JP2012214738A - Sensitizing dye for photoelectric conversion, photoelectric conversion element using the same, and dye-sensitized solar cell - Google Patents

Sensitizing dye for photoelectric conversion, photoelectric conversion element using the same, and dye-sensitized solar cell Download PDF

Info

Publication number
JP2012214738A
JP2012214738A JP2012068575A JP2012068575A JP2012214738A JP 2012214738 A JP2012214738 A JP 2012214738A JP 2012068575 A JP2012068575 A JP 2012068575A JP 2012068575 A JP2012068575 A JP 2012068575A JP 2012214738 A JP2012214738 A JP 2012214738A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
sensitizing dye
dye
group
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012068575A
Other languages
Japanese (ja)
Inventor
Kazuyuki Suruga
和行 駿河
Toshihiko Kubota
俊彦 久保田
Makoto Okaji
誠 岡地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hodogaya Chemical Co Ltd
Original Assignee
Hodogaya Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hodogaya Chemical Co Ltd filed Critical Hodogaya Chemical Co Ltd
Priority to JP2012068575A priority Critical patent/JP2012214738A/en
Publication of JP2012214738A publication Critical patent/JP2012214738A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sensitizing dye for photoelectric conversion which has a new structure and extracts a current efficiently, a photoelectric conversion element which uses the sensitizing dye for photoelectric conversion, exhibits high photoelectric conversion efficiency, and can maintain high photoelectric conversion efficiency even when light irradiation is continued for a long period of time, and a dye-sensitized solar cell.SOLUTION: The sensitizing dye for photoelectric conversion is represented by the general formula (1) (In the formula, R-Rare an alkyl group or the like, Z is a saturated hydrocarbon ring or the like. n, p, q are integers of 1-3. r is an integer of 0-2).

Description

本発明は色素増感型の光電変換素子に用いられる増感色素と、それを用いた光電変換素子ならびに色素増感太陽電池に関する。   The present invention relates to a sensitizing dye used for a dye-sensitized photoelectric conversion element, a photoelectric conversion element using the same, and a dye-sensitized solar cell.

近年、石炭、石油、天然ガス等の化石燃料から生じる二酸化炭素が温室効果ガスとして地球温暖化や、地球温暖化による環境破壊を引き起こしており、さらに人口増加に伴う世界的なエネルギー消費の増大により、地球規模での環境破壊がますます進行することが懸念されている。このような状況において、化石燃料とは異なり枯渇する恐れのない太陽エネルギーを利用した検討が精力的に行われている。太陽光発電の導入により、地球温暖化の防止、光熱費の節約等が可能になるため、太陽エネルギーの開発や利用は、欧州や日本を中心に年々急速に進んでいる。 In recent years, carbon dioxide generated from fossil fuels such as coal, oil, and natural gas has caused global warming and environmental destruction due to global warming as a greenhouse gas. There is a concern that environmental destruction on a global scale will continue to progress. In such a situation, unlike fossil fuels, studies using solar energy that is unlikely to be exhausted are energetically conducted. The introduction of photovoltaic power generation makes it possible to prevent global warming and save energy costs, and so solar energy development and use is rapidly progressing year by year mainly in Europe and Japan.

太陽光発電の手段としては、太陽光のエネルギーを電気エネルギーに変換させる光電変換素子を用いた太陽電池が注目されるようになってきた。太陽電池としては、単結晶、多結晶、アモルファスのシリコン系、ガリウムヒ素、硫化カドミウム、セレン化インジウム銅等の化合物半導体系といった無機系太陽電池が主に研究され、住宅用等に実用化されているものもある。しかし、これらの無機系太陽電池は製造コストが高いことや、原材料の確保が困難であること等の問題点を抱えている。 As a means for photovoltaic power generation, a solar cell using a photoelectric conversion element that converts sunlight energy into electric energy has attracted attention. As solar cells, inorganic solar cells such as single crystal, polycrystal, amorphous silicon, compound semiconductors such as gallium arsenide, cadmium sulfide, and indium copper selenide have been mainly researched and put into practical use for residential use. Some are. However, these inorganic solar cells have problems such as high manufacturing costs and difficulty in securing raw materials.

その一方で、有機材料を用いた有機系太陽電池は、製造コスト、大面積化、原材料確保の点で有利と言われている。有機系太陽電池としては、有機半導体と金属との接触界面における起電力の発生を利用するショットキー接合型が知られていたが、光電変換効率の向上に限界があることが認識されるようになった。そのため、2種の有機半導体の接触界面、あるいは有機半導体と無機半導体の接触界面を利用したpnヘテロ接合型が期待されるようになった。しかし、光電変換効率は無機系太陽電池と比べると格段に低く、耐久性も悪いという問題があった。 On the other hand, organic solar cells using organic materials are said to be advantageous in terms of manufacturing cost, increase in area, and securing raw materials. As an organic solar cell, a Schottky junction type that uses generation of electromotive force at a contact interface between an organic semiconductor and a metal has been known, but it is recognized that there is a limit in improving photoelectric conversion efficiency. became. Therefore, a pn heterojunction type utilizing a contact interface between two kinds of organic semiconductors or a contact interface between an organic semiconductor and an inorganic semiconductor has been expected. However, there is a problem that the photoelectric conversion efficiency is much lower than that of the inorganic solar cell and the durability is poor.

こうした状況の中、スイスのローザンヌ工科大学のグレッツェル教授らにより、高い光電変換効率を示す色素増感太陽電池が報告された(例えば、非特許文献1参照)。提案された色素増感太陽電池は、酸化チタン多孔質薄膜電極、ルテニウム錯体色素、電解液からなる湿式太陽電池である。色素増感太陽電池は、他の太陽電池に比べて素子構造が簡単で、大型の製造設備がなくても製造できる可能性があり、また、既に実用化されているアモルファスシリコン太陽電池に匹敵する高い光電変換効率が期待されることから、近年になって次世代型太陽電池として注目を集めている。 Under such circumstances, a dye-sensitized solar cell exhibiting high photoelectric conversion efficiency was reported by Prof. Gretzel et al. Of Lausanne University of Technology in Switzerland (see Non-Patent Document 1, for example). The proposed dye-sensitized solar cell is a wet solar cell composed of a titanium oxide porous thin film electrode, a ruthenium complex dye, and an electrolytic solution. Dye-sensitized solar cells have a simpler device structure than other solar cells, and can be manufactured without large-scale manufacturing facilities, and are comparable to amorphous silicon solar cells already in practical use. In recent years, it has attracted attention as a next-generation solar cell because high photoelectric conversion efficiency is expected.

色素増感太陽電池に用いられる増感色素としては、光電変換効率の点からは、ルテニウム錯体が最も優位と考えられているが、ルテニウムは貴金属であるため製造コスト面で不利であり、かつ、実用化されて大量のルテニウム錯体が必要になった場合には、資源的な制約も問題となる。そのため、増感色素として、ルテニウム等の貴金属を含まない有機色素を用いた色素増感太陽電池の研究が盛んに行われるようになった。貴金属を含まない有機色素としては、クマリン系色素、シアニン系色素、メロシアニン系色素、ロダシアニン系色素、フタロシアニン系色素、ポルフィリン系色素、キサンテン系色素等が報告されている(例えば、特許文献1〜3参照)。 As the sensitizing dye used in the dye-sensitized solar cell, from the point of photoelectric conversion efficiency, ruthenium complex is considered to be the most dominant, but ruthenium is a noble metal, which is disadvantageous in terms of production cost, and When practical use requires a large amount of ruthenium complex, resource constraints also become a problem. Therefore, research on dye-sensitized solar cells using organic dyes that do not contain noble metals such as ruthenium as sensitizing dyes has been actively conducted. As organic dyes not containing noble metals, coumarin dyes, cyanine dyes, merocyanine dyes, rhodacyanine dyes, phthalocyanine dyes, porphyrin dyes, xanthene dyes and the like have been reported (for example, Patent Documents 1 to 3). reference).

特許文献3には、光電変換素子に用いる光電変換材料として、下記化合物(D−1)(特許文献3の化合物(A−2))および(D−2)(特許文献3の化合物(A−4))を含む8つの化合物が例示されているが、インドリン環の5位に3価の連結基が置換している化合物D−1、D−2はいずれも特許請求の範囲には含まれず、また、明細書の記載から特許請求の範囲に属すると読み取れる化合物は、例示された8つの化合物のうち2つの化合物のみである。特許文献1〜3に記載されている有機色素は、安価で吸光係数が大きく、かつ構造の多様性により吸収特性の制御が可能といった長所を有するものの、光電変換効率および経時安定性の面で、要求される特性を充分に満足するものが得られていないのが現状である。 Patent Document 3 discloses the following compounds (D-1) (compound (A-2) of Patent Document 3) and (D-2) (compounds (A-) of Patent Document 3) as photoelectric conversion materials used for photoelectric conversion elements. Eight compounds including 4)) are exemplified, but none of the compounds D-1 and D-2 in which a trivalent linking group is substituted at the 5-position of the indoline ring are included in the claims. In addition, the compounds that can be read as belonging to the claims from the description of the specification are only two of the eight exemplified compounds. Although the organic dyes described in Patent Documents 1 to 3 have the advantages that they are inexpensive, have a large extinction coefficient, and can control the absorption characteristics due to the variety of structures, in terms of photoelectric conversion efficiency and stability over time, The present situation is that a product that sufficiently satisfies the required characteristics has not been obtained.

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

特開平11−214730号公報Japanese Patent Laid-Open No. 11-214730 特開平11−238905号公報JP 11-238905 A 特開2005−19249号公報JP 2005-19249 A

Nature(第353巻、737〜740頁、1991年)Nature (Vol. 353, 737-740, 1991)

本発明が解決しようとする課題は、効率よく電流を取り出すことのできる新規構造の増感色素を提供し、さらには該増感色素を用いた良好な光電変換素子ならびに色素増感太陽電池を提供することである。 The problem to be solved by the present invention is to provide a sensitizing dye having a novel structure capable of efficiently taking out current, and further to provide a good photoelectric conversion element and dye-sensitized solar cell using the sensitizing dye. It is to be.

上記課題を解決するため、発明者らは増感色素の光電変換特性向上について鋭意検討した結果、特定の構造を有する増感色素を用いることにより、高効率かつ高耐久性の光電変換素子が得られることを見出した。すなわち本発明は、以下の内容で構成されている。 In order to solve the above problems, the inventors have intensively studied on improving the photoelectric conversion characteristics of a sensitizing dye, and as a result, by using a sensitizing dye having a specific structure, a highly efficient and highly durable photoelectric conversion element is obtained. I found out that That is, the present invention has the following contents.

1.下記一般式(1)で表される光電変換用増感色素。 1. A sensitizing dye for photoelectric conversion represented by the following general formula (1).

Figure 2012214738
Figure 2012214738

一般式(1)において、R、Rは同一でも異なっていてもよく、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基または置換もしくは無置換のアミノ基を表す。R〜Rは同一でも異なっていてもよく、水素原子、ハロゲン原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基または置換もしくは無置換のアミノ基を表す。R〜Rが複数個存在する場合(n=2または3のとき)、それぞれが互いに異なっていてもよく、水素原子、ハロゲン原子、置換もしくは無置換のアルキル基を表す。R、Rは同一でも異なっていてもよく、酸性基、置換もしくは無置換のアルキル基または置換もしくは無置換のアリール基を表す。ただし、RとRの少なくとも一方は酸性基であるものとする。Rが複数個存在する場合(r=2のとき)、それぞれが互いに異なっていてもよい。Zは無置換の飽和炭化水素環または置換もしくは無置換の芳香族環を表す。n、p、qは1〜3の整数であり、rは0〜2の整数である。 In the general formula (1), R 1 and R 2 may be the same or different and each represents a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted amino group. R 3 to R 6 may be the same or different and each represents a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted amino group. When a plurality of R 3 to R 6 are present (when n = 2 or 3), they may be different from each other and each represents a hydrogen atom, a halogen atom, or a substituted or unsubstituted alkyl group. R 7 and R 8 may be the same or different and each represents an acidic group, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aryl group. However, at least one of R 7 and R 8 is an acidic group. When a plurality of R 7 are present (when r = 2), each may be different from each other. Z represents an unsubstituted saturated hydrocarbon ring or a substituted or unsubstituted aromatic ring. n, p, and q are integers of 1 to 3, and r is an integer of 0 to 2.

2.前記一般式(1)において、Zがシクロペンチル環であることを特徴とする前記1記載の光電変換用増感色素。 2. 2. The sensitizing dye for photoelectric conversion as described in 1 above, wherein in the general formula (1), Z is a cyclopentyl ring.

3.前記一般式(1)において、酸性基がカルボキシル基であることを特徴とする前記2記載の光電変換用増感色素。 3. 3. The sensitizing dye for photoelectric conversion as described in 2 above, wherein in the general formula (1), the acidic group is a carboxyl group.

4.前記一般式(1)において、R、Rが置換もしくは無置換のアルキル基、R〜Rが水素原子または無置換のアルキル基であることを特徴とする前記3記載の光電変換用増感色素。 4). 4. The photoelectric conversion according to 3 above, wherein, in the general formula (1), R 1 and R 2 are substituted or unsubstituted alkyl groups, and R 3 to R 6 are hydrogen atoms or unsubstituted alkyl groups. Sensitizing dye.

5.前記一般式(1)において、n、p、qがいずれも1であることを特徴とする前記4記載の光電変換用増感色素。 5). 5. The sensitizing dye for photoelectric conversion as described in 4 above, wherein n, p and q are all 1 in the general formula (1).

6.前記一般式(1)において、rが0であることを特徴とする前記5記載の光電変換用増感色素。 6). 6. The sensitizing dye for photoelectric conversion as described in 5 above, wherein in general formula (1), r is 0.

7.対向電極間に少なくとも半導体層および電解質層が設けられている色素増感型の光電変換素子において、前記1〜6のいずれか一項に記載の光電変換用増感色素を半導体層に担持させて得られることを特徴とする光電変換素子。 7). In the dye-sensitized photoelectric conversion element in which at least a semiconductor layer and an electrolyte layer are provided between the counter electrodes, the photoelectric conversion sensitizing dye according to any one of 1 to 6 above is supported on a semiconductor layer. A photoelectric conversion element obtained.

8.前記光電変換素子において、4−tert−ブチルピリジンが電解質層中に含有されていることを特徴とする、前記7記載の光電変換素子。 8). 8. The photoelectric conversion element as described in 7 above, wherein 4-tert-butylpyridine is contained in the electrolyte layer in the photoelectric conversion element.

9.前記7または8のいずれか一項に記載の光電変換素子をモジュール化し、所定の電気配線を設けることによって得られることを特徴とする色素増感太陽電池。 9. A dye-sensitized solar cell obtained by modularizing the photoelectric conversion element according to any one of 7 and 8 and providing a predetermined electrical wiring.

本発明によれば、効率よく電流を取り出すことが可能な光電変換用増感色素を得ることができる。また、該光電変換用増感色素を用いることにより、高効率かつ高耐久性の光電変換素子および色素増感太陽電池を得ることができる。   According to the present invention, it is possible to obtain a sensitizing dye for photoelectric conversion capable of efficiently taking out current. Moreover, by using the sensitizing dye for photoelectric conversion, a highly efficient and highly durable photoelectric conversion element and a dye-sensitized solar cell can be obtained.

本発明実施例1の化合物(A−3)の1H−NMRチャート図である。1 is a 1H-NMR chart of the compound (A-3) of Invention Example 1. FIG. 本発明実施例4〜14、比較例1〜4の光電変換素子の構成を表す概略断面図である。It is a schematic sectional drawing showing the structure of the photoelectric conversion element of this invention Examples 4-14 and Comparative Examples 1-4.

以下、本発明の実施の形態について、詳細に説明する。本発明の光電変換用増感色素は、色素増感型の光電変換素子において増感剤として用いられる。本発明の光電変換素子は、導電性支持体上の半導体層に色素を吸着させてなる光電極と対極とを電解質層を介して対向配置させたものである。   Hereinafter, embodiments of the present invention will be described in detail. The sensitizing dye for photoelectric conversion of the present invention is used as a sensitizer in a dye-sensitized photoelectric conversion element. In the photoelectric conversion element of the present invention, a photoelectrode obtained by adsorbing a dye to a semiconductor layer on a conductive support and a counter electrode are arranged to face each other with an electrolyte layer interposed therebetween.

以下に、前記一般式(1)の構造を有する色素について具体的に説明するが、特にこれらに限定されるものではない。   Although the pigment | dye which has the structure of the said General formula (1) is demonstrated concretely below, it is not specifically limited to these.

一般式(1)において、RおよびRの具体例としては、メチル基、エチル基、n−プロピル基、n−ブチル基、t−ブチル基、ヘキシル基等のアルキル基;フェニル基、ナフチル基等のアリール基;ジメチルアミノ基、ジ−t−ブチルアミノ基、ジフェニルアミノ基等のアミノ基を挙げることができる。R〜Rの具体例としては、水素原子;フッ素原子、塩素原子、臭素原子等のハロゲン原子;メチル基、エチル基、n−プロピル基、n−ブチル基、t−ブチル基、ヘキシル基等のアルキル基;フェニル基、ナフチル基等のアリール基;ジメチルアミノ基、ジ−t−ブチルアミノ基、ジフェニルアミノ基等のアミノ基を挙げることができる。また、RおよびRの具体例としては、メチル基、エチル基、n−プロピル基、n−ブチル基、t−ブチル基、ヘキシル基等のアルキル基;フェニル基、ナフチル基等のアリール基;カルボキシル基、スルホン酸基、リン酸基、ヒドロキサム酸基、ホスホン酸基、ホウ酸基、ホスフィン酸基等の酸性基を挙げることができる。RとRの少なくとも一方は酸性基であるものとする。R〜Rで表される基はさらに置換基を有していてもよく、置換基としては具体的に、フッ素原子、塩素原子、臭素原子等のハロゲン原子;ジメチルアミノ基、ジフェニルアミノ基等のアミノ基;水酸基、エステル化されていてもよいカルボキシル基、シアノ基;メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基を挙げることができる。Zの具体例としては、シクロブチル環、シクロペンチル環、シクロヘキシル環、シクロヘプチル環、シクロオクチル環等の飽和炭化水素環;ベンゼン環、ナフタレン環、アントラセン環等の芳香族環を挙げることができる。Zが芳香族環の場合、さらに置換基を有していてもよく、置換基としては具体的に、フッ素原子、塩素原子、臭素原子等のハロゲン原子;メチル基、エチル基、n−プロピル基、n−ブチル基、t−ブチル基、ヘキシル基等のアルキル基;フェニル基、ナフチル基等のアリール基、ジメチルアミノ基、ジ−t−ブチルアミノ基、ジフェニルアミノ基等のアミノ基を挙げることができる。 In the general formula (1), specific examples of R 1 and R 2 include alkyl groups such as methyl group, ethyl group, n-propyl group, n-butyl group, t-butyl group, hexyl group; phenyl group, naphthyl An aryl group such as a group; and an amino group such as a dimethylamino group, a di-t-butylamino group, and a diphenylamino group. Specific examples of R 3 to R 6 include hydrogen atom; halogen atom such as fluorine atom, chlorine atom and bromine atom; methyl group, ethyl group, n-propyl group, n-butyl group, t-butyl group and hexyl group. And alkyl groups such as phenyl groups and naphthyl groups; and amino groups such as dimethylamino group, di-t-butylamino group and diphenylamino group. Specific examples of R 7 and R 8 include methyl groups, ethyl groups, n-propyl groups, n-butyl groups, t-butyl groups, hexyl groups and other alkyl groups; phenyl groups, naphthyl groups and other aryl groups. An acidic group such as a carboxyl group, a sulfonic acid group, a phosphoric acid group, a hydroxamic acid group, a phosphonic acid group, a boric acid group, or a phosphinic acid group. At least one of R 7 and R 8 is an acidic group. The group represented by R 1 to R 8 may further have a substituent. Specific examples of the substituent include halogen atoms such as a fluorine atom, a chlorine atom and a bromine atom; a dimethylamino group and a diphenylamino group. An amino group such as: a hydroxyl group, an optionally esterified carboxyl group, a cyano group; an alkoxy group such as a methoxy group, an ethoxy group, and a propoxy group. Specific examples of Z include saturated hydrocarbon rings such as cyclobutyl ring, cyclopentyl ring, cyclohexyl ring, cycloheptyl ring and cyclooctyl ring; aromatic rings such as benzene ring, naphthalene ring and anthracene ring. When Z is an aromatic ring, it may further have a substituent. Specific examples of the substituent include halogen atoms such as fluorine atom, chlorine atom and bromine atom; methyl group, ethyl group, n-propyl group Alkyl groups such as n-butyl group, t-butyl group and hexyl group; aryl groups such as phenyl group and naphthyl group; amino groups such as dimethylamino group, di-t-butylamino group and diphenylamino group Can do.

一般式(1)で表される本発明の光電変換用増感色素は、Zがシクロペンチル環である場合、電子供与性が高くなり、増感色素から半導体層への電子移動がスムーズに起こりやすくなる。また、Rまたは/およびRで表される酸性基をカルボキシル基にすることにより、増感色素を半導体層の表面上に容易に吸着させることができ、光電変換特性の向上につながる。さらに、RおよびRを置換もしくは無置換のアルキル基、R〜Rを水素原子または無置換のアルキル基、nおよびpを1、rを0とすることにより、特に効率の高い光電変換素子が得られるため好ましい。 The sensitizing dye for photoelectric conversion of the present invention represented by the general formula (1) has a high electron donating property when Z is a cyclopentyl ring, and the electron transfer from the sensitizing dye to the semiconductor layer easily occurs. Become. In addition, when the acidic group represented by R 7 or / and R 8 is a carboxyl group, the sensitizing dye can be easily adsorbed on the surface of the semiconductor layer, leading to improvement in photoelectric conversion characteristics. Furthermore, when R 1 and R 2 are substituted or unsubstituted alkyl groups, R 3 to R 6 are hydrogen atoms or unsubstituted alkyl groups, n and p are 1, and r is 0, particularly high efficiency photoelectric Since a conversion element is obtained, it is preferable.

一般式(1)で表される本発明の光電変換用増感色素は、取り得る全ての立体異性体を包含するものとする。いずれの異性体も本発明における光電変換用増感色素として好適に使用することができる。例えば、一般式(1)においてr=0の場合は、下記一般式(2)または(3)で表される化合物およびその他取り得る全ての立体異性体を包含するものとし、r=1の場合、下記一般式(4)〜(7)で表される化合物およびその他取り得る全ての立体異性体を包含するものとする。また、これらの立体異性体から選ばれる2種以上の混合物であってもよい。 The sensitizing dye for photoelectric conversion of the present invention represented by the general formula (1) includes all possible stereoisomers. Any isomer can be suitably used as a sensitizing dye for photoelectric conversion in the present invention. For example, when r = 0 in the general formula (1), the compound represented by the following general formula (2) or (3) and all other possible stereoisomers are included, and when r = 1 The compounds represented by the following general formulas (4) to (7) and all other possible stereoisomers are included. Moreover, the mixture of 2 or more types chosen from these stereoisomers may be sufficient.

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

本発明の一般式(1)で表される光電変換用増感色素の具体例を以下の(A−1)〜(A−40)に示すが、本発明はこれらに限定されるものではない。以下の(A−1)〜(A−40)は、取り得る立体異性体のうちの一例を示したものであり、その他全ての立体異性体を包含するものとする。また、それぞれ2種以上の立体異性体の混合物であってもよい。   Specific examples of the sensitizing dye for photoelectric conversion represented by the general formula (1) of the present invention are shown in the following (A-1) to (A-40), but the present invention is not limited thereto. . The following (A-1) to (A-40) are examples of possible stereoisomers and include all other stereoisomers. Moreover, each may be a mixture of two or more stereoisomers.

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

これらの化合物の同定は、NMR分析によって行った。 These compounds were identified by NMR analysis.

一般式(1)で表される本発明の光電変換用増感色素は、例えば以下のように合成できる。下記化合物(B−1)と三塩化ホスホリルとのVilsmeier-Haack反応を行うことでホルミル体(B−2)が得られる。続いて、得られたホルミル体(B−2)とロダニン−3−酢酸等のロダニン化合物との縮合反応を行うことにより、本発明の光電変換用増感色素を合成できる。   The sensitizing dye for photoelectric conversion of the present invention represented by the general formula (1) can be synthesized, for example, as follows. A formyl body (B-2) is obtained by performing a Vilsmeier-Haack reaction between the following compound (B-1) and phosphoryl trichloride. Subsequently, the sensitizing dye for photoelectric conversion of the present invention can be synthesized by performing a condensation reaction between the obtained formyl body (B-2) and a rhodanine compound such as rhodanine-3-acetic acid.

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

本発明の光電変換用増感色素は単独で用いてもよく、2種以上を併用してもよい。また、本発明の光電変換用増感色素は、他の増感色素と併用することができる。他の増感色素の具体例としては、ルテニウム錯体、クマリン系色素、シアニン系色素、メロシアニン系色素、ロダシアニン系色素、フタロシアニン系色素、ポルフィリン系色素、キサンテン系色素、前記一般式(1)以外の増感色素等を挙げることができるが、これらに限定されない。本発明の光電変換用増感色素と、これら他の増感色素とを組み合わせて用いる場合は、本発明の光電変換用増感色素に対する他の増感色素の使用量を10〜200質量%とするのが好ましく、20〜100質量%とするのがより好ましい。   The sensitizing dye for photoelectric conversion of the present invention may be used alone or in combination of two or more. The sensitizing dye for photoelectric conversion of the present invention can be used in combination with other sensitizing dyes. Specific examples of other sensitizing dyes include ruthenium complexes, coumarin dyes, cyanine dyes, merocyanine dyes, rhodacyanine dyes, phthalocyanine dyes, porphyrin dyes, xanthene dyes, other than the above general formula (1). Although a sensitizing dye etc. can be mentioned, it is not limited to these. When the sensitizing dye for photoelectric conversion of the present invention and these other sensitizing dyes are used in combination, the amount of the other sensitizing dye used for the sensitizing dye for photoelectric conversion of the present invention is 10 to 200% by mass. It is preferable to set it to 20 to 100% by mass.

本発明において色素増感型の光電変換素子を作製する方法は特に限定されないが、導電性支持体上に半導体層を形成し、該半導体層に本発明の光電変換用増感色素を吸着させる方法が好ましい。色素を吸着させる方法としては、色素を溶媒に溶解して得られた溶液中に半導体層を長時間浸漬する方法が一般的である。本発明の光電変換用増感色素を2種以上併用する場合、あるいは本発明の光電変換用増感色素を他の増感色素と併用する場合は、使用する全ての色素の混合溶液を調製して半導体層を浸漬してもよく、また、それぞれの色素について別々の溶液を調製し、各溶液に半導体層を順に浸漬してもよい。   The method for producing a dye-sensitized photoelectric conversion element in the present invention is not particularly limited, but a method of forming a semiconductor layer on a conductive support and allowing the semiconductor layer to adsorb the sensitizing dye for photoelectric conversion of the present invention. Is preferred. As a method for adsorbing the dye, a method of immersing the semiconductor layer in a solution obtained by dissolving the dye in a solvent is generally used. When using two or more types of the sensitizing dye for photoelectric conversion of the present invention in combination, or when using the sensitizing dye for photoelectric conversion of the present invention in combination with other sensitizing dyes, prepare a mixed solution of all the dyes to be used. The semiconductor layer may be immersed, or a separate solution may be prepared for each dye, and the semiconductor layer may be sequentially immersed in each solution.

本発明では、導電性支持体として金属板の他に、表面に導電性材料を有する導電層を設けたガラス基板やプラスチック基板を用いることができる。導電性材料の具体例としては、金、銀、銅、アルミニウム、白金等の金属、フッ素ドープの酸化スズ、インジウム−スズ複合酸化物等の導電性透明酸化物半導体、炭素等を挙げることができるが、フッ素ドープの酸化スズ薄膜をコートしたガラス基板を用いるのが好ましい。 In the present invention, in addition to the metal plate, a glass substrate or a plastic substrate provided with a conductive layer having a conductive material on the surface can be used as the conductive support. Specific examples of the conductive material include metals such as gold, silver, copper, aluminum, and platinum, conductive transparent oxide semiconductors such as fluorine-doped tin oxide and indium-tin composite oxide, and carbon. However, it is preferable to use a glass substrate coated with a fluorine-doped tin oxide thin film.

本発明において半導体層を形成する半導体の具体例としては、酸化チタン、酸化亜鉛、酸化スズ、酸化インジウム、酸化ジルコニウム、酸化タングステン、酸化タンタル、酸化鉄、酸化ガリウム、酸化ニッケル、酸化イットリウム等の金属酸化物;硫化チタン、硫化亜鉛、硫化ジルコニウム、硫化銅、硫化スズ、硫化インジウム、硫化タングステン、硫化カドミウム、硫化銀等の金属硫化物;セレン化チタン、セレン化ジルコニウム、セレン化インジウム、セレン化タングステン等の金属セレン化物;シリコン、ゲルマニウム等の単体半導体等を挙げることができる。これらの半導体は単独で用いるだけでなく、2種類以上を混合して用いることもできる。本発明においては、半導体として酸化チタン、酸化亜鉛、酸化スズを用いるのが好ましい。   Specific examples of the semiconductor forming the semiconductor layer in the present invention include metals such as titanium oxide, zinc oxide, tin oxide, indium oxide, zirconium oxide, tungsten oxide, tantalum oxide, iron oxide, gallium oxide, nickel oxide, and yttrium oxide. Oxides: titanium sulfide, zinc sulfide, zirconium sulfide, copper sulfide, tin sulfide, indium sulfide, tungsten sulfide, cadmium sulfide, silver sulfide and other metal sulfides; titanium selenide, zirconium selenide, indium selenide, tungsten selenide And metal selenides such as silicon and germanium. These semiconductors can be used alone or in combination of two or more. In the present invention, it is preferable to use titanium oxide, zinc oxide, or tin oxide as the semiconductor.

本発明における半導体層の態様は特に限定されないが、微粒子からなる多孔質構造を有する薄膜であることが好ましい。多孔質構造等により、半導体層の実質的な表面積が大きくなり、半導体層への色素吸着量が増大すると、高効率の光電変換素子を得ることができる。半導体粒子径は5〜500nmが好ましく、10〜100nmがより好ましい。半導体層の膜厚は通常2〜100μmであるが、5〜20μmがより好ましい。半導体層を形成する方法としては、半導体微粒子を含むペーストをスピンコート法、ドクターブレード法、スキージ法、スクリーン印刷法等の湿式塗布法で導電性基板上に塗布した後、焼成により溶媒や添加物を除去して製膜する方法や、スパッタリング法、蒸着法、電着法、電析法、マイクロ波照射法等により製膜する方法を挙げることができるが、これらに限定されない。   Although the aspect of the semiconductor layer in the present invention is not particularly limited, it is preferably a thin film having a porous structure composed of fine particles. When the substantial surface area of the semiconductor layer increases due to the porous structure and the like, and the amount of dye adsorbed on the semiconductor layer increases, a highly efficient photoelectric conversion element can be obtained. The semiconductor particle diameter is preferably 5 to 500 nm, and more preferably 10 to 100 nm. The film thickness of the semiconductor layer is usually 2 to 100 μm, more preferably 5 to 20 μm. As a method for forming a semiconductor layer, a paste containing semiconductor fine particles is applied on a conductive substrate by a wet coating method such as a spin coating method, a doctor blade method, a squeegee method, or a screen printing method, and then a solvent or additive is baked. Examples thereof include, but are not limited to, a method of forming a film by removing the film, and a method of forming a film by sputtering, vapor deposition, electrodeposition, electrodeposition, microwave irradiation, and the like.

本発明において、半導体微粒子を含むペーストは市販品を用いてもよく、市販の半導体微粉末を溶媒中に分散させることによって調製したペースト等を用いてもよい。ペーストを調製する際に使用する溶媒の具体例としては、水、メタノール、エタノール、イソプロピルアルコール等のアルコール系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒、n−ヘキサン、シクロヘキサン、ベンゼン、トルエン等の炭化水素系溶媒を挙げることができるが、これらに限定されない。また、これらの溶媒は単独あるいは2種以上の混合溶媒として使用することができる。   In the present invention, the paste containing semiconductor fine particles may be a commercially available product, or a paste prepared by dispersing a commercially available semiconductor fine powder in a solvent. Specific examples of the solvent used in preparing the paste include alcohol solvents such as water, methanol, ethanol, isopropyl alcohol, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, n-hexane, cyclohexane, benzene, Hydrocarbon solvents such as toluene can be mentioned, but are not limited thereto. These solvents can be used alone or as a mixed solvent of two or more.

本発明において半導体微粉末を溶媒中に分散させる際は、乳鉢等ですりつぶしてもよく、ボールミル、ペイントコンディショナー、縦型ビーズミル、水平型ビーズミル、アトライター等の分散機を用いてもよい。ペーストを調製する際には、半導体微粒子の凝集を防ぐために界面活性剤等を添加するのが好ましく、増粘させるためにポリエチレングリコール等の増粘剤を添加するのが好ましい。 In the present invention, when the semiconductor fine powder is dispersed in a solvent, it may be ground with a mortar or the like, or a dispersing machine such as a ball mill, a paint conditioner, a vertical bead mill, a horizontal bead mill, or an attritor may be used. When preparing the paste, it is preferable to add a surfactant or the like in order to prevent aggregation of the semiconductor fine particles, and it is preferable to add a thickener such as polyethylene glycol to increase the viscosity.

本発明の光電変換用増感色素の半導体層表面上への吸着は、該色素溶液中に半導体層を浸し、室温で30分〜100時間放置、あるいは加熱条件下で10分〜24時間放置することにより行うが、室温で10〜20時間放置するのが好ましい。また、該色素溶液中の色素濃度は10〜2000μMが好ましく、50〜500μMがより好ましい。   Adsorption of the sensitizing dye for photoelectric conversion of the present invention onto the surface of the semiconductor layer is performed by immersing the semiconductor layer in the dye solution and leaving it at room temperature for 30 minutes to 100 hours or under heating conditions for 10 minutes to 24 hours. However, it is preferable to leave at room temperature for 10 to 20 hours. The dye concentration in the dye solution is preferably 10 to 2000 μM, more preferably 50 to 500 μM.

本発明の光電変換用増感色素を、半導体層表面上に吸着させる際に用いる溶媒の具体例としては、メタノール、エタノール、イソプロピルアルコール、tert−ブチルアルコール等のアルコール系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒、ギ酸エチル、酢酸エチル、酢酸n−ブチル等のエステル系溶媒、ジエチルエーテル、1,2−ジメトキシエタン、テトラヒドロフラン、1,3−ジオキソラン等のエーテル系溶媒、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン等のアミド系溶媒、アセトニトリル、メトキシアセトニトリル、プロピオニトリル等のニトリル系溶媒、ジクロロメタン、クロロホルム、ブロモホルム、o−ジクロロベンゼン等のハロゲン化炭化水素系溶媒、n−ヘキサン、シクロヘキサン、ベンゼン、トルエン等の炭化水素系溶媒を挙げることができるが、これらに限定されない。これらの溶媒は単独あるいは2種以上の混合溶媒として使用される。これらの溶媒の中で、メタノール、エタノール、tert−ブチルアルコール、アセトン、メチルエチルケトン、テトラヒドロフラン、アセトニトリル、N,N−ジメチルホルムアミドが好ましい。   Specific examples of the solvent used when the photoelectric conversion sensitizing dye of the present invention is adsorbed on the surface of the semiconductor layer include alcohol solvents such as methanol, ethanol, isopropyl alcohol, and tert-butyl alcohol, acetone, methyl ethyl ketone, and methyl. Ketone solvents such as isobutyl ketone, ester solvents such as ethyl formate, ethyl acetate and n-butyl acetate, ether solvents such as diethyl ether, 1,2-dimethoxyethane, tetrahydrofuran and 1,3-dioxolane, N, N -Amide solvents such as dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, nitrile solvents such as acetonitrile, methoxyacetonitrile, propionitrile, dichloromethane, chloroform, bromoform, o-dichlorobenzene, etc. C Gen hydrocarbon solvents, n- hexane, cyclohexane, benzene, there may be mentioned a hydrocarbon solvent such as toluene, but are not limited to. These solvents are used alone or as a mixed solvent of two or more. Among these solvents, methanol, ethanol, tert-butyl alcohol, acetone, methyl ethyl ketone, tetrahydrofuran, acetonitrile, and N, N-dimethylformamide are preferable.

本発明の光電変換用増感色素を半導体層表面上に吸着する際には、コール酸またはデオキシコール酸、ケノデオキシコール酸、リソコール酸、デヒドロコール酸等のコール酸誘導体を色素溶液中に溶解し、色素と共吸着させてもよい。コール酸またはコール酸誘導体を用いることにより色素同士の会合が抑制され、光電変換素子において色素から半導体層へ効率よく電子注入できるようになる。コール酸またはコール酸誘導体を用いる場合、色素溶液中におけるそれらの濃度は0.1〜100mMが好ましく、1〜10mMがより好ましい。 When adsorbing the sensitizing dye for photoelectric conversion of the present invention on the surface of the semiconductor layer, a cholic acid derivative such as cholic acid or deoxycholic acid, chenodeoxycholic acid, lysocholic acid, and dehydrocholic acid is dissolved in the dye solution, It may be co-adsorbed with the dye. By using cholic acid or a cholic acid derivative, association between the dyes is suppressed, and electrons can be efficiently injected from the dye into the semiconductor layer in the photoelectric conversion element. When cholic acid or cholic acid derivatives are used, their concentration in the dye solution is preferably from 0.1 to 100 mM, more preferably from 1 to 10 mM.

本発明の光電変換素子に用いる対極としては、導電性を有するものであれば特に限定されないが、レドックスイオンの酸化還元反応を促進するために、触媒能を持った導電性材料を使用するのが好ましい。該導電性材料の具体例としては、白金、ロジウム、ルテニウム、炭素等を挙げることができるが、これらに限定されない。本発明においては、導電性支持体上に白金の薄膜を形成したものを対極として用いるのが特に好ましい。また、導電性薄膜を形成する方法としては、導電性材料を含むペーストをスピンコート法、ドクターブレード法、スキージ法、スクリーン印刷法等の湿式塗布法により導電性基板上に塗布した後、焼成により溶媒や添加物を除去して製膜する方法や、スパッタリング法、蒸着法、電着法、電析法、マイクロ波照射法等により製膜する方法を挙げることができるが、これらに限定されない。   The counter electrode used in the photoelectric conversion element of the present invention is not particularly limited as long as it has conductivity, but in order to promote the redox ion oxidation-reduction reaction, a conductive material having catalytic ability is used. preferable. Specific examples of the conductive material include, but are not limited to, platinum, rhodium, ruthenium, carbon, and the like. In the present invention, it is particularly preferable to use as a counter electrode a platinum thin film formed on a conductive support. As a method for forming a conductive thin film, a paste containing a conductive material is applied onto a conductive substrate by a wet coating method such as a spin coating method, a doctor blade method, a squeegee method, or a screen printing method, and then fired. Examples thereof include a method for forming a film by removing a solvent and additives, and a method for forming a film by sputtering, vapor deposition, electrodeposition, electrodeposition, microwave irradiation, and the like, but are not limited thereto.

本発明の光電変換素子においては、対向電極間に電解質が充填され、電解質層が形成されている。用いる電解質としてはレドックス電解質が好ましい。レドックス電解質としては、ヨウ素、臭素、スズ、鉄、クロム、アントラキノン等のレドックスイオン対を挙げることができるが、これらに限定されない。これらの中ではヨウ素系電解質、臭素系電解質が好ましい。ヨウ素系電解質の場合は、例えばヨウ化カリウム、ヨウ化リチウム、ヨウ化ジメチルプロピルイミダゾリウム等とヨウ素の混合物が用いられる。本発明では、これらの電解質を溶媒に溶解させて得られた電解液を用いるのが好ましい。電解液中の電解質の濃度は、0.05〜5Mが好ましく、0.2〜1Mがより好ましい。   In the photoelectric conversion element of the present invention, an electrolyte is filled between the counter electrodes to form an electrolyte layer. As the electrolyte to be used, a redox electrolyte is preferable. Examples of redox electrolytes include, but are not limited to, redox ion pairs such as iodine, bromine, tin, iron, chromium, and anthraquinone. Among these, iodine-based electrolytes and bromine-based electrolytes are preferable. In the case of an iodine-based electrolyte, for example, a mixture of potassium iodide, lithium iodide, dimethylpropylimidazolium iodide and the like and iodine is used. In the present invention, it is preferable to use an electrolytic solution obtained by dissolving these electrolytes in a solvent. 0.05-5M is preferable and, as for the density | concentration of the electrolyte in electrolyte solution, 0.2-1M is more preferable.

電解質を溶解させる溶媒としては、アセトニトリル、メトキシアセトニトリル、プロピオニトリル、3−メトキシプロピオニトリル、ベンゾニトリル等のニトリル系溶媒、ジエチルエーテル、1,2−ジメトキシエタン、テトラヒドロフラン等のエーテル系溶媒、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド系溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒を挙げることができるが、これらに限定されない。これらの溶媒は単独あるいは2種以上の混合溶媒として使用される。これらの溶媒の中で、ニトリル系溶媒が好ましい。   Solvents for dissolving the electrolyte include nitrile solvents such as acetonitrile, methoxyacetonitrile, propionitrile, 3-methoxypropionitrile, benzonitrile, ether solvents such as diethyl ether, 1,2-dimethoxyethane, tetrahydrofuran, N Amide solvents such as N, N-dimethylformamide and N, N-dimethylacetamide, and carbonate solvents such as ethylene carbonate and propylene carbonate, but are not limited thereto. These solvents are used alone or as a mixed solvent of two or more. Of these solvents, nitrile solvents are preferred.

本発明では、前記電解液中に4−tert−ブチルピリジン、4−メチルピリジン、2−ビニルピリジン、N,N−ジメチル−4−アミノピリジン、N,N−ジメチルアニリン、N−メチルベンズイミダゾール等のアミン系化合物を含有させてもよい。電解液中のアミン系化合物の濃度は、0.05〜5Mが好ましく、0.2〜1Mがより好ましい。アミン系化合物を電解液中に含有させることにより、色素増感型光電変換素子の開放電圧、フィルファクターが高くなるため、特に好ましい。 In the present invention, 4-tert-butylpyridine, 4-methylpyridine, 2-vinylpyridine, N, N-dimethyl-4-aminopyridine, N, N-dimethylaniline, N-methylbenzimidazole, etc. An amine compound may be contained. The concentration of the amine compound in the electrolytic solution is preferably 0.05 to 5M, and more preferably 0.2 to 1M. The inclusion of an amine compound in the electrolytic solution is particularly preferable because the open-circuit voltage and fill factor of the dye-sensitized photoelectric conversion element are increased.

本発明では、前記電解液中にゲル化剤、ポリマー等を添加させて得られたゲル状電解質を用いてもよい。また、レドックス電解質を含む電解液の代わりに、ポリエチレンオキシド誘導体等のポリマーを用いた固体電解質を用いてもよい。ゲル状電解質、固体電解質を用いることにより、電解液の揮発を低減させることができる。   In the present invention, a gel electrolyte obtained by adding a gelling agent, a polymer or the like to the electrolytic solution may be used. Further, a solid electrolyte using a polymer such as a polyethylene oxide derivative may be used instead of the electrolytic solution containing the redox electrolyte. By using a gel electrolyte or a solid electrolyte, volatilization of the electrolytic solution can be reduced.

本発明の光電変換素子においては、対向電極間に電解質の代わりに固体電荷輸送層を形成してもよい。固体電荷輸送層に含まれる電荷輸送物質は、正孔輸送物質であることが好ましい。電荷輸送物質の具体例としては、ヨウ化銅、臭化銅、チオシアン化銅等の無機正孔輸送物質、ポリピロール、ポリチオフェン、ポリ−p−フェニレンビニレン、ポリビニルカルバゾール、ポリアニリン、オキサジアゾール誘導体、トリフェニルアミン誘導体、ピラゾリン誘導体、フルオレノン誘導体、ヒドラゾン化合物、スチルベン化合物等の有機正孔輸送物質が挙げられるが、これらに限定されない。   In the photoelectric conversion element of the present invention, a solid charge transport layer may be formed between the counter electrodes instead of the electrolyte. The charge transport material contained in the solid charge transport layer is preferably a hole transport material. Specific examples of the charge transport material include inorganic hole transport materials such as copper iodide, copper bromide and copper thiocyanide, polypyrrole, polythiophene, poly-p-phenylene vinylene, polyvinyl carbazole, polyaniline, oxadiazole derivatives, tri Examples include, but are not limited to, organic hole transport materials such as phenylamine derivatives, pyrazoline derivatives, fluorenone derivatives, hydrazone compounds, and stilbene compounds.

本発明において有機正孔輸送物質を用いて固体電荷輸送層を形成する場合、フィルム形成性結着剤樹脂を併用することが好ましい。フィルム形成性結着剤樹脂の具体例としては、ポリスチレン樹脂、ポリビニルアセタール樹脂、ポリカーボネート樹脂、ポリスルホン樹脂、ポリエステル樹脂、ポリフェニレンオキサイド樹脂、ポリアリレート樹脂、アルキド樹脂、アクリル樹脂、フェノキシ樹脂等が挙げられるが、これらに限定されない。これらの樹脂は、単独あるいは共重合体として1種または2種以上を混合して用いることができる。これらの結着剤樹脂の有機正孔輸送物質に対する使用量は、20〜1000質量%が好ましく、50〜500質量%がより好ましい。   In the present invention, when forming a solid charge transport layer using an organic hole transport material, it is preferable to use a film-forming binder resin in combination. Specific examples of the film-forming binder resin include polystyrene resin, polyvinyl acetal resin, polycarbonate resin, polysulfone resin, polyester resin, polyphenylene oxide resin, polyarylate resin, alkyd resin, acrylic resin, and phenoxy resin. However, it is not limited to these. These resins can be used alone or as a copolymer in combination of one or more. 20-1000 mass% is preferable and the usage-amount with respect to the organic hole transport material of these binder resin is more preferable 50-500 mass%.

本発明の光電変換素子においては、半導体層に増感色素を吸着させてなる光電極が陽極となり、対極が陰極となる。太陽光等の光は光電極側、対極側のどちらから照射してもよいが、光電極側から照射する方が好ましい。太陽光等の照射により色素が光を吸収して励起状態となって電子を放出する。この電子が半導体層を経由して外部に流れて対極へ移動する。一方、電子を放出して酸化状態になった色素は、対極から供給される電子を電解質中のイオンを経由して受け取ることにより、基底状態に戻る。このサイクルにより電流が流れ、光電変換素子として機能するようになる。 In the photoelectric conversion element of the present invention, the photoelectrode formed by adsorbing the sensitizing dye to the semiconductor layer serves as an anode, and the counter electrode serves as a cathode. Light such as sunlight may be irradiated from either the photoelectrode side or the counter electrode side, but irradiation from the photoelectrode side is preferable. The dye absorbs light by irradiation with sunlight or the like and is excited to emit electrons. The electrons flow to the outside via the semiconductor layer and move to the counter electrode. On the other hand, the dye that has been in an oxidized state by emitting electrons returns to the ground state by receiving electrons supplied from the counter electrode via ions in the electrolyte. By this cycle, a current flows and functions as a photoelectric conversion element.

本発明の光電変換素子の特性を評価する際には、短絡電流、開放電圧、フィルファクター、光電変換効率の測定を行う。短絡電流とは、出力端子を短絡させたときの両端子間に流れる1cmあたりの電流を表し、開放電圧とは、出力端子を開放させたときの両端子間の電圧を表す。また、フィルファクターとは最大出力(電流と電圧の積)を、短絡電流と開放電圧の積で割った値であり、主に内部抵抗に左右される。光電変換効率とは、最大出力(W)を1cmあたりの光強度(W)で割った値に100を乗じてパーセント表示した値として求められる。 When evaluating the characteristics of the photoelectric conversion element of the present invention, short-circuit current, open-circuit voltage, fill factor, and photoelectric conversion efficiency are measured. The short circuit current represents the current per 1 cm 2 flowing between the two terminals when the output terminal is short-circuited, and the open circuit voltage represents the voltage between the two terminals when the output terminal is opened. The fill factor is a value obtained by dividing the maximum output (product of current and voltage) by the product of the short-circuit current and the open-circuit voltage, and mainly depends on the internal resistance. The photoelectric conversion efficiency is obtained as a percentage value obtained by multiplying the value obtained by dividing the maximum output (W) by the light intensity (W) per 1 cm 2 by 100.

本発明の光電変換素子は、色素増感太陽電池や各種光センサー等に応用できる。本発明の色素増感太陽電池は、前記一般式(1)で示される増感色素を含有する光電変換素子がセルとなり、そのセルを必要枚数配列してモジュール化し、所定の電気配線を設けることによって得られる。   The photoelectric conversion element of the present invention can be applied to a dye-sensitized solar cell, various optical sensors, and the like. In the dye-sensitized solar cell of the present invention, the photoelectric conversion element containing the sensitizing dye represented by the general formula (1) becomes a cell, the required number of the cells are arranged and modularized, and predetermined electrical wiring is provided. Obtained by.

以下、本発明を実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to a following example.

[合成例1] 光電変換用増感色素(A−3)の合成
反応容器に、下記化合物(C−1)15g、N,N−ジメチルホルムアミド4.5g、トルエン8.0gを加え、三塩化ホスホリル9.0gを滴下した後、80℃で3時間加熱攪拌した。放冷後、反応容器を冷却しながら水8.0gを滴下し、炭酸ナトリウムを加えて反応溶液をアルカリ性とした。得られたアルカリ性溶液を60℃で3時間加熱した後、トルエンを用いて抽出した。水洗浄、飽和食塩水による洗浄を行った後、得られた有機層を硫酸マグネシウムで乾燥し、溶媒を留去することにより、ホルミル化された下記化合物(C−2)14.4gの黄色固体を得た。
[Synthesis Example 1] 15 g of the following compound (C-1), 4.5 g of N, N-dimethylformamide, and 8.0 g of toluene were added to a synthesis reaction vessel of a sensitizing dye for photoelectric conversion (A-3), and trichloride was added. After dropwise adding 9.0 g of phosphoryl, the mixture was heated and stirred at 80 ° C. for 3 hours. After allowing to cool, 8.0 g of water was added dropwise while cooling the reaction vessel, and sodium carbonate was added to make the reaction solution alkaline. The obtained alkaline solution was heated at 60 ° C. for 3 hours, and then extracted with toluene. After washing with water and saturated brine, the obtained organic layer was dried over magnesium sulfate, and the solvent was distilled off to give 14.4 g of the following compound (C-2) that was formylated as a yellow solid Got.

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

得られた化合物(C−2)1.0g、ロダニン−3−酢酸0.4g、ピペリジン0.5gをエタノール20ml中に加え、78℃で6時間加熱撹拌した。室温まで冷却した後、固体を濾取し、酢酸1.0gを水50mlに溶解させて得られた酢酸水溶液に分散させた。しばらく撹拌した後、結晶を濾取することにより、光電変換用増感色素(A−3)1.0g(収率74%)の赤色粉末を得た。 1.0 g of the obtained compound (C-2), 0.4 g of rhodanine-3-acetic acid and 0.5 g of piperidine were added to 20 ml of ethanol, and the mixture was heated and stirred at 78 ° C. for 6 hours. After cooling to room temperature, the solid was collected by filtration, and 1.0 g of acetic acid was dissolved in 50 ml of water and dispersed in an aqueous acetic acid solution. After stirring for a while, the crystals were collected by filtration to obtain 1.0 g (yield 74%) of a red powder of a sensitizing dye for photoelectric conversion (A-3).

得られた赤色粉末についてNMR分析により構造を同定した。1H−NMR測定結果を図1に示した。   The structure of the obtained red powder was identified by NMR analysis. The result of 1H-NMR measurement is shown in FIG.

1H−NMR(CDCl)で以下の33個の水素のシグナルを検出した(カルボキシル基の水素は観測されなかった)。δ(ppm)=1.32−1.42(1H)、1.60−1.68(2H)、1.84−1.99(3H)、2.35(3H)、2.40(3H)、3.71(1H)、4.66(1H)、4.94(2H)、6.74(1H)、6.86−6.90(2H)、7.05(1H)、7.09−7.13(4H)、7.16(2H)、7.22(2H)、7.29(2H)、7.45(2H)、7.73(1H). The following 33 hydrogen signals were detected by 1H-NMR (CDCl 3 ) (carboxyl group hydrogen was not observed). δ (ppm) = 1.32-1.42 (1H), 1.60-1.68 (2H), 1.84-1.99 (3H), 2.35 (3H), 2.40 (3H) ), 3.71 (1H), 4.66 (1H), 4.94 (2H), 6.74 (1H), 6.86-6.90 (2H), 7.05 (1H), 7. 09-7.13 (4H), 7.16 (2H), 7.22 (2H), 7.29 (2H), 7.45 (2H), 7.73 (1H).

[合成例2] 光電変換用増感色素(A−4)の合成
反応容器に、下記化合物(C−3)15g、N,N−ジメチルホルムアミド4.5g、トルエン8.0gを加え、三塩化ホスホリル9.0gを滴下した後、80℃で3時間加熱攪拌した。放冷後、反応容器を冷却しながら水8.0gを滴下し、炭酸ナトリウムを加えて反応溶液をアルカリ性とした。得られたアルカリ性溶液を60℃で3時間加熱した後、トルエンを用いて抽出した。水洗浄、飽和食塩水による洗浄を行った後、得られた有機層を硫酸マグネシウムで乾燥し、溶媒を留去することにより、ホルミル化された下記化合物(C−4)14.1gの黄色固体を得た。
[Synthesis Example 2] 15 g of the following compound (C-3), 4.5 g of N, N-dimethylformamide, and 8.0 g of toluene were added to a synthesis reaction vessel of a sensitizing dye for photoelectric conversion (A-4), and trichloride was added. After dropwise adding 9.0 g of phosphoryl, the mixture was heated and stirred at 80 ° C. for 3 hours. After allowing to cool, 8.0 g of water was added dropwise while cooling the reaction vessel, and sodium carbonate was added to make the reaction solution alkaline. The obtained alkaline solution was heated at 60 ° C. for 3 hours, and then extracted with toluene. After washing with water and washing with a saturated saline solution, the obtained organic layer was dried over magnesium sulfate, and the solvent was distilled off to obtain 14.1 g of a yellow solid as the following compound (C-4) Got.

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

得られた化合物(C−4)1.0g、ロダニン−3−酢酸0.4g、ピペリジン0.5gをエタノール20ml中に加え、78℃で6時間加熱撹拌した。室温まで冷却した後、固体を濾取し、酢酸1.0gを水50mlに溶解させて得られた酢酸水溶液に分散させた。しばらく撹拌した後、結晶を濾取することにより、光電変換用増感色素(A−4)0.9g(収率65%)の赤色粉末を得た。 1.0 g of the obtained compound (C-4), 0.4 g of rhodanine-3-acetic acid and 0.5 g of piperidine were added to 20 ml of ethanol, and the mixture was heated and stirred at 78 ° C. for 6 hours. After cooling to room temperature, the solid was collected by filtration, and 1.0 g of acetic acid was dissolved in 50 ml of water and dispersed in an aqueous acetic acid solution. After stirring for a while, the crystals were collected by filtration to obtain 0.9 g (yield 65%) of red powder of a sensitizing dye for photoelectric conversion (A-4).

[合成例3] 光電変換用増感色素(A−8)の合成
実施例1で得られた化合物(C−2)1.0g、下記化合物(C−5)0.7g、ピペリジン0.5gをエタノール20ml中に加え、78℃で6時間加熱撹拌した。室温まで冷却した後、固体を濾取し、酢酸1.0gを水50mlに溶解させて得られた酢酸水溶液に分散させた。しばらく撹拌した後、結晶を濾取することにより、光電変換用増感色素(A−8)1.4g(収率80%)の赤色粉末を得た。
[Synthesis Example 3] Synthesis of sensitizing dye for photoelectric conversion (A-8) 1.0 g of the compound (C-2) obtained in Example 1, 0.7 g of the following compound (C-5), 0.5 g of piperidine Was added to 20 ml of ethanol and stirred at 78 ° C. for 6 hours. After cooling to room temperature, the solid was collected by filtration, and 1.0 g of acetic acid was dissolved in 50 ml of water and dispersed in an aqueous acetic acid solution. After stirring for a while, the crystals were collected by filtration to obtain 1.4 g (yield 80%) of a red powder of a sensitizing dye for photoelectric conversion (A-8).

Figure 2012214738
Figure 2012214738

[実施例4]
フッ素ドープの酸化スズ薄膜をコートしたガラス基板上に、酸化チタンペースト(Solaronix製、Ti−Nanoxide D)をスキージ法により塗布した。110℃で1時間乾燥後、450℃で30分間焼成し、膜厚6μmの酸化チタン薄膜を得た。次に、実施例1で得られた光電変換用増感色素(A−3)をメタノールに溶解して濃度100μMの溶液50mlを調製し、この溶液中に、酸化チタンを塗布焼結したガラス基板を、室温において15時間浸漬して色素を吸着させ、光電極とした。
[Example 4]
A titanium oxide paste (manufactured by Solaronix, Ti-Nanoxide D) was applied to a glass substrate coated with a fluorine-doped tin oxide thin film by a squeegee method. After drying at 110 ° C. for 1 hour, baking was performed at 450 ° C. for 30 minutes to obtain a titanium oxide thin film having a thickness of 6 μm. Next, the photoelectric conversion sensitizing dye (A-3) obtained in Example 1 was dissolved in methanol to prepare 50 ml of a solution having a concentration of 100 μM, and a titanium substrate was coated and sintered in this solution. Was soaked at room temperature for 15 hours to adsorb the dye to obtain a photoelectrode.

フッ素ドープの酸化スズ薄膜をコートしたガラス基板上にオートファインコータ(日本電子(株)製JFC−1600)を用いてスパッタリング法により膜厚15nmの白金薄膜を形成し、対極とした。次に、光電極と対極との間に厚さ60μmのスペーサ(熱融着フィルム)を挟んで熱融着により貼り合わせ、対極の孔から電解液を注入した後に孔を封止し、光電変換素子を作製した。電解液としては、ヨウ化リチウム0.1M、ヨウ化ジメチルプロピルイミダゾリウム0.6M、ヨウ素0.05M、4−tert−ブチルピリジン0.5Mの3−メトキシプロピオニトリル溶液を用いた。 A platinum thin film having a thickness of 15 nm was formed on a glass substrate coated with a fluorine-doped tin oxide thin film by a sputtering method using an auto fine coater (JFC-1600 manufactured by JEOL Ltd.) as a counter electrode. Next, a spacer (heat-sealing film) having a thickness of 60 μm is sandwiched between the photoelectrode and the counter electrode, and bonded together by heat sealing. After injecting the electrolyte from the hole of the counter electrode, the hole is sealed, and photoelectric conversion is performed. An element was produced. As the electrolytic solution, a 3-methoxypropionitrile solution of lithium iodide 0.1M, dimethylpropylimidazolium iodide 0.6M, iodine 0.05M, and 4-tert-butylpyridine 0.5M was used.

前記光電変換素子の光電極側から、擬似太陽光照射装置(分光計器(株)製OTENTO−SUN III型)で発生させた光を照射し、ソースメータ(KEITHLEY製、Model 2400 General−Purpose SourceMeter)を用いて電流−電圧特性を測定した。光の強度は100mW/cmに調整した。結果を表1に示す。さらに、光を20時間照射した後の光電変換効率の測定も行い、特性変化を評価した。結果を表2に示す。 From the photoelectrode side of the photoelectric conversion element, light generated by a pseudo-sunlight irradiation device (OTENTO-SUN III type manufactured by Spectrometer Co., Ltd.) is irradiated, and a source meter (Model 2400 General-Purpose SourceMeter manufactured by KEITHLEY) is irradiated. Was used to measure current-voltage characteristics. The intensity of light was adjusted to 100 mW / cm 2 . The results are shown in Table 1. Furthermore, the photoelectric conversion efficiency after irradiating light for 20 hours was also measured, and the characteristic change was evaluated. The results are shown in Table 2.

[実施例5〜14]
光電変換用増感色素として、(A−3)の代わりにそれぞれ表1に示す増感色素を用いた以外は、実施例4と同様に光電変換素子を作製し、電流−電圧特性を測定した。また、光を20時間照射した後の光電変換効率の測定も行い、特性変化を評価した。結果を表1および表2に示す。
[Examples 5 to 14]
A photoelectric conversion element was prepared in the same manner as in Example 4 except that the sensitizing dye shown in Table 1 was used instead of (A-3) as the sensitizing dye for photoelectric conversion, and current-voltage characteristics were measured. . Moreover, the photoelectric conversion efficiency after irradiating light for 20 hours was also measured, and the characteristic change was evaluated. The results are shown in Tables 1 and 2.

[比較例1〜4]
光電変換用増感色素として、(A−3)の代わりに、本発明に属さない以下の(D−1)〜(D−4)に示す光電変換用増感色素を用いた以外は、実施例4と同様に光電変換素子を作製し、電流−電圧特性を測定した。また、光を20時間照射した後の光電変換効率の測定も行い、特性変化を評価した。結果を表1および表2に示す。
[Comparative Examples 1-4]
As the sensitizing dye for photoelectric conversion, it was carried out except that the sensitizing dye for photoelectric conversion shown in the following (D-1) to (D-4) not belonging to the present invention was used instead of (A-3). A photoelectric conversion element was produced in the same manner as in Example 4, and current-voltage characteristics were measured. Moreover, the photoelectric conversion efficiency after irradiating light for 20 hours was also measured, and the characteristic change was evaluated. The results are shown in Tables 1 and 2.

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

Figure 2012214738
Figure 2012214738

表1および表2の結果から、本発明の光電変換用増感色素を用いることにより、光電変換効率が高く、かつ光照射を長時間続けても高い光電変換効率が維持される光電変換素子が得られることが判明した。実施例の中でも、実施例4〜6で得られた光電変換素子の光電変換効率は特に優れていた。一方、比較例の光電変換用増感色素を用いた光電変換素子の光電変換効率は不十分なものであった。 From the results of Table 1 and Table 2, by using the sensitizing dye for photoelectric conversion of the present invention, a photoelectric conversion element that has high photoelectric conversion efficiency and can maintain high photoelectric conversion efficiency even if light irradiation is continued for a long time. It turned out to be obtained. Among the examples, the photoelectric conversion efficiency of the photoelectric conversion elements obtained in Examples 4 to 6 was particularly excellent. On the other hand, the photoelectric conversion efficiency of the photoelectric conversion element using the sensitizing dye for photoelectric conversion of the comparative example was insufficient.

本発明の光電変換用増感色素を用いた太陽電池は、太陽光のエネルギーを電気エネルギーに効率よく変換できる色素増感太陽電池として有用であり、クリーンエネルギーを提供することができる。 The solar cell using the sensitizing dye for photoelectric conversion of the present invention is useful as a dye-sensitized solar cell that can efficiently convert sunlight energy into electric energy, and can provide clean energy.

1 導電性支持体
2 色素担持半導体層
3 電解質層
4 対極
5 導電性支持体
DESCRIPTION OF SYMBOLS 1 Conductive support body 2 Dye carrying | support semiconductor layer 3 Electrolyte layer 4 Counter electrode 5 Conductive support body

Claims (9)

下記一般式(1)で表される光電変換用増感色素。
Figure 2012214738
一般式(1)において、R、Rは同一でも異なっていてもよく、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基または置換もしくは無置換のアミノ基を表す。R〜Rは同一でも異なっていてもよく、水素原子、ハロゲン原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基または置換もしくは無置換のアミノ基を表す。R〜Rが複数個存在する場合(n=2または3のとき)、それぞれが互いに異なっていてもよく、水素原子、ハロゲン原子、置換もしくは無置換のアルキル基を表す。R、Rは同一でも異なっていてもよく、酸性基、置換もしくは無置換のアルキル基または置換もしくは無置換のアリール基を表す。ただし、RとRの少なくとも一方は酸性基であるものとする。Rが複数個存在する場合(r=2のとき)、それぞれが互いに異なっていてもよい。Zは無置換の飽和炭化水素環または置換もしくは無置換の芳香族環を表す。n、p、qは1〜3の整数であり、rは0〜2の整数である。
A sensitizing dye for photoelectric conversion represented by the following general formula (1).
Figure 2012214738
In the general formula (1), R 1 and R 2 may be the same or different and each represents a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted amino group. R 3 to R 6 may be the same or different and each represents a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted amino group. When a plurality of R 3 to R 6 are present (when n = 2 or 3), they may be different from each other and each represents a hydrogen atom, a halogen atom, or a substituted or unsubstituted alkyl group. R 7 and R 8 may be the same or different and each represents an acidic group, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aryl group. However, at least one of R 7 and R 8 is an acidic group. When a plurality of R 7 are present (when r = 2), each may be different from each other. Z represents an unsubstituted saturated hydrocarbon ring or a substituted or unsubstituted aromatic ring. n, p, and q are integers of 1 to 3, and r is an integer of 0 to 2.
前記一般式(1)において、Zがシクロペンチル環であることを特徴とする請求項1記載の光電変換用増感色素。 In the said General formula (1), Z is a cyclopentyl ring, The sensitizing dye for photoelectric conversion of Claim 1 characterized by the above-mentioned. 前記一般式(1)において、酸性基がカルボキシル基であることを特徴とする請求項2記載の光電変換用増感色素。 In the said General formula (1), an acidic group is a carboxyl group, The sensitizing dye for photoelectric conversion of Claim 2 characterized by the above-mentioned. 前記一般式(1)において、R、Rが置換もしくは無置換のアルキル基、R〜Rが水素原子または無置換のアルキル基であることを特徴とする請求項3記載の光電変換用増感色素。 In the general formula (1), R 1, R 2 is a substituted or unsubstituted alkyl group, R 3 to R 6 is a photoelectric conversion according to claim 3, wherein a hydrogen atom or an unsubstituted alkyl group Sensitizing dye. 前記一般式(1)において、n、p、qがいずれも1であることを特徴とする請求項4記載の光電変換用増感色素。 In the said General formula (1), n, p, and q are all 1, The sensitizing dye for photoelectric conversions of Claim 4 characterized by the above-mentioned. 前記一般式(1)において、rが0であることを特徴とする請求項5記載の光電変換用増感色素。 In the said General formula (1), r is 0, The sensitizing dye for photoelectric conversions of Claim 5 characterized by the above-mentioned. 対向電極間に少なくとも半導体層および電解質層が設けられている色素増感型の光電変換素子において、請求項1〜6のいずれか一項に記載の光電変換用増感色素を半導体層に担持させて得られることを特徴とする光電変換素子。 In the dye-sensitized photoelectric conversion element in which at least a semiconductor layer and an electrolyte layer are provided between the counter electrodes, the photoelectric conversion sensitizing dye according to any one of claims 1 to 6 is supported on the semiconductor layer. A photoelectric conversion element obtained by 前記光電変換素子において、4−tert−ブチルピリジンが電解質層中に含有されていることを特徴とする、請求項7記載の光電変換素子。 The photoelectric conversion element according to claim 7, wherein 4-tert-butylpyridine is contained in the electrolyte layer in the photoelectric conversion element. 請求項7または8のいずれか一項に記載の光電変換素子をモジュール化し、所定の電気配線を設けることによって得られることを特徴とする色素増感太陽電池。 It obtains by modularizing the photoelectric conversion element as described in any one of Claim 7 or 8, and providing a predetermined electrical wiring, The dye-sensitized solar cell characterized by the above-mentioned.
JP2012068575A 2011-03-30 2012-03-26 Sensitizing dye for photoelectric conversion, photoelectric conversion element using the same, and dye-sensitized solar cell Pending JP2012214738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012068575A JP2012214738A (en) 2011-03-30 2012-03-26 Sensitizing dye for photoelectric conversion, photoelectric conversion element using the same, and dye-sensitized solar cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011074081 2011-03-30
JP2011074081 2011-03-30
JP2012068575A JP2012214738A (en) 2011-03-30 2012-03-26 Sensitizing dye for photoelectric conversion, photoelectric conversion element using the same, and dye-sensitized solar cell

Publications (1)

Publication Number Publication Date
JP2012214738A true JP2012214738A (en) 2012-11-08

Family

ID=47267820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012068575A Pending JP2012214738A (en) 2011-03-30 2012-03-26 Sensitizing dye for photoelectric conversion, photoelectric conversion element using the same, and dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP2012214738A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108558887A (en) * 2018-05-29 2018-09-21 盐城师范学院 A kind of preparation method of the pyrrolo-pyrrole-dione organic material of end dye units substitution
US10937970B2 (en) 2017-10-31 2021-03-02 Samsung Electronics Co., Ltd. Compound and photoelectric device, image sensor and electronic device including the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10937970B2 (en) 2017-10-31 2021-03-02 Samsung Electronics Co., Ltd. Compound and photoelectric device, image sensor and electronic device including the same
CN108558887A (en) * 2018-05-29 2018-09-21 盐城师范学院 A kind of preparation method of the pyrrolo-pyrrole-dione organic material of end dye units substitution

Similar Documents

Publication Publication Date Title
Seo et al. Novel D–A–π–A coumarin dyes containing low band-gap chromophores for dye-sensitised solar cells
Yang et al. Efficient and stable organic DSSC sensitizers bearing quinacridone and furan moieties as a planar π-spacer
JP5981802B2 (en) Sensitizing dye for photoelectric conversion, photoelectric conversion element using the same, and dye-sensitized solar cell
Yang et al. Structure–property relationship of naphthalene based donor–π–acceptor organic dyes for dye-sensitized solar cells: remarkable improvement of open-circuit photovoltage
Qian et al. Triazatruxene-based organic dyes containing a rhodanine-3-acetic acid acceptor for dye-sensitized solar cells
JP7049321B2 (en) A sensitizing dye, a sensitizing dye composition for photoelectric conversion, a photoelectric conversion element using the same, and a dye sensitized solar cell.
Siu et al. Fluorene-bridged organic dyes with di-anchoring groups for efficient co-adsorbent-free dye-sensitized solar cells
Mai et al. Acetylene-bridged dyes with high open circuit potential for dye-sensitized solar cells
JP5700937B2 (en) Sensitizing dye for photoelectric conversion, photoelectric conversion element and dye-sensitized solar cell using the same
Choi et al. Aqueous electrolytes based dye-sensitized solar cells using I−/I 3− redox couple to achieve≥ 4% power conversion efficiency
JP2013122912A (en) Sensitizing dye for photoelectric conversion, photoelectric conversion element using the same, and dye-sensitized solar cell
JP5794589B2 (en) Dye-sensitized solar cell and sensitizing dye
JP5363690B1 (en) Sensitizing dye for photoelectric conversion, photoelectric conversion element using the same, and dye-sensitized solar cell
JP6188330B2 (en) Sensitizing dye for photoelectric conversion, photoelectric conversion element using the same, and dye-sensitized solar cell
JP6069022B2 (en) Sensitizing dye for photoelectric conversion, photoelectric conversion element using the same, and dye-sensitized solar cell
JP6004808B2 (en) Sensitizing dye for photoelectric conversion, photoelectric conversion element using the same, and dye-sensitized solar cell
JP6307298B2 (en) Sensitizing dye for photoelectric conversion, photoelectric conversion element using the same, and dye-sensitized solar cell
JP6276626B2 (en) Sensitizing dye for photoelectric conversion, photoelectric conversion element using the same, and dye-sensitized solar cell
JP2012214738A (en) Sensitizing dye for photoelectric conversion, photoelectric conversion element using the same, and dye-sensitized solar cell
Can et al. Push-pull type material having spirobifluorene as π-spacer for dye sensitized solar cells
Shan et al. Ethoxy‐substituted Oligo‐phenylenevinylene‐Bridged Organic Dyes for Efficient Dye‐Sensitized Solar Cells
JP5405811B2 (en) Styryl dye, photoelectric conversion element and dye-sensitized solar cell using the same
Wang et al. Synthesis and photovoltaic properties of new branchlike organic dyes containing benzothiadiazole or triphenylamine-linked consecutive vinylenes units
JP7055292B2 (en) Dye-sensitized dye, sensitizing dye for photoelectric conversion, photoelectric conversion element using it, and dye-sensitized solar cell
JP2013191477A (en) Sensitizing dye for photoelectric conversion, and photoelectric conversion element and dye-sensitized solar cell using the same