば、上記スリット12Aの開口形状と略同じ形状(例えば直線状)をなす。一方、上記受光像Fは、対象物Wの表面が凸凹状をなす場合には、凸凹に倣った形状をなす(図2参照)。従って、撮像面15A上に形成される受光像F(受光位置)に基づいて対象物Wの表面形状等を測定することができる。   The light reception image F formed by the reflected light B on the imaging surface 15A has substantially the same shape (for example, a straight line shape) as the opening shape of the slit 12A if the surface of the object W (irradiated surface) is flat. On the other hand, when the surface of the object W has an uneven shape, the received light image F has a shape following the unevenness (see FIG. 2). Therefore, the surface shape and the like of the object W can be measured based on the light reception image F (light reception position) formed on the imaging surface 15A.

図2は、図1のX−X面で切断した対象物Wの断面図である。
図2に示すように、対象物Wは、上面が開口したケースW1と、当該ケースW1内に収容された内部部品W2と、ケースW1の開口部を塞ぐガラスカバーW3とを備える。以下の説明では、ケースW1はアルミなどの金属製であり、内部部品W2は例えばICチップなどであって樹脂製材料で覆われており、反射率は、ケースW1、ガラスカバーW3、内部部品W2の順に低いものとする。
FIG. 2 is a cross-sectional view of the object W cut along the XX plane of FIG.
As shown in FIG. 2, the object W includes a case W1 whose upper surface is open, an internal component W2 housed in the case W1, and a glass cover W3 that closes the opening of the case W1. In the following description, the case W1 is made of a metal such as aluminum, the internal component W2 is, for example, an IC chip and is covered with a resin material, and the reflectance is the case W1, the glass cover W3, and the internal component W2. It shall be lower in the order.

図1,2に示すように、内部部品W2に向けて照射された光Bは、内部部品Wの表面、ガラスカバーW3の裏面及び表面でそれぞれ反射し、反射光R1、R2、R3として二次元CCD15の撮像面15A上にて受光される。一方、対象物Wのうち内部部品W2よりも外側に向けて照射された光Bは、ほとんどがケースW1の表面で反射し、一部がガラスカバーW3の表面で反射して撮像面15A上にて受光される。   As shown in FIGS. 1 and 2, the light B irradiated toward the internal component W2 is reflected by the surface of the internal component W, the back surface and the surface of the glass cover W3, respectively, and is two-dimensionally reflected as light R1, R2, and R3. Light is received on the imaging surface 15 </ b> A of the CCD 15. On the other hand, most of the light B irradiated toward the outside of the internal component W2 in the object W is reflected on the surface of the case W1, and part of the light B is reflected on the surface of the glass cover W3 to be on the imaging surface 15A. Is received.

(受光像と走査線との関係)
図3は受光像F1〜F3と走査線Lとの関係を示す模式図であり、後述する表示部31の表示内容を示す図でもある。同図において、受光像F1は反射光R1により形成され、受光像F2は反射光R2により形成され、受光像F3は反射光R3により形成される。
(Relationship between received light image and scanning line)
FIG. 3 is a schematic diagram showing the relationship between the received light images F1 to F3 and the scanning line L, and is also a diagram showing the display content of the display unit 31 described later. In the figure, the received light image F1 is formed by reflected light R1, the received light image F2 is formed by reflected light R2, and the received light image F3 is formed by reflected light R3.

撮像面15Aは行列状に配された複数の画素(受光素子)より構成されるが、これら各画素の受光信号を受光像F1〜F3の厚み方向(受光像に交差する方向の一例)に沿った走査線L毎に読み出す。そして、読み出された走査線L上の各画素について、例えば、受光量(受光信号レベル)の比較を行って、受光量がピークとなる画素を特定し、その位置(以下、受光位置という)を検出する。   The imaging surface 15A is composed of a plurality of pixels (light receiving elements) arranged in a matrix, and the light reception signals of these pixels are arranged along the thickness direction of the light reception images F1 to F3 (an example of the direction intersecting the light reception image). Read for each scanning line L. Then, for each pixel on the read scanning line L, for example, a light reception amount (light reception signal level) is compared to identify a pixel having a peak light reception amount, and its position (hereinafter referred to as a light reception position). Is detected.

このように、走査線L上における受光位置を検出する処理を、各走査線Lについてそれぞれ行うことで、光が照射された部位の表面形状や高低差等を測定することができる。また、対象物Wと変位センサ10とを相対的に移動させつつ同様の表面形状測定を各部位について行うことで、対象物W全体の表面形状についても測定することができる。   In this way, by performing the process of detecting the light receiving position on the scanning line L for each scanning line L, the surface shape, height difference, and the like of the portion irradiated with light can be measured. Moreover, the surface shape of the whole object W can also be measured by performing the same surface shape measurement for each part while relatively moving the object W and the displacement sensor 10.

(変位センサシステムの電気的構成)
図4は、変位センサシステム1の電気的構成を示すブロック図である。
(Electric configuration of displacement sensor system)
FIG. 4 is a block diagram showing an electrical configuration of the displacement sensor system 1.

1.変位センサ
変位センサ10には、変位センサ10の全体を制御する第1制御部20(受光制御部、ピーク選択部、感度設定部、領域指定部の一例)、レーザ光源11、レーザ駆動回路13、二次元CCD15、CCD駆動回路17(受光処理部の一例)、データ処理部21(出力部の一例)、メモリ25を備える。
1. Displacement sensor The displacement sensor 10 includes a first control unit 20 (an example of a light reception control unit, a peak selection unit, a sensitivity setting unit, and an area designating unit) that controls the entire displacement sensor 10, a laser light source 11, a laser drive circuit 13, A two-dimensional CCD 15, a CCD drive circuit 17 (an example of a light receiving processing unit), a data processing unit 21 (an example of an output unit), and a memory 25 are provided.

レーザ駆動回路13は第1制御部20からの動作信号Saに基づいてドライブして、レーザ光源11に駆動電流を供給させる。また、動作信号SaはPWM信号であり、第1制御部20はそのデューティ比を変えることで駆動電流の電流量を増減調整し、レーザ光源11からの投光量を変更することができる。   The laser drive circuit 13 is driven based on the operation signal Sa from the first control unit 20 to supply a drive current to the laser light source 11. Further, the operation signal Sa is a PWM signal, and the first control unit 20 can adjust the amount of drive current to increase or decrease by changing the duty ratio to change the amount of light emitted from the laser light source 11.

二次元CCD15は、受光素子を行列状に配した撮像面15Aを有し、撮像面15Aに入光する光をその光量に応じたレベルの電気信号(受光信号)に変換する。CCD駆動回路17は撮像面15Aの各受光素子から出力される受光信号を、走査線L毎に順次読み取るものである。なお、本実施形態では、走査線Lは撮像面15Aの上下方向に延びる設定とされており、線状の受光像と略直交する。   The two-dimensional CCD 15 has an image pickup surface 15A in which light receiving elements are arranged in a matrix, and converts light incident on the image pickup surface 15A into an electric signal (light reception signal) having a level corresponding to the amount of light. The CCD drive circuit 17 sequentially reads the light reception signals output from the respective light receiving elements on the imaging surface 15A for each scanning line L. In the present embodiment, the scanning line L is set to extend in the vertical direction of the imaging surface 15A, and is substantially orthogonal to the linear light reception image.

第1制御部20は、レーザ駆動回路13を介してレーザ光源11に投光動作をさせつつCCD駆動回路17に二次元CCD15から受光信号を読み取らせる(投受光動作)。そして、当該受光信号に基づき走査線Lごとの受光データを、データ処理部21を介して外部出力する。受光データは、受光素子、換言すれば画素の位置及び受光量に関する情報が含まれる。なお、データ処理量を軽減するために、受光データに、所定量以上の受光量を示す画素のみの位置及び受光量だけを含めてもよい。   The first control unit 20 causes the CCD drive circuit 17 to read a light reception signal from the two-dimensional CCD 15 while causing the laser light source 11 to perform a light projection operation via the laser drive circuit 13 (light projection / reception operation). Then, the light reception data for each scanning line L is externally output via the data processing unit 21 based on the light reception signal. The light reception data includes information on the light receiving element, in other words, the pixel position and the amount of light received. In order to reduce the amount of data processing, the received light data may include only the position and the received light amount of a pixel that indicates a received light amount that is equal to or greater than a predetermined amount.

2.コントローラ
コントローラ30は、表示部31、第2制御部33(表示制御部の一例)、データ処理部35、操作部37を備える。データ処理部35は、有線または無線により変位センサ10のデータ処理部21との間でデータの双方向通信が可能である。第2制御部33は、表示部31の表示制御等を行うものであり、例えば変位センサ10から受信した受光データに基づき、図3に示すように撮像面15A上における各走査線L、及び、各走査線Lの受光位置に基づく形状を表示部31に表示させる。操作部37は、ユーザが各種の入力操作を行うものである。
2. Controller The controller 30 includes a display unit 31, a second control unit 33 (an example of a display control unit), a data processing unit 35, and an operation unit 37. The data processing unit 35 can perform bidirectional data communication with the data processing unit 21 of the displacement sensor 10 by wire or wireless. The second control unit 33 performs display control of the display unit 31 and the like. For example, based on the light reception data received from the displacement sensor 10, each scanning line L on the imaging surface 15A as shown in FIG. A shape based on the light receiving position of each scanning line L is displayed on the display unit 31. The operation unit 37 is used by the user to perform various input operations.

(領域指定処理)
図5は領域指定処理を示すフローチャートである。ユーザが操作部37にて領域指定モードの実行を指示すると、第2制御部33がその実行を変位センサ10の第1制御部20に指示し、これにより第1制御部20が領域指定処理を実行する。このとき第1制御部20は領域指定部として機能する。
(Area specification processing)
FIG. 5 is a flowchart showing the area specifying process. When the user instructs the execution of the area designation mode using the operation unit 37, the second control unit 33 instructs the first control unit 20 of the displacement sensor 10 to perform the execution, whereby the first control unit 20 performs the area designation process. Execute. At this time, the first control unit 20 functions as an area designating unit.

第1制御部20は、投受光動作を実行し(S1)、全走査線Lの受光データを取得する(S3)。なお、このときの投受光動作では、例えば全走査線Lについて投受光感度(本実施形態ではレーザ光源の投光量)が一律、所定の初期値に設定されている。第1制御部20は、取得した受光データをコントローラ30に送信する。これにより第2制御部33は、上記受光データに基づき受光像の形状を表示部31に表示させる(S5 図3参照)。   The first control unit 20 performs a light projecting / receiving operation (S1), and acquires the light reception data of all the scanning lines L (S3). In the light projecting / receiving operation at this time, for example, the light projecting / receiving sensitivity (in this embodiment, the light projecting amount of the laser light source) is uniformly set to a predetermined initial value for all the scanning lines L. The first control unit 20 transmits the received light reception data to the controller 30. Accordingly, the second control unit 33 displays the shape of the received light image on the display unit 31 based on the received light data (S5, see FIG. 3).

ここで、上述したように対象物Wは反射率が不均一である。このため、撮像面15A上において、低反射率の内部部品W2に対応する領域では受光量が少なくノイズに埋もれてしまい、高反射率のケースW1に対応する領域では受光量が多く飽和レベルに達してしまうおそれがある。そして、その結果、各走査線L上のおける受光位置を正確に検出できず、表示部31には対象物Wの実際の形状に対して不正確な受光像の形状が表示されることがある。   Here, as described above, the reflectance of the object W is not uniform. For this reason, on the imaging surface 15A, the amount of received light is small and buried in noise in the region corresponding to the low reflectance internal component W2, and the amount of received light is large and reaches the saturation level in the region corresponding to the high reflectance case W1. There is a risk that. As a result, the light receiving position on each scanning line L cannot be detected accurately, and the display unit 31 may display the shape of the received light image that is inaccurate with respect to the actual shape of the object W. .

但し、不正確な受光像の形状とは言っても、ユーザは、その受光像の形状から、反射率の異なる各領域を概ね視認することができる。そこで、ユーザは、表示部31を見ながら、操作部37での操作により、各領域をそれぞれ走査線L単位で指定する。図3の例では、例えば走査線L1〜L4の領域(第1領域E1)、走査線L5〜L17の領域(第2領域E2)、L18〜L21の領域(第3領域E3)の3つ領域を指定することが好ましい。   However, even though the shape of the received light image is inaccurate, the user can generally visually recognize each region having a different reflectance from the shape of the received light image. Therefore, the user designates each region in units of scanning lines L by operating the operation unit 37 while looking at the display unit 31. In the example of FIG. 3, for example, three regions, a region of the scanning lines L1 to L4 (first region E1), a region of the scanning lines L5 to L17 (second region E2), and a region of L18 to L21 (third region E3). Is preferably specified.

ユーザにより領域が指定されると(S7:YES)、第2制御部33は、指定された複数の領域の中に、ピーク画素が複数存在する領域があるかどうかを判断する(S9)。ピーク画素とは、所定本(本実施形態では1本)分の走査線L上において受光量(輝度)がピークを示す画素であり、ピークとは、所定本分の走査線L上に位置する画素群の受光量分布曲線において増減傾向が反転する、いわゆる極大値を意味する。   When a region is designated by the user (S7: YES), the second control unit 33 determines whether there is a region where a plurality of peak pixels exist among the plurality of designated regions (S9). The peak pixel is a pixel whose received light amount (brightness) has a peak on a predetermined number (one in the present embodiment) of scanning lines L, and the peak is located on the predetermined number of scanning lines L. This means a so-called maximum value in which the increasing / decreasing tendency is reversed in the received light amount distribution curve of the pixel group.

図3の例では、領域E1の走査線L2〜L4、領域E3の走査線L18〜L21それぞれにおいてピーク画素は1つしか存在しない。しかし、領域E2の走査線L5〜L17それぞれにおいてピーク画素が3つずつ存在する。従って、この場合、第2制御部33は、ピーク画素が複数存在する領域があると判断する(S9:YES)。   In the example of FIG. 3, there is only one peak pixel in each of the scanning lines L2 to L4 in the region E1 and the scanning lines L18 to L21 in the region E3. However, there are three peak pixels in each of the scanning lines L5 to L17 in the region E2. Therefore, in this case, the second control unit 33 determines that there is a region where a plurality of peak pixels exist (S9: YES).

図6は、領域E2の一走査線Lの受光量分布曲線を示すグラフである。縦軸が受光量であり、横軸が一走査線L上の各画素の位置を示す。同図に示すように、同走査線Lの受光量分布曲線には3つのピーク画素G1〜G3が存在する(同図の実線グラフ参照)。ピーク画素G1は、内部部品W2の表面での反射光R1に対応し、ピーク画素G2は、ガラスカバーW3の裏面での反射光R2に対応し、ピーク画素G3は、ガラスカバーW3の表面での反射光R3に対応する。   FIG. 6 is a graph showing a received light amount distribution curve of one scanning line L in the region E2. The vertical axis represents the amount of received light, and the horizontal axis represents the position of each pixel on one scanning line L. As shown in the figure, there are three peak pixels G1 to G3 in the received light amount distribution curve of the scanning line L (see the solid line graph in the figure). The peak pixel G1 corresponds to the reflected light R1 on the surface of the internal component W2, the peak pixel G2 corresponds to the reflected light R2 on the back surface of the glass cover W3, and the peak pixel G3 corresponds to the surface of the glass cover W3. This corresponds to the reflected light R3.

ここで、例えばガラスカバーWの裏面または表面の表面形状を測定したいにもかかわらず、ピーク画素G1の受光量に基づき投受光感度を調整した場合、ピーク画素G2、G3の受光量が飽和してしまうおそれがある(図6の二点鎖線参照)。そうすると、後述する領域別投受光処理において、ガラスカバーWの裏面や表面の形状について測定誤差が大きくなってしまう。また、例えば内部部品W2の表面またはガラスカバーWの裏面の形状を測定したいにもかかわらず、ピーク画素G3の受光量に基づき投受光感度を調整した場合、ピーク画素G1、G2の受光量が不足してしまうおそれがある。そうすると、やはり領域別投受光処理において、ガラスカバーWの裏面や表面の形状について測定誤差が大きくなってしまう。   Here, for example, when the light projecting / receiving sensitivity is adjusted based on the amount of light received by the peak pixel G1, although the back surface or the surface shape of the glass cover W is desired to be measured, the amounts of light received by the peak pixels G2, G3 are saturated. (See the two-dot chain line in FIG. 6). If it does so, a measurement error will become large about the shape of the back surface and the surface of the glass cover W in the light emitting / receiving process according to area | region mentioned later. Further, for example, when the light projecting / receiving sensitivity is adjusted based on the light receiving amount of the peak pixel G3 even though it is desired to measure the shape of the front surface of the internal component W2 or the back surface of the glass cover W, the light receiving amount of the peak pixels G1, G2 is insufficient. There is a risk of it. If it does so, a measurement error will also become large about the shape of the back surface and the surface of the glass cover W also in the light projection / reception process according to area | region.

従って、測定対象に応じて適切なピーク画素を選択することが好ましい。第2制御部33は、ピーク画素が複数存在する領域が有ると判断した場合(S9:YES)、その領域についてピーク画素をユーザに選択させるための選択画面を表示部31に表示させる(S11)。この選択画面には、図3及び図6の示す画像が含まれていることが好ましい。ユーザは、選択画面を見ながら特定のピーク画素を選択する操作を操作部37にて行う。   Therefore, it is preferable to select an appropriate peak pixel according to the measurement target. When the second control unit 33 determines that there is a region where a plurality of peak pixels exist (S9: YES), the second control unit 33 displays a selection screen for causing the user to select a peak pixel for the region on the display unit 31 (S11). . This selection screen preferably includes the images shown in FIGS. 3 and 6. The user performs an operation on the operation unit 37 to select a specific peak pixel while viewing the selection screen.

本実施形態では、ユーザにより複数のピーク画素のいずれかが選択されると(S13:YES)、第2制御部33は、複数のピーク画素を受光量が大きい順に順位付けた場合において、選択されたピーク画素の順位を特定し、その順位を規定順位とし、領域指定情報(走査線Lの指定番号)と共に変位センサ10に送信する。そして、第1制御部20は、受信した規定順位及び領域指定情報をメモリ25に格納し(S15、S17)、本領域指定処理を終了する。   In the present embodiment, when one of the plurality of peak pixels is selected by the user (S13: YES), the second control unit 33 is selected when the plurality of peak pixels are ranked in descending order of the amount of received light. The order of the peak pixels is specified, the order is set as the specified order, and is transmitted to the displacement sensor 10 together with the area designation information (designation number of the scanning line L). Then, the first control unit 20 stores the received specified order and area designation information in the memory 25 (S15, S17), and ends this area designation process.

一方、第2制御部33は、ピーク画素が複数存在する領域が無いと判断した場合(S9:NO)、領域指定情報を変位センサ10に送信し、第1制御部20は、受信した領域指定情報をメモリ25に格納し(S17)、本領域指定処理を終了する。   On the other hand, if the second control unit 33 determines that there is no region where a plurality of peak pixels exist (S9: NO), the second control unit 33 transmits the region designation information to the displacement sensor 10, and the first control unit 20 receives the received region designation. Information is stored in the memory 25 (S17), and this area designation process is terminated.

(領域別投受光処理)
図7は、領域別投受光処理を示すフローチャートである。
ユーザが操作部37にて測定モードの実行を指示すると、第2制御部33は領域別投受光処理の実行コマンドを変位センサ10に送信する。そして、第1制御部20は、実行コマンドの受信に基づき領域別投受光処理を実行する。このとき第1制御部20は感度設定部、受光制御部として機能する。
(Transmission / reception processing by area)
FIG. 7 is a flowchart showing the area-specific light emitting / receiving process.
When the user instructs execution of the measurement mode using the operation unit 37, the second control unit 33 transmits an execution command for the region-specific light projecting / receiving process to the displacement sensor 10. Then, the first control unit 20 executes the area-specific light receiving / receiving process based on the reception of the execution command. At this time, the first control unit 20 functions as a sensitivity setting unit and a light reception control unit.

第1制御部20は、領域指定番号Kを「1」に初期化し(S21)、各領域Eにおける代表走査線L(例えば各領域Eの中央の位置する走査線 第1領域E1であれば走査線L2またはL3)について投受光動作を実行する(S23)。即ち、現在設定されている投光量レベルでレーザ光源11に投光動作をさせ、二次元CCD15から上記代表走査線Lのみの受光信号を読み出す。   The first control unit 20 initializes the area designation number K to “1” (S21), and scans the representative scanning line L in each area E (for example, the scanning line located at the center of each area E if it is the first area E1). The light projecting / receiving operation is executed for the line L2 or L3) (S23). That is, the laser light source 11 is caused to perform a light projecting operation at the currently set light projecting light level, and the light receiving signal of only the representative scanning line L is read from the two-dimensional CCD 15.

次に第1制御部20は、読み出した受光信号に基づき、代表走査線L上に複数のピーク画素が存在するかどうかを判断する(S25)。第1制御部20は、複数のピーク画素が存在すると判断した場合には(S25:YES)、複数のピーク画素を受光量が大きい順に順位付けた場合、上記規定順位になるピーク画素を、選択画素として特定する(S27)。次に、第1制御部20は、その選択画素の受光量が適切か否かを判断する(S29)。具体的には、受光量が所定の基準範囲(飽和レベルよりも低く、且つ、ノイズよりも高い範囲)内か否かを判断する。受光量が適切であれば(S29:YES)、S33にそのまま進む。   Next, the first control unit 20 determines whether there are a plurality of peak pixels on the representative scanning line L based on the read light reception signal (S25). When the first control unit 20 determines that there are a plurality of peak pixels (S25: YES), when the plurality of peak pixels are ranked in descending order of the amount of received light, the peak pixel having the specified order is selected. The pixel is specified (S27). Next, the first control unit 20 determines whether or not the received light amount of the selected pixel is appropriate (S29). Specifically, it is determined whether the amount of received light is within a predetermined reference range (a range lower than the saturation level and higher than the noise). If the amount of received light is appropriate (S29: YES), the process proceeds directly to S33.

一方、受光量が不適切である場合には(S29:NO)、受光量が基準範囲内になるよう投受光感度(第1制御部20が受ける受光信号レベル)を変更し(S31)、その後、S33に進む。本実施形態では、第1制御部20は、レーザ駆動回路13に与える動作信号Saのデューティ比を変更しレーザ光源11の投光量を変更することにより、投受光感度を変更する。具体的には、受光量が基準範囲よりも低ければ投光量を多くし、受光量が基準範囲よりも高ければ投光量を少なくする。なお、投受光感度を変更する方法としては、例えばCCD駆動回路17における受光信号の増幅度を変更してもよい。   On the other hand, when the amount of received light is inappropriate (S29: NO), the light projecting / receiving sensitivity (the received light signal level received by the first control unit 20) is changed so that the amount of received light is within the reference range (S31), and thereafter The process proceeds to S33. In the present embodiment, the first control unit 20 changes the light projecting / receiving sensitivity by changing the duty ratio of the operation signal Sa given to the laser driving circuit 13 and changing the light projection amount of the laser light source 11. Specifically, the amount of light emitted is increased if the amount of received light is lower than the reference range, and the amount of light emitted is decreased if the amount of received light is higher than the reference range. As a method of changing the light projecting / receiving sensitivity, for example, the amplification degree of the received light signal in the CCD drive circuit 17 may be changed.

なお、第1制御部20は、1つのピーク画素のみ存在すると判断した場合には(S25:NO)、そのピーク画素についてS29,S31の処理を実行する。   Note that when the first control unit 20 determines that only one peak pixel exists (S25: NO), the first control unit 20 executes the processes of S29 and S31 for the peak pixel.

受光量が適切になると(S29:YES)、受光信号に基づく受光データを、各領域E(または代表走査線L)に対応付けてコントローラ30に送信する(S33)。そして、第1制御部20は、未処理の領域が残っている場合には(S35:NO)、領域指定番号Kに「1」を加えて(S37)、S23に戻り、第2領域以降についても同様の処理を繰り返す。   When the amount of received light is appropriate (S29: YES), the received light data based on the received light signal is transmitted to the controller 30 in association with each region E (or representative scanning line L) (S33). When the unprocessed area remains (S35: NO), the first control unit 20 adds “1” to the area designation number K (S37), returns to S23, and the second area and subsequent areas. Repeats the same process.

全領域Eについて処理が終了すれば(S35:YES)、本領域別投受光処理を終了する。これにより、変位センサ10は、領域Eごとに適切な画素に基づく投受光感度下で取得した受光データをコントローラ30に送信することができる。そして、コントローラ30の第2制御部33は、受信した領域Eごとの受光データに基づき、各領域E間の高低差を所定の閾値と比較することにより、ケースW1に対して内部部品W2或いはガラスカバーW3が傾くことなく適切に嵌められているか否かを判定し、その判定結果に応じた判定信号を図示しない上位機器に出力する。このとき第2制御部33は受光制御部として機能する。   If the process is completed for all areas E (S35: YES), this area-specific light projection / reception process is terminated. Thereby, the displacement sensor 10 can transmit the light reception data acquired under the light projection / reception sensitivity based on an appropriate pixel for each region E to the controller 30. And the 2nd control part 33 of the controller 30 compares the height difference between each area | region E with the predetermined threshold value based on the received light reception data for every area | region E, and is internal component W2 or glass with respect to case W1. It is determined whether or not the cover W3 is properly fitted without tilting, and a determination signal corresponding to the determination result is output to a host device (not shown). At this time, the second control unit 33 functions as a light reception control unit.

なお、他の検出処理としては、例えば変位センサ10に設けられた図示しない表示灯を点灯動作させたり、コントローラ30の表示部31に判定結果を表示させたりしてもよい。また、変位センサ10と対象物Wの各部位との距離(変位)を検出(測定)してもよい。   As another detection process, for example, a display lamp (not shown) provided in the displacement sensor 10 may be turned on, or a determination result may be displayed on the display unit 31 of the controller 30. Further, the distance (displacement) between the displacement sensor 10 and each part of the object W may be detected (measured).

(本実施形態の効果)
この実施形態の変位センサシステム1によれば、撮像面15A上の異なる領域Eごとに対応して個別の投受光感度を設定可能であり、各領域E内の走査線Lの受光信号を、当該領域Eに対応する投受光感度下で取り出すことができる。従って、反射率が不均一な対象物Wでも、各部分に対応する撮像面15A上の領域Eごとに当該部分の反射率に応じた投受光感度を設定することで対象物WのガラスカバーW3等が正常に嵌っているかを判定することが可能である。
(Effect of this embodiment)
According to the displacement sensor system 1 of this embodiment, individual light projecting / receiving sensitivity can be set corresponding to each different area E on the imaging surface 15A, and the light reception signal of the scanning line L in each area E is It can be taken out under the light projecting / receiving sensitivity corresponding to the region E. Therefore, even if the object W has a non-uniform reflectance, the glass cover W3 of the object W is set by setting the light projecting / receiving sensitivity according to the reflectance of the part for each region E on the imaging surface 15A corresponding to each part. It is possible to determine whether etc. are fitted normally.

しかも、各領域Eの代表走査線Lのみの受光信号に基づき上記判定が可能であるから、撮像面上の全走査線の受光信号を利用する構成に比べて高速で処理することができる。   In addition, since the above determination can be made based on the light reception signals of only the representative scanning lines L of each region E, the processing can be performed at a higher speed than the configuration using the light reception signals of all the scanning lines on the imaging surface.

また、指定された少なくとも1つの領域について、複数のピーク画素の中からいずれかを、選択画素として選択し、その選択画素からの受光信号に基づき投受光感度が設定される。従って、常に、受光量が最大値を示すピーク画素からの受光信号のみを利用する構成に比べて、検出可能な対象物の制約を抑制することが可能である。図3の例では、領域E2について、1番目に受光量が大きいピーク画素G3を選択画素とすれば、ガラスカバーW3の表面形状を精度よく測定することができる。また、2番目に受光量が大きいピーク画素G2を選択画素とすれば、ガラスカバーW3の裏面形状を精度よく測定することができる。更に、3番目に受光量が大きいピーク画素G1を選択画素とすれば、内部部品W2の表面形状を精度よく測定することができる。   Further, for at least one designated region, any one of a plurality of peak pixels is selected as a selected pixel, and the light projecting / receiving sensitivity is set based on the light reception signal from the selected pixel. Therefore, it is possible to suppress the restriction of the detectable object as compared with the configuration in which only the light reception signal from the peak pixel in which the light reception amount has the maximum value is always used. In the example of FIG. 3, the surface shape of the glass cover W3 can be accurately measured if the peak pixel G3 having the first largest received light amount is selected as the selected pixel in the region E2. Further, if the peak pixel G2 having the second largest amount of received light is selected, the back surface shape of the glass cover W3 can be accurately measured. Furthermore, if the peak pixel G1 having the third largest received light amount is selected, the surface shape of the internal component W2 can be accurately measured.

しかも、複数のピーク画素が存在する領域について、複数のピーク画素を受光量が大きい順に順位付けた場合、規定順位になるピーク画素を、選択画素として特定する。従って、例えば外部環境の変化により、受光量が規定順位よりも下位のノイズ成分等が発生した場合でも、当該ノイズ成分等による影響を抑制することができる。   In addition, when a plurality of peak pixels are ranked in descending order of the amount of received light in an area where a plurality of peak pixels exist, a peak pixel having a specified rank is specified as a selected pixel. Therefore, even when a noise component or the like whose received light amount is lower than the specified order is generated due to, for example, a change in the external environment, the influence of the noise component or the like can be suppressed.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような種々の態様も本発明の技術的範囲に含まれる。特に、各実施形態の構成要素のうち、最上位の発明の構成要素以外の構成要素は、付加的な要素なので適宜省略可能である。
(1)上記実施形態では、変位センサ10及びコントローラ30を備えた変位センサシステムについて説明したが、本発明はこれに限られない。例えば表示部31及び操作部37の少なくとも一方を変位センサ10側に設けた構成や、コントローラ30の第2制御部33が領域指定処理を実行する構成であってもよい。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and the drawings, and for example, the following various aspects are also included in the technical scope of the present invention. In particular, among the constituent elements of each embodiment, constituent elements other than the constituent elements of the top-level invention can be omitted as appropriate because they are additional elements.
(1) Although the displacement sensor system including the displacement sensor 10 and the controller 30 has been described in the above embodiment, the present invention is not limited to this. For example, a configuration in which at least one of the display unit 31 and the operation unit 37 is provided on the displacement sensor 10 side, or a configuration in which the second control unit 33 of the controller 30 executes an area designation process may be used.

(2)上記実施形態では、各走査線L及び各走査線Lの受光位置に基づく形状を表示部31に表示(図形表示)したが、本発明はこれに限られない。例えば各走査線Lの特定情報、受光位置の位置情報を文字、記号等で数値表示してもよい。   (2) In the above embodiment, the shape based on each scanning line L and the light receiving position of each scanning line L is displayed on the display unit 31 (graphic display), but the present invention is not limited to this. For example, the specific information of each scanning line L and the position information of the light receiving position may be numerically displayed with characters, symbols, and the like.

(3)また、領域別投受光処理を行った後に、各領域Eについて各走査線L及び各走査線Lの受光位置に基づく形状を表示部31に表示させ、領域指定を変更できるようにしてもよい。このような構成であれば、より正確に領域指定を行うことができる。このとき、全ての領域Eについて、受光位置に基づく形状を同時に表示部31に表示するのが好ましい。   (3) Further, after performing the light projection / reception processing for each region, the shape based on each scanning line L and the light receiving position of each scanning line L for each region E is displayed on the display unit 31 so that the region designation can be changed. Also good. With such a configuration, the area can be specified more accurately. At this time, for all the regions E, it is preferable to simultaneously display the shapes based on the light receiving positions on the display unit 31.

(4)上記実施形態では、領域指定処理において各領域Eの代表走査線Lのみの受光信号に基づき対象物Wの高低差を測定したが、本発明はこれに限られない。例えば各領域Eの全走査線Lの受光信号に基づき対象物Wの表面形状を測定してもよい。   (4) In the above embodiment, the height difference of the object W is measured based on the light reception signal of only the representative scanning line L of each region E in the region designation process, but the present invention is not limited to this. For example, the surface shape of the object W may be measured based on the light reception signals of all the scanning lines L in each region E.

(5)上記実施形態では、ガラスカバーW3を備える対象物Wを例に挙げた。しかし、ガラスカバーW3の代わりに、フィルムなどの透明体や半透明体を備える対象物でもよい。要するに、少なくとも一部の領域での反射光により複数のピーク画素が存在する対象物であればよい。   (5) In the said embodiment, the target object W provided with the glass cover W3 was mentioned as an example. However, instead of the glass cover W3, an object including a transparent body such as a film or a translucent body may be used. In short, any object that has a plurality of peak pixels due to the reflected light in at least a part of the region may be used.

(6)上記実施形態では、ピーク画素が複数存在する領域が1つだけの場合を例に挙げて説明した。しかし、ピーク画素が複数存在する領域が2以上ある場合でもよく、この場合、領域ごとに個別に選択画素を選択することが好ましい。   (6) In the above embodiment, the case where there is only one region where a plurality of peak pixels exist has been described as an example. However, there may be two or more regions where a plurality of peak pixels exist. In this case, it is preferable to select the selection pixels individually for each region.

(7)上記実施形態では、複数のピーク画素を受光量が大きい順に順位付けた場合、規定順位になるピーク画素を、選択画素とした。しかし、複数のピーク画素を受光量が小さい順に順位付けた場合、規定順位になるピーク画素を、選択画素としてもよい。この場合、例えば周囲環境の変化により、受光量が規定順位よりも上位のノイズ成分等が発生した場合でも、当該ノイズ成分等による影響を抑制することができる。   (7) In the above-described embodiment, when a plurality of peak pixels are ranked in descending order of the amount of received light, the peak pixel having the specified rank is selected. However, when the plurality of peak pixels are ranked in ascending order of the amount of received light, the peak pixel having the prescribed order may be selected as the selected pixel. In this case, for example, even when a noise component or the like whose received light amount is higher than a specified order is generated due to a change in the surrounding environment, the influence of the noise component or the like can be suppressed.

また、複数のピーク画素を基準画素に近い順に順位付けた場合、規定順位になるピーク画素を、選択画素としてもよい。この場合、周囲環境の変化により、基準画素から遠い位置で発生したノイズ成分等による影響を抑制することができる。逆に、複数のピーク画素を基準画素に遠い順に順位付けた場合、規定順位になるピーク画素を、選択画素としてもよい。この場合、周囲環境の変化により、基準画素から近い位置で発生したノイズ成分等による影響を抑制することができる。また、単にユーザが選択したピーク画素を、選択画素としてもよい。   In addition, when a plurality of peak pixels are ranked in the order closer to the reference pixel, the peak pixel having the specified rank may be selected. In this case, it is possible to suppress an influence due to a noise component or the like generated at a position far from the reference pixel due to a change in the surrounding environment. On the contrary, when a plurality of peak pixels are ranked in the order of distance from the reference pixel, the peak pixel having the specified order may be selected. In this case, it is possible to suppress an influence due to a noise component or the like generated at a position close to the reference pixel due to a change in the surrounding environment. Alternatively, the peak pixel simply selected by the user may be used as the selected pixel.

1:変位センサシステム
10:変位センサ
11:レーザ光源(投光部)
15:二次元CCD(二次元撮像素子)
15A:撮像面
17:CCD駆動回路(受光処理部)
20:第1制御部(受光制御部、ピーク選択部、感度設定部、領域指定部)
21:データ処理部(出力部)
L:走査線
W:対象物
1: Displacement sensor system 10: Displacement sensor 11: Laser light source (projecting unit)
15: Two-dimensional CCD (two-dimensional image sensor)
15A: Imaging surface 17: CCD drive circuit (light reception processing unit)
20: 1st control part (light reception control part, peak selection part, sensitivity setting part, area designation part)
21: Data processing unit (output unit)
L: Scan line W: Object

Claims (5)

対象物に線状の光を照射する投光部と、
前記投光部から照射され前記対象物で反射した線状の反射光を受光する撮像面を有する二次元撮像素子と、
前記撮像面上の各画素での受光量に応じた受光信号を、前記線状の反射光の受光像に交差する走査線ごとに取り出す受光処理部と、
前記撮像面上の複数の領域を走査線単位で指定する領域指定部と、
前記受光処理部で取り出された受光信号に基づき、前記領域指定部で指定された少なくとも1つの領域について、当該領域内において受光量がピークを示す画素であるピーク画素が複数存在する場合、当該複数のピーク画素の中からいずれかを、選択画素として選択するピーク選択部と、
前記少なくとも1つの領域について、前記ピーク選択部で選択された前記選択画素からの受光信号に基づき投受光感度を設定する感度設定部と、
前記各領域内の走査線の受光信号を、当該領域に対応する投受光感度下で前記受光処理部に取り出させ、その取り出された受光信号に応じた検出処理を実行する受光制御部と、を備える変位センサシステム。
A light projecting unit that irradiates the object with linear light;
A two-dimensional imaging device having an imaging surface that receives linear reflected light that is irradiated from the light projecting unit and reflected by the object;
A light reception processing unit that extracts a light reception signal corresponding to the amount of light received by each pixel on the imaging surface for each scanning line intersecting a light reception image of the linear reflected light;
An area designating unit for designating a plurality of areas on the imaging surface in units of scanning lines;
Based on the light reception signal extracted by the light reception processing unit, for at least one region designated by the region designating unit, when there are a plurality of peak pixels in which the light reception amount is a peak, A peak selection unit that selects any one of the peak pixels as a selection pixel;
For the at least one region, a sensitivity setting unit that sets light projection / reception sensitivity based on a light reception signal from the selected pixel selected by the peak selection unit;
A light reception control unit for causing the light reception processing unit to extract the light reception signal of the scanning line in each region under the light projecting / receiving sensitivity corresponding to the region, and executing a detection process according to the extracted light reception signal; Displacement sensor system provided.
請求項1に記載の変位センサシステムであって、
前記ピーク選択部は、前記複数のピーク画素を受光量が大きい順或いは小さい順に順位付けた場合、予め定められた規定順位になるピーク画素を、選択画素として選択する、変位センサシステム。
The displacement sensor system according to claim 1,
The displacement sensor system, wherein the peak selection unit selects, as a selection pixel, a peak pixel having a predetermined specified order when the plurality of peak pixels are ranked in descending order of received light amount.
請求項1に記載の変位センサシステムであって、
前記ピーク選択部は、前記複数のピーク画素を基準画素に近い順或いは遠い順に順位付けた場合、予め定められた規定順位になるピーク画素を、選択画素として選択する、変位センサシステム。
The displacement sensor system according to claim 1,
The peak selection unit is a displacement sensor system that selects a peak pixel having a predetermined specified order as a selected pixel when the plurality of peak pixels are ranked in an order close to or far from a reference pixel.
対象物に線状の光を照射する投光部と、
前記投光部から照射され前記対象物で反射した線状の反射光を受光する撮像面を有する二次元撮像素子と、
前記撮像面上の各画素での受光量に応じた受光信号を、前記線状の反射光の受光像に交差する走査線ごとに取り出す受光処理部と、
前記受光処理部で取り出された受光信号に基づき、前記撮像面上の異なる領域のうち少なくとも1つの領域について、当該領域内において受光量がピークを示す画素であるピーク画素が複数存在する場合、当該複数のピーク画素の中からいずれかを、選択画素として選択するピーク選択部と、
前記少なくとも1つの領域について、前記ピーク選択部で選択された前記選択画素からの受光信号に基づき投受光感度を設定する感度設定部と、
前記各領域内の走査線の受光信号を、当該領域に対応する投受光感度下で前記受光処理部に取り出させ、その取り出された受光信号に基づく検出処理を実行する受光制御部と、を備える変位センサ。
A light projecting unit that irradiates the object with linear light;
A two-dimensional imaging device having an imaging surface that receives linear reflected light that is irradiated from the light projecting unit and reflected by the object;
A light reception processing unit that extracts a light reception signal corresponding to the amount of light received by each pixel on the imaging surface for each scanning line intersecting a light reception image of the linear reflected light;
Based on the light reception signal extracted by the light reception processing unit, for at least one of the different areas on the imaging surface, when there are a plurality of peak pixels that are pixels whose light reception amount has a peak in the area, A peak selection unit that selects one of a plurality of peak pixels as a selection pixel;
For the at least one region, a sensitivity setting unit that sets light projection / reception sensitivity based on a light reception signal from the selected pixel selected by the peak selection unit;
A light reception control unit that causes the light reception signal of the scanning line in each region to be extracted by the light reception processing unit under the light projection / reception sensitivity corresponding to the region, and executes a detection process based on the extracted light reception signal. Displacement sensor.
請求項4に記載の変位センサであって、
前記領域ごとに対応する投受光感度で取り出された受光信号に基づく受光位置及び受光量の少なくとも一方に関する情報を外部出力する出力部を備える、変位センサ。
The displacement sensor according to claim 4,
A displacement sensor comprising: an output unit that outputs information on at least one of a light receiving position and a light receiving amount based on a light receiving signal extracted with a light projecting / receiving sensitivity corresponding to each region.
JP2011079238A 2011-03-31 2011-03-31 Displacement sensor system and displacement sensor Pending JP2012215399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011079238A JP2012215399A (en) 2011-03-31 2011-03-31 Displacement sensor system and displacement sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011079238A JP2012215399A (en) 2011-03-31 2011-03-31 Displacement sensor system and displacement sensor

Publications (1)

Publication Number Publication Date
JP2012215399A true JP2012215399A (en) 2012-11-08

Family

ID=47268298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011079238A Pending JP2012215399A (en) 2011-03-31 2011-03-31 Displacement sensor system and displacement sensor

Country Status (1)

Country Link
JP (1) JP2012215399A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015068654A (en) * 2013-09-26 2015-04-13 株式会社ニコン Shape measurement device, structure manufacturing system and shape measuring computer program
CN111722239A (en) * 2019-03-19 2020-09-29 株式会社东芝 Light receiving device and distance measuring device
JP7083856B2 (en) 2020-01-07 2022-06-13 日本電子株式会社 Height measuring device, charged particle beam device, and height measuring method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375605A (en) * 1986-09-19 1988-04-06 Fujitsu Ltd Apparatus for inspecting mounting component
JPS6478109A (en) * 1987-09-19 1989-03-23 Toyota Central Res & Dev Three-dimensional coordinate measuring instrument
JP2005308578A (en) * 2004-04-22 2005-11-04 Sunx Ltd Surface shape detecting device
JP2010237176A (en) * 2009-03-31 2010-10-21 Sunx Ltd Displacement sensor system and displacement sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375605A (en) * 1986-09-19 1988-04-06 Fujitsu Ltd Apparatus for inspecting mounting component
JPS6478109A (en) * 1987-09-19 1989-03-23 Toyota Central Res & Dev Three-dimensional coordinate measuring instrument
JP2005308578A (en) * 2004-04-22 2005-11-04 Sunx Ltd Surface shape detecting device
JP2010237176A (en) * 2009-03-31 2010-10-21 Sunx Ltd Displacement sensor system and displacement sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015068654A (en) * 2013-09-26 2015-04-13 株式会社ニコン Shape measurement device, structure manufacturing system and shape measuring computer program
CN111722239A (en) * 2019-03-19 2020-09-29 株式会社东芝 Light receiving device and distance measuring device
CN111722239B (en) * 2019-03-19 2024-04-23 株式会社东芝 Light receiving device and distance measuring device
JP7083856B2 (en) 2020-01-07 2022-06-13 日本電子株式会社 Height measuring device, charged particle beam device, and height measuring method

Similar Documents

Publication Publication Date Title
US11402508B2 (en) Distance-measuring system and distance-measuring method
US9390646B2 (en) Color calibration apparatus and method usable with display device
US7751065B2 (en) Optical displacement meter, optical displacement measuring method, optical displacement measuring program, computer-readable recording medium, and device that records the program
US20080088856A1 (en) Optical displacement meter, optical displacement measuring method, optical displacement measuring program, computer-readable recording medium, and device that records the program
JP7251942B2 (en) SENSOR CALIBRATION SYSTEM, DISPLAY CONTROLLER, PROGRAM, AND SENSOR CALIBRATION METHOD
JP6269462B2 (en) Image display device and image display adjustment method
CN112995630B (en) Flexible brightness adjusting method for fixed-focus projector, projector and readable storage medium
KR101523046B1 (en) Distance measurement apparatus of an image processing-based
JP7321290B2 (en) Information processing device, information processing method, and program
JP2009276284A (en) Position detection sensor
JP2012215399A (en) Displacement sensor system and displacement sensor
JP2018105799A (en) Measuring device, method, and program
JP5410138B2 (en) Displacement sensor system and displacement sensor
US10652508B2 (en) Projector and method for projecting an image pixel by pixel
US20220294990A1 (en) Information processing device, imaging device, information processing method, and program
US10353070B2 (en) Distance measurement device, distance measurement method, and distance measurement program
EP2743803A1 (en) Automatic calibration of stylus location using mapping between color and location
JP2006292731A (en) Displacement sensor equipped with automatic setting means of measuring region
JP5962720B2 (en) Light irradiation apparatus and program
JP6673447B1 (en) Cup detector
JP2013196475A (en) Projection device, projection method and program
JP6925489B2 (en) Chart device
US20240201540A1 (en) Display system, display device and display method
JP6327294B2 (en) Light irradiation apparatus and program
JP5196614B2 (en) Image display device and image display method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150414