JP2012196591A - Subsystem for producing ultrapure water - Google Patents

Subsystem for producing ultrapure water Download PDF

Info

Publication number
JP2012196591A
JP2012196591A JP2011060592A JP2011060592A JP2012196591A JP 2012196591 A JP2012196591 A JP 2012196591A JP 2011060592 A JP2011060592 A JP 2011060592A JP 2011060592 A JP2011060592 A JP 2011060592A JP 2012196591 A JP2012196591 A JP 2012196591A
Authority
JP
Japan
Prior art keywords
water
subsystem
ultrapure water
membrane
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011060592A
Other languages
Japanese (ja)
Other versions
JP5842347B2 (en
Inventor
Takahiro Kawakatsu
孝博 川勝
Nagao Fukui
長雄 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2011060592A priority Critical patent/JP5842347B2/en
Priority to CN 201220101480 priority patent/CN202705158U/en
Publication of JP2012196591A publication Critical patent/JP2012196591A/en
Application granted granted Critical
Publication of JP5842347B2 publication Critical patent/JP5842347B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a subsystem for producing ultrapure water in which an adsorption device low in pressure loss is arranged at a rear stage of a UF membrane device (ultrafiltration membrane device).SOLUTION: The subsystem 3 producing ultrapure water from primary pure water includes at least: a UV device 13; a degasifier 15; an ion-exchange resin device 16; the UF membrane device 17; and the adsorption device 18 arranged at the rear stage of the UF membrane device and filled with a granular adsorbent with 1-3 mm of a grain size. In the subsystem 3 for producing ultrapure water, water passes through the adsorption device 18 by the pressure of water flowing out of the UF membrane device 17 without using a booster pump.

Description

本発明は、超純水の製造装置に設置されるサブシステムに関する。   The present invention relates to a subsystem installed in an ultrapure water production apparatus.

半導体製造プロセスなどにおいて、一次純水から超純水を製造するサブシステムにおいて、純水に溶け込んだ気体を除去する脱気装置、有機物を分解するUV装置、イオン性の物質を除去する電気再生式連続脱塩装置やイオン交換樹脂装置、微粒子を除去する膜(MFあるいはUF)装置が使用されている。   In a semiconductor manufacturing process, etc., in a subsystem that produces ultrapure water from primary pure water, a degassing device that removes gas dissolved in pure water, a UV device that decomposes organic matter, and an electric regeneration type that removes ionic substances A continuous desalting apparatus, an ion exchange resin apparatus, and a membrane (MF or UF) apparatus for removing fine particles are used.

そのようにして製造された超純水から微量に存在する不純物(特に金属イオン)をさらに除去するポリッシング装置として、プリーツ型イオン交換フィルターや、イオン交換樹脂塔が用いられている。このプリーツ型イオン交換フィルターは、不織布あるいは多孔質膜などの平膜をプリーツ型にしたものである。プリーツ型イオン交換フィルターは、圧力損失は小さいという特徴があるが、反面、膜厚が薄いため破過が早く寿命が短いと言う課題があった(特許文献1)。   A pleated ion exchange filter or an ion exchange resin tower is used as a polishing apparatus for further removing impurities (particularly metal ions) present in a trace amount from the ultrapure water produced as described above. This pleated ion exchange filter is a flat membrane such as a nonwoven fabric or a porous membrane made into a pleated shape. The pleated ion exchange filter has a feature that the pressure loss is small, but on the other hand, since the film thickness is thin, there is a problem that the breakthrough is quick and the life is short (Patent Document 1).

一方、イオン交換樹脂(粒径約500μm)が充填されたイオン交換樹脂塔には、圧力損失が大きいという課題がある。ポリッシング装置の圧力損失が大きいと、ユースポイントにおける着圧が低下するため、昇圧ポンプを使用する必要がある。   On the other hand, the ion exchange resin tower packed with the ion exchange resin (particle size of about 500 μm) has a problem that the pressure loss is large. When the pressure loss of the polishing apparatus is large, the pressure applied at the use point is lowered, so that it is necessary to use a booster pump.

特開2004−73924JP2004-73924

本発明は、圧力損失の低い吸着装置をUF膜装置(限外濾過膜装置)の後段に備えた超純水製造用サブシステムを提供することを目的とする。   An object of the present invention is to provide a sub-system for producing ultrapure water provided with an adsorption device having a low pressure loss at the subsequent stage of a UF membrane device (ultrafiltration membrane device).

請求項1の超純水製造用サブシステムは、一次純水から超純水を製造するサブシステムであって、少なくともUV装置、脱気装置、イオン交換樹脂装置、及びUF膜装置を備えた超純水製造用サブシステムにおいて、該UF膜装置の後段に、粒径1〜3mmの粒状吸着体を充填した吸着装置を有し、該UF膜装置からの流出水圧によって、昇圧ポンプポンプを用いることなく該吸着装置に通水が行われることを特徴とするものである。   The subsystem for producing ultrapure water according to claim 1 is a subsystem for producing ultrapure water from primary pure water, and is a supersystem including at least a UV device, a deaeration device, an ion exchange resin device, and a UF membrane device. In the pure water production subsystem, an adsorption device filled with a granular adsorbent having a particle size of 1 to 3 mm is provided at the subsequent stage of the UF membrane device, and a booster pump pump is used by the outflow water pressure from the UF membrane device. Without passing through, the water is passed through the adsorption device.

請求項2の超純水製造用サブシステムは、請求項1において、前記粒状吸着体はイオン交換基又はキレート基を有することを特徴とするものである。   The subsystem for producing ultrapure water according to claim 2 is characterized in that, in claim 1, the granular adsorbent has an ion exchange group or a chelate group.

請求項3の超純水製造用サブシステムは、請求項1又は2において、前記吸着装置の後段にさらにMF膜装置又はUF膜装置が設置されていることを特徴とするものである。   A sub-system for producing ultrapure water according to a third aspect is the sub-system according to the first or second aspect, wherein an MF membrane device or a UF membrane device is further installed downstream of the adsorption device.

本発明のサブシステムでは、UF膜装置の後段に、粒径1mm以上の粒状吸着体を充填した吸着装置を備えており、サブシステムから得られる超純水の水質が良好である。本発明では、吸着体の粒径が1mm以上であり、吸着装置の通水圧損が小さい。従って、昇圧ポンプを用いることなく、UF膜装置の流出水圧によって、該吸着装置に通水することができ、設備コストが安価となる。また、昇圧ポンプから発生する異物が超純水に混入することもない。   In the subsystem of the present invention, an adsorption device filled with a granular adsorbent having a particle diameter of 1 mm or more is provided in the subsequent stage of the UF membrane device, and the quality of ultrapure water obtained from the subsystem is good. In the present invention, the particle size of the adsorbent is 1 mm or more, and the water pressure loss of the adsorption device is small. Therefore, water can be passed through the adsorption device by the outflow water pressure of the UF membrane device without using a booster pump, and the equipment cost is reduced. Further, foreign matter generated from the booster pump is not mixed into the ultrapure water.

超純水製造装置のフロー図である。It is a flowchart of an ultrapure water manufacturing apparatus. 超純水製造装置のフロー図である。It is a flowchart of an ultrapure water manufacturing apparatus. 超純水製造装置のフロー図である。It is a flowchart of an ultrapure water manufacturing apparatus. 充填体の斜視図である。It is a perspective view of a filling body. 吸着装置の構成図である。It is a block diagram of an adsorption | suction apparatus. 吸着装置の構成図である。It is a block diagram of an adsorption | suction apparatus.

以下、図面を参照して実施の形態について説明する。   Hereinafter, embodiments will be described with reference to the drawings.

本発明のサブシステムは、UF膜装置の後段側に、粒径1〜3mmの吸着体を充填した吸着装置を設置したものである。このサブシステムを有する超純水製造装置の全体フローの一例を第1図〜第3図に示す。   In the subsystem of the present invention, an adsorption device filled with an adsorbent having a particle diameter of 1 to 3 mm is installed on the rear side of the UF membrane device. An example of the entire flow of the ultrapure water production apparatus having this subsystem is shown in FIGS.

第1図〜第3図の各超純水製造装置は、いずれも前処理システム1、一次純水システム2及びサブシステム3から構成される。   Each of the ultrapure water production apparatuses shown in FIGS. 1 to 3 includes a pretreatment system 1, a primary pure water system 2, and a subsystem 3.

凝集、加圧浮上(沈殿)、濾過装置等よりなる前処理システム1では、原水中の懸濁物質やコロイド物質の除去を行う。逆浸透(RO)膜分離装置、脱気装置及びイオン交換装置(混床式、2床3塔式又は4床5塔式)を備える一次純水システム2では原水中のイオンや有機成分の除去を行う。なお、RO膜分離装置では、塩類除去のほかにイオン性、コロイド性のTOCを除去する。イオン交換装置では、塩類除去のほかにイオン交換樹脂によって吸着又はイオン交換されるTOC成分を除去する。脱気装置(窒素脱気又は真空脱気)では溶存酸素の除去を行う。   In the pretreatment system 1 including agglomeration, pressurized flotation (precipitation), a filtration device, and the like, the suspended substances and colloid substances in the raw water are removed. In the primary pure water system 2 equipped with a reverse osmosis (RO) membrane separation device, a deaeration device, and an ion exchange device (mixed bed type, two-bed three-column type, or four-bed five-column type), ions and organic components in raw water are removed. I do. The RO membrane separation apparatus removes ionic and colloidal TOC in addition to removing salts. In the ion exchange device, in addition to removing salts, the TOC component adsorbed or ion exchanged by the ion exchange resin is removed. In the degassing device (nitrogen degassing or vacuum degassing), the dissolved oxygen is removed.

第1図の超純水製造装置では、このようにして得られた一次純水(通常の場合、TOC濃度2ppb以下の純水)を、サブタンク11、ポンプP、熱交換器12、UV酸化装置13、触媒式酸化性物質分解装置14、脱気装置15、混床式脱イオン装置(イオン交換装置)16、微粒子分離用UF膜装置17及び吸着装置18に順次に通水し、得られた超純水をユースポイント19に送る。吸着装置18は、粒径1〜3mm特に1〜1.5mmの吸着体を充填したものであり、通水圧損が小さい。そのため、UF膜装置17と吸着装置18との間に昇圧ポンプは設置されておらず、UF膜装置17からの流出水圧によって吸着装置18に通水される。   In the ultrapure water production apparatus of FIG. 1, the primary pure water thus obtained (usually pure water with a TOC concentration of 2 ppb or less) is used as a sub tank 11, a pump P, a heat exchanger 12, and a UV oxidation apparatus. 13. Catalytic oxidant decomposition device 14, deaeration device 15, mixed bed deionization device (ion exchange device) 16, particulate separation UF membrane device 17 and adsorption device 18 were sequentially passed through and obtained. Send ultrapure water to youth point 19. The adsorption device 18 is filled with an adsorbent having a particle diameter of 1 to 3 mm, particularly 1 to 1.5 mm, and has a small water pressure loss. Therefore, no booster pump is installed between the UF membrane device 17 and the adsorption device 18, and water is passed through the adsorption device 18 by the outflow water pressure from the UF membrane device 17.

UV酸化装置13としては、通常、超純水製造装置に用いられる185nm付近の波長を有するUVを照射するUV酸化装置、例えば低圧水銀ランプを用いたUV酸化装置を用いることができる。このUV酸化装置13で、一次純水中のTOCが有機酸、更にはCOに分解される。また、このUV酸化装置13では過剰に照射されたUVにより、水からHが発生する。 As the UV oxidizer 13, a UV oxidizer that irradiates UV having a wavelength near 185 nm, which is usually used in an ultrapure water production apparatus, for example, a UV oxidizer using a low-pressure mercury lamp can be used. This UV oxidation apparatus 13, primary pure water TOC is organic acid, further is decomposed into CO 2. Further, in the UV oxidizer 13, H 2 O 2 is generated from water due to the excessively irradiated UV.

UV酸化装置の処理水は、次いで触媒式酸化性物質分解装置14に通水される。触媒式酸化性物質分解装置14の酸化性物質分解触媒としては、酸化還元触媒として知られる貴金属触媒、例えば、金属パラジウム、酸化パラジウム、水酸化パラジウム等のパラジウム(Pd)化合物又は白金(Pt)、なかでも還元作用の強力なパラジウム触媒を好適に使用することができる。   The treated water of the UV oxidizer is then passed through the catalytic oxidant decomposer 14. Examples of the oxidant decomposition catalyst of the catalytic oxidant decomposition apparatus 14 include noble metal catalysts known as redox catalysts, such as palladium (Pd) compounds such as metal palladium, palladium oxide, palladium hydroxide, or platinum (Pt), Of these, a palladium catalyst having a strong reducing action can be preferably used.

この触媒式酸化性物質分解装置14により、UV酸化装置13で発生したH、その他の酸化性物質が触媒により効率的に分解除去される。そして、Hの分解により、水は生成するが、アニオン交換樹脂や活性炭のように酸素を生成させることは殆どなく、DO増加の原因とならない。 The catalytic oxidant decomposition device 14 efficiently decomposes and removes H 2 O 2 generated in the UV oxidizer 13 and other oxidants by the catalyst. Then, by decomposition of H 2 O 2, water is generated, almost no possible to produce oxygen as the anion exchange resin and activated carbon, do not cause DO increase.

触媒式酸化性物質分解装置14の処理水は、次いで脱気装置15に通水される。脱気装置15としては、真空脱気装置、窒素脱気装置や膜式脱気装置を用いることができる。この脱気装置15により、水中のDOやCOが効率的に除去される。 The treated water of the catalytic oxidant decomposition device 14 is then passed through the deaeration device 15. As the deaerator 15, a vacuum deaerator, a nitrogen deaerator, or a membrane deaerator can be used. This deaeration device 15 efficiently removes DO and CO 2 from the water.

脱気装置15の処理水は次いで混床式イオン交換装置16に通水される。混床式イオン交換装置16としては、アニオン交換樹脂とカチオン交換樹脂とをイオン負荷に応じて混合充填した非再生型混床式イオン交換装置を用いる。この混床式イオン交換装置16により、水中のカチオン及びアニオンが除去され、水の純度が高められる。   The treated water from the deaerator 15 is then passed through the mixed bed ion exchanger 16. As the mixed bed type ion exchange device 16, a non-regenerative type mixed bed type ion exchange device in which an anion exchange resin and a cation exchange resin are mixed and filled in accordance with an ion load is used. The mixed bed type ion exchange device 16 removes cations and anions in the water and increases the purity of the water.

混床式イオン交換装置16の処理水は次いでUF膜装置17に通水される。このUF膜装置17で水中の微粒子、例えば混床式イオン交換装置16からのイオン交換樹脂の流出微粒子等が除去され、次いで吸着装置18に通水される。   The treated water of the mixed bed ion exchange device 16 is then passed through the UF membrane device 17. In the UF membrane device 17, fine particles in water, for example, outflow fine particles of the ion exchange resin from the mixed bed ion exchange device 16, are removed, and then passed to the adsorption device 18.

吸着装置18は、カラム内に粒径1〜3mmの粒状吸着体、好ましくはイオン交換樹脂又はキレート樹脂が充填されたものである。この吸着装置18によって吸着処理されることにより、TOC、CO、DO、H、イオン性物質及び微粒子が高度に除去された高純度の超純水が得られる。また、吸着装置18は、充填粒子の粒径が大きく、通水圧損が小さいので、UF膜装置17と吸着装置18との間に昇圧ポンプが不要であり、設備コストが低く、また、昇圧ポンプからの異物混入もない。 The adsorption device 18 is a column in which a granular adsorbent having a particle diameter of 1 to 3 mm, preferably an ion exchange resin or a chelate resin, is packed. By performing the adsorption treatment by the adsorption device 18, high-purity ultrapure water from which TOC, CO 2 , DO, H 2 O 2 , ionic substances and fine particles are highly removed can be obtained. In addition, since the adsorption device 18 has a large particle size of the packed particles and a small water pressure loss, there is no need for a booster pump between the UF membrane device 17 and the adsorption device 18, and the equipment cost is low. There is no foreign matter mixed in.

なお、吸着体は、イオン除去を目的としたものである場合、イオン交換樹脂を用いる。イオン交換基としては、スルホン基、カルボキシル基、1〜4級アンモニウム基を挙げることができる。また、吸着体が中性溶質や有機物除去を目的としたものである場合、非荷電性官能基を付与した樹脂を用いる。イオン交換樹脂及びキレート樹脂を混合して用いることもできる。樹脂の基材としては、ポリスリスチレン、ポリオレフィン、ポリスルホンなどを挙げることができ、構造としてはゲル状、ポーラス状のものを挙げることができる。   When the adsorbent is intended to remove ions, an ion exchange resin is used. Examples of the ion exchange group include a sulfone group, a carboxyl group, and a primary to quaternary ammonium group. Further, when the adsorbent is intended to remove neutral solutes or organic substances, a resin provided with an uncharged functional group is used. An ion exchange resin and a chelate resin can also be mixed and used. Examples of the resin base material include polystyrene, polyolefin, polysulfone, and the like, and examples of the structure include gel and porous materials.

第1図の構成は本発明の超純水製造装置の一例であり、本発明の超純水製造装置は、従来の装置と同様に前処理システム、一次純水システム、サブシステムから構成され、その一連の構成単位装置のうちのサブシステムにおいて、UF膜装置17の後段に吸着装置18が設置されている限り、各種の機器を組み合わせることができる。例えば、第2図のように、UV酸化装置13からのUV照射処理水をそのまま混床式脱イオン装置16に導入してもよい。第3図のように、触媒式酸化性物質分解装置14の代わりにアニオン交換塔19を設置してもよい。   The configuration of FIG. 1 is an example of the ultrapure water production apparatus of the present invention. The ultrapure water production apparatus of the present invention is composed of a pretreatment system, a primary pure water system, and a subsystem in the same manner as the conventional apparatus. In the subsystem of the series of structural unit devices, various devices can be combined as long as the adsorption device 18 is installed in the subsequent stage of the UF membrane device 17. For example, as shown in FIG. 2, the UV irradiation treated water from the UV oxidizer 13 may be introduced into the mixed bed deionizer 16 as it is. As shown in FIG. 3, an anion exchange column 19 may be installed in place of the catalytic oxidant decomposition apparatus 14.

図示はしないが、混床式イオン交換装置の後にRO膜分離装置を設置しても良い。また、原水をpH4.5以下の酸性下、かつ、酸化剤存在下で加熱分解処理して原水中の尿素及び他のTOC成分を分解した後、脱イオン処理する装置を組み込むこともできる。UV酸化装置や混床式イオン交換装置、脱気装置等は多段に設置されても良い。また、前処理システム1や一次純水システム2についても、何ら図に示すものに限定されるものではなく、他の様々な装置の組み合せを採用し得る。   Although not shown, an RO membrane separation device may be installed after the mixed bed ion exchange device. In addition, an apparatus for deionizing after decomposing urea and other TOC components in the raw water by heat-decomposing the raw water in an acidic condition of pH 4.5 or less and in the presence of an oxidizing agent may be incorporated. The UV oxidation device, the mixed bed ion exchange device, the deaeration device, and the like may be installed in multiple stages. Further, the pretreatment system 1 and the primary pure water system 2 are not limited to those shown in the figure, and various other combinations of apparatuses can be adopted.

吸着装置18の下流に分離膜装置として、MF膜装置、UF膜装置を設置してもよい。粒子除去性能を高くする場合、膜の孔径は0.02〜1μm、好ましくは0.05〜0.1μmとする。厚さは0.01〜1mmであることが好ましい。材質は、ポリオレフィン、ポリスチレン、ポリスルホン、ポリエステル、ポリアミド、セルロース系、ポリビニリデンフロライド、ポリテトラフルオロエチレンなどを挙げることができる。   An MF membrane device or a UF membrane device may be installed downstream of the adsorption device 18 as a separation membrane device. When enhancing the particle removal performance, the pore size of the membrane is 0.02 to 1 μm, preferably 0.05 to 0.1 μm. The thickness is preferably 0.01 to 1 mm. Examples of the material include polyolefin, polystyrene, polysulfone, polyester, polyamide, cellulose, polyvinylidene fluoride, and polytetrafluoroethylene.

次に、吸着装置18の粒状吸着体の粒径を1mm以上としたことにより通水圧損が小さくなる計算例を示す。   Next, a calculation example in which the water pressure loss is reduced by setting the particle size of the granular adsorbent of the adsorption device 18 to 1 mm or more will be described.

第4図(a),(b)は粒子充填体のモデルであり、(a)は円筒状、(b)は円柱状である。(a)では水は外周面から内周面に向って通水され、内孔を通って取り出される。Lは外径(半径)と内径(半径)との差、Dは内孔直径、Dは充填体直径である。(b)では水は一端面から他端面に通水される。Lは円柱の高さを示す。 FIGS. 4 (a) and 4 (b) are models of particle packings, (a) being cylindrical and (b) being columnar. In (a), water is passed from the outer peripheral surface toward the inner peripheral surface and taken out through the inner hole. L is the difference between the outer diameter (radius) and the inner diameter (radius), D s is the inner hole diameter, and D c is the filler diameter. In (b), water is passed from one end surface to the other end surface. L c indicates the height of the cylinder.

図1に示すような粒子充填体と通水方向の純水装置において、粒子径と圧力損失の関係を検討した。   The relationship between the particle diameter and the pressure loss was examined in the particle packing body and the pure water apparatus in the water flow direction as shown in FIG.

一般に、粒子充填体の抵抗(R[1/m])はコズニーカルマンの式から求めることができる。記号は、粒子充填体の空隙率(ε[−])、流路長(L[m])、粒径(d[m])である。
R=180(1−ε)L/(ε) ・・・(1)
圧力損失(ΔP[Pa])は、抵抗と水の粘度(μ[Pa・s])、流量(Q[m/s])、断面積(A[m])により次の式で求めることができる。
ΔP=(Q/A)μR ・・・(2)
In general, the resistance (R [1 / m]) of the particle packing can be obtained from the Kozny Kalman equation. The symbols are the porosity (ε [−]), the channel length (L [m]), and the particle size (d [m]) of the particle packing.
R = 180 (1-ε) 2 L / (ε 3 d 2 ) (1)
The pressure loss (ΔP [Pa]) is obtained by the following equation based on resistance, water viscosity (μ [Pa · s]), flow rate (Q [m 3 / s]), and cross-sectional area (A [m 2 ]). be able to.
ΔP = (Q / A) μR (2)

式(1)、(2)に基づいて、第4図の(a)、(b)の2通りの通水方式で粒子径と圧力損失を計算した結果を表1に示す。水温は25℃、流量は20L/minとし、標準的な充填体のサイズを直径8cm、長さ22.4cmとした。(a)の通り外周面から中心に通水する場合は、粒子径を130μmにしても圧力損失50kPa以下を保つことができる。しかし、構造的に流路長を4cm以上にすることができず、表面積が大きいことで、寿命や偏流が起こると処理水質が低下するという課題がある。一方、(b)のように端面から他端面に通水する場合は、流路長を22.4cmにすることができ、寿命の点で有利となる。その際、圧力損失を50kPa以下にするためには粒径1mm以上が必要となることが分かる。   Table 1 shows the results of calculating the particle diameter and the pressure loss by the two water flow systems shown in FIGS. 4 (a) and 4 (b) based on the equations (1) and (2). The water temperature was 25 ° C., the flow rate was 20 L / min, and the standard packing size was 8 cm in diameter and 22.4 cm in length. When water is passed from the outer peripheral surface to the center as shown in (a), a pressure loss of 50 kPa or less can be maintained even if the particle diameter is 130 μm. However, the flow path length cannot be structurally increased to 4 cm or more, and since the surface area is large, there is a problem that the quality of the treated water is deteriorated when life or drift occurs. On the other hand, when water is passed from the end face to the other end face as in (b), the flow path length can be 22.4 cm, which is advantageous in terms of life. At that time, it can be seen that a particle size of 1 mm or more is required to reduce the pressure loss to 50 kPa or less.

Figure 2012196591
Figure 2012196591

Figure 2012196591
Figure 2012196591

なお、粒子の粒径が3mm以上であると、圧力損失は低くなるが、接触面積が減少して不純物の除去効率が低下する。従って、粒子径は1〜3mmが望ましく、さらには1.0〜1.5mmであることが望ましい。   When the particle diameter is 3 mm or more, the pressure loss is reduced, but the contact area is reduced and the impurity removal efficiency is lowered. Therefore, the particle diameter is preferably 1 to 3 mm, and more preferably 1.0 to 1.5 mm.

次に、吸着装置18の構造の一例について第5図を参照して説明する。   Next, an example of the structure of the adsorption device 18 will be described with reference to FIG.

第5図(a)は、流入口31及び流出口32を有した円筒状ハウジング30内に複数個(この場合は2個)の充填体(吸着体の充填体)20を支持体21を介して同軸状に配設した吸着装置18の断面図、同(b)は支持体21の分解断面図、同(c)は支持体21の分解平面図である。第5図では充填体20が2個設けられているが、3個以上であってもよく、通常は1〜5個程度が好適である。   FIG. 5 (a) shows a plurality (two in this case) of packed bodies (adsorbent packed bodies) 20 in a cylindrical housing 30 having an inlet 31 and an outlet 32 through a support 21. FIG. 4B is a sectional view of the suction device 18 arranged coaxially, FIG. 5B is an exploded sectional view of the support 21, and FIG. 5C is an exploded plan view of the support 21. In FIG. 5, two filling bodies 20 are provided, but three or more may be used, and usually about 1 to 5 are suitable.

支持体21は、多数の孔22aを有し、外周面にOリング22bが装着された多孔板22と、この多孔板22に重なるメッシュ23と、このメッシュ23に重なる精密濾過膜24と、精密濾過膜24に重なるOリング25とを有している。精密濾過膜24としては、孔径0.02〜0.45μmのものが好適である。Oリング22b、25によって支持体21の位置が固定されると共に、ハウジング30の内周面と支持体21の外周面との間からの漏水が防止される。精密濾過膜24によって微粒子を除去すると共に、支持体21よりも上流側の充填体20を通過する水の流量を制御し、ショートパスや偏流を防止ないし抑制する。   The support 21 has a large number of holes 22a, a perforated plate 22 having an O-ring 22b attached to the outer peripheral surface, a mesh 23 that overlaps the perforated plate 22, a precision filtration membrane 24 that overlaps the mesh 23, An O-ring 25 that overlaps the filtration membrane 24 is included. The microfiltration membrane 24 preferably has a pore diameter of 0.02 to 0.45 μm. The position of the support 21 is fixed by the O-rings 22b and 25, and water leakage from between the inner peripheral surface of the housing 30 and the outer peripheral surface of the support 21 is prevented. Fine particles are removed by the microfiltration membrane 24, and the flow rate of water passing through the packing body 20 on the upstream side of the support 21 is controlled to prevent or suppress short paths and drift.

ハウジング30内に複数の充填体20を直列に設置しているので、1つの充填体20に水の流れやすい部分と流れ難い部分ができることによって、ショートパス・偏流が発生した場合でも、下流側の充填体20に流入する前に水の合流が起こるため、ショートパス・偏流が吸着装置18の全長に及ばない。   Since a plurality of fillers 20 are installed in series in the housing 30, a single filler 20 can be provided with a portion that is easy to flow and a portion that is difficult to flow. Since the merging of water occurs before flowing into the packed body 20, the short path / uneven flow does not reach the entire length of the adsorption device 18.

また、充填体20の前後に支持体21を設置することで、水を混合し整流すると共に、支持体21の通水の抵抗により水の流量を制御することができる。これにより、ショートパス、偏流をさらに軽減することができる。   Moreover, by installing the support body 21 before and after the filling body 20, water can be mixed and rectified, and the flow rate of water can be controlled by the resistance of water flow through the support body 21. Thereby, a short path and drift can be further reduced.

多孔板22の材質としては、ポリオレフィン(ポリエチレン、ポリプロピレン)、ポリテトラフルオロエチレンなどを挙げることができる。   Examples of the material of the porous plate 22 include polyolefin (polyethylene, polypropylene), polytetrafluoroethylene, and the like.

メッシュ23としては、ポリオレフィン(ポリエチレン、ポリプロピレン)、ポリエステルなどが好適であり、厚さは0.05mm〜3mm、特に0.1〜2mm、細孔径10μm以上(目開き:30%%〜90%)の範囲であることが望ましい。   As the mesh 23, polyolefin (polyethylene, polypropylene), polyester or the like is suitable, and the thickness is 0.05 mm to 3 mm, particularly 0.1 to 2 mm, and the pore diameter is 10 μm or more (opening: 30% to 90%). It is desirable to be in the range.

精密濾過膜24の材質としては、ポリビニリデンフロライド、ポリテトラフルオロエチレン、ポリスルホン、ポリアミド、セルロース系を挙げることができる。精密濾過膜24の厚さは0.05mm〜0.5mm、好ましくは0.1〜0.3mm、細孔径0.02〜1μm特に0.02〜0.45μmの範囲であることが望ましい。   Examples of the material for the microfiltration membrane 24 include polyvinylidene fluoride, polytetrafluoroethylene, polysulfone, polyamide, and cellulose. The thickness of the microfiltration membrane 24 is 0.05 mm to 0.5 mm, preferably 0.1 to 0.3 mm, and the pore diameter is 0.02 to 1 μm, particularly 0.02 to 0.45 μm.

第6図(a)のように、上記吸着装置18のハウジング30の流入側のエンドプレートを省略した吸着装置18’の設置例を第6図(b)に示す。なお、ハウジング30’は、流入側エンドプレートを省略した他はハウジング30と同一構成を有する。吸着装置18’のその他の構成は吸着装置18と同一であり、同一符号は同一部分を示している。   As shown in FIG. 6 (a), FIG. 6 (b) shows an installation example of the suction device 18 'in which the end plate on the inflow side of the housing 30 of the suction device 18 is omitted. The housing 30 ′ has the same configuration as the housing 30 except that the inflow side end plate is omitted. Other configurations of the adsorption device 18 'are the same as those of the adsorption device 18, and the same reference numerals indicate the same parts.

第6図(b)の通り、この吸着装置18’を耐圧容器40内に配置し、流出口32を耐圧容器出口部42に接続する。そして、耐圧容器40の供給口41から耐圧容器40内に水を流入させ、吸着装置18’の処理水を出口部42から取り出す。吸着装置18’の充填体30の数は1個でも複数個でもよい。   As shown in FIG. 6 (b), this adsorption device 18 ′ is arranged in the pressure vessel 40 and the outlet 32 is connected to the pressure vessel outlet 42. Then, water is introduced into the pressure vessel 40 from the supply port 41 of the pressure vessel 40, and the treated water of the adsorption device 18 ′ is taken out from the outlet part 42. The number of the fillers 30 in the adsorption device 18 'may be one or more.

充填体20のサイズとしては、直径8cm、長さ22.4cmが一つの目安となる。このサイズは、既存のプリーツ型イオン交換フィルターと同等であり、既存のフィルター容器を用いることができる。このサイズよりも、直径を大きくすると圧力損失は低下し、長さを長くすると圧力損失は上昇するため、バランスを考慮して決定する必要がある。   As a size of the filling body 20, a diameter of 8 cm and a length of 22.4 cm are one standard. This size is equivalent to an existing pleated ion exchange filter, and an existing filter container can be used. If the diameter is made larger than this size, the pressure loss decreases, and if the length is increased, the pressure loss increases. Therefore, it is necessary to determine the pressure in consideration of balance.

吸着装置18’に流入する水は、比抵抗として、10MΩ・cm以上、さらには比抵抗15MΩ・cm以上の超純水であることが好ましい。   The water flowing into the adsorption device 18 ′ is preferably ultrapure water having a specific resistance of 10 MΩ · cm or more, more preferably 15 MΩ · cm or more.

以下、実験例について説明する。   Hereinafter, experimental examples will be described.

実験No.1
第5図の吸着装置に粒子径0.5mmのカチオン交換樹脂(ピュロライト製)を充填し、超純水を通水して圧力損失を計測した。粒子充填体サイズは直径8cm、長さ22.4cm(支持板含む)である。通水条件は、水温25℃、流量20L/min、Na濃度1pptである。その結果、圧力損失は175kPaであった。通水2時間後の処理水Na濃度は0.1ppt以下であり、1ヶ月以上維持された。
Experiment No. 1
The adsorption device shown in FIG. 5 was filled with a cation exchange resin (manufactured by Purolite) having a particle diameter of 0.5 mm, and ultrapure water was passed through to measure the pressure loss. The particle packing size is 8 cm in diameter and 22.4 cm in length (including support plate). The water flow conditions are a water temperature of 25 ° C., a flow rate of 20 L / min, and a Na concentration of 1 ppt. As a result, the pressure loss was 175 kPa. The Na concentration of treated water after 2 hours of water flow was 0.1 ppt or less, and was maintained for 1 month or more.

実験No.2
実験No.1において、粒子径1.0mmのカチオン交換樹脂(ピュロライト製)を充填したこと以外は同様にして圧力損失を計測した。圧力損失は45kPaであった。通水2時間後の処理水Na濃度は0.1ppt以下であり、1ヶ月以上維持された。
Experiment No. 2
Experiment No. 1, the pressure loss was measured in the same manner except that a cation exchange resin (manufactured by Purolite) having a particle diameter of 1.0 mm was filled. The pressure loss was 45 kPa. The Na concentration of treated water after 2 hours of water flow was 0.1 ppt or less, and was maintained for 1 month or more.

実験No.3
実験No.1において、粒子径1.5mmのカチオン交換樹脂(ピュロライト製)を充填したこと以外は同様にして圧力損失を計測した。圧力損失は22kPaであった。通水2時間後の処理水Na濃度は0.1ppt以下であり、1ヶ月以上維持された。
Experiment No. 3
Experiment No. 1, the pressure loss was measured in the same manner except that a cation exchange resin (manufactured by Purolite) having a particle diameter of 1.5 mm was filled. The pressure loss was 22 kPa. The Na concentration of treated water after 2 hours of water flow was 0.1 ppt or less, and was maintained for 1 month or more.

実験No.4
実験No.1において、粒子径3.0mmのカチオン交換樹脂(ピュロライト製)を充填したこと以外は同様にして圧力損失を計測した。圧力損失は7kPaであった。通水2時間後の処理水Na濃度は0.1ppt以下であったが、1ヶ月後には0.15pptとなった。これは内部拡散の問題で破過したものと考えられる。
Experiment No. 4
Experiment No. 1, the pressure loss was measured in the same manner except that a cation exchange resin (manufactured by Purolite) having a particle size of 3.0 mm was filled. The pressure loss was 7 kPa. The concentration of treated water Na after 2 hours of water flow was 0.1 ppt or less, but after one month it became 0.15 ppt. This is probably due to internal diffusion problems.

1 前処理システム
2 一次純水システム
3 サブシステム
17 UF膜装置
18 吸着装置
20 充填体
30 ハウジング
DESCRIPTION OF SYMBOLS 1 Pretreatment system 2 Primary pure water system 3 Subsystem 17 UF membrane apparatus 18 Adsorber 20 Packing body 30 Housing

Claims (3)

一次純水から超純水を製造するサブシステムであって、少なくともUV装置、脱気装置、イオン交換樹脂装置、及びUF膜装置を備えた超純水製造用サブシステムにおいて、
該UF膜装置の後段に、粒径1〜3mmの粒状吸着体を充填した吸着装置を有し、
該UF膜装置からの流出水圧によって、昇圧ポンプポンプを用いることなく該吸着装置に通水が行われることを特徴とする超純水製造用サブシステム。
In a subsystem for producing ultrapure water from primary pure water, the subsystem for producing ultrapure water comprising at least a UV device, a deaeration device, an ion exchange resin device, and a UF membrane device,
In the subsequent stage of the UF membrane device, there is an adsorption device filled with a granular adsorbent having a particle size of 1 to 3 mm,
A sub-system for producing ultrapure water, characterized in that water is passed through the adsorbing device without using a booster pump pump by the outflow water pressure from the UF membrane device.
請求項1において、前記粒状吸着体はイオン交換基又はキレート基を有することを特徴とする超純水製造用サブシステム。   2. The ultrapure water production subsystem according to claim 1, wherein the granular adsorbent has an ion exchange group or a chelate group. 請求項1又は2において、前記吸着装置の後段にさらにMF膜装置又はUF膜装置が設置されていることを特徴とする超純水製造用サブシステム。   The subsystem for producing ultrapure water according to claim 1, wherein an MF membrane device or a UF membrane device is further installed at a subsequent stage of the adsorption device.
JP2011060592A 2011-03-18 2011-03-18 Subsystem for ultrapure water production Expired - Fee Related JP5842347B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011060592A JP5842347B2 (en) 2011-03-18 2011-03-18 Subsystem for ultrapure water production
CN 201220101480 CN202705158U (en) 2011-03-18 2012-03-14 Ultrapure water manufacturing subsystem

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011060592A JP5842347B2 (en) 2011-03-18 2011-03-18 Subsystem for ultrapure water production

Publications (2)

Publication Number Publication Date
JP2012196591A true JP2012196591A (en) 2012-10-18
JP5842347B2 JP5842347B2 (en) 2016-01-13

Family

ID=47179366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011060592A Expired - Fee Related JP5842347B2 (en) 2011-03-18 2011-03-18 Subsystem for ultrapure water production

Country Status (2)

Country Link
JP (1) JP5842347B2 (en)
CN (1) CN202705158U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020116507A (en) * 2019-01-22 2020-08-06 栗田工業株式会社 Ultrapure boron removal type ultrapure water production apparatus and method for producing ultrapure boron removal type ultrapure water
CN112759031A (en) * 2020-12-17 2021-05-07 苏州业华环境科技有限公司 Ultrapure water treatment process and system
JP7368310B2 (en) 2020-05-20 2023-10-24 オルガノ株式会社 Boron removal equipment and boron removal method, and pure water production equipment and pure water production method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202203A (en) * 1990-11-29 1992-07-23 Mitsui Toatsu Chem Inc Production of ion exchange resin
JPH0655171A (en) * 1992-08-03 1994-03-01 Ebara Infilco Co Ltd Method for producing ultrapure water from primary pure water and apparatus therefor
JP2000352097A (en) * 1999-06-09 2000-12-19 Toto Ltd Private part cleaning device
JP2003001120A (en) * 2001-06-19 2003-01-07 Mitsui Chemicals Inc Method for recovering inorganic acids
JP2003145148A (en) * 2001-11-06 2003-05-20 Kurita Water Ind Ltd Ultrapure water supply apparatus and ultrapure water supply method
JP2010240642A (en) * 2009-03-18 2010-10-28 Japan Organo Co Ltd Method of manufacturing dissolved oxygen-removed water, apparatus for manufacturing dissolved oxygen-removed water, dissolved oxygen treatment tank, method of manufacturing ultrapure water, method of manufacturing hydrogen dissolved water, apparatus for manufacturing hydrogen dissolved water, and method of cleaning electronic components

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202203A (en) * 1990-11-29 1992-07-23 Mitsui Toatsu Chem Inc Production of ion exchange resin
JPH0655171A (en) * 1992-08-03 1994-03-01 Ebara Infilco Co Ltd Method for producing ultrapure water from primary pure water and apparatus therefor
JP2000352097A (en) * 1999-06-09 2000-12-19 Toto Ltd Private part cleaning device
JP2003001120A (en) * 2001-06-19 2003-01-07 Mitsui Chemicals Inc Method for recovering inorganic acids
JP2003145148A (en) * 2001-11-06 2003-05-20 Kurita Water Ind Ltd Ultrapure water supply apparatus and ultrapure water supply method
JP2010240642A (en) * 2009-03-18 2010-10-28 Japan Organo Co Ltd Method of manufacturing dissolved oxygen-removed water, apparatus for manufacturing dissolved oxygen-removed water, dissolved oxygen treatment tank, method of manufacturing ultrapure water, method of manufacturing hydrogen dissolved water, apparatus for manufacturing hydrogen dissolved water, and method of cleaning electronic components

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020116507A (en) * 2019-01-22 2020-08-06 栗田工業株式会社 Ultrapure boron removal type ultrapure water production apparatus and method for producing ultrapure boron removal type ultrapure water
JP7192519B2 (en) 2019-01-22 2022-12-20 栗田工業株式会社 Ultra-pure boron-removed ultra-pure water production apparatus and ultra-pure boron-removed ultra-pure water production method
JP7368310B2 (en) 2020-05-20 2023-10-24 オルガノ株式会社 Boron removal equipment and boron removal method, and pure water production equipment and pure water production method
CN112759031A (en) * 2020-12-17 2021-05-07 苏州业华环境科技有限公司 Ultrapure water treatment process and system

Also Published As

Publication number Publication date
JP5842347B2 (en) 2016-01-13
CN202705158U (en) 2013-01-30

Similar Documents

Publication Publication Date Title
US9156001B2 (en) Method and apparatus for further purifying ultrapure water
JP6304259B2 (en) Ultrapure water production equipment
JP6634918B2 (en) Ultrapure water production system
TWI408107B (en) Extra-pure water production equipment and operating method thereof
KR101692212B1 (en) Process and equipment for the treatment of water containing organic matter
JP7454330B2 (en) Boron removal method in treated water, boron removal system, ultrapure water production system, and boron concentration measurement method
TW201841837A (en) Ultrapure water production system and ultrapure water production method
WO2016136650A1 (en) Removal device of fine particles in water and ultrapure water production/supply system
JP5842347B2 (en) Subsystem for ultrapure water production
JP4552327B2 (en) Ultrapure water production equipment
WO2021261143A1 (en) Method and apparatus for removing hydrogen peroxide, and apparatus for producing pure water
JP5499433B2 (en) Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus
KR102393133B1 (en) Wet cleaning apparatus and wet cleaning method
JP3982355B2 (en) Ion exchange device and ultrapure water production device
JP4760648B2 (en) Pure water production equipment
JP5135654B2 (en) Secondary pure water production equipment
JP2015231609A (en) Method for producing ultrapure water
JPWO2019188309A1 (en) Anion exchange resin and water treatment method using it
KR101495601B1 (en) Membrane regenerating apparatus
JP7012196B1 (en) Water treatment equipment, ultrapure water production equipment, water treatment method and regenerative ion exchange tower
WO2021261145A1 (en) Water treatment apparatus and water treatment method
JP2022108457A (en) Hydrogen peroxide removing method and hydrogen peroxide removing device as well as pure water production device
JP2022108456A (en) Hydrogen peroxide removing method and hydrogen peroxide removing device as well as pure water production device
JP2009233668A (en) Electrical deionized water manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151102

R150 Certificate of patent or registration of utility model

Ref document number: 5842347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees