JP2012208038A - Pressure-sensitive resistance member and pressure-sensitive sensor - Google Patents

Pressure-sensitive resistance member and pressure-sensitive sensor Download PDF

Info

Publication number
JP2012208038A
JP2012208038A JP2011074703A JP2011074703A JP2012208038A JP 2012208038 A JP2012208038 A JP 2012208038A JP 2011074703 A JP2011074703 A JP 2011074703A JP 2011074703 A JP2011074703 A JP 2011074703A JP 2012208038 A JP2012208038 A JP 2012208038A
Authority
JP
Japan
Prior art keywords
pressure
resistance member
sensitive resistance
sensitive
convex portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011074703A
Other languages
Japanese (ja)
Inventor
Rika Furukuwa
里香 古桑
Takafumi Erami
隆文 撰
Shugo Takahashi
秀剛 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Composites Inc
Original Assignee
Fujikura Rubber Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Rubber Ltd filed Critical Fujikura Rubber Ltd
Priority to JP2011074703A priority Critical patent/JP2012208038A/en
Publication of JP2012208038A publication Critical patent/JP2012208038A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pressure-sensitive resistance member capable of acquiring stable pressure-electric resistance conversion with respect to the wide range of pressure changes and a pressure-sensitive sensor using the same.SOLUTION: The pressure-sensitive resistance member 11 made of an elastic member containing conductive particles includes a flat-plate base 12 and a projected part 13 located on one surface 12a of the base 12. The shape of the bottom part 13B of the projected part 13 on the base 12 side is polygonal, the top part 13A of the projected part 13 is formed flat, the area of the top part 13A is smaller than that of the bottom part 13B, and a relationship of 0.05≤T/H≤0.5 is established between the thickness T of the base 12 and the height H of the projected part 13 (distance from the bottom part 13B to the top part 13A in a direction perpendicular to the surface 12a of the base 12).

Description

本発明は、感圧センサ等の圧力−電気抵抗変換装置に使用する感圧抵抗部材と、それを用いた感圧センサに関する。   The present invention relates to a pressure-sensitive resistance member used in a pressure-electric resistance conversion device such as a pressure-sensitive sensor, and a pressure-sensitive sensor using the pressure-sensitive resistance member.

従来、圧力により電気抵抗値を変化させる圧力−電気抵抗変換装置としては、例えば、弾性部材に導電性粒子を互いに接触していない状態で含有させた感圧抵抗部材を電極間に配設し、電極間を加圧することにより、感圧抵抗部材内で導電性粒子が接触して抵抗変化が生じることを利用した感圧センサがある。しかし、導電性粒子を含有させた感圧抵抗部材の両面が平面である場合、微小な外力が加わっても感圧抵抗部材に形状変化が生じないため、抵抗変化が起こり難く、センサ感度が悪いものであった。
このため、導電性粒子を含有させた感圧抵抗部材の表面に凹凸形状を設け、この凹凸形状を構成する凸部が、微小な外力によって変形することを利用した感圧センサがある(特許文献1)。また、電極間に導電性ゴムからなる半球面状の導電性部材を配置し、電極間距離を小さくする方向の外力が加わることにより、半球面状の導電性部材が押しつぶされ、導電性部材と電極との接触面積が増大して表面接触抵抗が小さくなることを利用した感圧センサがある(特許文献2)。
Conventionally, as a pressure-electric resistance conversion device that changes an electric resistance value by pressure, for example, a pressure-sensitive resistance member containing conductive particles in a state where they are not in contact with each other is disposed between electrodes, There is a pressure-sensitive sensor that utilizes a change in resistance caused by contact between conductive particles in a pressure-sensitive resistance member by pressurizing between electrodes. However, when both surfaces of the pressure-sensitive resistance member containing conductive particles are flat, even if a minute external force is applied, the pressure-sensitive resistance member does not change in shape, so resistance change hardly occurs and sensor sensitivity is poor. It was a thing.
For this reason, there is a pressure-sensitive sensor using an uneven shape on the surface of a pressure-sensitive resistance member containing conductive particles and utilizing the fact that the convex portion constituting the uneven shape is deformed by a minute external force (Patent Document). 1). Further, a hemispherical conductive member made of conductive rubber is disposed between the electrodes, and an external force in a direction to reduce the distance between the electrodes is applied, whereby the hemispherical conductive member is crushed, and the conductive member and There is a pressure-sensitive sensor that utilizes the fact that the contact area with an electrode increases and the surface contact resistance decreases (Patent Document 2).

特開平4−36627号公報Japanese Patent Laid-Open No. 4-36627 実開平5−6802号公報Japanese Utility Model Publication No. 5-6802

しかしながら、上述のような感圧センサは、微小な外力に対して良好なセンサ感度を具備するものの、印加圧力が大きくなった場合、表面接触抵抗の変化が小さくなり、安定した圧力−電気抵抗変換が得られないという問題があった。
本発明は、上記のような実情に鑑みてなされたものであり、広い範囲の圧力変化に対して安定した圧力−電気抵抗変換が得られる感圧抵抗部材と、それを用いた感圧センサを提供することを目的とする。
However, although the pressure-sensitive sensor as described above has a good sensor sensitivity with respect to a minute external force, when the applied pressure increases, the change in surface contact resistance decreases, and stable pressure-electric resistance conversion. There was a problem that could not be obtained.
The present invention has been made in view of the above circumstances, and includes a pressure-sensitive resistance member capable of obtaining stable pressure-electric resistance conversion with respect to a wide range of pressure changes, and a pressure-sensitive sensor using the pressure-sensitive resistance member. The purpose is to provide.

このような目的を達成するために、本発明の感圧抵抗部材は、導電性粒子を含有する弾性部材からなる感圧抵抗部材において、平板状の基部と、該基部の一方の面に位置する凸部と、を備え、該凸部は前記基部側の底部の形状が多角形であり、前記凸部の頂部は平坦面であるとともに、該頂部の面積は前記底部の面積よりも小さく、前記基部の厚みTと、前記凸部の高さ(基部の面に垂直な方向における底部から頂部までの距離)Hとの間に、0.05≦T/H≦0.5の関係が成立するような構成とした。   In order to achieve such an object, the pressure-sensitive resistance member of the present invention is a pressure-sensitive resistance member made of an elastic member containing conductive particles, and is located on a flat base and one surface of the base. A convex part, and the convex part has a polygonal bottom shape on the base side, the top part of the convex part is a flat surface, and the area of the top part is smaller than the area of the bottom part, A relationship of 0.05 ≦ T / H ≦ 0.5 is established between the thickness T of the base and the height (the distance from the bottom to the top in the direction perpendicular to the surface of the base) H. The configuration is as follows.

本発明の他の態様として、前記凸部の底部の長さをBとしたときに、前記凸部の高さHとの間に、1≦B/H≦5の関係が成立し、かつ、前記凸部の頂部の長さをUとしたときに、前記凸部の底部の長さBとの間に、2≦B/U≦25の関係が成立するような構成とした。
本発明の他の態様として、前記弾性部材のDuro−A硬度が15度〜60度の範囲であるような構成とした。
本発明の他の態様として、前記弾性部材は、シリコーンゴムを含有するような構成とした。
本発明の感圧センサは、上述のいずれかの感圧抵抗部材と、該感圧抵抗部材を両側から挟むように配置された一対の電極と、該一対の電極を両側から挟むように配置された電気絶縁性フィルムと、を備えるような構成とした。
As another aspect of the present invention, when the length of the bottom of the convex portion is B, a relationship of 1 ≦ B / H ≦ 5 is established with the height H of the convex portion, and When the length of the top part of the convex part is U, the relation of 2 ≦ B / U ≦ 25 is established with the length B of the bottom part of the convex part.
As another aspect of the present invention, the elastic member has a Duro-A hardness in a range of 15 degrees to 60 degrees.
As another aspect of the present invention, the elastic member is configured to contain silicone rubber.
The pressure-sensitive sensor of the present invention is arranged such that any one of the pressure-sensitive resistance members described above, a pair of electrodes arranged so as to sandwich the pressure-sensitive resistance member from both sides, and a pair of electrodes sandwiched from both sides. And an electrically insulating film.

本発明の感圧抵抗部材は、平板状の基部の一方の面に位置する凸部の底部形状が多角形であり、凸部の頂部が平坦面であり、かつ、頂部の面積は底部の面積よりも小さく、さらに、基部の厚みTと凸部の高さHとの間に所定の関係が成立するので、広い範囲の圧力変化に対して安定した圧力−電気抵抗変換を発現することができる。
また、本発明の感圧センサは、微小な印加圧力から大きな印加圧力まで安定して検出することができる。
In the pressure-sensitive resistance member of the present invention, the bottom shape of the convex portion located on one surface of the flat base portion is polygonal, the top portion of the convex portion is a flat surface, and the area of the top portion is the area of the bottom portion. In addition, since a predetermined relationship is established between the thickness T of the base and the height H of the convex portion, stable pressure-electric resistance conversion can be expressed with respect to a wide range of pressure changes. .
In addition, the pressure sensor of the present invention can stably detect from a very small applied pressure to a large applied pressure.

本発明の感圧抵抗部材の一実施形態を示す平面図である。It is a top view which shows one Embodiment of the pressure sensitive resistance member of this invention. 図1に示される感圧抵抗部材のI−I線における縦断面図である。It is a longitudinal cross-sectional view in the II line of the pressure sensitive resistance member shown by FIG. 本発明の感圧抵抗部材を構成する凸部の底部の長さを説明するための図である。It is a figure for demonstrating the length of the bottom part of the convex part which comprises the pressure-sensitive resistance member of this invention. 本発明の感圧抵抗部材の他の実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows other embodiment of the pressure sensitive resistance member of this invention. 本発明の感圧センサの一実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows one Embodiment of the pressure sensor of this invention.

以下、本発明の実施の形態について図面を参照して説明する。
[感圧抵抗部材]
図1は本発明の感圧抵抗部材の一例を示す平面図であり、図2は図1に示される感圧抵抗部材のI−I線における縦断面図である。図1および図2において、本発明の感圧抵抗部材11は、導電性粒子を含有する弾性部材からなり、平板状の基部12と、この基部12の一方の面12a(図2に鎖線で示される面)に位置する凸部13と、を備えている。凸部13は、基部12側の底部13B(図2に鎖線で示される部位)の形状が多角形であり、また、凸部13の頂部13Aは平坦面であるとともに、この頂部13Aの面積は、凸部13の底部13Bの面積よりも小さいものである。また、基部12の厚みTと、凸部13の高さ(基部12の面12aに垂直な方向における底部13Bから頂部13Aまでの距離)Hとの間には、0.05≦T/H≦0.5の関係が成立する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Pressure-sensitive resistance member]
FIG. 1 is a plan view showing an example of the pressure-sensitive resistance member of the present invention, and FIG. 2 is a longitudinal sectional view taken along line II of the pressure-sensitive resistance member shown in FIG. 1 and 2, a pressure-sensitive resistance member 11 of the present invention is made of an elastic member containing conductive particles, and has a flat base 12 and one surface 12a of the base 12 (shown by a chain line in FIG. 2). And a convex portion 13 located on the surface. The convex part 13 has a polygonal shape at the bottom part 13B on the base part 12 side (part indicated by a chain line in FIG. 2), and the top part 13A of the convex part 13 is a flat surface, and the area of the top part 13A is The area of the bottom portion 13B of the convex portion 13 is smaller. Further, between the thickness T of the base portion 12 and the height of the convex portion 13 (distance from the bottom portion 13B to the top portion 13A in the direction perpendicular to the surface 12a of the base portion 12) H, 0.05 ≦ T / H ≦ A relationship of 0.5 is established.

本発明の感圧抵抗部材11を構成する弾性部材は、ゴム材料に導電性粒子を含有させたものである。ゴム材料としては、例えば、シリコーンゴム、フッ素ゴム、ブチルゴム等を挙げることができる。また、導電性粒子としては、例えば、カーボンブラック、カーボンナノチューブ等の導電性カーボン等を挙げることができる。このような弾性部材における導電性粒子の含有量は、例えば、0.5〜10重量%、好ましくは1〜5重量%の範囲で設定することができる。導電性粒子の含有量が上記の範囲から外れると、広い範囲の圧力変化に対して安定した圧力−電気抵抗変換が得られず好ましくない。   The elastic member constituting the pressure-sensitive resistance member 11 of the present invention is a rubber material containing conductive particles. Examples of the rubber material include silicone rubber, fluorine rubber, and butyl rubber. Examples of the conductive particles include conductive carbon such as carbon black and carbon nanotube. The content of the conductive particles in such an elastic member can be set, for example, in the range of 0.5 to 10% by weight, preferably 1 to 5% by weight. When the content of the conductive particles is out of the above range, it is not preferable because stable pressure-electric resistance conversion cannot be obtained with respect to a wide range of pressure changes.

また、上記の弾性部材のDuro−A硬度は、15度〜60度の範囲、好ましくは15〜30の範囲の範囲とすることができる。弾性部材のDuro−A硬度が15度未満であると、弾性部材の導電性が低くなり、通電しない、あるいは、荷重変化に対する追従性が悪くなり、感圧抵抗部材に供しえないものとなる。また、弾性部材のDuro−A硬度が60度を超えると、広い範囲の圧力変化に対して安定した圧力−電気抵抗変換が得られず好ましくない。   The Duro-A hardness of the elastic member can be in the range of 15 to 60 degrees, preferably in the range of 15 to 30. If the Duro-A hardness of the elastic member is less than 15 degrees, the elasticity of the elastic member is low, and the elastic member is not energized, or the followability with respect to a load change is deteriorated, so that it cannot be used as a pressure-sensitive resistance member. Further, if the Duro-A hardness of the elastic member exceeds 60 degrees, it is not preferable because stable pressure-electric resistance conversion cannot be obtained with respect to a wide range of pressure changes.

上述のように、基部12の厚みTと、凸部13の高さHとの間には、0.05≦T/H≦0.5の関係が成立する。このT/Hの値が0.05未満であると、感圧抵抗部材11の構造的安定性が損なわれることがあり、一方、T/Hの値が0.5を超えると、印加される圧力が大きくなったときに安定した圧力−電気抵抗変換が得られず好ましくない。また、基部12の厚みT、凸部13の高さHは、感圧抵抗部材11に要求される圧力−電気抵抗変換の範囲によって、上記の弾性部材のDuro−A硬度を考慮して設定することができる。
感圧抵抗部材11を構成する基部12の面12bは、例えば、平均表面粗さRaが1.6μm以下であるような面とすることができる。尚、本発明における平均表面粗さRaの測定は、 東京精密(株)製 SURFCOM 2800Eによって行うものとする。
As described above, a relationship of 0.05 ≦ T / H ≦ 0.5 is established between the thickness T of the base portion 12 and the height H of the convex portion 13. When the T / H value is less than 0.05, the structural stability of the pressure-sensitive resistance member 11 may be impaired. On the other hand, when the T / H value exceeds 0.5, it is applied. When the pressure increases, a stable pressure-electric resistance conversion cannot be obtained, which is not preferable. Further, the thickness T of the base portion 12 and the height H of the convex portion 13 are set in consideration of the Duro-A hardness of the elastic member according to the range of pressure-electric resistance conversion required for the pressure-sensitive resistance member 11. be able to.
The surface 12b of the base 12 constituting the pressure-sensitive resistance member 11 can be a surface having an average surface roughness Ra of 1.6 μm or less, for example. In addition, the measurement of average surface roughness Ra in this invention shall be performed by Tokyo Seimitsu Co., Ltd. SURFCOM 2800E.

感圧抵抗部材11を構成する凸部13の底部13Bの形状は、多角形であり、図示例では凸部13が截頭四角錐であり、底部13Bは正方形であるが、三角形、あるいは、五角形以上の多角形であってもよい。また、このような多角形は、正多角形に限定されるものではない。また、凸部13の頂部13Aは平坦面であり、この場合の平坦面とは、電極との接触抵抗を小さくするために、平均表面粗さRaが1.6μm以下であるような面を意味する。さらに、凸部13の頂部13Aの面積は、凸部13の底部13Bの面積よりも小さいものである。これにより、微小な印加圧力に対して凸部13の頂部13A近傍が変形し、印加される圧力が大きくなるに従って、変形が凸部13の底部13B寄りに広がり、印加圧力に応じた電気抵抗変化を得ることができる。   The shape of the bottom portion 13B of the convex portion 13 constituting the pressure-sensitive resistance member 11 is a polygon, and in the illustrated example, the convex portion 13 is a truncated quadrangular pyramid and the bottom portion 13B is a square, but a triangle or a pentagon. The above polygon may be sufficient. Moreover, such a polygon is not limited to a regular polygon. Further, the top portion 13A of the convex portion 13 is a flat surface. In this case, the flat surface means a surface having an average surface roughness Ra of 1.6 μm or less in order to reduce the contact resistance with the electrode. To do. Further, the area of the top portion 13A of the convex portion 13 is smaller than the area of the bottom portion 13B of the convex portion 13. Accordingly, the vicinity of the top portion 13A of the convex portion 13 is deformed with respect to a minute applied pressure, and as the applied pressure increases, the deformation spreads toward the bottom portion 13B of the convex portion 13, and the electric resistance change according to the applied pressure Can be obtained.

また、本発明では、感圧抵抗部材11を構成する凸部13の底部13Bの長さをBとしたときに、凸部13の高さHとの間に、1≦B/H≦5の関係が成立することが望ましい。B/Hの値が1未満であると、凸部13に圧力が印加された際に、座屈変形を生じるおそれがあり、また、B/Hの値が5を超えると、広い範囲の圧力変化に対して安定した圧力−電気抵抗変換が得られず好ましくない。ここで、底部13Bの長さBは、凸部13の底部13Bの多角形の一辺に平行に測定した長さの内、最大となる長さである。例えば、図1に示されるように、凸部13の底部13Bが正方形の場合には、図3(A)に矢印で示される長さであり、正方形の一辺の長さと同じである。また、凸部13の底部13Bが正三角形の場合には、図3(B)に矢印で示される長さであり、正三角形の一辺の長さと同じである。また、凸部13の底部13Bが正五角形、正六角形の場合には、それぞれ図3(C)、図3(D)に矢印で示される長さとなる。さらに、凸部13の底部13Bの多角形状が正多角形ではない場合も同様であり、各辺に平行に測定した長さの内、最大となる長さである。   In the present invention, when the length of the bottom portion 13B of the convex portion 13 constituting the pressure-sensitive resistance member 11 is B, the height H of the convex portion 13 is 1 ≦ B / H ≦ 5. It is desirable that the relationship is established. If the B / H value is less than 1, there is a risk of buckling deformation when a pressure is applied to the convex portion 13, and if the B / H value exceeds 5, a wide range of pressures may be generated. A stable pressure-electric resistance conversion with respect to the change cannot be obtained, which is not preferable. Here, the length B of the bottom portion 13B is the maximum length among the lengths measured in parallel to one side of the polygon of the bottom portion 13B of the convex portion 13. For example, as shown in FIG. 1, when the bottom portion 13B of the convex portion 13 is a square, the length is indicated by an arrow in FIG. 3A, which is the same as the length of one side of the square. When the bottom 13B of the convex portion 13 is an equilateral triangle, the length is indicated by an arrow in FIG. 3B and is the same as the length of one side of the equilateral triangle. When the bottom 13B of the convex portion 13 is a regular pentagon or a regular hexagon, the lengths are indicated by arrows in FIGS. 3C and 3D, respectively. The same applies to the case where the polygonal shape of the bottom 13B of the convex portion 13 is not a regular polygon, and is the maximum length among the lengths measured in parallel to each side.

また、凸部13の頂部13Aの長さをUとしたときに、凸部13の底部13Bの長さBとの間に、2≦B/U≦25の関係が成立することが望ましい。B/Uの値が2未満であると、印加される圧力が大きくなったときに安定した圧力−電気抵抗変換が得られないおそれがあり、また、B/Uの値が25を超えると、印加される圧力に対して安定した変形が得られず好ましくない。尚、凸部13の頂部13Aの長さUは、上述の底部13Bの長さBと同様に、頂部13Aの多角形の一辺に平行に測定した長さの内、最大となる長さである。   Further, when the length of the top portion 13A of the convex portion 13 is U, it is desirable that a relationship of 2 ≦ B / U ≦ 25 is established between the length B of the bottom portion 13B of the convex portion 13. If the value of B / U is less than 2, stable pressure-electric resistance conversion may not be obtained when the applied pressure increases, and if the value of B / U exceeds 25, It is not preferable because a stable deformation cannot be obtained with respect to the applied pressure. The length U of the top portion 13A of the convex portion 13 is the maximum length among the lengths measured in parallel to one side of the polygon of the top portion 13A, like the length B of the bottom portion 13B described above. .

上述の感圧抵抗部材の実施形態は例示であり、本発明はこれらの実施形態に限定されるものではない。例えば、上述の感圧抵抗部材の実施形態では、複数の凸部13が、その底部13Bを接するように基部12の面12a上に配設されているが、図4に示すように、凸部13間に間隙が存在し、基部12の面12aが露出するものであってもよい。   The embodiments of the pressure-sensitive resistance member described above are examples, and the present invention is not limited to these embodiments. For example, in the above-described embodiment of the pressure-sensitive resistance member, the plurality of convex portions 13 are arranged on the surface 12a of the base portion 12 so as to contact the bottom portion 13B, but as shown in FIG. There may be a gap between 13 and the surface 12a of the base 12 exposed.

[感圧センサ]
図5は、本発明の感圧センサの一実施形態を示す断面図である。図5において、感圧センサ21は、上述の本発明の感圧抵抗部材11を使用した例であり、感圧抵抗部材11を両側から挟むように配置された一対の電極22,23と、この一対の電極を両側から挟むように配置された電気絶縁性フィルム25,26と、を備えている。
電極22,23は、従来公知の電極材料を使用することができ、例えば、銅、銀、金、ステンレス鋼等、あるいは、これらの合金等を挙げることができる。
[Pressure-sensitive sensor]
FIG. 5 is a cross-sectional view showing an embodiment of the pressure-sensitive sensor of the present invention. In FIG. 5, a pressure-sensitive sensor 21 is an example using the above-described pressure-sensitive resistance member 11 of the present invention, and a pair of electrodes 22 and 23 arranged so as to sandwich the pressure-sensitive resistance member 11 from both sides, And electrically insulating films 25 and 26 arranged to sandwich the pair of electrodes from both sides.
Conventionally known electrode materials can be used for the electrodes 22 and 23, and examples thereof include copper, silver, gold, stainless steel, and alloys thereof.

電極22,23は、外部から印加される圧力を感圧抵抗部材11に伝えられるような厚みがあればよく、電極の材質、面積等を考慮して適宜設定することができ、例えば、0.1〜5mm程度の範囲で設定することができる。
また、電極22,23の形状、大きさ等は任意に設定することができ、例えば、電極22,23共に平板形状であってもよく、あるいは、一方がストライプ形状であってもよい。また、電極22,23共にストライプ形状であり、かつ、ストライプの軸方向が相互に直交するようなもの等であってよい。
The electrodes 22 and 23 only need to be thick enough to transmit pressure applied from the outside to the pressure-sensitive resistance member 11, and can be appropriately set in consideration of the material, area, etc. of the electrode. It can set in the range of about 1-5 mm.
In addition, the shape, size, and the like of the electrodes 22 and 23 can be arbitrarily set. For example, both the electrodes 22 and 23 may have a flat plate shape, or one of them may have a stripe shape. Further, both the electrodes 22 and 23 may have a stripe shape, and the stripe axial directions may be orthogonal to each other.

感圧センサ21を構成する電気絶縁性フィルム25,26は、電極22,23の保護フィルムの機能をもつものであり、ポリイミド、ポリエーテルイミド、ポリアミド、ポリエチレンテレフタレート、ポリエステル、ポリエチレン等の樹脂フィルムを使用することができる。このような電気絶縁性フィルム25,26の厚みは、外部から印加される圧力を感圧抵抗部材11に伝えられるような厚みがあればよく、例えば、50〜200μm程度の範囲で設定することができる。
上述の実施形態は例示であり、本発明はこれらの実施形態に限定されるものではない。
The electrically insulating films 25 and 26 constituting the pressure sensor 21 have a function of a protective film for the electrodes 22 and 23, and are made of resin films such as polyimide, polyetherimide, polyamide, polyethylene terephthalate, polyester, and polyethylene. Can be used. The thickness of the electrical insulating films 25 and 26 may be set so that the pressure applied from the outside can be transmitted to the pressure-sensitive resistance member 11, and may be set, for example, in the range of about 50 to 200 μm. it can.
The above-described embodiments are examples, and the present invention is not limited to these embodiments.

次に、具体的な実施例を示して本発明を更に詳細に説明する。
[実施例1]
導電性粒子として導電性カーボンを含有する導電性シリコーンゴムポリマー(モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製 XE−23−A6001)100重量部と、架橋剤(モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製 TC−8)1.8重量部をオープンロールで混練し、ゴムコンパウンドを得た。得られたゴムコンパウンドを所定の金型に充填し、170℃で10分間プレス架橋することにより、導電性粒子を含有する弾性部材からなり、図1および図2に示されるような、截頭四角錐である凸部を複数備えた感圧抵抗部材を得た。
Next, the present invention will be described in more detail by showing specific examples.
[Example 1]
Conductive silicone rubber polymer containing conductive carbon as conductive particles (XE-23-A6001 manufactured by Momentive Performance Materials Japan) 100 parts by weight and a crosslinking agent (Momentive Performance Materials Japan manufactured) TC-8) 1.8 parts by weight were kneaded with an open roll to obtain a rubber compound. The obtained rubber compound is filled in a predetermined mold and press-crosslinked at 170 ° C. for 10 minutes to form an elastic member containing conductive particles. As shown in FIG. 1 and FIG. A pressure-sensitive resistance member having a plurality of convex portions that are pyramids was obtained.

この感圧抵抗部材は、基部の厚みTが0.5mm、凸部の高さHが1mm、比T/Hが0.5であり、凸部の底部の長さBと凸部の高さHとの比B/Hが1であり、凸部の底部の長さBと凸部の頂部の長さUとの比B/Uが10であった。また、この感圧抵抗部材を構成する弾性部材のDuro−A硬度は、 高分子計器(株)製 アスカーゴム硬度計型式Aで測定した結果、15度であった。   This pressure-sensitive resistance member has a base portion thickness T of 0.5 mm, a convex portion height H of 1 mm, and a ratio T / H of 0.5, and the convex portion bottom length B and convex portion height. The ratio B / H with H was 1, and the ratio B / U between the length B of the bottom of the convex portion and the length U of the top of the convex portion was 10. Further, the Duro-A hardness of the elastic member constituting the pressure-sensitive resistance member was 15 degrees as a result of measurement with an Asker rubber hardness meter model A manufactured by Kobunshi Keiki Co., Ltd.

[実施例2]
導電性粒子として導電性カーボンを含有する導電性シリコーンゴムポリマー(モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製 XE−23−A2637)100重量部と、架橋剤(モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製 TC−8)2.5重量部をオープンロールで混練し、ゴムコンパウンドを得た。得られたゴムコンパウンドを用いて、実施例1と同様にして、感圧抵抗部材を得た。
この感圧抵抗部材における比T/H、比B/H、比B/Uは、実施例1の感圧抵抗部材における比T/H、比B/H、比B/Uと同じであり、Duro−A硬度は50度であった。
[Example 2]
100 parts by weight of conductive silicone rubber polymer containing conductive carbon as conductive particles (XE-23-A2637 manufactured by Momentive Performance Materials Japan) and a crosslinking agent (produced by Momentive Performance Materials Japan) TC-8) 2.5 parts by weight were kneaded with an open roll to obtain a rubber compound. Using the obtained rubber compound, a pressure-sensitive resistance member was obtained in the same manner as in Example 1.
The ratio T / H, ratio B / H, and ratio B / U in this pressure-sensitive resistance member are the same as the ratio T / H, ratio B / H, and ratio B / U in the pressure-sensitive resistance member of Example 1, The Duro-A hardness was 50 degrees.

[比較例1]
実施例1と同様にしてゴムコンパウンドを得た。得られたゴムコンパウンドを平板金型間で170℃で10分間プレス架橋することにより、厚みが0.5mmで両面が平坦な感圧抵抗部材を得た。この感圧抵抗部材のDuro−A硬度は15度であった。
[Comparative Example 1]
A rubber compound was obtained in the same manner as in Example 1. The obtained rubber compound was press-crosslinked between the flat plate molds at 170 ° C. for 10 minutes to obtain a pressure-sensitive resistance member having a thickness of 0.5 mm and flat on both sides. The pressure-sensitive resistance member had a Duro-A hardness of 15 degrees.

[比較例2]
実施例1と同様にしてゴムコンパウンドを得た。得られたゴムコンパウンドの両面を、細かい布地のフッ素樹脂含浸クロス(中興化成工業(株)製 FGF−400−10)で押圧し、170℃で10分間プレス架橋することにより、両面に凸形状を有する感圧抵抗部材を得た。
この感圧抵抗部材は、基部の厚みTが0.2mm、凸部の高さHが0.05mmであり、比T/Hは4、比B/Hは30、比B/Uは2であり、Duro−A硬度は15度であった。
[Comparative Example 2]
A rubber compound was obtained in the same manner as in Example 1. Both sides of the obtained rubber compound are pressed with a fine cloth fluororesin impregnated cloth (manufactured by Chuko Kasei Kogyo Co., Ltd., FGF-400-10) and press-crosslinked at 170 ° C. for 10 minutes, thereby forming convex shapes on both sides. A pressure sensitive resistance member was obtained.
This pressure sensitive resistance member has a base thickness T of 0.2 mm and a convex height H of 0.05 mm, a ratio T / H of 4, a ratio B / H of 30, and a ratio B / U of 2. Yes, the Duro-A hardness was 15 degrees.

[比較例3]
実施例1と同様にしてゴムコンパウンドを得た。得られたゴムコンパウンドの両面を、粗い布地のフッ素樹脂含浸クロス(中興化成工業(株)製 FGF−500−35)で押圧し、170℃で10分間プレス架橋することにより、両面に凸形状を有する感圧抵抗部材を得た。
この感圧抵抗部材は、基部の厚みTが0.1mm、凸部の高さHが0.15mmであり、比T/Hは0.7、比B/Hは13、比B/Uは2であり、Duro−A硬度は15度であった。
[Comparative Example 3]
A rubber compound was obtained in the same manner as in Example 1. Both sides of the resulting rubber compound are pressed with a coarse cloth fluororesin-impregnated cloth (FGF-500-35 manufactured by Chuko Kasei Kogyo Co., Ltd.) and press-crosslinked at 170 ° C. for 10 minutes, thereby forming convex shapes on both sides. A pressure sensitive resistance member was obtained.
This pressure-sensitive resistance member has a base portion thickness T of 0.1 mm and a convex portion height H of 0.15 mm, a ratio T / H of 0.7, a ratio B / H of 13, and a ratio B / U of 2 and the Duro-A hardness was 15 degrees.

[感圧センサの作製]
上述のように作製した感圧抵抗部材(実施例1、2および比較例1〜3)を用いて、感圧センサを作製した。すなわち、感圧抵抗部材を縦10mm、横20mmの方形状とし、この感圧抵抗部材の両面に縦80mm、横80mmの電極板(金めっき処理を施した厚み3mmの銅板)を配して挟持し、さらに、電極板を挟むように電気絶縁性フィルム(三井化学東セロ(株)製 セパレーター SP−PET)を配設した。
[Production of pressure-sensitive sensor]
A pressure-sensitive sensor was manufactured using the pressure-sensitive resistance member (Examples 1 and 2 and Comparative Examples 1 to 3) manufactured as described above. That is, the pressure-sensitive resistance member has a rectangular shape with a length of 10 mm and a width of 20 mm, and an electrode plate (a copper plate with a thickness of 3 mm that has been subjected to gold plating) is placed on both sides of the pressure-sensitive resistance member. Further, an electrically insulating film (Separator SP-PET manufactured by Mitsui Chemicals, Inc.) was disposed so as to sandwich the electrode plate.

このように作製した感圧センサ(実施例1、2および比較例1〜3)に対して、荷重時における抵抗値変化率を測定した。すなわち、感圧センサをタッキング試験機(ヤナコ(株)製 TAC−II)にて印加荷重5〜400gfの範囲で押圧し、抵抗値変化をデジタルマルチメーター(三和電気計器(株)製 PC500a)を用いて測定した。使用した押圧部材は、押圧面の面積(荷重印加面積)が0.5cm2である円柱形状であり、この押圧部材のストローク率に対する抵抗値変化率を下記の表1に示した。尚、押圧部材のストローク率は、印加荷重が400gfのときのストローク量を100%としたものである。 The resistance value change rate at the time of load was measured with respect to the pressure sensor (Examples 1 and 2 and Comparative Examples 1 to 3) produced in this way. That is, the pressure sensor is pressed with a tacking tester (TAC-II, manufactured by Yanaco Co., Ltd.) in the range of an applied load of 5 to 400 gf, and the resistance value change is digital multimeter (PC500a, manufactured by Sanwa Denki Keiki Co., Ltd.). It measured using. The used pressing member has a cylindrical shape with an area of the pressing surface (load application area) of 0.5 cm 2 , and the resistance value change rate with respect to the stroke rate of the pressing member is shown in Table 1 below. In addition, the stroke rate of the pressing member is obtained by setting the stroke amount when the applied load is 400 gf to 100%.

Figure 2012208038
Figure 2012208038

表1に示されるように、実施例1、2の感圧センサは、ストローク率100%までの範囲で安定な抵抗値変化が得られた。
これに対して、比較例1〜3の感圧センサでは、ストローク率が小さい段階で抵抗値変化率が高い状態となり、印加荷重(ストローク率)が大きい範囲での安定した抵抗値変化が得られないものであった。
As shown in Table 1, in the pressure sensitive sensors of Examples 1 and 2, a stable change in resistance value was obtained in a range up to 100% stroke rate.
On the other hand, in the pressure sensitive sensors of Comparative Examples 1 to 3, the resistance value change rate is high when the stroke rate is small, and a stable resistance value change in a range where the applied load (stroke rate) is large is obtained. It was not.

本発明は、感圧センサ等の圧力−電気抵抗変換を利用する技術分野において有用である。   The present invention is useful in the technical field using pressure-electric resistance conversion such as a pressure-sensitive sensor.

11…感圧抵抗部材
12…基部
13…凸部
13A…頂部
13B…底部
21…感圧センサ
22,23…電極
25,26…電気絶縁性フィルム
DESCRIPTION OF SYMBOLS 11 ... Pressure-sensitive resistance member 12 ... Base part 13 ... Convex part 13A ... Top part 13B ... Bottom part 21 ... Pressure-sensitive sensor 22, 23 ... Electrode 25, 26 ... Electrical insulation film

Claims (5)

導電性粒子を含有する弾性部材からなる感圧抵抗部材において、
平板状の基部と、該基部の一方の面に位置する凸部と、を備え、該凸部は前記基部側の底部の形状が多角形であり、前記凸部の頂部は平坦面であるとともに、該頂部の面積は前記底部の面積よりも小さく、前記基部の厚みTと、前記凸部の高さ(基部の面に垂直な方向における底部から頂部までの距離)Hとの間に、0.05≦T/H≦0.5の関係が成立することを特徴とする感圧抵抗部材。
In the pressure-sensitive resistance member comprising an elastic member containing conductive particles,
A flat base portion and a convex portion located on one surface of the base portion, and the convex portion has a polygonal shape at the bottom on the base side, and the top portion of the convex portion is a flat surface. The area of the top is smaller than the area of the bottom, and is 0 between the thickness T of the base and the height (distance from the bottom to the top in the direction perpendicular to the surface of the base) H. 0.05 ≦ T / H ≦ 0.5 is established, and the pressure sensitive resistance member.
前記凸部の底部の長さをBとしたときに、前記凸部の高さHとの間に、1≦B/H≦5の関係が成立し、かつ、前記凸部の頂部の長さをUとしたときに、前記凸部の底部の長さBとの間に、2≦B/U≦25の関係が成立することを特徴とする請求項1に記載の感圧抵抗部材。   When the length of the bottom of the convex portion is B, a relationship of 1 ≦ B / H ≦ 5 is established with the height H of the convex portion, and the length of the top of the convex portion The pressure-sensitive resistance member according to claim 1, wherein a relationship of 2 ≦ B / U ≦ 25 is established between the height B and the length B of the bottom of the convex portion. 前記弾性部材のDuro−A硬度が15度〜60度の範囲であることを特徴とする請求項1または請求項2に記載の感圧抵抗部材。   The pressure-sensitive resistance member according to claim 1 or 2, wherein the elastic member has a Duro-A hardness in a range of 15 degrees to 60 degrees. 前記弾性部材は、シリコーンゴムを含有することを特徴とする請求項1乃至請求項3のいずれかに記載の感圧抵抗部材。   The pressure-sensitive resistance member according to claim 1, wherein the elastic member contains silicone rubber. 請求項1乃至請求項4のいずれかに記載の感圧抵抗部材と、該感圧抵抗部材を両側から挟むように配置された一対の電極と、該一対の電極を両側から挟むように配置された電気絶縁性フィルムと、を備えることを特徴とした感圧センサ。   5. The pressure-sensitive resistance member according to claim 1, a pair of electrodes disposed so as to sandwich the pressure-sensitive resistance member from both sides, and a pair of electrodes disposed from both sides. A pressure-sensitive sensor comprising an electrically insulating film.
JP2011074703A 2011-03-30 2011-03-30 Pressure-sensitive resistance member and pressure-sensitive sensor Pending JP2012208038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011074703A JP2012208038A (en) 2011-03-30 2011-03-30 Pressure-sensitive resistance member and pressure-sensitive sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011074703A JP2012208038A (en) 2011-03-30 2011-03-30 Pressure-sensitive resistance member and pressure-sensitive sensor

Publications (1)

Publication Number Publication Date
JP2012208038A true JP2012208038A (en) 2012-10-25

Family

ID=47187903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011074703A Pending JP2012208038A (en) 2011-03-30 2011-03-30 Pressure-sensitive resistance member and pressure-sensitive sensor

Country Status (1)

Country Link
JP (1) JP2012208038A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9806538B2 (en) 2012-12-27 2017-10-31 Murata Manufacturing Co., Ltd. Measurement circuit and measurement apparatus for wireless power transmission system
WO2018120384A1 (en) * 2016-12-28 2018-07-05 中国科学院深圳先进技术研究院 Pressure sensor and preparation method therefor
JP2020071072A (en) * 2018-10-29 2020-05-07 セイコーエプソン株式会社 Pressure sensitive sensor and hand

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174126U (en) * 1984-04-26 1985-11-18 ジェイエスアール株式会社 Pressure-sensitive conductive rubber sheet
JPS61271706A (en) * 1985-05-27 1986-12-02 藤倉ゴム工業株式会社 Pressure sensing conductive rubber
JPH03196416A (en) * 1989-09-29 1991-08-27 Soken Internatl:Kk Anisotropic conductive sheet
JPH0436627A (en) * 1990-05-31 1992-02-06 Nitta Ind Corp Pressure-sensitive and conductive elastomer composition and pressure sensor using same
JP2002075063A (en) * 2000-08-23 2002-03-15 Jsr Corp Anisotropic conductive sheet
JP2006513408A (en) * 2003-01-07 2006-04-20 アイイーイー インターナショナル エレクトロニクス アンド エンジニアリング エス.エイ. Pressure sensor composed of elastic sensor layer with microstructured surface

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174126U (en) * 1984-04-26 1985-11-18 ジェイエスアール株式会社 Pressure-sensitive conductive rubber sheet
JPS61271706A (en) * 1985-05-27 1986-12-02 藤倉ゴム工業株式会社 Pressure sensing conductive rubber
JPH03196416A (en) * 1989-09-29 1991-08-27 Soken Internatl:Kk Anisotropic conductive sheet
JPH0436627A (en) * 1990-05-31 1992-02-06 Nitta Ind Corp Pressure-sensitive and conductive elastomer composition and pressure sensor using same
JP2002075063A (en) * 2000-08-23 2002-03-15 Jsr Corp Anisotropic conductive sheet
JP2006513408A (en) * 2003-01-07 2006-04-20 アイイーイー インターナショナル エレクトロニクス アンド エンジニアリング エス.エイ. Pressure sensor composed of elastic sensor layer with microstructured surface

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9806538B2 (en) 2012-12-27 2017-10-31 Murata Manufacturing Co., Ltd. Measurement circuit and measurement apparatus for wireless power transmission system
WO2018120384A1 (en) * 2016-12-28 2018-07-05 中国科学院深圳先进技术研究院 Pressure sensor and preparation method therefor
JP2020071072A (en) * 2018-10-29 2020-05-07 セイコーエプソン株式会社 Pressure sensitive sensor and hand
JP7183700B2 (en) 2018-10-29 2022-12-06 セイコーエプソン株式会社 pressure sensor and hand

Similar Documents

Publication Publication Date Title
Im et al. Mechanically robust magnetic Fe3O4 nanoparticle/polyvinylidene fluoride composite nanofiber and its application in a triboelectric nanogenerator
Zhang et al. Hydrogel ionic diodes toward harvesting ultralow‐frequency mechanical energy
Tröls et al. Stretch dependence of the electrical breakdown strength and dielectric constant of dielectric elastomers
JP6696885B2 (en) Piezoelectric sensor
US9276194B2 (en) Bonding method for bonding metal plate and piezoelectric body
JP5374984B2 (en) Dielectric actuator
JP6298155B2 (en) Single-electrode friction nano-generator, power generation method, and self-driven tracking device
EP3194918B1 (en) Sensing system including a sensing structure
CN106441073A (en) Dielectric flexible sensor for big deformation and touch pressure measurement
US20060162471A1 (en) Pressure sensor comprising an elastic sensor layer with a microstructured surface
CN108332889B (en) Aerogel pressure sensor
US20210336559A1 (en) Triboelectric nanogenerator using ionic elastomer
JP6165002B2 (en) Elastic flexible sensor
JP2012208038A (en) Pressure-sensitive resistance member and pressure-sensitive sensor
DK181377B1 (en) Tactile sensor, matrix of tactile sensors, and methods for producing the same
Bian et al. A three-electrode structured ionic polymer carbon-composite actuator with improved electromechanical performance
JP2013232293A (en) Tactile sensor
CN110140036B (en) Pressure-sensitive sensor
KR101594432B1 (en) Electrostatic force based actuator including poly-imide organic dielectric layer
JP6324047B2 (en) Gel actuator
TW200931024A (en) Probe card
JP2016109444A (en) Force detection device
US9832572B2 (en) Electroactive sound transducer foil having a structured surface
JP6931144B2 (en) Manufacturing method of sensor unit and sensor element
JP6044989B2 (en) Evaluation method of generated driving force in actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150210