JP2012199506A - Tape-wound core - Google Patents

Tape-wound core Download PDF

Info

Publication number
JP2012199506A
JP2012199506A JP2011180194A JP2011180194A JP2012199506A JP 2012199506 A JP2012199506 A JP 2012199506A JP 2011180194 A JP2011180194 A JP 2011180194A JP 2011180194 A JP2011180194 A JP 2011180194A JP 2012199506 A JP2012199506 A JP 2012199506A
Authority
JP
Japan
Prior art keywords
wound
ribbon
recess
magnetic
alloy ribbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011180194A
Other languages
Japanese (ja)
Other versions
JP6041181B2 (en
Inventor
Naoteru Ito
直輝 伊藤
Katsuto Yoshizawa
克仁 吉沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2011180194A priority Critical patent/JP6041181B2/en
Publication of JP2012199506A publication Critical patent/JP2012199506A/en
Application granted granted Critical
Publication of JP6041181B2 publication Critical patent/JP6041181B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tape-wound core with low iron loss and low exciting power, which is preferably used for a transformer core and the like.SOLUTION: A tape-wound core includes a soft magnetic alloy thin band 1 manufactured by rapid solidification and recessions 2 formed by irradiating the soft magnetic alloy thin band 1 with a laser beam. In the longitudinal direction of the soft magnetic alloy thin band 1, columns of recessions 2 in the width direction are arranged in substantially prescribed intervals D. Doughnut-shaped protrusions are formed around the respective recessions, where each of the doughnut-shaped protrusions has smooth surface with substantially no scattering of molten alloy produced by the irradiation with the laser beam and has a height tof 2.0 μm or less. In addition, a ratio t/T, which is a ratio of a depth tof the recession to a thickness T of the thin band, lies within a range of 0.025 to 0.18. Further, the thin band is wound with a surface on which the recessions are formed facing the outside.

Description

本発明は、配電用トランス、高周波トランス、可飽和リアクトル、磁気スイッチ等に好適な低損失で低皮相電力となる巻磁心に関する。   The present invention relates to a wound magnetic core having low loss and low apparent power suitable for a distribution transformer, a high-frequency transformer, a saturable reactor, a magnetic switch, and the like.

一般にアモルファスリボンの製造は、液相温度以上に加熱された合金溶湯を高速で回転する銅製冷却ロール上にノズルから噴出させ、急速冷却固化させる。液体急冷法には、両側からの銅製冷却ロールと密着させる双ロール法も存在するが、一般には片側のみ接触させる片ロール法を用いて製造される。片ロール法により製造されるアモルファス合金では冷却ロールに接触して急速固化したロール面と、その反対側の自由面を有することになる。   In general, in manufacturing an amorphous ribbon, a molten alloy heated to a temperature higher than the liquidus temperature is ejected from a nozzle onto a copper cooling roll rotating at a high speed, and rapidly cooled and solidified. In the liquid quenching method, there is a twin roll method in which it is brought into close contact with a copper cooling roll from both sides, but generally, it is manufactured by using a single roll method in which only one side is brought into contact. An amorphous alloy produced by the one-roll method has a roll surface rapidly solidified in contact with the cooling roll and a free surface on the opposite side.

液体急冷法により製造される軟磁性Fe基アモルファス合金薄帯は、飽和磁束密度Bsが比較的高く、結晶粒を含有しないために結晶磁気異方性が存在せず、磁気ヒステリシス損失が小さく、低保磁力で優れた軟磁性を示す。そのため、各種のトランス、チョークコイル、可飽和リアクトル、磁気スイッチ等の磁心、磁気センサ等に使用されている。特に、熱的安定性に優れたFe-Si-B系アモルファス合金薄帯は、トランス用巻磁心に広く用いられている(特許文献1参照)。   Soft magnetic Fe-based amorphous alloy ribbon manufactured by the liquid quenching method has a relatively high saturation magnetic flux density Bs and does not contain crystal grains, so there is no magnetocrystalline anisotropy, low magnetic hysteresis loss, and low Excellent soft magnetism with coercive force. Therefore, it is used for various transformers, choke coils, saturable reactors, magnetic cores such as magnetic switches, magnetic sensors, and the like. In particular, Fe—Si—B amorphous alloy ribbons having excellent thermal stability are widely used in transformer wound magnetic cores (see Patent Document 1).

アモルファス合金薄帯は、板厚が非常に薄く(数十μm〜数百μm)、これを巻いた巻磁心では曲げによる応力が熱処理後も残留し、単板試料とは異なる磁気特性を示すことが知られている。その為、薄帯の巻き方にも工夫が加えられてきた。例えば、特許文献2の巻磁心は、アモルファス合金薄帯について平滑度の高い面(ロール面)を内側にして巻くことにより、凹凸を有する自由面が外側に位置するので内側にかかる圧縮応力が小さくなる。その結果、応力に伴う異方性が小さくなり鉄損も小さくできるとしている。   Amorphous alloy ribbon has a very thin plate thickness (several tens to hundreds of μm). The wound core retains the stress due to bending even after heat treatment, and exhibits different magnetic properties from the single plate sample. It has been known. For this reason, ingenuity has also been added to the method of winding the ribbon. For example, the wound magnetic core of Patent Document 2 is wound with an amorphous alloy ribbon wound with a highly smooth surface (roll surface) on the inside, so that the free surface having irregularities is located on the outside, so that the compressive stress applied to the inside is small. Become. As a result, the anisotropy associated with the stress is reduced and the iron loss can be reduced.

また、特許文献3によれば、特許文献2とは逆に、ロール面を外側にして巻くことにより鉄損を小さく出来るとしている。これは、薄帯製造時の急冷速度が薄帯深さ方向で異なることにより深さ方向の密度に勾配が生じ、自由体積の大きいロール面を外側に巻いて熱処理を行うと、収縮量の差により圧縮力が生じ90°磁壁が生じることにより磁区が細分化され、渦電流が減少するからとしている。   According to Patent Document 3, contrary to Patent Document 2, the iron loss can be reduced by winding the roll surface outside. This is because the density in the depth direction is different due to the rapid cooling rate at the time of ribbon production in the ribbon depth direction, and when the roll surface with a large free volume is wound outward and heat treatment is performed, the difference in shrinkage amount This is because the compression force is generated and the 90 ° domain wall is generated, so that the magnetic domain is subdivided and the eddy current is reduced.

Fe-Si-B系合金などのFe基アモルファス合金薄帯は、低保磁力で磁気ヒステリシス損失が小さいが、渦電流損失は、一様磁化を仮定し求められる古典的渦電流損失の数十倍から100倍も大きいことが知られている。この増加分は異常渦電流損失あるいは過剰損失と呼ばれ、主に不均一磁化変化に起因し、アモルファス合金薄帯の磁区幅が大きいことが原因であると考えられている。そこで、特許文献3でも磁区の細分化に注目しているが、一般にはアモルファス合金薄帯の異常渦電流損失を低減し、鉄損を低減する方法としては、機械的に薄帯表面を罫書くスクラッチ方法や、レーザ光を薄帯表面に照射し、局部的に溶解・急冷凝固させ磁区を細分化するレーザスクライビング法などが知られている(特許文献4、5参照)。   Fe-based amorphous alloy ribbons such as Fe-Si-B alloys have low coercive force and small magnetic hysteresis loss, but eddy current loss is several tens of times the classical eddy current loss required by assuming uniform magnetization. It is known to be 100 times larger. This increase is called abnormal eddy current loss or excess loss, which is mainly caused by nonuniform magnetization change and is considered to be caused by the large magnetic domain width of the amorphous alloy ribbon. Therefore, Patent Document 3 pays attention to subdivision of magnetic domains, but generally, as a method of reducing abnormal eddy current loss of amorphous alloy ribbon and reducing iron loss, the surface of the ribbon is mechanically marked. There are known a scratching method, a laser scribing method in which a thin ribbon surface is irradiated with laser light and locally melted and rapidly solidified to subdivide magnetic domains (see Patent Documents 4 and 5).

特許文献4などレーザ光を用いた方法では、アモルファス合金薄帯の表面の幅方向にパルスレーザ光を照射してその表面を局部的かつ瞬間的に溶解し、次いで急冷凝固させてアモルファス化させた円ないし楕円状の領域(レーザスポット)を点列状に形成することにより磁区を細分化している。この方法により形成される凹部の周囲には、溶解した合金がはねた痕(splash)が認められる。これは比較的厚いアモルファス合金薄帯に大きな間隔で凹部を形成するために、各凹部を大きなレーザ光照射エネルギー密度で深く形成したためであると考えられる。しかし、周囲にはね痕が認められるほど大きなレーザ光照射エネルギー密度で凹部を深く形成すると、特に比較的薄いアモルファス合金薄帯の場合、鉄損は低減するものの皮相電力(励磁VA)の増加及び占積率の低下という問題が生じることが分った。   In the method using a laser beam such as Patent Document 4, the surface of the amorphous alloy ribbon is irradiated with a pulsed laser beam to melt the surface locally and instantaneously, and then rapidly solidified to make it amorphous. The magnetic domains are subdivided by forming circular or elliptical regions (laser spots) in the form of dots. Around the recess formed by this method, a splash of molten alloy is observed. This is considered to be because each recess was formed deep with a large laser beam irradiation energy density in order to form recesses in a relatively thick amorphous alloy ribbon at large intervals. However, if the recesses are deeply formed with a laser light irradiation energy density that is large enough to show splash marks around the periphery, especially in the case of a relatively thin amorphous alloy ribbon, the iron loss is reduced, but the apparent power (excitation VA) increases and It has been found that there is a problem of a decrease in the space factor.

特開2006−45662号公報JP 2006-45662 A 特公昭58−41649号公報Japanese Patent Publication No.58-41649 特許第2817965号公報Japanese Patent No. 2817965 特公平3−32886号公報Japanese Patent Publication No. 3-32886 特公平3−32888号公報Japanese Patent Publication No. 3-32888

現在、片ロール法により製造されるアモルファス合金薄帯では、製造装置や製造方法等の確立により、過去に見られた自由面の表面起伏はほぼ消滅しており、自由面とロール面共に表面粗さ(Ra)に顕著な差異はほとんど見られない。しかし、表面精度が高く比較的薄いアモルファス合金薄帯へレーザ光照射を行って凹部を形成したものでは、巻磁心とする際の巻き方の違いにより磁気特性などへ与える影響があることが考えられる。ところが、上記特許文献等では単板による磁気特性を評価するだけで、巻磁心とした場合の評価は行われていない。例えば、大きなレーザ光照射エネルギー密度で凹部を深く形成したものを巻き回して作製した磁心では、占積率(ラミネーションファクタ)の低下や皮相電力(励磁電力)の増加等の悪影響により、配電用トランスに使用した場合の騒音の増加や、ラミネーションファクタ(LF)の低下により磁心サイズが大きくなる等の問題がある。   At present, in the amorphous alloy ribbon manufactured by the single roll method, the surface undulation of the free surface seen in the past has almost disappeared due to the establishment of manufacturing equipment and manufacturing method, etc. There is almost no significant difference in (Ra). However, in the case where a concave portion is formed by irradiating a laser beam to a relatively thin amorphous alloy ribbon with high surface accuracy, it is considered that there is an influence on the magnetic characteristics and the like due to the difference in winding method when forming a wound core. . However, in the above-mentioned patent documents and the like, only the magnetic characteristics of a single plate are evaluated, and the evaluation in the case of a wound core is not performed. For example, in a magnetic core manufactured by winding a deeply recessed part with a large laser beam irradiation energy density, the transformer for distribution due to adverse effects such as a decrease in space factor (lamination factor) and an increase in apparent power (excitation power) There are problems such as an increase in noise when used in a magnetic field, and an increase in the core size due to a decrease in the lamination factor (LF).

以上より本発明の目的は、レーザ光照射による磁区の細分化を行ったアモルファス合金薄帯などを用いた巻磁心であって、ラミネーションファクターが高く、かつ鉄損だけでなく皮相電力も小さくした巻磁心を提供することである。   As described above, an object of the present invention is a wound magnetic core using an amorphous alloy ribbon obtained by subdividing a magnetic domain by laser light irradiation, which has a high lamination factor and has not only an iron loss but also a small apparent power. It is to provide a magnetic core.

本発明は、急冷凝固法により製造した軟磁性合金薄帯の表面にレーザ光により形成された凹部の幅方向の列を長手方向にほぼ所定間隔で有し、各凹部の周囲には2.0μm以下の高さt2の突状部を有し、かつ前記凹部の深さt1と前記薄帯の厚さTとの比t1/Tが0.025〜0.18の範囲内にあり、前記凹部を形成した面を外側にして巻いた巻磁心である。 The present invention has a widthwise row of recesses formed by laser light on the surface of a soft magnetic alloy ribbon manufactured by a rapid solidification method in the longitudinal direction at substantially predetermined intervals, and around each recess is 2.0 μm or less. height has a protrusion of t 2, and the ratio t 1 / T of the thickness T of the ribbon with a depth t 1 of the concave portion is in the range of .025 to 0.18, forming said recess It is a wound magnetic core wound with its surface facing outward.

前記突状部はドーナツ状突状部であり、前記ドーナツ状突状部はレーザ光の照射により溶解した合金の飛散物が実質的にない滑らかな表面を有していることが好ましい。
また、前記突状部の高さt2が0.5〜2.0μmであることが好ましい。より好ましくは0.5〜1.8μmである。
また、前記凹部の深さt1と薄帯の厚さTとの比t1/Tが0.03〜0.15の範囲内にあることが好ましい。
また、前記軟磁性合金薄帯の厚さTが30μm以下であることが好ましい。
また、前記凹部の深さt1と前記突状部の高さt2との合計tと前記薄帯の厚さTとの比t/Tが0.2以下であることが好ましい。
It is preferable that the protruding portion is a donut-shaped protruding portion, and the donut-shaped protruding portion has a smooth surface that is substantially free from scattered alloy material melted by laser light irradiation.
Further, it is preferable that the height t 2 of the projecting portion is 0.5 to 2.0 [mu] m. More preferably, it is 0.5 to 1.8 μm.
The ratio t 1 / T between the depth t 1 of the recess and the thickness T of the ribbon is preferably in the range of 0.03 to 0.15.
The soft magnetic alloy ribbon preferably has a thickness T of 30 μm or less.
Further, it is preferable that a ratio t / T of the total t of the depth t 1 of the concave portion and the height t 2 of the protruding portion and the thickness T of the ribbon is 0.2 or less.

本発明の巻磁心は、ラミネーションファクタを高く維持できると共に、低周波での磁心損失が低減し、騒音の原因となる皮相電力をより小さくできる。よって、低鉄損のために効率が良く、かつ低皮相電力のために騒音が少ない巻磁心を提供できる。   The wound core of the present invention can maintain a high lamination factor, reduce the core loss at low frequencies, and reduce the apparent power that causes noise. Therefore, it is possible to provide a wound magnetic core that is efficient because of low iron loss and low noise because of low apparent power.

本発明に用いるレーザ光照射装置の一例を示す概略図である。It is the schematic which shows an example of the laser beam irradiation apparatus used for this invention. 本発明の軟磁性合金薄帯の一実施形態であるアモルファス合金薄帯(以下同様)に形成された凹部及び環状突状部を示す概略断面図である。It is a schematic sectional drawing which shows the recessed part and cyclic | annular protrusion part which were formed in the amorphous alloy ribbon (it is the following similarly) which is one Embodiment of the soft-magnetic alloy ribbon of this invention. アモルファス合金薄帯に形成された凹部の配列を示す概略平面図である。It is a schematic plan view which shows the arrangement | sequence of the recessed part formed in the amorphous alloy ribbon. 本発明のアモルファス合金薄帯に形成された凹部列の一例を示す顕微鏡写真(60倍)と凹部の1つを拡大して示す顕微鏡写真(240倍)である。They are a microscope picture (60 times) which shows an example of the crevice row formed in the amorphous alloy ribbon of the present invention, and a microscope picture (240 times) which expands and shows one of the crevices. アモルファス合金薄帯に形成された凹部及び環状突状部の形態を示す顕微鏡写真とともに、凹部の深さt1及び環状突状部の高さt2とレーザ光照射エネルギー密度との関係の一例を示す図である。An example of the relationship between the depth t 1 of the recess and the height t 2 of the annular projection and the laser beam irradiation energy density, together with a micrograph showing the form of the recess and the annular projection formed in the amorphous alloy ribbon. FIG. アモルファス合金薄帯における環状突状部の外径D2とレーザ光照射エネルギー密度との関係を示すグラフである。It is a graph showing the relationship between the outer diameter D 2 and the laser beam irradiation energy density of the annular protrusion of the amorphous alloy ribbon. レーザ照射条件とヒステリシスループの違いを示す図である。It is a figure which shows the difference of laser irradiation conditions and a hysteresis loop. (a)は凹部を形成する前の薄帯をカー効果磁区観察顕微鏡によって観察した磁区構造を示す顕微鏡写真、(b)はその模式図である。(A) is the microscope picture which shows the magnetic domain structure which observed the thin strip before forming a recessed part with a Kerr effect magnetic domain observation microscope, (b) is the schematic diagram. (a)は凹部を形成した後の薄帯をカー効果磁区観察顕微鏡によって観察した磁区構造を示す顕微鏡写真、(b)はその概略模式図である。(A) is the microscope picture which shows the magnetic domain structure which observed the thin strip after forming the recessed part with the Kerr effect magnetic domain observation microscope, (b) is the schematic diagram. 凹部を形成した面を外側にして巻いた場合の磁区構造の変化を説明する模式図である。It is a schematic diagram explaining the change of a magnetic domain structure at the time of winding with the surface in which the recessed part was formed facing outside. 凹部を形成した面を内側にして巻いた場合の磁区構造の変化を説明する模式図である。It is a schematic diagram explaining the change of a magnetic domain structure at the time of winding with the surface in which the recessed part was formed inside. 本発明のアモルファス合金薄帯を用いた巻磁心における磁束密度の波高値Bmと鉄損Pとの関係を比較例とともに示す図である。It is a figure which shows the relationship between the crest value Bm of the magnetic flux density in the wound magnetic core using the amorphous alloy ribbon of this invention, and the iron loss P with a comparative example. 本発明のアモルファス合金薄帯を用いた巻磁心における磁束密度の波高値Bmと皮相電力Sとの関係を比較例とともに示す図である。It is a figure which shows the relationship between the peak value Bm of the magnetic flux density in the wound magnetic core using the amorphous alloy ribbon of this invention, and the apparent power S with a comparative example. アモルファス合金薄帯を用いた巻磁心における鉄損Pと凹部の数密度nの関係を示す図である。It is a figure which shows the relationship between the iron loss P and the number density n of a recessed part in the wound magnetic core using an amorphous alloy ribbon. アモルファス合金薄帯を用いた巻磁心における皮相電力Sと凹部の数密度nの関係を示す図である。It is a figure which shows the relationship between the apparent power S and the number density n of a recessed part in the wound magnetic core using an amorphous alloy ribbon. ラミネーションファクタLFと環状突状部の高さt2との関係を示す図である。Lamination factor LF and the annular protrusion is a diagram showing the relationship between the height t 2. 本発明の軟磁性合金薄帯の一実施形態であるナノ結晶合金薄帯を用いた巻磁心における磁束密度の波高値Bmと鉄損Pとの関係を比較例とともに示す図である。It is a figure which shows the relationship between the peak value Bm of the magnetic flux density in the wound magnetic core using the nanocrystal alloy ribbon which is one Embodiment of the soft magnetic alloy ribbon of this invention, and the iron loss P with a comparative example. 同じくナノ結晶合金薄帯を用いた巻磁心における磁束密度の波高値Bmと皮相電力Sとの関係を比較例とともに示す図である。FIG. 6 is a view showing a relationship between a peak value Bm of magnetic flux density and an apparent power S in a wound core using a nanocrystalline alloy ribbon together with a comparative example.

[1] 軟磁性合金薄帯
本発明に使用可能な軟磁性合金としては、Fe-B系、Fe-Si-B系、Fe-Si-B-C系、Fe-Si-B-P系、Fe-Si-B-C-P系、Fe-P-B系等のアモルファス合金、またFe-Cu-B系、Fe-Cu-Si-B系、Fe-Cu-Si-B-P系、Fe-Ni-Cu-Si-B系等のナノ結晶合金などが挙げられる。Fe-Si-B系アモルファス合金は、1〜15原子%のSi及び8〜20原子%のBを含有し、残部が実質的にFe及び不可避不純物である組成を有するのが好ましい。Fe-Si-B-C系合金は、1〜15原子%のSi、8〜20原子%のB及び3原子%以下のCを含有し、残部がFe及び不可避不純物である組成を有するのが好ましい。
一方、Fe-Cu-B系ナノ結晶合金は、0.1〜3原子%のCu及び10〜20原子%のBを含有し、残部が実質的にFe及び不可避不純物である組成を有するのが好ましい。Fe-Cu-Si-B系ナノ結晶合金では、0.1〜3原子%のCu、0.1〜7原子%のSi及び10〜20原子%のBを含有し、SiとBの合計が10〜24原子%であり、残部がFe及び不可避不純物である組成を有するのが好ましい。そして、ナノ結晶合金は、非晶質母相中に平均粒径60nm以下の微結晶粒が30体積%以上の割合で分散した組織であることが好ましい。
また、アモルファス合金系、ナノ結晶合金系の何れでも、Siが10原子%以下でBが17原子%以下の場合、Bsが高く、レーザ光照射による鉄損の低減効果が大きく、製造が容易である。アモルファス合金あるいはナノ結晶合金は、上記成分の他に、Fe量に対して合計で5原子%以下の割合で、Co,Ni,P,Mn,Cr,V,Mo,Nb,Ta,Hf,Zr,Ti,Au,Ag,Sn,Ge,Re,Ru,Zn,In及びGaからなる群から選ばれた少なくとも一種を含有しても良い。不可避不純物はS,O,N,Al等である。
以下はアモルファス合金を例にとって説明する。
[1] Soft magnetic alloy ribbon The soft magnetic alloys that can be used in the present invention include Fe-B, Fe-Si-B, Fe-Si-BC, Fe-Si-BP, and Fe-Si- Amorphous alloys such as BCP and Fe-PB, Fe-Cu-B, Fe-Cu-Si-B, Fe-Cu-Si-BP, Fe-Ni-Cu-Si-B, etc. Examples thereof include nanocrystalline alloys. The Fe—Si—B amorphous alloy preferably contains 1 to 15 atomic% Si and 8 to 20 atomic% B, and the balance is substantially Fe and inevitable impurities. The Fe—Si—BC alloy preferably contains 1 to 15 atomic% Si, 8 to 20 atomic% B and 3 atomic% or less C, with the balance being Fe and inevitable impurities.
On the other hand, the Fe—Cu—B-based nanocrystalline alloy preferably contains 0.1 to 3 atomic% of Cu and 10 to 20 atomic% of B, with the balance being substantially Fe and inevitable impurities. The Fe-Cu-Si-B-based nanocrystalline alloy contains 0.1-3 atomic% Cu, 0.1-7 atomic% Si and 10-20 atomic% B, and the total of Si and B is 10-24 atoms. %, And the balance is preferably Fe and inevitable impurities. The nanocrystalline alloy preferably has a structure in which fine crystal grains having an average particle diameter of 60 nm or less are dispersed in an amorphous matrix at a ratio of 30% by volume or more.
In both amorphous alloy and nanocrystalline alloy systems, when Si is 10 atomic% or less and B is 17 atomic% or less, Bs is high, and the effect of reducing iron loss due to laser light irradiation is large, and manufacturing is easy. is there. In addition to the above components, the amorphous alloy or nanocrystalline alloy has a total proportion of 5 atomic% or less with respect to the amount of Fe, Co, Ni, P, Mn, Cr, V, Mo, Nb, Ta, Hf, Zr. , Ti, Au, Ag, Sn, Ge, Re, Ru, Zn, In, and Ga may be included. Inevitable impurities are S, O, N, Al and the like.
In the following, an amorphous alloy will be described as an example.

アモルファス合金薄帯は、単ロール法又は双ロール法の液体急冷法(急冷凝固法)により作製するのが好ましい。レーザ光の照射効率を向上させるために、レーザ光を照射するアモルファス合金薄帯の表面の波長λ=1000 nmにおける反射率R(%)は15〜80%であるのが好ましい。反射率R(%)=100×Φr/Φである(ただし、Φは薄帯表面に垂直に入射する光束量であり、Φrは薄帯表面で入射方向へ反射する光束量である。)。Φ及びΦrは、分光光度計(日本分光株式会社製のJASCO V-570)を用い、1000 nmの波長(使用するレーザ光の波長に近い)で測定する。   The amorphous alloy ribbon is preferably produced by a liquid quenching method (rapid solidification method) of a single roll method or a twin roll method. In order to improve the irradiation efficiency of the laser beam, the reflectance R (%) at a wavelength λ = 1000 nm of the surface of the amorphous alloy ribbon irradiated with the laser beam is preferably 15 to 80%. Reflectivity R (%) = 100 × Φr / Φ (where Φ is the amount of light flux that is perpendicularly incident on the surface of the ribbon, and Φr is the amount of light flux that is reflected on the surface of the ribbon in the incident direction). Φ and Φr are measured using a spectrophotometer (JASCO V-570 manufactured by JASCO Corporation) at a wavelength of 1000 nm (close to the wavelength of the laser light used).

アモルファス合金薄帯の厚さTは、後述のように30μm以下であるのが好ましい。またアモルファス合金薄帯の幅は限定的でなく、後述のファイバーレーザを用いることにより約25〜220 mmと広い幅のアモルファス合金薄帯に対して均等にレーザスクライビングを行うことができる。   The thickness T of the amorphous alloy ribbon is preferably 30 μm or less as described later. The width of the amorphous alloy ribbon is not limited, and laser scribing can be performed evenly on an amorphous alloy ribbon having a wide width of about 25 to 220 mm by using a fiber laser described later.

鉄損を抑えるために、アモルファス合金薄帯の片面又は両面にSiO2、Al2O3、MgO等の絶縁層を形成しても良い。レーザスクライビングを行わない面に絶縁層を形成すると磁気特性の劣化を抑制できる。またレーザスクライビングをした面でもドーナツ状突状部が低く抑えられているので、絶縁層の形成に支障がない。 In order to suppress iron loss, an insulating layer such as SiO 2 , Al 2 O 3 , or MgO may be formed on one side or both sides of the amorphous alloy ribbon. When an insulating layer is formed on a surface where laser scribing is not performed, deterioration of magnetic characteristics can be suppressed. In addition, since the donut-shaped protrusions are kept low even on the laser-scribing surface, there is no problem in forming the insulating layer.

[2] レーザスクライビング
急冷凝固法により製造したアモルファス合金薄帯の磁区を細分化するために、その表面に長手方向所定間隔でパルスレーザ光を幅方向に走査する。パルスレーザ光の発生装置としてYAGレーザ、CO2ガスレーザ、ファイバーレーザ等を利用できるが、高出力で高周波のパルスレーザ光を長時間にわたって安定して発生できるファイバーレーザが好ましい。
[2] Laser scribing In order to subdivide the magnetic domain of the amorphous alloy ribbon manufactured by the rapid solidification method, the surface is scanned with a pulse laser beam in the width direction at predetermined intervals in the longitudinal direction. A YAG laser, a CO 2 gas laser, a fiber laser, or the like can be used as a pulse laser beam generator. A fiber laser that can stably generate a high-power, high-frequency pulse laser beam for a long time is preferable.

図1はレーザ光照射装置の一例を示す。この装置は、レーザ発振器(ファイバーレーザ)10と、コリメータ12と、ビームエキスパンダ13と、ガルバノスキャナ14と、fθレンズ15とを具備する。レーザ発振器10で生成されたパルス状のレーザ光L(例えば波長1065μm)はファイバー11によりコリメータ12に伝送され、そこで平行光にされる。平行なレーザ光Lはビームエキスパンダ13で径を拡大され、ガルバノスキャナ14を通過した後、fθレンズ15で集光され、X軸方向及びY軸方向に移動自在なテーブル5上に載置されたアモルファス合金薄帯1に照射される。ガルバノスキャナ14は、X軸及びY軸の回りに回動し得るミラー14a、14bを具備し、各ミラー14a、14bはガルバノモータ14cにより駆動される。ミラー14a、14bの組み合わせにより、パルス状のレーザ光Lを薄帯1の長手方向に所定の間隔をもって幅方向に走査することができる。ガルバノスキャナ14の代わりに、モータの先端にポリゴンミラーを備えたポリゴンスキャナ(図示せず)を用いても良い。勿論、アモルファス合金薄帯1に幅方向の凹部列を長手方向に所定の間隔をもって連続的に形成する場合には、アモルファス合金薄帯1を長手方向に移動させるので、レーザ光Lの走査方向は幅方向に対して所定の角度で傾斜していなければならない。   FIG. 1 shows an example of a laser beam irradiation apparatus. This apparatus includes a laser oscillator (fiber laser) 10, a collimator 12, a beam expander 13, a galvano scanner 14, and an fθ lens 15. The pulsed laser light L (for example, wavelength 1065 μm) generated by the laser oscillator 10 is transmitted to the collimator 12 through the fiber 11 and is converted into parallel light there. The parallel laser light L is enlarged in diameter by a beam expander 13, passes through a galvano scanner 14, is condensed by an fθ lens 15, and is placed on a table 5 movable in the X-axis direction and the Y-axis direction. The amorphous alloy ribbon 1 is irradiated. The galvano scanner 14 includes mirrors 14a and 14b that can rotate around the X axis and the Y axis, and each mirror 14a and 14b is driven by a galvano motor 14c. By combining the mirrors 14a and 14b, the pulsed laser light L can be scanned in the width direction at a predetermined interval in the longitudinal direction of the ribbon 1. Instead of the galvano scanner 14, a polygon scanner (not shown) having a polygon mirror at the tip of the motor may be used. Of course, when the amorphous alloy ribbon 1 is continuously formed in the longitudinal direction with a predetermined interval in the longitudinal direction, the amorphous alloy ribbon 1 is moved in the longitudinal direction, so the scanning direction of the laser light L is It must be inclined at a predetermined angle with respect to the width direction.

レーザ光の照射は、リールから巻き戻すアモルファス合金薄帯を長手方向に間欠的に移動させながら行うのが好ましいが、急冷凝固法により製造したアモルファス合金薄帯をリールに巻き取る前に行っても良い。
熱処理による脆化及び磁心の応力緩和を考慮して、レーザスクライビングを熱処理前に行うのが好ましい。アモルファス合金薄帯にレーザ光照射により形成される凹部は結晶化していないので、加工性が良好であり、磁心を作製するために薄帯を切断したり曲げたりするのが容易である。
The laser beam irradiation is preferably performed while intermittently moving the amorphous alloy ribbon to be rewound from the reel in the longitudinal direction, but it may be performed before the amorphous alloy ribbon manufactured by the rapid solidification method is wound on the reel. good.
In consideration of embrittlement due to heat treatment and stress relaxation of the magnetic core, laser scribing is preferably performed before heat treatment. Since the recess formed by laser beam irradiation in the amorphous alloy ribbon is not crystallized, the workability is good, and it is easy to cut or bend the ribbon to produce a magnetic core.

[3] 凹部
図2は、アモルファス合金薄帯1に形成されたほぼ円形の凹部2とその周囲の環状突状部(リム部)3の断面と上面を概略的に示す。ここで「ほぼ円形」とは、図に示すように凹部2の輪郭が真円である必要がなく、歪んだ円形又は楕円形でも良いことを意味する。円形又は楕円形の歪み度は、長径Da/短径Dbの比が1.5以内であるのが好ましい。
図2に示すように、凹部2の直径D1(環状突状部の内径)は薄帯1の表面と一致する直線1aと交差する位置での凹部2の開口部の直径であり、凹部2の深さt1は直線1aと凹部2の底部との距離であり、環状突状部3の外径D2は直線1aと交差する位置での環状突状部3の外径であり、環状突状部3の高さt2は直線1aと環状突状部3の頂点との距離であり、環状突状部3の幅Wは直線1aと交差する位置での環状突状部3の幅[(D2−D1)/2]である。これらのパラメータはいずれも、複数(3箇所以上)の幅方向凹部列における凹部2及び環状突状部3から求めた値の平均値で表される。
[3] Concave portion FIG. 2 schematically shows a cross section and an upper surface of a substantially circular concave portion 2 formed in the amorphous alloy ribbon 1 and an annular projecting portion (rim portion) 3 around the concave portion 2. Here, “substantially circular” means that the contour of the recess 2 does not have to be a perfect circle as shown in the figure, and may be a distorted circle or an ellipse. The degree of distortion of the circle or ellipse is preferably such that the ratio of major axis Da / minor axis Db is within 1.5.
As shown in FIG. 2, the diameter D 1 (inner diameter of the annular protrusion) of the recess 2 is the diameter of the opening of the recess 2 at the position intersecting the straight line 1 a coinciding with the surface of the ribbon 1. depth t 1 is the distance between the bottom of the straight line 1a and the recess 2, the outer diameter D 2 of the annular projecting portion 3 is the outer diameter of the annular protrusion 3 at the position intersecting the straight line 1a, annular the height t 2 of the projecting portion 3 is the distance between the apex of the straight line 1a and the annular protrusion 3, the width of the annular protrusion 3 of the width W of the annular projecting portion 3 at the position intersecting the straight line 1a [(D 2 −D 1 ) / 2]. Each of these parameters is represented by an average value of values obtained from the recesses 2 and the annular protrusions 3 in a plurality of (three or more) widthwise recess rows.

アモルファス合金薄帯1はレーザ光の照射により加熱溶融された後、結晶化せずに急冷凝固するので、形成された凹部2及びその周囲の環状突状部3は実質的にアモルファス状である。この急冷凝固により凹部2付近に応力が生じ、磁化方向が薄帯の深さ方向を向く磁区が形成されるために、皮相電力が増加すると考えられる。応力は環状突状部3の高さだけでなく、凹部2の周辺に付着した溶融飛散物(スプラッシュ)に応じても高くなる。一方、凹部2による磁区の細分化のために鉄損が減少し、それに伴い皮相電力も減少する。   Since the amorphous alloy ribbon 1 is heated and melted by irradiation with laser light and then rapidly solidified without being crystallized, the formed recess 2 and the surrounding annular protrusion 3 are substantially amorphous. This rapid solidification causes stress in the vicinity of the recess 2 and a magnetic domain is formed in which the magnetization direction is in the depth direction of the ribbon, so that the apparent power increases. The stress increases not only according to the height of the annular protrusion 3 but also according to the molten scattered matter (splash) attached to the periphery of the recess 2. On the other hand, the iron loss is reduced due to the subdivision of the magnetic domains by the recesses 2, and the apparent power is also reduced accordingly.

本発明の好ましい態様では、レーザ光の照射エネルギーをアモルファス合金薄帯の厚さTに対して制御することにより、凹部の周囲に形成される環状突状部3を溶融合金の飛散物が実質的にない滑らかな表面を有するドーナツ状の環状突状部(単に「ドーナツ状突状部」という。)とするとともに、その高さt2を2.0μm以下に制限する。ここで、「飛散物が実質的にない滑らかな表面」とは、図4に示すように、50倍〜240倍の光学顕微鏡写真において、環状突状部3の内外周輪郭3a,3b(図3参照)が凹凸なく滑らかであり、かつ環状突状部3の表面とアモルファス合金薄帯1の他の部分の表面とが同じ粗さに見えることを意味する。「ドーナツ状」は、特に断りがなければ滑らかな表面及び輪郭を有するものとする。従って、例えば図5に示す凹部B,C,Dのように環状突状部3の内外周輪郭に凹凸がある場合には、「飛散物が実質的にない滑らかな表面」の要件を満たさない。ドーナツ状突状部の高さt2が2.0μm以下であると、アモルファス合金薄帯の積層又は巻回により得られる磁心は89%以上と高いラミネーションファクタLFを有する。t2が2.0μmを超えるとLFは急減に低下するとともに、皮相電力Sも増加する。ドーナツ状突状部3の高さt2は1.8μm以下であるのがより好ましく、0.5〜1.8μmであるのが最も好ましい。 In a preferred embodiment of the present invention, by controlling the irradiation energy of the laser beam with respect to the thickness T of the amorphous alloy ribbon, the spatter of the molten alloy substantially forms the annular protrusion 3 formed around the recess. In addition to a donut-shaped annular protrusion having a smooth surface (which is simply referred to as “doughnut-shaped protrusion”), its height t 2 is limited to 2.0 μm or less. Here, the “smooth surface substantially free of scattered objects” means, as shown in FIG. 4, inner and outer contours 3a and 3b (see FIG. 3) means that the surface of the annular projection 3 and the surface of the other part of the amorphous alloy ribbon 1 appear to have the same roughness. “Doughnut” shall have a smooth surface and contour unless otherwise noted. Therefore, for example, when the inner and outer contours of the annular protrusion 3 are uneven, such as the recesses B, C, and D shown in FIG. 5, the requirement of “smooth surface substantially free from scattered objects” is not satisfied. . When the height t 2 of the doughnut-shaped protrusion is 2.0 μm or less, the magnetic core obtained by laminating or winding the amorphous alloy ribbon has a lamination factor LF as high as 89% or more. When t 2 exceeds 2.0 μm, LF decreases rapidly and apparent power S increases. More preferably the height t 2 of the donut-shaped protrusion 3 is less 1.8 .mu.m, most preferably a 0.5~1.8Myuemu.

しかし、ドーナツ状突状部3が飛散物が実質的にない滑らかな表面を有し、かつその高さt2が2.0μm以下であっても、アモルファス合金薄帯の厚さTに対して凹部2の深さt1が不十分であると、鉄損の低減効果は不十分であることが分った。具体的には、t1/Tが0.025未満であると、鉄損はレーザスクライビングによってほとんど低下しない。逆に、薄帯1の厚さTに対して凹部2の深さt1が大きいと皮相電力が急激に増加する。具体的には、t1/Tが0.18超であると皮相電力は急激に増加する。従って、t1/Tは0.025〜0.18の範囲内である必要があり、好ましくは0.03〜0.15であり、より好ましくは0.03〜0.13である。レーザスクライビングにより皮相電力の増加を抑制しつつ鉄損を低減させるためには、アモルファス合金薄帯1の厚さTは30μm以下であるのが好ましい。アモルファス合金薄帯1の厚さTが30μm超であると、同じt1/Tでもt1の値が大きくなり、皮相電力は増加する傾向がある。 However, donut-shaped protrusion 3 debris has a smooth surface that is substantially free and even its height t 2 is a is 2.0μm or less, the recess with respect to the thickness T of the amorphous alloy ribbon It was found that when the depth t 1 of 2 is insufficient, the effect of reducing the iron loss is insufficient. Specifically, when t 1 / T is less than 0.025, the iron loss is hardly reduced by laser scribing. On the contrary, when the depth t 1 of the recess 2 is larger than the thickness T of the ribbon 1, the apparent power increases rapidly. Specifically, when t 1 / T exceeds 0.18, the apparent power increases rapidly. Therefore, t 1 / T needs to be in the range of 0.025 to 0.18, preferably 0.03 to 0.15, and more preferably 0.03 to 0.13. In order to reduce iron loss while suppressing an increase in apparent power by laser scribing, the thickness T of the amorphous alloy ribbon 1 is preferably 30 μm or less. When the thickness T of the amorphous alloy ribbon 1 is more than 30 μm, the value of t 1 increases even at the same t 1 / T, and the apparent power tends to increase.

凹部2の深さt1とドーナツ状突状部3の高さt2の合計t(=t1+t2)と薄帯1の厚さTとの比t/Tも皮相電力の増加の抑制に関係する。t/Tが0.2以下であると、皮相電力の増加を抑制することができる。t/Tは好ましくは0.18以下であり、より好ましくは0.16以下である。 The ratio t / T of the total t (= t 1 + t 2 ) of the depth t 1 of the recess 2 and the height t 2 of the doughnut-shaped projection 3 and the thickness T of the ribbon 1 is also suppressed from increasing the apparent power. Related to. When t / T is 0.2 or less, an increase in apparent power can be suppressed. t / T is preferably 0.18 or less, more preferably 0.16 or less.

低鉄損及び低皮相電力を得るためには、凹部2の直径D1は20〜50μmが好ましく、20〜40μmがより好ましく、24〜38μmが最も好ましい。凹部2の直径D1が大きすぎると、応力及び飛散物の影響で皮相電力の増加を招く傾向がある。またドーナツ状突状部3の外径D2は100μm以下が好ましく、80μm以下がより好ましく76μm以下が最も好ましい。鉄損を十分に低減するためには、外径D2の下限は30μmが好ましい。 In order to obtain low iron loss and low apparent power, the diameter D 1 of the recess 2 is preferably 20 to 50 μm, more preferably 20 to 40 μm, and most preferably 24 to 38 μm. If the diameter D 1 of the recess 2 is too large, the apparent power tends to increase due to the influence of stress and scattered matter. The outer diameter D 2 of the donut-shaped protrusion 3 is preferably 100μm or less, and most preferably not more preferably 76 .mu.m 80 [mu] m. In order to sufficiently reduce iron loss, the lower limit of the outer diameter D 2 is 30μm is preferred.

凹部列の長手方向間隔は一般に2〜20 mmで良く、例えば3〜10 mmとするのが好ましい。幅方向凹部列では、凹部は間隔をあけて配列されていても、隣接する凹部が重複するように配列されていても良い。一般に幅方向凹部列における凹部の数密度は2〜25個/mmであり、好ましくは 4〜20個/mmである。   The interval in the longitudinal direction of the recess rows may generally be 2 to 20 mm, for example, preferably 3 to 10 mm. In the width direction recessed part row | line | column, even if the recessed part is arranged at intervals, the adjacent recessed part may be arranged so that it may overlap. In general, the number density of the recesses in the width direction recess array is 2 to 25 / mm, preferably 4 to 20 / mm.

[4] 巻磁心
アモルファス合金薄帯を積層又は巻回してなる磁心がある。単板を積層した磁心では単板試料を用いた鉄損P(W/kg)及び皮相電力S(VA/kg)の測定で磁区細分化の効果を確認できる。巻磁心においても同様の効果があると言えるが、巻磁心では曲げが存在することにより薄帯に応力が生じ、単板と異なる磁区構造になると考えられる。磁気特性の鉄損は下式で表される。
P
= Ph + Pe = Ph + (Pce + Pae)
ここで、Phはヒステリシス損失、Peは渦電流損失、Pceは古典的渦電流損失、Paeは異常渦電流損失である。渦電流損失Peは、材料の物性値で決定される古典的渦電流損失Pceと磁区構造に起因する異常渦電流損失Paeで構成され、上述のような凹部が形成されたアモルファス合金薄帯では磁区が細分化されることにより、異常渦電流損失Paeが約70%減少し、結果的に鉄損Pは約30%低下する。
[4] Winding core There is a magnetic core formed by laminating or winding amorphous alloy ribbons. In the magnetic core in which single plates are laminated, the effect of magnetic domain subdivision can be confirmed by measuring the iron loss P (W / kg) and the apparent power S (VA / kg) using a single plate sample. Although it can be said that the same effect is obtained in the wound core, it is considered that stress is generated in the ribbon due to the presence of bending in the wound core, resulting in a magnetic domain structure different from that of the single plate. The iron loss of magnetic properties is expressed by the following formula.
P
= Ph + Pe = Ph + (Pce + Pae)
Here, Ph is hysteresis loss, Pe is eddy current loss, Pce is classical eddy current loss, and Pae is abnormal eddy current loss. The eddy current loss Pe is composed of the classic eddy current loss Pce determined by the material properties and the abnormal eddy current loss Pae due to the magnetic domain structure. Is subdivided, the abnormal eddy current loss Pae is reduced by about 70%, and as a result, the iron loss P is reduced by about 30%.

皮相電力Sは、アモルファス合金薄帯をある磁束密度まで励磁するために必要な外部磁場Hに関係し、磁歪が大きいアモルファス合金薄帯の場合、騒音の大きさと密接に関係するので皮相電力は小さいほうが望ましい。図7に巻磁心における凹部有無とヒステリシスループの関係を示す。鉄損はループに囲まれた面積に対応し、皮相電力はループの横軸である磁場Hの最大値に関係する。ここで凹部を形成しないループに対し(従来例)、凹部を形成したループの幅は狭くなっている。即ち、適正なレーザ照条件で本発明の凹部を形成したアモルファス合金薄帯では、鉄損Pを構成する異常渦電流損失Paeのみが変化を示し減少するため、ヒステリシスループに囲まれた面積は横方向(x軸方向)に狭くなる。よって、励磁させるために必要な外部磁場が低下するので皮相電力も低下する。一例として本発明の凹部が形成されたものでは、鉄損Pが約30%低下したとき、皮相電力は約20%低下した。一方、本発明外の凹部が形成された場合(比較例)は、鉄損を構成する異常渦電流損失Paeは減少するが、同時にヒステリシス損失Phが上昇するため、ヒステリシスループの飽和性が低下し、励磁させるために必要な外部磁場が増加し、結果皮相電力も増加する。一例として本発明外の凹部では、鉄損Pは約30%低下したが、皮相電力は約10倍に増加した。   The apparent power S is related to the external magnetic field H required to excite the amorphous alloy ribbon to a certain magnetic flux density. In the case of an amorphous alloy ribbon with a large magnetostriction, the apparent power is small because it is closely related to the noise level. Is preferable. FIG. 7 shows the relationship between the presence or absence of a recess in the wound magnetic core and the hysteresis loop. The iron loss corresponds to the area surrounded by the loop, and the apparent power is related to the maximum value of the magnetic field H that is the horizontal axis of the loop. Here, the width of the loop in which the concave portion is formed is narrower than the loop in which the concave portion is not formed (conventional example). That is, in the amorphous alloy ribbon in which the concave portion of the present invention is formed under appropriate laser irradiation conditions, only the abnormal eddy current loss Pae constituting the iron loss P changes and decreases, so that the area surrounded by the hysteresis loop is horizontal. It becomes narrower in the direction (x-axis direction). As a result, the external magnetic field required for excitation is reduced, and the apparent power is also reduced. As an example, in the case where the recess of the present invention was formed, when the iron loss P was reduced by about 30%, the apparent power was reduced by about 20%. On the other hand, when a recess outside the present invention is formed (comparative example), the abnormal eddy current loss Pae constituting the iron loss is reduced, but the hysteresis loss Ph is increased at the same time, so that the saturation of the hysteresis loop is lowered. As a result, the external magnetic field required for excitation increases and, as a result, the apparent power also increases. As an example, in the recesses outside the present invention, the iron loss P decreased by about 30%, but the apparent power increased by about 10 times.

そして、本発明の凹部を形成したアモルファス合金薄帯を巻回した巻磁心では、突状部を外側に巻くか内側に巻くかで磁区構造に違いが現れる。この違いが鉄損や皮相電力の低減に効果があると言える。この点を図8〜図11を用いて説明する。図8(a)は凹部を形成する前の薄帯をカー効果磁区観察顕微鏡によって観察した磁区構造を示し、(b)はその模式図である。図9(a)は凹部を形成した後の同じく磁区構造を示し、(b)はその概略模式図である。図10は凹部を形成した面を外側に巻いた場合の作用を説明する模式図、図11は凹部を形成した面を内側に巻いた場合の作用を説明する模式図である。
さて、変圧器用鉄心のように薄帯の長手方向へ磁場を印加しながら熱処理を行ったアモルファス合金薄帯の磁区は、図8に示すように180°磁壁を挟んで幅の広い磁区30が反平行に薄帯の長手方向へ生成されている。ここに図9(a)に示すように本発明の凹部2を形成すると、凹部2を形成したことによる凹部周辺の残留応力により、磁区が細分化され幅の狭い反平行の磁区31に分割される。このとき、凹部2の周辺には凹部形成時に生じたと考えられる応力により、細かい筋状の磁区32が生成されていることが分かった。これら筋状磁区32は幅の狭い磁区31とは磁化方向が異なり還流磁区のような働きをしていると考えられる。即ち、図9(b)に示すように幅の狭い磁区31が180°磁壁を挟んで反平行に並んでおり、凹部周辺にはこれら磁区31とは違う方向を向いた複数の筋状磁区32が存在しているのである。このような薄帯について、凹部を形成したレーザ照射面を外側にして巻くと薄帯表面には曲率による張力が生じるため、磁歪が正であるアモルファス合金薄帯(ナノ結晶合金薄帯も同様)では、磁化が張力のかかる方向である薄帯の長手方向へ揃う傾向があるため、筋状磁区32の磁化成分は、磁区31と同じ方向へ揃う傾向を示す。このため、図10に示すように筋状磁区は32sと小さくなりアモルファス合金薄帯の飽和性が向上し、皮相電力や鉄損が低下すると考えている。一方、凹部を形成した面を内側にして巻いた場合は、薄帯の内側では曲げによる圧縮応力が存在するため、磁化は張力のかかる方向と垂直の方向へ揃う傾向を示し、筋状磁区32はさらに磁区31から逸脱する傾向を示し、図11に示すように筋状磁区は32bと大きくなる。その結果アモルファス合金薄帯の飽和性が低下し、皮相電力や鉄損が増加すると考えている。
以上のことより、上記凹部を形成した軟磁性アモルファス合金薄帯を凹部側の面が外側になるようにして巻回した巻磁心は、鉄損と皮相電力をより低減できる。また、ラミネーションファクタLFも高い巻磁心となる。
And in the wound magnetic core wound with the amorphous alloy ribbon in which the concave portion of the present invention is wound, a difference appears in the magnetic domain structure depending on whether the protruding portion is wound outward or inward. It can be said that this difference is effective in reducing iron loss and apparent power. This point will be described with reference to FIGS. FIG. 8A shows a magnetic domain structure obtained by observing the ribbon before forming the concave portion with a Kerr effect magnetic domain observation microscope, and FIG. 8B is a schematic diagram thereof. FIG. 9A shows the same magnetic domain structure after forming the recess, and FIG. 9B is a schematic diagram thereof. FIG. 10 is a schematic diagram for explaining the operation when the surface on which the concave portion is formed is wound outward, and FIG. 11 is a schematic diagram for explaining the operation when the surface on which the concave portion is formed is wound inside.
As shown in FIG. 8, the magnetic domain 30 of the amorphous alloy ribbon that is heat-treated while applying a magnetic field in the longitudinal direction of the ribbon, such as a transformer iron core, has a wide magnetic domain 30 across the 180 ° domain wall. Parallel to the longitudinal direction of the ribbon. When the concave portion 2 of the present invention is formed here as shown in FIG. 9A, the magnetic domain is subdivided and divided into narrow antiparallel magnetic domains 31 by the residual stress around the concave portion due to the formation of the concave portion 2. The At this time, it was found that fine streak-like magnetic domains 32 were generated around the recess 2 due to the stress that was considered to have occurred when the recess was formed. It is considered that these streak magnetic domains 32 are different in magnetization direction from the narrow magnetic domain 31 and function as a reflux magnetic domain. That is, as shown in FIG. 9B, narrow magnetic domains 31 are arranged in antiparallel with a 180 ° domain wall in between, and a plurality of streak magnetic domains 32 oriented in a direction different from these magnetic domains 31 are disposed around the recess. There exists. When such a ribbon is wound with the laser-irradiated surface on which the concave portion is formed facing outward, a tension due to curvature is generated on the ribbon surface, so the amorphous alloy ribbon with positive magnetostriction (the same applies to the nanocrystalline alloy ribbon) Then, since the magnetization tends to be aligned in the longitudinal direction of the ribbon, which is the direction in which the tension is applied, the magnetization component of the streak magnetic domain 32 tends to be aligned in the same direction as the magnetic domain 31. For this reason, as shown in FIG. 10, the streak magnetic domain becomes as small as 32 s, and the saturation of the amorphous alloy ribbon is improved, and the apparent power and iron loss are considered to decrease. On the other hand, when wound with the concave surface inside, there is a compressive stress due to bending inside the ribbon, so the magnetization tends to align in the direction perpendicular to the direction in which the tension is applied. Further shows a tendency to deviate from the magnetic domain 31, and as shown in FIG. 11, the streak magnetic domain becomes as large as 32b. As a result, the saturation of the amorphous alloy ribbon is lowered, and apparent power and iron loss are increased.
From the above, a wound magnetic core obtained by winding the soft magnetic amorphous alloy ribbon with the recesses so that the surface on the recess side is on the outside can further reduce the iron loss and the apparent power. The lamination factor LF also has a high winding core.

本発明を以下の実施例によりさらに詳細に説明するが、本発明はこれらに限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

(実施例1)
11.5原子%のB、8.5原子%のSi、残部Fe及び不可避不純物からなる組成を有する幅5 mm及び厚さ23μmのアモルファス合金薄帯を大気中の単ロール法により作製した。この合金薄帯の波長1000 nmの光に対する自由凝固面の反射率Rは68.3%であった。このアモルファス合金薄帯の自由凝固面に、図1に示すようにファイバーレーザ10からガルバノスキャナ(ミラー)14を介して、波長1065 nm、パルス幅550 ns及びビーム径90μmのパルスレーザ光を2.5
J/cm2の照射エネルギー密度で走査し、図3に示すような幅方向の凹部列を形成した。幅方向の凹部列における凹部の数密度は2個/mmであり、凹部列の長手方向間隔DLは5 mmであった。凹部及びその周囲の環状突状部のサイズは以下の通りであった。
凹部の直径D1:50μm
深さt1:1.2μm
環状突状部の形状:滑らかな表面及び輪郭のドーナツ状
外径D2:80μm
高さt2:0.4μm
幅W:15μm
t1 /T:0.05
t (=t1 + t2)/T:0.07
Example 1
An amorphous alloy ribbon having a composition of 11.5 atomic% B, 8.5 atomic% Si, the balance Fe, and inevitable impurities and having a width of 5 mm and a thickness of 23 μm was prepared by a single roll method in the atmosphere. The reflectivity R of the free solidified surface of this alloy ribbon with respect to light having a wavelength of 1000 nm was 68.3%. As shown in FIG. 1, 2.5 mm of pulse laser light having a wavelength of 1065 nm, a pulse width of 550 ns, and a beam diameter of 90 μm is passed through the galvano scanner (mirror) 14 on the free solidification surface of the amorphous alloy ribbon.
Scanning was performed at an irradiation energy density of J / cm 2 to form a row of recesses in the width direction as shown in FIG. The number density of the recesses in the width direction of the concave portion rows is two / mm, longitudinal spacing D L of the concave portion rows was 5 mm. The size of the recess and the surrounding annular protrusion was as follows.
Concave diameter D 1 : 50 μm
Depth t 1 : 1.2 μm
Annular shape: Donut shape with smooth surface and contour
Outer diameter D 2: 80μm
Height t 2 : 0.4 μm
Width W: 15μm
t 1 / T: 0.05
t (= t 1 + t 2 ) / T: 0.07

凹部及びその周囲の環状突状部の顕微鏡写真を図4に示す。図から明らかなように、環状突状部はドーナツ状であり、レーザ光の照射により溶解した合金の飛散物が実質的にない滑らかな表面を有していた。また透過電子顕微鏡観察の結果、凹部及びドーナツ状突状部に結晶相は認められなかった。これから、凹部及びドーナツ状突状部がアモルファス相からなることが確認された。   FIG. 4 shows a photomicrograph of the recess and the surrounding annular protrusion. As is apparent from the figure, the annular protrusion has a donut shape, and had a smooth surface substantially free from scattered alloy material melted by laser light irradiation. As a result of observation with a transmission electron microscope, no crystal phase was observed in the recesses and the donut-shaped protrusions. From this, it was confirmed that the recesses and the donut-shaped protrusions consist of an amorphous phase.

(実施例2)
実施例1と同じアモルファス合金薄帯に対して、波長1065 nm、パルス幅500 ns及びビーム径60μmのレーザ光の照射エネルギー密度を変えることにより、種々の高さの環状突状部と凹部深さを有する凹部の列を形成した。図5はレーザ光の照射エネルギー密度と環状突状部の高さt2との関係を示し、図6は同じレーザ光の照射エネルギー密度と環状突状部の外径D2との関係を示す。照射エネルギー密度が増大するにつれて、凹部2は深くなり、かつ環状突状部3は外径D2が拡大するとともに高くなり、溶融合金の飛散物(スプラッシュ)も多くなった。照射エネルギー密度が5 J/cm2以下の場合に、環状突状部3はドーナツ状であり、2μm以下の高さt2及び90μm以下の外径D2を有していた。勿論、ドーナツ状突状部の高さt2及び外径D2はレーザ光の他の照射条件(パルス幅等)によっても変化する。
(Example 2)
By changing the irradiation energy density of laser light having a wavelength of 1065 nm, a pulse width of 500 ns, and a beam diameter of 60 μm for the same amorphous alloy ribbon as in Example 1, annular projections and recess depths of various heights were obtained. A row of recesses having was formed. FIG. 5 shows the relationship between the irradiation energy density of the laser beam and the height t 2 of the annular projection, and FIG. 6 shows the relationship between the irradiation energy density of the same laser beam and the outer diameter D 2 of the annular projection. . As the irradiation energy density increased, the recess 2 became deeper and the annular protrusion 3 became higher as the outer diameter D 2 increased, and the amount of splashes (splash) of the molten alloy also increased. When the irradiation energy density was 5 J / cm 2 or less, the annular protrusion 3 was doughnut-shaped and had a height t 2 of 2 μm or less and an outer diameter D 2 of 90 μm or less. Of course, the height t 2 and the outer diameter D 2 of the doughnut-shaped protrusion change depending on other irradiation conditions (pulse width, etc.) of the laser light.

(実施例3)
表1に示す組成の合金溶湯から、単ロール法により種々の厚さを有する幅5 mmのアモルファス合金薄帯1〜24及び27〜33(比較例)と、ナノ結晶合金薄帯25、26及び34(比較例)を作製し、各合金薄帯の厚さT及び波長1000 nmの光に対する自由凝固面の反射率Rを測定した。次に、各合金薄帯の自由凝固面に、図1に示すようにファイバーレーザ10からガルバノスキャナ(ミラー)14を介して、波長1065 nm、パルス幅500 ns及びビーム径60μmのパルスレーザ光を5 J/cm2以下の照射エネルギー密度で走査し、5 mmの長手方向間隔で幅方向の凹部列を形成した。凹部列における凹部の数密度は4個/mmであった。凹部を形成した各合金薄帯について、凹部の直径D1及び深さt1、及び環状突状部の外径D2、高さt2及び幅Wを複数の凹部列で測定し、平均した。
(Example 3)
From the molten alloy having the composition shown in Table 1, 5 mm wide amorphous alloy ribbons 1 to 24 and 27 to 33 (comparative examples) having various thicknesses by a single roll method, nanocrystalline alloy ribbons 25 and 26, and 34 (Comparative Example) was prepared, and the thickness T of each alloy ribbon and the reflectance R of the free solidified surface with respect to light having a wavelength of 1000 nm were measured. Next, pulse laser light having a wavelength of 1065 nm, a pulse width of 500 ns, and a beam diameter of 60 μm is applied to the free solidification surface of each alloy ribbon through a galvano scanner (mirror) 14 as shown in FIG. Scanning was performed at an irradiation energy density of 5 J / cm 2 or less, and concave rows in the width direction were formed at intervals of 5 mm in the longitudinal direction. The number density of the concave portions in the concave row was 4 / mm. For each alloy ribbon that formed the recess, the diameter D 1 and depth t 1 of the recess, and the outer diameter D 2 , height t 2 and width W of the annular projection were measured and averaged over a plurality of recess rows. .

凹部を形成した各合金薄帯を120 mmの長さに切断し、アモルファス合金薄帯については長手方向に1.6 kA/mの磁界を印加しながら330〜370℃で1時間の熱処理を行い、単板試料の50 Hz及び1.3 Tにおける鉄損P(W/kg)及び皮相電力S(VA/kg)を測定した。ナノ結晶合金薄帯については長手方向に1.5 kA/mの磁界を印加しながら410℃で1時間の熱処理を行い、単板試料の50 Hz及び1.55 Tにおける鉄損P(W/kg)及び皮相電力S(VA/kg)を測定した。また凹部を形成した20枚の合金薄帯片からなる積層体を形成し、ラミネーションファクタLFを測定した。これらの測定結果を表1〜表3に示す。尚、表中の*は本発明の範囲外である。(1)
t=t1+t2 (2)「王冠状」は、環状突状部に溶融合金の飛散物が存在することを意味する。
Each alloy ribbon with recesses was cut to a length of 120 mm, and the amorphous alloy ribbon was heat treated at 330-370 ° C for 1 hour while applying a magnetic field of 1.6 kA / m in the longitudinal direction. The iron loss P (W / kg) and apparent power S (VA / kg) at 50 Hz and 1.3 T of the plate sample were measured. The nanocrystalline alloy ribbon was heat-treated at 410 ° C for 1 hour while applying a magnetic field of 1.5 kA / m in the longitudinal direction, and the iron loss P (W / kg) and appearance of the single plate sample at 50 Hz and 1.55 T Electric power S (VA / kg) was measured. In addition, a laminate composed of 20 alloy strips having recesses was formed, and the lamination factor LF was measured. These measurement results are shown in Tables 1 to 3. In the table, * is outside the scope of the present invention. (1)
t = t 1 + t 2 (2) “Crown” means that molten alloy scattered matter exists in the annular protrusion.

表1〜表3によれば、凹部の深さt1と薄帯の厚さTとの比t1/Tが0.025〜0.18の範囲内にあるとき、凹部の周囲に形成される環状突状部は合金の飛散物が実質的にない滑らかな表面を有するドーナツ状であって、その高さt2は2.0μm以下であり、かつ凹部の直径D1は50μm以下、特に40μm以下であった。またドーナツ状突状部の高さt2が2.0μm以下、特に0.3〜1.8μmの場合に、実質的に皮相電力Sの増大なしに低鉄損を達成することができた。
また、アモルファス合金薄帯が40μmと厚い場合には、凹部の深さt1が0.8μmと小さいと、t1/Tが0.02(下限の0.025より小さい)で、鉄損Pが十分に低減されなかった(サンプル27)。サンプル23及び24ではアモルファス合金薄帯の厚さTに対する凹部の深さt1の比t1/Tが0.055及び0.038であり、鉄損Pは0.09
W/kgと比較的大きかった。これから、アモルファス合金薄帯の厚さTが30μm、特に35μmを超えるとt1/Tが0.025〜0.18の範囲内にあっても鉄損Pの低減効果が鈍る傾向がある。また、サンプル25、26では合金薄帯の厚さTに対する凹部の深さt1の比t1/Tが0.13及び0.12であり、凹部の周囲に形成される環状突状部はドーナツ状であって、その高さt2は2.0μm以下であった。ナノ結晶材では結晶相が存在することにより結晶磁気異方性が存在し、鉄損Pは0.28 W/kg程度、皮相電力Sは0.34VA/Kgとアモルファス合金薄帯に比べると大きい値を示している。しかし、本発明の範囲外の凹部(サンプル34)ではそれよりも大きな鉄損Pと皮相電力Sを示しており、本発明の凹部の効果は認められる。
以上の結果から、本発明の条件を満たす軟磁性合金薄帯を巻磁心に用いると、鉄損P及び皮相電力Sを低減できる。
According to Tables 1 to 3, when the ratio t 1 / T between the depth t 1 of the recess and the thickness T of the ribbon is in the range of 0.025 to 0.18, the annular protrusion formed around the recess The portion is a donut shape having a smooth surface substantially free of scattered alloy, the height t 2 is 2.0 μm or less, and the diameter D 1 of the recess is 50 μm or less, particularly 40 μm or less. . The following height t 2 is 2.0μm donuts protrusion, especially in the case of 0.3~1.8Myuemu, substantially without increasing the apparent power S can achieve low core loss.
In addition, when the amorphous alloy ribbon is as thick as 40 μm, if the depth t 1 of the recess is as small as 0.8 μm, t 1 / T is 0.02 (less than the lower limit of 0.025), and the iron loss P is sufficiently reduced. None (Sample 27). In Samples 23 and 24, the ratio t 1 / T of the depth t 1 of the recess to the thickness T of the amorphous alloy ribbon is 0.055 and 0.038, and the iron loss P is 0.09.
W / kg was relatively large. From this, when the thickness T of the amorphous alloy ribbon exceeds 30 μm, particularly 35 μm, the effect of reducing the iron loss P tends to be dull even if t 1 / T is in the range of 0.025 to 0.18. In Samples 25 and 26, the ratio t 1 / T of the depth t 1 of the recess to the thickness T of the alloy ribbon is 0.13 and 0.12, and the annular protrusion formed around the recess has a donut shape. The height t 2 was 2.0 μm or less. Nanocrystalline materials have magnetocrystalline anisotropy due to the presence of crystalline phases, iron loss P is about 0.28 W / kg, and apparent power S is 0.34 VA / Kg, which is a large value compared to amorphous alloy ribbons. ing. However, the recess (sample 34) outside the scope of the present invention shows a larger iron loss P and apparent power S, and the effect of the recess of the present invention is recognized.
From the above results, when a soft magnetic alloy ribbon that satisfies the conditions of the present invention is used for the wound magnetic core, the iron loss P and the apparent power S can be reduced.

(実施例4)
変圧器鉄心用のため、11原子%のB、9原子%のSi、残部Fe及び不可避不純物からなる組成を有する幅25 mm及び厚さ23μmのアモルファス合金薄帯を大気中の単ロール法により作製した。このアモルファス合金薄帯の自由面またはロール面に、図1に示すようにファイバーレーザ10からガルバノスキャナ(ミラー)14を介して、波長1065 nm、パルス幅500 ns及びビーム径60μmのパルスレーザ光を2.5 J/cm2の照射エネルギー密度で走査し、図3に示すような幅方向の凹部列を形成した。幅方向の凹部列における凹部の数密度は13.3個/mmで行った。
Example 4
For transformer cores, an amorphous alloy ribbon with a width of 25 mm and a thickness of 23 μm with a composition consisting of 11 atomic% B, 9 atomic% Si, the balance Fe and inevitable impurities is produced by the single roll method in the atmosphere. did. As shown in Fig. 1, a pulse laser beam with a wavelength of 1065 nm, a pulse width of 500 ns, and a beam diameter of 60 µm is applied to the free surface or roll surface of this amorphous alloy ribbon via a galvano scanner (mirror) 14 as shown in Fig. 1. Scanning was performed at an irradiation energy density of 2.5 J / cm 2 to form a recess array in the width direction as shown in FIG. The number density of the recesses in the recess array in the width direction was 13.3 / mm.

環状突状部はドーナツ状であり、レーザ光の照射により溶解した合金の飛散物が実質的にない滑らかな表面を有していた。ドーナツ状突状部の高さt2が0.5〜2μm、凹部の深さt1と薄帯の厚さTとの比t1/Tが0.025〜0.18の範囲内にあることが確認された。また、透過電子顕微鏡観察の結果、凹部及びドーナツ状突状部に結晶相は認められなかった。これから、凹部及びドーナツ状突状部がアモルファス相からなることが確認された。 The annular projecting portion was a donut shape, and had a smooth surface substantially free of scattered alloy melted by irradiation with laser light. It was confirmed that the height t 2 of the doughnut-shaped protrusion was 0.5 to 2 μm, and the ratio t 1 / T between the depth t 1 of the recess and the thickness T of the ribbon was in the range of 0.025 to 0.18. Further, as a result of observation with a transmission electron microscope, no crystal phase was observed in the recesses and the donut-shaped protrusions. From this, it was confirmed that the recesses and the donut-shaped protrusions consist of an amorphous phase.

次に、アモルファス合金薄帯の自由面またはロール面に形成した凹部側の面の巻き方を内巻と外巻きと変え、計4種類の巻磁心(外径74mm、内径70mm)を作製した。また、比較のため同じアモルファス合金薄帯であるが凹部を形成していない巻磁心(外径74mm、内径70mm)も作製した。そして、夫々の巻磁心に対し、磁路長手方向に1.5kA/mの磁界を印加しながら370℃で1時間の熱処理を行った後、これら巻磁心の鉄損P(W/kg)及び皮相電力S(VA/kg)を測定した。   Next, the winding method of the surface on the concave side formed on the free surface or roll surface of the amorphous alloy ribbon was changed between inner winding and outer winding, and a total of four types of wound cores (outer diameter 74 mm, inner diameter 70 mm) were produced. For comparison, a wound magnetic core (outer diameter 74 mm, inner diameter 70 mm), which was the same amorphous alloy ribbon but was not formed with a recess, was also produced. Each core was heat treated at 370 ° C. for 1 hour while applying a magnetic field of 1.5 kA / m in the longitudinal direction of the magnetic path, and then the core loss P (W / kg) and the apparent Electric power S (VA / kg) was measured.

鉄損P(W/kg)及び皮相電力S(VA/kg)の測定手段は以下の通りである。
巻磁心の一次側コイルに70巻、二次側コイルに30巻し、東英工業(株)製交流磁気測定機TWM-18SRにより、正弦波励磁で測定した。磁場検出はシャント法により励磁電流から行った。以上により鉄損と皮相電力を求めた。
The means for measuring the iron loss P (W / kg) and the apparent power S (VA / kg) are as follows.
The winding was wound with 70 turns on the primary coil of the wound core and 30 turns on the secondary coil, and was measured with a sine wave excitation using an AC magnetometer TWM-18SR manufactured by Toei Kogyo Co., Ltd. The magnetic field was detected from the excitation current by the shunt method. The iron loss and apparent power were obtained as described above.

図12は50 Hzにおける鉄損Pと磁束密度の波高値Bmとの関係を示す。波高値Bmとは、ある外部磁場Hを磁性体にかけたときの磁性体が示すヒステリシスループの高さである。尚、低周波変圧器の鉄心で主に使用される帯域は1.30T〜1.35Tとなっている。図12より凹部を形成することによって鉄損は一様に低下しており、鉄損低減の効果は高いことが分かる。ただ、鉄損については自由面とロール面による相違および外巻きと内巻による相違はほとんど見られないことが分かった。尚、図12、図13において、自由面に凹部を形成し凹部側を外巻きにした例は実線、自由面に凹部を形成し凹部側を内巻きは一点鎖線、ロール面に凹部を形成し凹部側を外巻きは二点鎖線、ロール面に凹部を形成し凹部側を内巻きは点線で示している。   FIG. 12 shows the relationship between the iron loss P at 50 Hz and the peak value Bm of the magnetic flux density. The crest value Bm is the height of a hysteresis loop indicated by the magnetic material when a certain external magnetic field H is applied to the magnetic material. In addition, the band mainly used in the iron core of the low frequency transformer is 1.30T to 1.35T. It can be seen from FIG. 12 that the iron loss is uniformly reduced by forming the recess, and the effect of reducing the iron loss is high. However, it was found that there was almost no difference in iron loss between the free surface and the roll surface and between the outer and inner windings. In FIGS. 12 and 13, an example in which a concave portion is formed on the free surface and the concave portion side is externally wound is a solid line, a concave portion is formed on the free surface, an inner winding is a one-dot chain line, and a concave portion is formed on the roll surface. The outer winding is indicated by a two-dot chain line on the concave side, the concave portion is formed on the roll surface, and the inner winding is indicated by a dotted line.

図13は50 Hzにおける皮相電力Sと磁束密度の波高値Bmとの関係を示す。図より、磁束密度の波高値Bmが1.3Tより小さい領域では、自由面とロール面および外巻きと内巻と共に凹部を設けない比較例よりも皮相電力は低下している。しかし自由面とロール面ともに凹部側の面を内側に巻いた場合は、皮相電力は徐々に上昇を始め1.4Tを越えたあたりで急上昇する。これに対し、本発明の凹部を形成した面を外巻きに巻いた場合は、測定領域全域に渡り皮相電力は比較例よりも低い値を維持している。1.30T〜1.35Tの帯域を注目しても本発明による巻磁心の皮相電力が最も低いことが分かる。   FIG. 13 shows the relationship between the apparent power S at 50 Hz and the peak value Bm of the magnetic flux density. From the figure, in the region where the peak value Bm of the magnetic flux density is smaller than 1.3T, the apparent power is lower than that of the comparative example in which the concave portion is not provided together with the free surface, the roll surface, the outer winding and the inner winding. However, when both the free surface and the roll surface are wound on the concave side, the apparent power starts to gradually increase and rapidly rises above 1.4T. On the other hand, when the surface on which the concave portion of the present invention is formed is wound around the outer winding, the apparent power is kept lower than that in the comparative example over the entire measurement region. It can be seen that the apparent power of the wound core according to the present invention is the lowest even when attention is paid to the band of 1.30T to 1.35T.

図14は、本発明の巻磁心であって各照射エネルギー密度における巻磁心の鉄損Pと凹部の数密度n(個/mm)との関係を示す。図14によるとnが増加すると鉄損Pは減少するが、エネルギー密度が大きいほど減少の割合が大きかった。ただし数密度が高くなるとその差は縮まることが分かる。これは凹部の形成により磁区が細分化され、鉄損Pが低減するので、凹部の数密度nが少ないとき鉄損Pは比較的大きく、凹部の数密度nの増加に応じて鉄損Pは低減する。但し、凹部の数密度nが20超になると磁区の細分化効果が飽和し、鉄損Pは減少しにくくなると言える。   FIG. 14 shows the relationship between the core loss P of the wound magnetic core and the number density n (pieces / mm) of the concave core at each irradiation energy density in the wound magnetic core of the present invention. According to FIG. 14, the iron loss P decreases as n increases, but the rate of decrease increases as the energy density increases. However, it can be seen that the difference decreases as the number density increases. This is because the magnetic domains are subdivided by the formation of the recesses and the iron loss P is reduced, so that the iron loss P is relatively large when the number density n of the recesses is small, and the iron loss P is increased as the number density n of the recesses increases. To reduce. However, it can be said that when the number density n of the recesses exceeds 20, the subdivision effect of the magnetic domains is saturated and the iron loss P is hardly reduced.

図15は、同じく凹部の数密度n(個/mm)と皮相電力Sとの関係を示す。エネルギー密度が低い場合は、nの増加と共に皮相電力はほぼ減少する傾向を示す。エネルギー密度が高い場合は、nが増加すると皮相電力Sは一旦減少した後増加する傾向を示している。巻磁心とした場合、磁区細分化に際して付与された応力の大きさと巻磁心の曲率が皮相電力Sに対して大きな影響力を有すると考えられる。磁区細分化は鉄損Pの低減をもたらすので、皮相電力Sは鉄損Pの減少とともに減少するが、高エネルギー密度により形成された凹部の突状部は高く、また凹部は深い。この場合、引張応力により磁化方向が深さ方向にある磁区が形成され、皮相電力Sの上昇が比較的高くなる。そうすると鉄損Pの低減に伴う皮相電力Sの減少と応力付与に伴う皮相電力Sの上昇とが同時に起こる結果、鉄損Pが減少している間は皮相電力Sの上昇は抑えられるが、鉄損Pの減少が止まると皮相電力Sの増加が急に起こる。この傾向が図15に示されていると考える。よって、凹部の形態と応力付与の影響を加味して照射エネルギーを選択することが良い。   FIG. 15 also shows the relationship between the number density n (pieces / mm) of the recesses and the apparent power S. When the energy density is low, the apparent power tends to decrease as n increases. When the energy density is high, when n increases, the apparent power S tends to decrease and then increase. In the case of a wound magnetic core, it is considered that the magnitude of stress applied during magnetic domain subdivision and the curvature of the wound magnetic core have a great influence on the apparent power S. Since the magnetic domain refinement brings about a reduction in the iron loss P, the apparent power S decreases with a decrease in the iron loss P, but the protrusions of the recesses formed by the high energy density are high and the recesses are deep. In this case, a magnetic domain whose magnetization direction is in the depth direction is formed by the tensile stress, and the increase of the apparent power S is relatively high. As a result, a decrease in the apparent power S accompanying the reduction in the iron loss P and a rise in the apparent power S accompanying the stress application occur simultaneously. As a result, while the iron loss P is decreasing, the increase in the apparent power S is suppressed. When the loss P stops decreasing, the apparent power S increases suddenly. It is considered that this tendency is shown in FIG. Therefore, it is preferable to select the irradiation energy in consideration of the shape of the recess and the effect of applying stress.

(実施例5)
次に、実施例3の種々の高さt2を有する環状突状部を形成したアモルファス合金薄帯を用いた巻磁心とした。図16は、ラミネーションファクタLFと凹部のドーナツ状突状部の高さt2との関係を示す。ラミネーションファクタLF(占積率)は、薄帯積層体の断面積における薄帯の断面積の割合であり、1に近いほど積層体中に薄帯が占める割合が高い。LFが高い程軟磁性アモルファス合金薄帯を積層してなる磁心を小型化できる。図16から分かるように、ドーナツ状突状部の高さt2が2μmを超えると急激にラミネーションファクタLFが減少した。
(Example 5)
Next, a wound magnetic core using an amorphous alloy ribbon in which annular protrusions having various heights t2 in Example 3 were formed. FIG. 16 shows the relationship between the lamination factor LF and the height t 2 of the donut-shaped protrusion of the recess. The lamination factor LF (space factor) is the ratio of the cross-sectional area of the ribbon to the cross-sectional area of the ribbon laminate, and the closer to 1, the higher the percentage of the ribbon in the laminate. The higher the LF, the smaller the magnetic core formed by laminating soft magnetic amorphous alloy ribbons. As can be seen from FIG. 16, when the height t 2 of the donut-shaped protrusion exceeds 2 μm, the lamination factor LF rapidly decreases.

(実施例6)
変圧器鉄心用のため、14原子%のB、4原子%のSi、1.4原子%のCu、1原子%のNi、残部Fe及び不可避不純物からなる組成を有する幅25 mm及び厚さ約20μmのナノ結晶合金薄帯を大気中の単ロール法により作製した。このナノ結晶合金薄帯の自由面に、図1に示すようにファイバーレーザ10からガルバノスキャナ(ミラー)14を介して、波長1065 nm、パルス幅500 ns及びビーム径60μmのパルスレーザ光を2.5 J/cm2の照射エネルギー密度で走査し、図3に示すような幅方向の凹部列を形成した。幅方向の凹部列における凹部の数密度は13.3個/mmで行った。
(Example 6)
For transformer cores, a width of 25 mm and a thickness of about 20 μm with a composition consisting of 14 atomic% B, 4 atomic% Si, 1.4 atomic% Cu, 1 atomic% Ni, the balance Fe and inevitable impurities Nanocrystalline alloy ribbons were prepared by a single roll method in the atmosphere. As shown in Fig. 1, 2.5 J of pulse laser light with a wavelength of 1065 nm, a pulse width of 500 ns, and a beam diameter of 60 µm is passed through the galvano scanner (mirror) 14 on the free surface of this nanocrystalline alloy ribbon. Scanning was performed at an irradiation energy density of / cm 2 to form a widthwise recessed row as shown in FIG. The number density of the recesses in the recess array in the width direction was 13.3 / mm.

環状突状部はドーナツ状であり、レーザ光の照射により溶解した合金の飛散物が実質的にない滑らかな表面を有していた。ドーナツ状突状部の高さt2が1.3μm、凹部の深さt1と薄帯の厚さTとの比t1/Tが0.13の範囲内にあることが確認された。 The annular projecting portion was a donut shape, and had a smooth surface substantially free of scattered alloy melted by irradiation with laser light. It was confirmed that the height t 2 of the donut-shaped protrusion was 1.3 μm, and the ratio t 1 / T between the depth t 1 of the recess and the thickness T of the ribbon was in the range of 0.13.

次に、ナノ結晶合金薄帯の自由面に形成した凹部側の面の巻き方を内巻と外巻きと変え、計2種類の巻磁心(外径74mm、内径70mm)を作製した。また、比較のため同じナノ結晶合金薄帯であるが凹部を形成していない巻磁心(外径74mm、内径70mm)も作製した。そして、夫々の巻磁心に対し、磁路長手方向に1.5kA/mの磁界を印加しながら410℃で1時間の熱処理を行った後、これら巻磁心の鉄損P(W/kg)及び皮相電力S(VA/kg)を測定した。尚、熱処理後の軟磁性ナノ結合金薄帯の組織は、平均粒径25nmの微結晶粒が80体積%分散した組織であった。   Next, the method of winding the surface on the concave side formed on the free surface of the nanocrystalline alloy ribbon was changed between an inner winding and an outer winding, and a total of two types of winding cores (outer diameter 74 mm, inner diameter 70 mm) were produced. For comparison, a wound magnetic core (outer diameter 74 mm, inner diameter 70 mm), which was the same nanocrystalline alloy ribbon but was not formed with a recess, was also produced. Each core was heat-treated at 410 ° C. for 1 hour while applying a magnetic field of 1.5 kA / m in the longitudinal direction of the magnetic path, and then the core loss P (W / kg) and the apparent Electric power S (VA / kg) was measured. The structure of the soft magnetic nanobonded gold ribbon after the heat treatment was a structure in which 80% by volume of fine crystal grains having an average particle diameter of 25 nm were dispersed.

図17は50 Hzにおける鉄損Pと磁束密度の波高値Bmとの関係を示す。尚、低周波変圧器の鉄心で主に使用される帯域は1.5〜1.55Tとなっている。図17より凹部を形成することによって鉄損は一様に低下しており、鉄損低減の効果は高いことが分かる。また、ほぼ全帯域に亘って凹部を形成した面を内側に巻いた場合よりも外側に巻いた場合の方が鉄損が低下することが分かる。尚、図17、図18では、凹部を形成していない比較例を一点鎖線、凹部を形成した面を外巻きにした本発明例を実線、凹部を形成した面を内巻きにした例は点線で示している。   FIG. 17 shows the relationship between the iron loss P at 50 Hz and the peak value Bm of the magnetic flux density. In addition, the band mainly used in the iron core of the low frequency transformer is 1.5 to 1.55T. It can be seen from FIG. 17 that the iron loss is uniformly reduced by forming the recess, and the effect of reducing the iron loss is high. Further, it can be seen that the iron loss is reduced when the surface formed with the recesses over almost the entire band is wound outward than when it is wound inside. In FIGS. 17 and 18, the comparative example in which the concave portion is not formed is a one-dot chain line, the present invention example in which the surface on which the concave portion is formed is externally wound, the solid line, and the example in which the surface on which the concave portion is formed is internally wound is a dotted line Is shown.

図18は50 Hzにおける皮相電力Sと磁束密度の波高値Bmとの関係を示す。図18より、磁束密度の波高値Bmが1.55T以下の領域では、凹部を形成することによって僅かではあるが皮相電力は低下している。1.55Tを超えると皮相電力は上昇を始めるが、1.55〜1.6Tの領域において内巻きと外巻きの違いについて注目すると、内巻きに比べ僅かではあるが外巻きの方が低い値を示していることが分かる。以上より、ナノ結晶合金薄帯の場合は、巻き方の違いによる鉄損と皮相電力の低減効果は大きくはないものの、凹部を形成したことによる鉄損と皮相電力の低減効果及びラミネーションファクタLF(占積率)向上の効果はあるので、凹部を形成したナノ結晶合金薄帯を用いる上では当該凹部を形成した面を内巻きにするよりも外巻きに巻いた方が有利であると言える。   FIG. 18 shows the relationship between the apparent power S at 50 Hz and the peak value Bm of the magnetic flux density. As shown in FIG. 18, in the region where the peak value Bm of the magnetic flux density is 1.55 T or less, the apparent power is slightly reduced by forming the recess. Apparent power starts to rise when it exceeds 1.55T, but in the 1.55-1.6T region, paying attention to the difference between the inner winding and the outer winding, the outer winding is slightly lower than the inner winding. I understand that. From the above, in the case of the nanocrystalline alloy ribbon, the effect of reducing the iron loss and the apparent power due to the difference in winding method is not large, but the effect of reducing the iron loss and the apparent power due to the formation of the recess and the lamination factor LF ( Since there is an effect of improving the space factor, it can be said that it is more advantageous to wind the outer surface than the inner surface of the surface on which the concave portion is formed when using the nanocrystalline alloy ribbon having the concave portion.

本発明の巻磁心は、配電用トランス、高周波トランス、可飽和リアクトル、磁気スイッチ等に好適に用いられる。また、軟磁性合金薄帯を複数積層して積層体となし、これらの積層体をさらに積層して一旦積層構造としたのち、ステップラップやオーバラップ状に巻いた変圧器用の鉄心も本発明の巻磁心として適用できる。   The wound magnetic core of the present invention is suitably used for a distribution transformer, a high-frequency transformer, a saturable reactor, a magnetic switch, and the like. Also, a plurality of soft magnetic alloy ribbons are laminated to form a laminated body, and these laminated bodies are further laminated to form a laminated structure once. Then, an iron core for a transformer wound in a step wrap or an overlap is also provided in the present invention. It can be applied as a wound core.

Claims (6)

急冷凝固法により製造した軟磁性合金薄帯の表面にレーザ光により形成された凹部の幅方向の列を長手方向にほぼ所定間隔で有し、各凹部の周囲には2.0μm以下の高さt2の突状部を有し、かつ前記凹部の深さt1と前記薄帯の厚さTとの比t1/Tが0.025〜0.18の範囲内にあり、前記凹部を形成した面を外側にして巻いたことを特徴とする巻磁心。 The surface of the soft magnetic alloy ribbon manufactured by the rapid solidification method has rows in the width direction of the recesses formed by laser light at almost predetermined intervals in the longitudinal direction, and a height t of 2.0 μm or less around each recess has a second projecting portion, and is in the range ratio t 1 / T is 0.025 to 0.18 of the thickness T of the ribbon with a depth t 1 of the concave portion, an outer surface formed with the recess A wound magnetic core characterized by being wound. 前記突状部はドーナツ状突状部であり、前記ドーナツ状突状部はレーザ光の照射により溶解した合金の飛散物が実質的にない滑らかな表面を有していることを特徴とする請求項1に記載の巻磁心。 The projecting portion is a donut-shaped projecting portion, and the donut-shaped projecting portion has a smooth surface that is substantially free from scattered alloy material melted by laser light irradiation. Item 2. A wound core according to Item 1. 前記突状部の高さt2が0.5〜2.0μmであることを特徴とする請求項1又は2に記載の巻磁心。 3. The wound core according to claim 1, wherein a height t 2 of the protruding portion is 0.5 to 2.0 μm. 前記凹部の深さt1と薄帯の厚さTとの比t1/Tが0.03〜0.15の範囲内にあることを特徴とする請求項1〜3のいずれかに記載の巻磁心。 4. The wound magnetic core according to claim 1 , wherein a ratio t 1 / T between a depth t 1 of the recess and a thickness T of the ribbon is in a range of 0.03 to 0.15. 前記軟磁性合金薄帯の厚さTが30μm以下であることを特徴とする請求項1〜4のいずれかに記載の巻磁心。 5. The wound magnetic core according to claim 1, wherein a thickness T of the soft magnetic alloy ribbon is 30 μm or less. 前記凹部の深さt1と前記突状部の高さt2との合計tと前記薄帯の厚さTとの比t/Tが0.2以下であることを特徴とする請求項1〜5のいずれかに記載の巻磁心。 6. The ratio t / T between the total t of the depth t 1 of the concave portion and the height t 2 of the protruding portion and the thickness T of the ribbon is 0.2 or less, The wound magnetic core according to any one of the above.
JP2011180194A 2011-03-04 2011-08-22 Wound core Active JP6041181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011180194A JP6041181B2 (en) 2011-03-04 2011-08-22 Wound core

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011047658 2011-03-04
JP2011047658 2011-03-04
JP2011180194A JP6041181B2 (en) 2011-03-04 2011-08-22 Wound core

Publications (2)

Publication Number Publication Date
JP2012199506A true JP2012199506A (en) 2012-10-18
JP6041181B2 JP6041181B2 (en) 2016-12-07

Family

ID=47181405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011180194A Active JP6041181B2 (en) 2011-03-04 2011-08-22 Wound core

Country Status (1)

Country Link
JP (1) JP6041181B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084741A1 (en) * 2014-11-25 2016-06-02 日立金属株式会社 Amorphous alloy ribbon and method for manufacturing same
EP3243206A4 (en) * 2015-01-07 2018-07-11 Metglas, Inc. Magnetic core based on a nanocrystalline magnetic alloy background
CN112582148A (en) * 2019-09-30 2021-03-30 日立金属株式会社 Transformer device
US11230754B2 (en) 2015-01-07 2022-01-25 Metglas, Inc. Nanocrystalline magnetic alloy and method of heat-treatment thereof
CN114974782A (en) * 2021-02-19 2022-08-30 精工爱普生株式会社 Amorphous metal ribbon, method for producing amorphous metal ribbon, and magnetic core
US11802328B2 (en) 2019-06-28 2023-10-31 Proterial, Ltd. Fe-based amorphous alloy ribbon, iron core, and transformer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022127034A (en) 2021-02-19 2022-08-31 セイコーエプソン株式会社 Amorphous metal ribbon, method for manufacturing amorphous metal ribbon, and magnetic core

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161031A (en) * 1981-03-28 1982-10-04 Nippon Steel Corp Improving method for watt loss of thin strip of amorphous magnetic alloy
JPS60233804A (en) * 1984-05-04 1985-11-20 Nippon Steel Corp Improvement of magnetism in amorphous alloy thin film
JPH05267034A (en) * 1992-03-17 1993-10-15 Kawasaki Steel Corp Electromagnetic steel sheet for laminated core having excellent punchability and weldability
JPH1046252A (en) * 1996-08-05 1998-02-17 Nippon Steel Corp Production of superlow core loss grain oriented magnetic steel sheet
JP2002164230A (en) * 2000-11-28 2002-06-07 Nippon Steel Corp Low-noise electromagnetic steel sheet and laminated core
JP2007002334A (en) * 2005-05-09 2007-01-11 Nippon Steel Corp Low core loss grain-oriented electrical steel sheet and method for producing the same
JP2007258454A (en) * 2006-03-23 2007-10-04 Hitachi Metals Ltd Closed magnetic circuit core, and its manufacturing method
WO2011030907A1 (en) * 2009-09-14 2011-03-17 日立金属株式会社 Soft magnetic amorphous alloy ribbon, method for producing same, and magnetic core using same
JP2012087332A (en) * 2010-10-15 2012-05-10 Nippon Steel Corp Method for producing grain-oriented electromagnetic steel sheet

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161031A (en) * 1981-03-28 1982-10-04 Nippon Steel Corp Improving method for watt loss of thin strip of amorphous magnetic alloy
JPS60233804A (en) * 1984-05-04 1985-11-20 Nippon Steel Corp Improvement of magnetism in amorphous alloy thin film
JPH05267034A (en) * 1992-03-17 1993-10-15 Kawasaki Steel Corp Electromagnetic steel sheet for laminated core having excellent punchability and weldability
JPH1046252A (en) * 1996-08-05 1998-02-17 Nippon Steel Corp Production of superlow core loss grain oriented magnetic steel sheet
JP2002164230A (en) * 2000-11-28 2002-06-07 Nippon Steel Corp Low-noise electromagnetic steel sheet and laminated core
JP2007002334A (en) * 2005-05-09 2007-01-11 Nippon Steel Corp Low core loss grain-oriented electrical steel sheet and method for producing the same
JP2007258454A (en) * 2006-03-23 2007-10-04 Hitachi Metals Ltd Closed magnetic circuit core, and its manufacturing method
WO2011030907A1 (en) * 2009-09-14 2011-03-17 日立金属株式会社 Soft magnetic amorphous alloy ribbon, method for producing same, and magnetic core using same
JP2012087332A (en) * 2010-10-15 2012-05-10 Nippon Steel Corp Method for producing grain-oriented electromagnetic steel sheet

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084741A1 (en) * 2014-11-25 2016-06-02 日立金属株式会社 Amorphous alloy ribbon and method for manufacturing same
JPWO2016084741A1 (en) * 2014-11-25 2017-08-10 日立金属株式会社 Amorphous alloy ribbon and manufacturing method thereof
EP3243206A4 (en) * 2015-01-07 2018-07-11 Metglas, Inc. Magnetic core based on a nanocrystalline magnetic alloy background
US11230754B2 (en) 2015-01-07 2022-01-25 Metglas, Inc. Nanocrystalline magnetic alloy and method of heat-treatment thereof
US11264156B2 (en) 2015-01-07 2022-03-01 Metglas, Inc. Magnetic core based on a nanocrystalline magnetic alloy
US11802328B2 (en) 2019-06-28 2023-10-31 Proterial, Ltd. Fe-based amorphous alloy ribbon, iron core, and transformer
US11952651B2 (en) 2019-06-28 2024-04-09 Proterial, Ltd. Fe-based amorphous alloy ribbon, production method thereof, iron core, and transformer
CN112582148A (en) * 2019-09-30 2021-03-30 日立金属株式会社 Transformer device
CN114974782A (en) * 2021-02-19 2022-08-30 精工爱普生株式会社 Amorphous metal ribbon, method for producing amorphous metal ribbon, and magnetic core

Also Published As

Publication number Publication date
JP6041181B2 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
JP5440606B2 (en) Soft magnetic amorphous alloy ribbon, method for producing the same, and magnetic core using the same
JP6806279B2 (en) Fe-based amorphous alloy strips, iron cores, and transformers
JP6041181B2 (en) Wound core
JP6350516B2 (en) Winding core and manufacturing method thereof
JP7306509B2 (en) Method for producing Fe-based amorphous alloy ribbon
JP5656114B2 (en) Ultra-quenched Fe-based soft magnetic alloy ribbon and magnetic core
JP7494620B2 (en) Transformers
US20230026583A1 (en) Soft Magnetic Alloy Ribbon And Magnetic Core
JP2022086092A (en) Manufacturing method of laminated amorphous alloy ribbon holding spool, and manufacturing method of iron core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161027

R150 Certificate of patent or registration of utility model

Ref document number: 6041181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350