JP2012193975A - Electric apparatus insulation diagnostic device - Google Patents

Electric apparatus insulation diagnostic device Download PDF

Info

Publication number
JP2012193975A
JP2012193975A JP2011056328A JP2011056328A JP2012193975A JP 2012193975 A JP2012193975 A JP 2012193975A JP 2011056328 A JP2011056328 A JP 2011056328A JP 2011056328 A JP2011056328 A JP 2011056328A JP 2012193975 A JP2012193975 A JP 2012193975A
Authority
JP
Japan
Prior art keywords
frequency
antenna
characteristic frequency
data
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011056328A
Other languages
Japanese (ja)
Inventor
Etsuo Hotoda
保戸田悦生
Naoki Okada
岡田直喜
Hideto Oki
大木秀人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2011056328A priority Critical patent/JP2012193975A/en
Publication of JP2012193975A publication Critical patent/JP2012193975A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Testing Relating To Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve such problems associated with conventional technique that, for monitoring a characteristic frequency in space, it is necessary for a person to perform initial setting because each region has a different characteristic frequency, and also it is possible to obtain erroneous detection because sometimes the characteristic frequency suddenly disappears, for example, a broadcast is stopped when monitoring a frequency of a broadcast wave or a communication wave as the characteristic frequency, and for generating the characteristic frequency from the exterior, it is impossible for a standing device to generate the characteristic frequency because it is necessary for a person to generate the characteristic frequency.SOLUTION: For determining whether an antenna is normally working or not, it can be determined based on a frequency level which decreases in a broadband when an antenna cable is disconnected. Thus, an electric apparatus insulation diagnostic device comprises determination means which monitors a frequency level in a broadband and compares the frequency level with reference data (threshold) which is measured in advance to determine that, when the frequency level is equal to or less than a determination level, abnormality occurs in a reception antenna of the electric apparatus insulation diagnostic device.

Description

本発明は、ガス絶縁開閉器(GIS:Gas Insulated Switchgear)やガス遮断器(GCB:Gas Circuit Breaker)や電力用トランスなどの電力用機器の絶縁診断装置に関するものである。   The present invention relates to an insulation diagnostic device for power equipment such as a gas insulated switchgear (GIS), a gas circuit breaker (GCB), and a power transformer.

ガス絶縁開閉器などの電気機器において、何らかの原因で絶縁性能が劣化すると、アーク閃絡事故が発生する前に予兆現象として部分放電が発生することが知られている。電気機器絶縁診断装置は、前記部分放電をなるべく軽微な初期の段階で検出して、電気機器のアーク閃絡事故を未然に防止するものである。   In electrical equipment such as a gas insulated switch, it is known that if the insulation performance deteriorates for some reason, partial discharge occurs as a predictive phenomenon before an arc flashover accident occurs. The electrical equipment insulation diagnosis device detects the partial discharge at the initial stage as light as possible to prevent an arc flash accident of the electrical equipment.

前記部分放電を検出する手段として、部分放電により発生する電磁波を検出する手段が知られている。具体的構成としては、電気機器の部分放電が発生する可能性のある複数の場所にアンテナを配置し、各アンテナの出力信号は、セレクタを介して判定装置に入力される。判定装置では、セレクタの切り換えにより1つの計測チャネルを選択し、その計測チャネルに接続されたアンテナが検出した信号から部分放電の有無を判定する。以後、判定装置は、セレクタを切り換えて、各計測チャネルについて部分放電の有無を判定し電気機器の絶縁診断を行う方法が知られている。しかしながら、アンテナの故障等、アンテナ側に問題がある場合は、正確な判定ができない。   As means for detecting the partial discharge, means for detecting an electromagnetic wave generated by the partial discharge is known. As a specific configuration, antennas are arranged at a plurality of places where partial discharge of an electric device may occur, and an output signal of each antenna is input to a determination device via a selector. The determination device selects one measurement channel by switching the selector, and determines the presence or absence of partial discharge from the signal detected by the antenna connected to the measurement channel. Thereafter, a method is known in which the determination apparatus switches selectors to determine the presence or absence of partial discharge for each measurement channel and perform an insulation diagnosis of the electrical equipment. However, when there is a problem on the antenna side such as an antenna failure, an accurate determination cannot be made.

アンテナの健全性機能を有した従来技術として、特開平9−292433等がある。前記公報で開示されている電気機器絶縁診断装置は、アンテナの健全性、アンテナケーブル、コネクタなどの接触不良、感度不良の異常検出機能を有する電気機器絶縁診断装置で、アンテナの健全性検出機能として2種類有している。前記アンテナの健全性検出機能の一つは、所定の放送波(テレビ放送波)が受信されたか否かで判定する方法と、もう一つは、模擬信号発生装置を有し、前記模擬信号が受信されたか否かで判定する方法が開示されている。アンテナケーブルの断線検出の手段として、特開平9−292433では、ある特定の周波数を監視することで断線検出を行なっている。このとき特定の周波数は空間の特徴的な周波数を選択してもよいし、外部から特定の周波数を発生させてもよい。   Japanese Patent Laid-Open No. 9-292433 is a prior art having an antenna soundness function. The electrical equipment insulation diagnostic device disclosed in the above publication is an electrical equipment insulation diagnostic device having an abnormality detection function for antenna health, poor contact of antenna cables, connectors, etc., and poor sensitivity. There are two types. One of the antenna health detection functions is a method of determining whether a predetermined broadcast wave (television broadcast wave) is received, and the other has a simulation signal generator, and the simulation signal is A method for determining whether or not a message has been received is disclosed. As means for detecting disconnection of an antenna cable, Japanese Patent Laid-Open No. 9-292433 detects disconnection by monitoring a specific frequency. At this time, a specific frequency may be selected as a specific frequency, or a specific frequency may be generated from the outside.

特開平9−292433号公報JP-A-9-292433

しかしながら、従来の技術では空間の特徴的な周波数を監視している場合、地域によって特徴的な周波数が異なるため、人による初期設定が必要になることや、特徴的な周波数が突然なくなってしまうことがある。例えば、常設形の場合においては、テレビ放送波のディジタル化対応により監視周波数の信号がなくなった場合に誤検知をしてしまう。また、テレビ放送波がない地域の対策として、模擬信号発生装置を具備しているが、コストアップと装置の大型化の原因となっている。   However, when the characteristic frequency of the space is monitored in the conventional technology, the characteristic frequency differs depending on the region, so that initial setting by a person is necessary or the characteristic frequency suddenly disappears. There is. For example, in the case of the permanent type, a false detection is made when there is no monitor frequency signal due to the digitization of television broadcast waves. In addition, as a countermeasure for areas where there is no TV broadcast wave, a simulation signal generator is provided, which causes an increase in cost and an increase in the size of the apparatus.

本発明は、電力機器絶縁診断装置において、地域が異なっても人手により監視周波数を設定変更する必要のない簡易で、安価な絶縁診断装置を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a simple and inexpensive insulation diagnosis apparatus that does not require manual setting change of a monitoring frequency even in different regions in a power equipment insulation diagnosis apparatus.

前記目的を達成する為に、本発明の本発明の電気機器絶縁診断装置は、アンテナケーブル断線時は広帯域で周波数レベルが下がることに着目し、広帯域で監視し、受信アンテナが健全な時に予め計測したデータ(閾値)と比較するようにした。具体的には、電気機器の部分放電により発生する電磁波を受信するための受信アンテナと、前記受信アンテナが受信した電磁波に基づいて、前記電気機器に部分放電が発生しているか否かを判定する判定装置とを備えた電気機器絶縁診断装置において、前記判定装置は、前記受信アンテナが受信した広帯域の周波数成分の総和が、受信アンテナが健全な時に計測して算出した閾値と比較して、基準レベル以下となったとき、前記電気機器絶縁診断装置の受信アンテナに異常があることを判定する手段とを備えたことを特徴とする。   In order to achieve the above-mentioned object, the electrical equipment insulation diagnosis apparatus of the present invention of the present invention pays attention to the fact that the frequency level decreases in a wide band when the antenna cable is disconnected, and monitors in advance and measures in advance when the receiving antenna is healthy. The data (threshold value) was compared. Specifically, based on the reception antenna for receiving electromagnetic waves generated by partial discharge of the electric device and the electromagnetic waves received by the reception antenna, it is determined whether or not partial discharge is generated in the electric device. In the electrical equipment insulation diagnostic device including the determination device, the determination device is configured to compare a sum of wideband frequency components received by the reception antenna with a threshold value measured and calculated when the reception antenna is healthy. And a means for determining that there is an abnormality in the receiving antenna of the electrical equipment insulation diagnostic device when the level is below the level.

従来のアンテナ健全性の異常検出は、テレビ放送波を用いてある特定の周波数を監視しているが、本発明は、広帯域で周波数の減少を監視しているので、使用地域の変更毎にあらたな設定変更を行う必要がない。また、広帯域での監視により周囲の周波数状況が変わった場合においても精度良く監視が可能である。どの地域においても、簡単でシンプルな構成でアンテナ健全性の異常検出が可能であり、可搬形、常設形の両装置への適応が可能である。   Conventional antenna health abnormality detection uses a television broadcast wave to monitor a specific frequency. However, since the present invention monitors a decrease in frequency over a wide band, it appears every time the area of use is changed. There is no need to change any settings. In addition, even when the surrounding frequency changes due to monitoring in a wide band, it is possible to monitor with high accuracy. In any region, it is possible to detect anomalies in antenna health with a simple and simple configuration, and it can be applied to both portable and permanent devices.

本発明の絶縁診断装置のハードウェア構成Hardware configuration of insulation diagnosis apparatus of the present invention 図1の絶縁診断装置の動作を説明するフローチャートThe flowchart explaining operation | movement of the insulation diagnostic apparatus of FIG. a)正常時及び、b)異常時の周波数成分データa) Normal and b) Abnormal frequency component data アンテナ健全性異常検出例Example of antenna health abnormality detection

アンテナ健全性の正常時と断線時の周波数を比較するとアンテナ健全性が、異常の時は、広範囲にわたり周波数レベルが減少する為、周波数レベルの減少を検知することで、アンテナの異常を検出することが可能である。正常時及び異常時の周波数成分データ例を図3に示す。(例として診断帯域は30MHzから330MHzとした)。周波数の帯域については、HF帯、VHF帯、UHF帯のどの帯域でもよく、任意の周波数帯域で実施することができる。   When the antenna health is normal and when the disconnection frequency is compared, when the antenna health is abnormal, the frequency level decreases over a wide range, so detecting the antenna level abnormality is detected. Is possible. An example of frequency component data at normal time and abnormal time is shown in FIG. (As an example, the diagnostic bandwidth was 30 MHz to 330 MHz). The frequency band may be any band of the HF band, the VHF band, and the UHF band, and can be implemented in an arbitrary frequency band.

図1のハードウェア構成と、図2のフローチャートを用いて本発明について説明する。判定装置3の構成は、受信機4、A/D5、CPU6、メモリ7、出力装置8から構成されている。アンテナセンサ1からデータを取得しケーブル2を介して受信機4にデータを取り込む。受信機4は、スペクトルアナライザとして、周波数分析データをA/D5へ入力し、CPU6では断線検出のみを行ってもいいし、受信機4から電圧データをA/D5へ入力し、CPU6にてFFT(Fast Fourier Transform)を行って周波数成分データの計測と断線検出の両方を行なうこともできる。メモリ7は、閾値データと健全性判定基準値を保持している。アンテナの異常を検出した時は、出力装置7に異常を出力するように構成されている   The present invention will be described with reference to the hardware configuration of FIG. 1 and the flowchart of FIG. The determination device 3 includes a receiver 4, an A / D 5, a CPU 6, a memory 7, and an output device 8. Data is acquired from the antenna sensor 1 and the data is taken into the receiver 4 via the cable 2. As a spectrum analyzer, the receiver 4 may input frequency analysis data to the A / D 5 and the CPU 6 may perform only disconnection detection. Alternatively, the receiver 4 may input voltage data to the A / D 5 and the CPU 6 may perform FFT. (Fast Fourier Transform) can be performed to perform both frequency component data measurement and disconnection detection. The memory 7 holds threshold data and soundness determination reference values. It is configured to output an abnormality to the output device 7 when an abnormality of the antenna is detected.

実際の動きを、図2のフローチャートを用いて説明する。まず、ステップS1でアンテナセンサ1からデータを取得する。CPU6にてFFTを行なう場合には、データ取得のサンプリング周波数(fsmp)はサンプリング定理より断線検出周波数帯域の最大値の2倍以上とし、データ取得後、FFTを行なう。(例えばVHF帯の30Mhz〜330Mhzの帯域の時のサンプリング周波数(fsmp)は660MHz以上とする。   The actual movement will be described with reference to the flowchart of FIG. First, data is acquired from the antenna sensor 1 in step S1. In the case where the FFT is performed by the CPU 6, the sampling frequency (fsmp) for data acquisition is set to at least twice the maximum value of the disconnection detection frequency band according to the sampling theorem, and the FFT is performed after data acquisition. (For example, the sampling frequency (fsmp) at the time of 30 MHz to 330 MHz in the VHF band is set to 660 MHz or more.

次に、ステップS2でモードの確認を行う。本発明では、閾値の算出を行う閾値算出モードと、実際に異常の検出を行う異常検出モードの2つのモードを設けている。初期モードは、閾値算出モードに設定されている。初めの数回(1回でもよい)は閾値算出モードとなり、ステップS3の閾値算出処理を行う。閾値算出は周波数成分のデータを積算するため次式で行う。
TH=F+F+F+・・+Fn
このときは、Fnはn 番目の周波数成分値、THは最終閾値とする。算出を1回以上のデータを用いて行なう場合は、全閾値の平均としてもよいし、一度全閾値データをソートし、N番目のデータを閾値としてもよい。
Next, the mode is confirmed in step S2. In the present invention, two modes are provided: a threshold value calculation mode for calculating a threshold value and an abnormality detection mode for actually detecting an abnormality. The initial mode is set to the threshold calculation mode. The first several times (or once) is the threshold value calculation mode, and the threshold value calculation process in step S3 is performed. The threshold value is calculated by the following equation in order to integrate frequency component data.
TH = F 1 + F 2 + F 3 + .. + F n
In this case, F n is the nth frequency component value, and TH is the final threshold value. When the calculation is performed using one or more data, the average of all threshold values may be used, or all threshold data may be sorted once and the Nth data may be used as the threshold value.

例えば帯域を30MHzから330MHz未満とし、3MHzごとに100個のデータがあるとすると、Fは、30MHzの周波数成分、Fは、33MHzの周波数成分、F100は、327MHzの周波数成分となる。このFからF100までのデータを積算する。

Figure 2012193975
TH=0.5+0+0+2.3+・・・+1.1+2.2+1.2+1.4=189.8 For example, if the band is 30 MHz to less than 330 MHz and there are 100 data every 3 MHz, F 1 is a frequency component of 30 MHz, F 2 is a frequency component of 33 MHz, and F 100 is a frequency component of 327 MHz. From the F 1 integrates the data of up to F 100.
Figure 2012193975
TH = 0.5 + 0 + 0 + 2.3 +... + 1.1 + 2.2 + 1.2 + 1.4 = 189.8

閾値算出処理を1回で行う場合は、ステップS4のモード変更確認で、モード変更ありとなる。ステップS5でモードを異常検出モードに変更した後、ステップS6の最終閾値算出の値を、前記189.8とし、ステップS10次のデータ取得待状態となる。次回のデータ取得から、異常検出モード側のフローチャートが実行される。閾値算出処理を1回以上のデータを用いて行う場合は、ステップS4のモード変更確認で、モード変更無しとなり、ステップS10次のデータ取得待状態となる。   When the threshold value calculation process is performed once, the mode change is confirmed in the mode change confirmation in step S4. After the mode is changed to the abnormality detection mode in step S5, the final threshold calculation value in step S6 is set to 189.8, and the next data acquisition waiting state in step S10 is entered. From the next data acquisition, the flowchart on the abnormality detection mode side is executed. When the threshold calculation process is performed using data one or more times, the mode change confirmation in step S4 indicates no mode change, and the next data acquisition waiting state is entered in step S10.

閾値算出処理を、何回か行う場合は、全閾値(TH)の平均としてもよいし、全閾値データをソートして、真ん中データを閾値としてもよい。最終閾値をTH_Fとする。閾値算出に3回のデータを使用した場合は、1回目のTH_F:189.8, 2回目のTH_F:185.5, 3回目のTH_F:187.6であった場合は、
TH_F=(189.8+185.5+187.6)/3=187.6となる。
When the threshold calculation process is performed several times, the average of all threshold values (TH) may be used, or all threshold data may be sorted and the middle data may be used as the threshold value. Let the final threshold be TH_F. When three times of data are used for the threshold calculation, the first TH_F: 189.8, the second TH_F: 185.5, the third TH_F: 187.6,
TH_F = (189.8 + 185.5 + 187.6) /3=187.6.

このようにして、まず閾値算出モードで閾値を決定したら、次からは、異常検出モードになり、ステップS7のアンテナの健全性の異常検出処理が実行される。前記閾値TH_Fと、今回データ取得した周波数成分の積算データ(DATA)とを比較して、予め設定した判定値(P)以下になったら、アンテナ健全性判定がNGとなり、ステップS11のアンテナ異常出力の実行となり、アンテナ異常を出力装置7へ出力する。
P>(DATA/TH_F)×100
周波数成分の積算は、A/D変換器5でディジタルデータに変換して、CPU6へ取り込みFFT演算を行い取得する。あるいは、スペクトラムアナライザにより取得することも可能である。
In this way, after the threshold value is first determined in the threshold value calculation mode, the abnormality detection mode is set next, and the abnormality detection process for the antenna health in step S7 is executed. The threshold TH_F is compared with the integrated data (DATA) of the frequency component acquired this time, and when it is equal to or less than a predetermined determination value (P), the antenna soundness determination is NG, and the antenna abnormality output in step S11 The antenna abnormality is output to the output device 7.
P> (DATA / TH_F) × 100
The integration of the frequency components is converted into digital data by the A / D converter 5 and taken into the CPU 6 and obtained by performing the FFT operation. Alternatively, it can be acquired by a spectrum analyzer.

ステップS8の健全性判定は、アンテナ健全性の異常検出処理で、1回の検出で異常出力してもよいが、数回連続して、異常を検出したときに出力するようにすれば、誤検出を少なくできる。アンテナ健全性が、正常な場合には、ステップS9の絶縁診断を実行する。アンテナ健全性が異常な場合は、ステップS11のアンテナ異常出力を出力装置8に出力し、健全なアンテナに交換するなどの、作業を行った後、本処理ルーチンを再度実行すればよい。   The soundness determination in step S8 may be an abnormality output in one detection in the antenna soundness abnormality detection process. However, if the abnormality is detected several times in succession, an error may occur. Detection can be reduced. If the antenna soundness is normal, the insulation diagnosis in step S9 is executed. If the antenna soundness is abnormal, the processing routine may be executed again after performing an operation such as outputting the antenna abnormal output in step S11 to the output device 8 and replacing it with a sound antenna.

前記例では、絶縁診断を行うごとにアンテナ健全性をチェックする構成としたが、絶縁診断については常時行い、アンテナの健全性の異常検出は、ある決まった任意の時間に実行してもよい。   In the above example, the antenna soundness is checked every time the insulation diagnosis is performed. However, the insulation diagnosis may be performed at all times, and the abnormality detection of the antenna soundness may be executed at a predetermined arbitrary time.

実際の絶縁診断装置で本発明を用いてアンテナ健全性異常を検出したときの例を図4に示す。この試験結果を基に判定値を50%と設定しています。例えば、30MHz〜330MHzの範囲でデータを取得して、判定値Pを50%とした場合、正常時の閾値189.8で、異常時の取得データの総和が57.7となっている場合。
P(50%)>(57.7/189.8)×100=30.4 となり、異常時のデータは正常時のデータの約30%まで減少しており、20%の余裕を持ってアンテナの断線を判定できている。実施例では、判定値Pを50としたが、判定値Pは、可変できるようになっており、現地で調整しながら最適値を決めることもできる。標準的には、50前後に設定すれば、感度よく検出が可能である。
FIG. 4 shows an example when an abnormality in antenna soundness is detected using the present invention with an actual insulation diagnostic apparatus. Based on this test result, the judgment value is set to 50%. For example, when data is acquired in the range of 30 MHz to 330 MHz and the determination value P is 50%, the sum of the acquired data at the time of abnormality is 57.7 with the threshold value 189.8 at the normal time.
P (50%)> (57.7 / 189.8) × 100 = 30.4 The data at the time of abnormality is reduced to about 30% of the data at the time of normality, and the antenna has a margin of 20%. Can be determined. In the embodiment, the determination value P is set to 50. However, the determination value P can be varied, and an optimum value can be determined while adjusting on site. As a standard, if it is set to around 50, detection is possible with high sensitivity.

この発明は、たとえば、ガス絶縁開閉器などの絶縁診断装置において、受信アンテナが正常に受信でき、絶縁診断を行える状態かどうかの判定機能を含んだ、絶縁診断装置に適応できる。   The present invention can be applied to an insulation diagnosis apparatus including a determination function as to whether or not an insulation diagnosis apparatus such as a gas insulation switch can receive signals normally and perform insulation diagnosis.

1 アンテナセンサ
2 ケーブル
3 判定装置
4 受信機
5 A/D変換器
6 CPU
7 メモリ
8 出力装置
DESCRIPTION OF SYMBOLS 1 Antenna sensor 2 Cable 3 Judgment apparatus 4 Receiver 5 A / D converter 6 CPU
7 Memory 8 Output device

Claims (1)

電気機器の部分放電により発生する電磁波を受信するための受信アンテナと、前記受信アンテナが受信した電磁波に基づいて、前記電気機器に部分放電が発生しているか否かを判定する判定装置とを備えた電気機器絶縁診断装置において、前記判定装置は、前記受信アンテナが受信した広帯域の周波数成分の総和が、受信アンテナが健全な時に計測して算出した閾値と比較して、判定レベル以下となったとき、前記電気機器絶縁診断装置の受信アンテナに異常があることを判定する判定手段を備えたことを特徴とする電気機器絶縁診断装置。 A receiving antenna for receiving an electromagnetic wave generated by partial discharge of the electric device; and a determination device for determining whether or not the partial discharge is generated in the electric device based on the electromagnetic wave received by the receiving antenna. In the electrical equipment insulation diagnostic device, the determination device has a sum of broadband frequency components received by the receiving antenna that is lower than a determination level compared to a threshold value measured and calculated when the receiving antenna is healthy. An electrical equipment insulation diagnostic apparatus comprising: a determination means for judging that there is an abnormality in the receiving antenna of the electrical equipment insulation diagnostic apparatus.
JP2011056328A 2011-03-15 2011-03-15 Electric apparatus insulation diagnostic device Withdrawn JP2012193975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011056328A JP2012193975A (en) 2011-03-15 2011-03-15 Electric apparatus insulation diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011056328A JP2012193975A (en) 2011-03-15 2011-03-15 Electric apparatus insulation diagnostic device

Publications (1)

Publication Number Publication Date
JP2012193975A true JP2012193975A (en) 2012-10-11

Family

ID=47086019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011056328A Withdrawn JP2012193975A (en) 2011-03-15 2011-03-15 Electric apparatus insulation diagnostic device

Country Status (1)

Country Link
JP (1) JP2012193975A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103941209A (en) * 2014-04-13 2014-07-23 北京工业大学 Checking method based on vibration positioning GIS partial discharge equipment
CN104849602A (en) * 2015-06-05 2015-08-19 广东电网有限责任公司佛山供电局 GIS double-bus distribution equipment fault detection method and system
CN105044430A (en) * 2015-06-05 2015-11-11 广东电网有限责任公司佛山供电局 Branch current detection method and system of double-bus distribution equipment parallel outlet wires
JP2016003978A (en) * 2014-06-18 2016-01-12 日新電機株式会社 Partial discharge detection device and failure self-diagnosis method for partial discharge detection device
JP2017161314A (en) * 2016-03-08 2017-09-14 オムロン株式会社 Failure detection device and failure detection method of dc power source

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103941209A (en) * 2014-04-13 2014-07-23 北京工业大学 Checking method based on vibration positioning GIS partial discharge equipment
JP2016003978A (en) * 2014-06-18 2016-01-12 日新電機株式会社 Partial discharge detection device and failure self-diagnosis method for partial discharge detection device
CN104849602A (en) * 2015-06-05 2015-08-19 广东电网有限责任公司佛山供电局 GIS double-bus distribution equipment fault detection method and system
CN105044430A (en) * 2015-06-05 2015-11-11 广东电网有限责任公司佛山供电局 Branch current detection method and system of double-bus distribution equipment parallel outlet wires
CN104849602B (en) * 2015-06-05 2017-12-22 广东电网有限责任公司佛山供电局 GIS double-bus distribution equipment fault detection methods and system
JP2017161314A (en) * 2016-03-08 2017-09-14 オムロン株式会社 Failure detection device and failure detection method of dc power source

Similar Documents

Publication Publication Date Title
KR101385318B1 (en) Apparatus for diagnosing partial discharge and method therefor
JP2012193975A (en) Electric apparatus insulation diagnostic device
KR101402887B1 (en) System and method of monitoring GIS partial discharge having analyzing function linked time and frequency domain, local unit therefor
KR102231150B1 (en) Bushing diagnostic system
KR101343341B1 (en) Apparatus for diagnosing a partial discharging equipped with a function of self-diagnosis
JP2010276365A (en) Insulation diagnosis device for electric power apparatus
CN111551352A (en) Method and system for detecting state of breaker of GIS (geographic information System) equipment
US20190146021A1 (en) Apparatus for determination of a ground fault and associated method
KR101843792B1 (en) Method for deciding partial discharge for power equipment
KR101575200B1 (en) Apparatus for diagnosing a partial discharge equipped with functions of self diagnosis and Algorism diagnosis
KR101308003B1 (en) Mehthod of arc detection based on wavelet
US11372040B2 (en) Method and arrangement for detecting partial discharges in an electric operating means
KR20170019091A (en) Apparatus for diagnosing and recording status of switch on the ground
JP2000065876A (en) Electromagnetic wave generating position detection device
CN210952934U (en) Switch cabinet state monitoring and diagnosing system
JP3612812B2 (en) Insulation diagnostic equipment for electrical equipment
KR102378902B1 (en) Partial Discharge Pattern Analysis Method and Device for HVDC cables
JP4342993B2 (en) Insulation monitoring device for metal closed type switchboard
JPH10210647A (en) Insulation abnormality diagnosing equipment
KR101377190B1 (en) Phase identification appratus and method of of leakage and arc on switchgear
KR100368425B1 (en) method for diagnosing operation status of gas insulation open and close apparatus
JPH07333288A (en) Method for monitoring insulation of electric apparatus
CN112485620A (en) Switch cabinet partial discharge comprehensive detection and evaluation method and system
JPH1164432A (en) Insulation abnormality monitoring device for electric equipment
JP2006329636A (en) Partial discharge detector, and partial discharge testing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603