JP2012189447A - Optical voltage measurement device - Google Patents

Optical voltage measurement device Download PDF

Info

Publication number
JP2012189447A
JP2012189447A JP2011053285A JP2011053285A JP2012189447A JP 2012189447 A JP2012189447 A JP 2012189447A JP 2011053285 A JP2011053285 A JP 2011053285A JP 2011053285 A JP2011053285 A JP 2011053285A JP 2012189447 A JP2012189447 A JP 2012189447A
Authority
JP
Japan
Prior art keywords
light
fiber
optical
electro
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011053285A
Other languages
Japanese (ja)
Other versions
JP5858629B2 (en
Inventor
Masao Takahashi
正雄 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011053285A priority Critical patent/JP5858629B2/en
Priority to CN201210061663.5A priority patent/CN102680763B/en
Publication of JP2012189447A publication Critical patent/JP2012189447A/en
Application granted granted Critical
Publication of JP5858629B2 publication Critical patent/JP5858629B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical voltage measurement device which improves stability in amount of light.SOLUTION: Light emitted from a light source 2, driven by a light source drive unit 1, is passed through an SM coupler 12 and guided to the vicinity of a measurement point by a single mode fiber 13. It is arranged such that the light is linearly polarized by a fiber polarizer 14, further elliptically polarized by a fiber 1/8 wave plate 15, collimated by a collimator 16, passed through an electro-optical element 7, reflected by a reflection film 17, again passed through the electro-optical element 7, and focused on the fiber 1/8 wave plate 15 by the collimator 16. A lead portion of the fiber polarizer 14 and a bonding portion of the 1/8 wave plate 15 are received in a cylindrical hole 18a formed in a predetermined fixing component 18. Further, a predetermined adhesive is injected between the lead portion of the fiber polarizer 14 and an inner wall of the cylindrical hole 18a to form an adhesive layer 19. In this way, the lead portion of the fiber polarizer 14 is fixed to the cylindrical hole 18a.

Description

本発明の実施例は、変電所や発電所の電力機器及び電力系統の電圧を測定する光電圧測定装置に関する。   Embodiments of the present invention relate to an optical voltage measuring device that measures the voltage of power equipment and a power system of a substation or power plant.

一般に、光電圧測定装置において、高精度の測定を行うためには、検出器に至る光量が安定していることが必要である。しかるに、多くのバルクの光学部品を必要とする従来の光電圧測定装置においては、振動や温度変化によって受光コリメーターのカップリング部分で容易に結合光量が変化し、光電圧測定装置に有意な誤差を与えるといった問題点があった。   In general, in order to perform high-precision measurement in an optical voltage measurement device, it is necessary that the amount of light reaching the detector is stable. However, in the conventional photovoltage measuring device that requires many bulk optical components, the coupling light quantity easily changes in the coupling part of the light receiving collimator due to vibration and temperature change, and there is a significant error in the photovoltage measuring device. There was a problem such as giving.

特表2002−536697号公報JP 2002-536697 A

高橋紹大ら「単一光導波路型ポッケルス電界センサ」電学論 Vol.114−B、No1(1994)Shodai Takahashi et al. "Single optical waveguide type Pockels electric field sensor" 114-B, No1 (1994)

上記のような問題を解決するために、センサをLiNbO3等の導波路によって構成する試みが行われている(非特許文献1)。しかし、LiNbO3は温度特性が大きく、温度による感度変化が大きいと共に、圧電性・焦電性が大きい材料であるので、振動や温度変化によって電圧が誘起され、やはり誤差を生じてしまう。このため、比較的精度要求の厳しくない電界センサ用として一部実用に供されているが、例えば1%以下の精度を要求される電力用等の電圧センサとしては精度が不十分で、現状では適用できる技術レベルにない。 In order to solve the above problems, attempts have been made to configure the sensor with a waveguide such as LiNbO 3 (Non-Patent Document 1). However, since LiNbO 3 is a material having a large temperature characteristic, a large sensitivity change due to temperature, and a large piezoelectricity and pyroelectricity, a voltage is induced by vibration and temperature change, which also causes an error. For this reason, it is partly put to practical use as an electric field sensor for which the accuracy requirement is not strict, but for example, the accuracy is insufficient as a voltage sensor for electric power that requires accuracy of 1% or less. Not at applicable technical level.

このため、BGOやBSOといった比較的温度特性が良く、圧電性・焦電性が小さな結晶を用いて、より小型で部品点数を減らすことで、光量安定性を向上させた光電圧測定装置の開発が望まれている。   For this reason, development of a photovoltage measuring device with improved light quantity stability by using crystals with relatively good temperature characteristics, such as BGO and BSO, with small piezoelectricity and pyroelectricity, and by reducing the number of parts with a smaller size. Is desired.

本発明は、上述したような従来技術の問題点を解決するためになされたものであり、その目的は、光量安定性を向上させた光電圧測定装置を提供することにある。   The present invention has been made to solve the above-described problems of the prior art, and an object of the present invention is to provide a photovoltage measuring device with improved light quantity stability.

上記の課題を解決するため、実施例1の光電圧測定装置は、少なくとも光源と、この光源の光を所定の偏光状態にするための偏光光学系と、印加される電圧に応じた光位相変調を行う電気光学素子と、前記電気光学素子を透過した光を反射する反射鏡と、前記反射鏡を反射し、前記電気光学素子を透過した透過光のある軸の光強度を検出する検光子と、前記検光子を透過した透過光を検出して前記印加電圧を検出する受光部を備えた反射型の光電圧測定装置において、前記偏光光学系の少なくとも一部にファイバー型の位相差板を使用し、この位相差板を、所定の固定用部材に設けた円筒穴内に収納したことを特徴とするものである。   In order to solve the above-described problem, the optical voltage measurement apparatus according to the first embodiment includes at least a light source, a polarization optical system for setting light from the light source to a predetermined polarization state, and optical phase modulation according to an applied voltage. An electro-optic element that performs the following: a reflecting mirror that reflects the light that has passed through the electro-optic element; an analyzer that reflects the reflecting mirror and detects the light intensity of the axis of the transmitted light that has passed through the electro-optic element; In the reflection type photovoltage measuring device provided with a light receiving unit that detects the applied voltage by detecting the transmitted light transmitted through the analyzer, a fiber type retardation plate is used for at least a part of the polarization optical system. The retardation plate is housed in a cylindrical hole provided in a predetermined fixing member.

上記のような構成を有する実施例1の光電圧測定装置によれば、光学系を大幅に単純化し、且つ、固定用部材でファイバー型の位相差板を固定することによって、ファイバー型の位相差板の使用が可能となるため、バルク部品の使用を極小とし、光量安定性を向上させた光電圧測定装置を提供することができる。   According to the optical voltage measurement apparatus of Example 1 having the above-described configuration, the optical system is greatly simplified, and the fiber-type phase difference plate is fixed by the fixing member. Since a plate can be used, it is possible to provide a photovoltage measuring device that minimizes the use of bulk parts and improves the light quantity stability.

実施例1の光電圧測定装置の構成を示す図であって、(A)は全体構成図、(B)はコリメーターの光ファイバー端面部分の側面図、(C)は(B)のA−A´断面図。It is a figure which shows the structure of the optical voltage measuring apparatus of Example 1, Comprising: (A) is a whole block diagram, (B) is a side view of the optical fiber end surface part of a collimator, (C) is AA of (B). 'Cross sectional view. 実施例1の光電圧測定装置の他の構成を示す図であって、(A)はコリメーターの光ファイバー端面部分の側面図、(B)は(A)のA−A´断面図。It is a figure which shows the other structure of the optical voltage measuring apparatus of Example 1, Comprising: (A) is a side view of the optical fiber end surface part of a collimator, (B) is AA 'sectional drawing of (A). 実施例2の光電圧測定装置の全体構成を示す図。FIG. 3 is a diagram illustrating an overall configuration of a photovoltage measuring device according to a second embodiment.

以下、本発明に係る光電圧測定装置の実施例について、図面を参照して説明する。   Embodiments of an optical voltage measuring device according to the present invention will be described below with reference to the drawings.

(1−1)実施例1の構成
本実施例の光電圧測定装置においては、図1(A)に示すように、光源駆動装置1によって駆動される光源2を出射した光は、SMカップラー12を透過し、シングルモードファイバー13によって測定点近傍まで導かれるように構成されている。また、この光は、シングルモードファイバー13の先端に設置された、偏波保持ファイバーからなるファイバー型の偏光子14で直線偏光とされ、さらにファイバー型の1/8波長板(請求項にいうファイバー型の位相差板)15で楕円偏光とされるように構成されている。
(1-1) Configuration of Example 1 In the optical voltage measurement device of this example, as shown in FIG. 1A, the light emitted from the light source 2 driven by the light source driving device 1 is SM coupler 12. And is guided to the vicinity of the measurement point by the single mode fiber 13. The light is linearly polarized by a fiber-type polarizer 14 made of a polarization-maintaining fiber installed at the tip of a single-mode fiber 13, and further, a fiber-type 1/8 wavelength plate (a fiber referred to in the claims). (Type retardation plate) 15 is configured to be elliptically polarized light.

このファイバー型の1/8波長板15を出射した光は、コリメーター16でコリメートされ、BGO(Bi12GeO20)等の単結晶を用いた電気光学素子(ポッケルス効果素子)7を透過し、電気光学素子に施された反射膜17で反射され、再び電気光学素子7を透過し、コリメーター16でファイバー型の1/8波長板15に結合されるように構成されている。 The light emitted from the fiber type 1/8 wavelength plate 15 is collimated by a collimator 16 and transmitted through an electro-optic element (Pockels effect element) 7 using a single crystal such as BGO (Bi 12 GeO 20 ). The light is reflected by the reflection film 17 applied to the electro-optical element, passes through the electro-optical element 7 again, and is coupled to the fiber type 8 wavelength plate 15 by the collimator 16.

また、前記1/8波長板15を出射した光は、再びファイバー型の偏光子14を透過する時に一偏光成分のみの光が出射される。この光は前記電気光学素子7によって楕円偏光にされた楕円率によって光量が変化することとなり、被測定電圧に応じた光量の光が出力される。こうして電圧によって強度変調を受けた光は再びシングルモードファイバー13でSMカップラー12まで送り戻され、SMカップラー12で光源2に向かう光と検出器10に向かう光に分岐される。このうち、検出器に向かった光は、検出器10で電気信号に変換され、電子回路11によって、この電気信号の変調率を元に被測定対象の電圧が演算される。   Further, the light emitted from the 1/8 wavelength plate 15 is emitted only with one polarization component when passing through the fiber-type polarizer 14 again. The amount of light changes depending on the ellipticity that has been elliptically polarized by the electro-optic element 7, and a light amount corresponding to the voltage to be measured is output. The light that has been intensity-modulated by the voltage is sent back to the SM coupler 12 by the single mode fiber 13 again, and is branched by the SM coupler 12 into light directed to the light source 2 and light directed to the detector 10. Among these, the light directed to the detector is converted into an electric signal by the detector 10, and the voltage to be measured is calculated by the electronic circuit 11 based on the modulation rate of the electric signal.

なお、1/8波長板15を出射する光の偏光状態は、電気光学素子7に電圧が印加されていない状態においては、往復で1/8波長+1/8波長=1/4波長の位相差を受けることになるので、ちょうど円偏光となる。一方、電気光学素子7に電圧が印加された状態においては、電気光学素子7でさらに位相差が加わり、印加した電圧に応じた楕円偏光が出射されることとなる。電気光学素子7で加わる位相差は片道の場合の2倍であり、反射型とすることによって光電圧測定装置の感度は約2倍となる。   The polarization state of the light emitted from the 1/8 wavelength plate 15 is a phase difference of 1/8 wavelength + 1/8 wavelength = 1/4 wavelength in a reciprocating manner when no voltage is applied to the electro-optical element 7. Will be circularly polarized. On the other hand, when a voltage is applied to the electro-optical element 7, a phase difference is further applied by the electro-optical element 7, and elliptically polarized light corresponding to the applied voltage is emitted. The phase difference applied by the electro-optic element 7 is twice that of the one-way case, and the sensitivity of the photovoltage measuring device is about twice as much by adopting the reflection type.

また、図1(B)(C)は、コリメーター16の光ファイバー端面部分を示したものである。すなわち、本実施例においては、前記ファイバー型偏光子14のリード部分と接着された1/8波長板15は、例えば円筒形状をした固定用部材18内に収納されている。前記固定用部材18には、1/8波長板15に用いたファイバーの径よりも僅かに大きな径を有する円筒穴18aが設けられ、この円筒穴18a内に、前記ファイバー型偏光子14のリード部分と1/8波長板15の接着部分が収納されている。   FIGS. 1B and 1C show the optical fiber end face portion of the collimator 16. That is, in this embodiment, the 1/8 wavelength plate 15 bonded to the lead portion of the fiber-type polarizer 14 is accommodated in a fixing member 18 having a cylindrical shape, for example. The fixing member 18 is provided with a cylindrical hole 18a having a diameter slightly larger than the diameter of the fiber used for the 8 wavelength plate 15, and the lead of the fiber-type polarizer 14 is provided in the cylindrical hole 18a. The portion and the bonded portion of the 1/8 wavelength plate 15 are accommodated.

そして、前記ファイバー型偏光子14のリード部分と前記円筒穴18aの内壁との間に所定の接着剤を注入することによって接着層19を形成し、これによりファイバー型偏光子14のリード部分を前記円筒穴18aに固定することができるように構成されている。なお、前記接着剤は、1/8波長板15にかからないようにファイバー型偏光子14のリード部分のみに供給されている。   Then, an adhesive layer 19 is formed by injecting a predetermined adhesive between the lead portion of the fiber-type polarizer 14 and the inner wall of the cylindrical hole 18a, whereby the lead portion of the fiber-type polarizer 14 is It is comprised so that it can fix to the cylindrical hole 18a. The adhesive is supplied only to the lead portion of the fiber-type polarizer 14 so as not to reach the 1/8 wavelength plate 15.

(1−2)実施例1の作用
上記のような構成を有する本実施例は以下のように作用する。すなわち、本実施例におけるファイバー型の位相差板としては、例えば特許文献1にその構成が示されているように、結晶の変わりに、複屈折性を有する光ファイバーが用いられる。しかしながら、このような複屈折性を有するファイバーは固定が困難であるため、電流センサでは既に適用が試みられているものの、電圧センサに適用された例はない。
(1-2) Operation of Embodiment 1 The present embodiment having the above configuration operates as follows. That is, as the fiber type retardation plate in the present embodiment, an optical fiber having birefringence is used instead of a crystal as shown in Patent Document 1, for example. However, since it is difficult to fix such a fiber having birefringence, application to a current sensor has been attempted, but no example has been applied to a voltage sensor.

つまり、光ファイバー電流センサにおいては、センサとは融着接続され、位相差板の位置が少々ずれようとも、それが誤差に影響を与えることはない。しかし、バルクの電気光学素子を用いたセンサにおいては、コリメーター部分のファイバー端面の位置はミクロン精度で固定されていなければ、コリメーターの結合効率が変化し誤差を生じるか、または、全く結合せずにセンサが成り立たなくなる。このため、ファイバーの先端をミクロン精度で固定する必要があるが、先端部分を固定してしまうと、固定による複屈折を生じ、新たな誤差が生じてしまうという問題点があった。   That is, in the optical fiber current sensor, it is fusion-bonded to the sensor, and even if the position of the phase difference plate is slightly shifted, it does not affect the error. However, in a sensor using a bulk electro-optic element, if the position of the fiber end face of the collimator portion is not fixed with micron accuracy, the collimator coupling efficiency changes and an error occurs, or the coupling is not performed at all. Without a sensor. For this reason, it is necessary to fix the tip of the fiber with micron accuracy. However, if the tip is fixed, there is a problem that birefringence due to fixing occurs and a new error occurs.

これに対して、本実施例においては、図1(C)に示すような構成とすることにより、固定によって生じる複屈折を抑制することができる。すなわち、本実施例においては、前記固定用部材18に設けた円筒穴18a内に、前記ファイバー型偏光子14のリード部分と1/8波長板15の接着部分を収納し、前記ファイバー型偏光子14のリード部分と前記円筒穴18aの内壁との間に所定の接着剤を注入することによって、ファイバー型偏光子14のリード部分を前記円筒穴18aに固定することができる。   On the other hand, in this embodiment, birefringence caused by fixation can be suppressed by adopting the configuration as shown in FIG. That is, in the present embodiment, the lead portion of the fiber type polarizer 14 and the bonded portion of the 1/8 wavelength plate 15 are accommodated in the cylindrical hole 18a provided in the fixing member 18, and the fiber type polarizer. By injecting a predetermined adhesive between the 14 lead portions and the inner wall of the cylindrical hole 18a, the lead portion of the fiber polarizer 14 can be fixed to the cylindrical hole 18a.

また、固定用部材18の円筒穴18a内において、前記1/8波長板15に接着剤がかからないようにすることによって、1/8波長板15には接着による応力が加わることなく、高い温度安定性を維持することができる。一方、ファイバー型偏光子14のリード部分には接着の応力が加わることとなるが、ファイバー型偏光子14のリード部分は偏波保持ファイバーで構成されているため、接着による応力が加わっても偏波を維持できるだけで高い複屈折が印加されており、応力が誤差と結びつくことはない。   Further, in the cylindrical hole 18a of the fixing member 18, by preventing the adhesive from being applied to the 8 wavelength plate 15, the 8 wavelength plate 15 is not subjected to bonding stress and has high temperature stability. Sex can be maintained. On the other hand, an adhesive stress is applied to the lead portion of the fiber-type polarizer 14, but the lead portion of the fiber-type polarizer 14 is composed of a polarization-maintaining fiber. High birefringence is applied to maintain the wave, and stress does not lead to errors.

また、位置精度については、円筒穴18a、ファイバー外形とも精度1μm程度の物が容易に入手可能であり、これを用いればミクロン精度の位置決めが可能となる。さらに、応力によるファイバー偏光子の僅かな特性変化や、熱膨張による位置変化を抑制したい場合には、ガラスやセラミックスのように熱膨張の小さな材料で固定用部材を構成すればよいことは言うまでもない。   As for the position accuracy, both the cylindrical hole 18a and the outer shape of the fiber can be easily obtained with an accuracy of about 1 μm, and if this is used, positioning with micron accuracy becomes possible. Furthermore, it is needless to say that the fixing member may be made of a material having a small thermal expansion, such as glass or ceramics, in order to suppress a slight change in characteristics of the fiber polarizer due to stress or a change in position due to thermal expansion. .

(1−3)実施例1の効果
このように、本実施例によれば、光学系を大幅に単純化し、かつ、固定用部材でファイバー型の位相差板を固定することによって、ファイバー型の位相差板の使用が可能になるため、バルク部品の使用を低減することができる。また、振動時の光学素子の角度ずれを抑制することによって光量損失の変化を抑えることができるため、受光器の受光光量を安定化することが可能となる。この結果、振動の影響を受けることなく、常に高精度の測定が可能な光電圧測定装置を提供することができる。
(1-3) Effects of Example 1 As described above, according to this example, the optical system is greatly simplified, and the fiber type retardation plate is fixed by the fixing member. Since the retardation plate can be used, the use of bulk parts can be reduced. In addition, since the change in the light amount loss can be suppressed by suppressing the angular deviation of the optical element during vibration, the received light amount of the light receiver can be stabilized. As a result, it is possible to provide a photovoltage measuring device capable of always performing highly accurate measurement without being affected by vibration.

(1−4)実施例1の変形例
図2(A)(B)は上記実施例1の変形例を示したものであり、接着層19が1/8波長板15にまで及ぶことを防ぐために、固定用部材18の側面からキリ穴20があけられており、ファイバー偏光子14と1/8波長板15の融着部分近傍に空隙20aが形成されている。接着剤は、毛細管現象によって、固定用部材18に形成された円筒穴18aとファイバーとの隙間を埋めるように広がろうとする性質を持っているが、この空隙20aを設けることによって、接着剤はこれより奥には広がらず、1/8波長板15部分に接着剤が回り込むことを防ぐことができるので、より高い温度安定性を維持することができる。なお、前記空隙20aの形状・大きさは特に限定されず、ファイバー偏光子14と1/8波長板15の融着部分近傍に球形の空間を形成しても良い。
(1-4) Modified Example of Example 1 FIGS. 2A and 2B show a modified example of the above Example 1, and prevent the adhesive layer 19 from reaching the 1/8 wavelength plate 15. For this purpose, a drill hole 20 is formed from the side surface of the fixing member 18, and a gap 20 a is formed in the vicinity of the fused portion between the fiber polarizer 14 and the 8 wavelength plate 15. The adhesive has a property of trying to spread so as to fill the gap between the cylindrical hole 18a formed in the fixing member 18 and the fiber by a capillary phenomenon, but by providing this gap 20a, the adhesive is Since it does not spread deeper than this and it is possible to prevent the adhesive from entering the 1/8 wavelength plate 15, higher temperature stability can be maintained. The shape and size of the gap 20a are not particularly limited, and a spherical space may be formed in the vicinity of the fused portion between the fiber polarizer 14 and the 1 / wavelength plate 15.

(2−1)実施例2の構成
図3は、本発明に係る光電圧測定装置の実施例2の構成を示したものであるが、本実施例は、特に、電気光学素子の設置される電圧の測定点と、光源や電子回路が設置される場所が離れていて、光ファイバーでの長距離伝送が必要になった場合に適した構成を示したものである。
(2-1) Configuration of Embodiment 2 FIG. 3 shows the configuration of Embodiment 2 of the optical voltage measurement apparatus according to the present invention. In this embodiment, in particular, an electro-optic element is installed. This is a configuration suitable for a case where a voltage measurement point is separated from a place where a light source or an electronic circuit is installed and long-distance transmission using an optical fiber is required.

すなわち、本実施例においては、実施例1と同様に、ファイバー型の1/8波長板15を用いると共に、偏波分離カップラー21を用いることにより、光の楕円の長軸・短軸の光を分離することができるように構成すると共に、直交する2偏波の光を1対の光ファイバー13,13で伝送するように構成されている。   That is, in the present embodiment, similarly to the first embodiment, the fiber type 1/8 wavelength plate 15 and the polarization separation coupler 21 are used, so that the long axis and short axis light of the ellipse of light can be obtained. It is configured so that it can be separated, and is configured to transmit two orthogonally polarized light beams through a pair of optical fibers 13 and 13.

なお、図示していないが、本実施例のファイバー型の1/8波長板15も、実施例1と同様に、例えば円筒形状をした固定用部材に形成された円筒穴内に収納されている。また、シングルモードファイバーとして、2芯ペアとなったものを用いれば、2本のファイバーが同一の振動条件にさらされることになり、さらに望ましい。   Although not shown, the fiber type 8 wavelength plate 15 of this embodiment is also housed in a cylindrical hole formed in a fixing member having a cylindrical shape, for example, as in the first embodiment. Further, if a single-mode fiber having a two-core pair is used, two fibers are exposed to the same vibration condition, which is more desirable.

(2−2)実施例2の作用
従来から、シングルモード光ファイバーは長距離伝送が可能であるという利点がある反面、振動によって損失の変化が生じ、透過光量の変動が生じ、誤差となることが知られている。ファイバーでの伝送距離が長くなると振動の影響も大きくなり、この誤差は無視できなくなる。この誤差を防ぐためには、電気光学素子7から1/8波長板15に帰ってきた光の楕円の長軸・短軸両方の光量をシングルモードファイバーで伝送すると良いことが知られている。本実施例は、この両軸の光は一方の光量が増加すると他方は減少することを利用したものである。すなわち、検出器で逆相に加わった信号は被測定点の電圧変化によるものであるが、正相に加わった光量変化は振動によるものとして、振動の影響を明確に区別することが可能となるため、長距離伝送においても高精度な測定が可能となる。
(2-2) Operation of Embodiment 2 Conventionally, a single mode optical fiber has an advantage of being capable of long-distance transmission, but on the other hand, a change in loss occurs due to vibration, resulting in a variation in the amount of transmitted light, resulting in an error. Are known. As the transmission distance through the fiber increases, the influence of vibration increases and this error cannot be ignored. In order to prevent this error, it is known that the light quantity of both the major axis and the minor axis of the ellipse of light returning from the electro-optic element 7 to the 1/8 wavelength plate 15 may be transmitted by a single mode fiber. The present embodiment utilizes the fact that the light on both axes decreases when one light quantity increases. That is, the signal applied to the negative phase by the detector is due to the voltage change at the point to be measured, but the change in the amount of light applied to the positive phase is due to the vibration, so that the influence of the vibration can be clearly distinguished. Therefore, highly accurate measurement is possible even in long-distance transmission.

このように両軸の光を用いて伝送ファイバーの振動の影響を除去することは公知の技術であるが、従来のバルク素子を用いた光電圧測定装置においては、両軸の光を分離するためにPBS(Polarizing BeamSplitter)と呼ばれるバルク素子を用いているために、PBSとファイバーとの結合光学系が2つとなり、この部分に振動が加わった場合に両軸に別々の光量変動が生じる。つまり、折角振動に強い構成にしたつもりが、検出部は逆に振動に弱くなってしまうといった問題点があった。これに対して、本実施例の光電圧測定装置においては、結合光学系は1つになり、両軸同一の光量変動となるので、振動の影響を除去して高精度の電圧測定が可能となる。   In this way, it is a known technique to remove the influence of the vibration of the transmission fiber by using the light of both axes. However, in the conventional optical voltage measuring device using the bulk element, the light of both axes is separated. Since a bulk element called PBS (Polarizing Beam Splitter) is used for this, there are two coupling optical systems of PBS and fiber. When vibration is applied to this part, separate light quantity fluctuations occur on both axes. That is, although it was intended to have a configuration that is resistant to bending vibration, there was a problem that the detection unit was weak against vibration. On the other hand, in the optical voltage measuring apparatus of the present embodiment, there is one coupling optical system, and the light quantity fluctuations are the same on both axes, so that it is possible to measure the voltage with high accuracy by removing the influence of vibration. Become.

(2−3)実施例2の効果
上述したように、従来のバルク部品で構成された方式だと、直交する2偏波の結合効率の差が誤差となったが、ファイバー型の位相差板15及び偏波分離カップラー21を用いることにより、電気光学素子とファイバーとのカップリングが1つになるため、この問題を回避することができ、高精度の電圧測定が可能となる。
(2-3) Effects of Embodiment 2 As described above, in the case of a system constituted by conventional bulk parts, the difference in the coupling efficiency between two orthogonal polarizations resulted in an error, but a fiber type retardation plate 15 and the polarization separation coupler 21, since the coupling between the electro-optic element and the fiber becomes one, this problem can be avoided and high-accuracy voltage measurement is possible.

このように、本実施例によれば、電気光学素子の設置される電圧の測定点と、光源や電子回路が設置される場所が離れていて、光ファイバーでの長距離伝送が必要になった場合であっても、振動時の光学素子の角度ずれを抑制することによって光量損失の変化を抑えることができるため、受光器の受光光量を安定化することが可能となるだけでなく、結合光学系が1つになり、両軸同一の光量変動となるので、振動の影響を除去して高精度の電圧測定が可能となる。   As described above, according to the present embodiment, when the voltage measurement point where the electro-optic element is installed is far from the place where the light source or the electronic circuit is installed, long-distance transmission using an optical fiber is required. Even so, it is possible not only to stabilize the amount of light received by the light receiver, but also to reduce the amount of light loss by suppressing the angular deviation of the optical element during vibration. As a result, the amount of light on both axes is the same, so that the influence of vibration can be eliminated and highly accurate voltage measurement can be performed.

なお、本発明のいくつかの実施例を説明したが、これらの実施例は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施例やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   In addition, although some Example of this invention was described, these Examples are shown as an example and are not intending limiting the range of invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These examples and modifications thereof are included in the scope of the invention and the gist thereof, and are also included in the invention described in the claims and the equivalent scope thereof.

1…光源駆動装置
2…光源
7…電気光学素子
10…検出器
11…電子回路
12…SMカップラー
13…シングルモードファイバー
14…ファイバー型の偏光子
15…ファイバー型の1/8波長板
16…コリメーター
17…反射膜
18…固定用部材
19…接着層
20…キリ穴
21…偏波分離カップラー
DESCRIPTION OF SYMBOLS 1 ... Light source drive device 2 ... Light source 7 ... Electro-optic element 10 ... Detector 11 ... Electronic circuit 12 ... SM coupler 13 ... Single mode fiber 14 ... Fiber type polarizer 15 ... Fiber type 1/8 wavelength plate 16 ... Collision Meter 17 ... Reflective film 18 ... Fixing member 19 ... Adhesive layer 20 ... Drill hole 21 ... Polarization separation coupler

Claims (4)

少なくとも光源と、この光源の光を所定の偏光状態にするための偏光光学系と、印加される電圧に応じた光位相変調を行う電気光学素子と、前記電気光学素子を透過した光を反射する反射鏡と、前記反射鏡を反射し、前記電気光学素子を透過した透過光のある軸の光強度を検出する検光子と、前記検光子を透過した透過光を検出して前記印加電圧を検出する受光部を備えた反射型の光電圧測定装置において、
前記偏光光学系の少なくとも一部にファイバー型の位相差板を使用し、
この位相差板を、所定の固定用部材に設けた円筒穴内に収納したことを特徴とする光電圧測定装置。
At least a light source, a polarizing optical system for making light from the light source into a predetermined polarization state, an electro-optical element that performs optical phase modulation according to an applied voltage, and light that has passed through the electro-optical element is reflected. A reflection mirror, an analyzer that reflects the reflection mirror and detects the light intensity of a certain axis of the transmitted light that has passed through the electro-optic element, and detects the applied voltage by detecting the transmitted light that has passed through the analyzer In a reflection type photovoltage measuring device having a light receiving unit
Using a fiber type retardation plate for at least a part of the polarizing optical system,
An optical voltage measuring device characterized in that the retardation plate is housed in a cylindrical hole provided in a predetermined fixing member.
前記検光子としてファイバー型の偏波分離カップラーを使用し、この偏波分離カップラーによって直交する2軸の偏光の光に分離し、一対のシングルモードファイバーで信号の伝送を行い、このうち1本を前記光源から前記電気光学素子へ光を送るファイバーと共用し、前記光源からの光と前記受光部への光を分離するファイバー型のカップラーを有することを特徴とする請求項1に記載の光電圧測定装置。   A fiber-type polarization separation coupler is used as the analyzer. The polarization separation coupler separates the light into two orthogonally polarized lights, and transmits a signal through a pair of single-mode fibers. The photovoltage according to claim 1, further comprising a fiber-type coupler that is shared with a fiber that transmits light from the light source to the electro-optic element and separates light from the light source and light to the light receiving unit. measuring device. 前記ファイバー型の位相差板が偏波面保存ファイバーと融着接続され、
この偏波面保存ファイバーと、前記固定用部材の円筒穴との間が接着固定されていることを特徴とする請求項1に記載の光電圧測定装置。
The fiber-type retardation plate is fusion-spliced with a polarization-maintaining fiber,
The optical voltage measuring device according to claim 1, wherein the polarization plane preserving fiber and a cylindrical hole of the fixing member are bonded and fixed.
前記固定用部材に設けられた円筒穴の、前記位相差板と偏波面保存ファイバーの融着点近傍に空隙が設けられていることを特徴とする請求項1又は請求項3に記載の光電圧測定装置。   4. The optical voltage according to claim 1, wherein a gap is provided in the cylindrical hole provided in the fixing member in the vicinity of a fusion point between the retardation plate and the polarization-maintaining fiber. measuring device.
JP2011053285A 2011-03-10 2011-03-10 Photovoltage measuring device Expired - Fee Related JP5858629B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011053285A JP5858629B2 (en) 2011-03-10 2011-03-10 Photovoltage measuring device
CN201210061663.5A CN102680763B (en) 2011-03-10 2012-03-09 Photovoltage measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011053285A JP5858629B2 (en) 2011-03-10 2011-03-10 Photovoltage measuring device

Publications (2)

Publication Number Publication Date
JP2012189447A true JP2012189447A (en) 2012-10-04
JP5858629B2 JP5858629B2 (en) 2016-02-10

Family

ID=46812996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011053285A Expired - Fee Related JP5858629B2 (en) 2011-03-10 2011-03-10 Photovoltage measuring device

Country Status (2)

Country Link
JP (1) JP5858629B2 (en)
CN (1) CN102680763B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103884901A (en) * 2014-04-04 2014-06-25 哈尔滨理工大学 System and method for measuring high voltage based on FP voltage sensor
CN109752579A (en) * 2017-11-07 2019-05-14 许继集团有限公司 A kind of novel all-fiber electronic current transformer and a kind of optical-fibre wave plate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085462A (en) * 1994-05-09 1996-01-12 Abb Res Ltd Method and device for optically obtaining physical quantity
US5907403A (en) * 1996-01-22 1999-05-25 Lockheed Martin Corp. Optical dual Fabry-Perot interferometric strain/temperature sensor, and system for separate reading thereof
US6122415A (en) * 1998-09-30 2000-09-19 Blake; James N. In-line electro-optic voltage sensor
JP2001033492A (en) * 1999-07-19 2001-02-09 Toshiba Corp Optical application measuring apparatus
JP2002040290A (en) * 2000-07-28 2002-02-06 Nippon Telegr & Teleph Corp <Ntt> Fiber array part and its manufacturing method
JP2005300422A (en) * 2004-04-14 2005-10-27 Toshiba Corp Photocurrent detecting apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85203104U (en) * 1985-07-30 1986-06-25 清华大学 D.c. and a.c. optical fiber potential meter
US6891622B2 (en) * 1999-02-11 2005-05-10 Kvh Industries, Inc. Current sensor
GB0222944D0 (en) * 2002-10-04 2002-11-13 Renishaw Plc Laser system
CN1252479C (en) * 2003-04-24 2006-04-19 郭伟 Reflection type 'Sage-qinke' interferometer type current transformer prepared from full optical fiber
JP4458169B2 (en) * 2008-02-04 2010-04-28 沖電気工業株式会社 Optical modulator and optical signal generator
JP5534653B2 (en) * 2008-05-28 2014-07-02 株式会社東芝 Photovoltage sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085462A (en) * 1994-05-09 1996-01-12 Abb Res Ltd Method and device for optically obtaining physical quantity
US5907403A (en) * 1996-01-22 1999-05-25 Lockheed Martin Corp. Optical dual Fabry-Perot interferometric strain/temperature sensor, and system for separate reading thereof
US6122415A (en) * 1998-09-30 2000-09-19 Blake; James N. In-line electro-optic voltage sensor
JP2001033492A (en) * 1999-07-19 2001-02-09 Toshiba Corp Optical application measuring apparatus
JP2002040290A (en) * 2000-07-28 2002-02-06 Nippon Telegr & Teleph Corp <Ntt> Fiber array part and its manufacturing method
JP2005300422A (en) * 2004-04-14 2005-10-27 Toshiba Corp Photocurrent detecting apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103884901A (en) * 2014-04-04 2014-06-25 哈尔滨理工大学 System and method for measuring high voltage based on FP voltage sensor
CN103884901B (en) * 2014-04-04 2016-06-08 哈尔滨理工大学 A kind of high voltage measuring system based on FP voltage sensor and measuring method
CN109752579A (en) * 2017-11-07 2019-05-14 许继集团有限公司 A kind of novel all-fiber electronic current transformer and a kind of optical-fibre wave plate

Also Published As

Publication number Publication date
JP5858629B2 (en) 2016-02-10
CN102680763A (en) 2012-09-19
CN102680763B (en) 2015-01-07

Similar Documents

Publication Publication Date Title
US10859607B2 (en) Fiber-optic sensor and method
CA2724608C (en) Sagnac interferometer-type fiber-optic current sensor
US9823075B2 (en) Non-interferometric optical gyroscope based on polarization sensing
EP2957863B1 (en) Small low cost resonator fiber optic gyroscope with reduced optical errors
US9588150B2 (en) Electric current measuring apparatus
CN105137147B (en) Optical voltage measuring device
CN113167583A (en) Compact optical fiber Sagnac interferometer
US9541399B2 (en) Fiber optic gyroscope with front end polarizer
US10877076B2 (en) Fiber-optic current sensor with tolerance to connector misalignment
JP5858629B2 (en) Photovoltage measuring device
JP2014025835A (en) Optical current sensor
JP2017015576A (en) Sagnac interference type optical current sensor and method for processing signal of the same
US9651380B2 (en) Integrated optical coupler and fibre-optic system having such an integrated optical coupler
EP3084451B1 (en) Fiber-optic sensor and method
JP2013253922A (en) Photocurrent sensor
JP4836862B2 (en) Photovoltage sensor
JP2001033492A (en) Optical application measuring apparatus
KR20230086460A (en) Optical Current Sensor System based on All-in-one Optics
JPS5899761A (en) Electric field/magnetic field measuring apparatus with light
JP2591852B2 (en) Hikaribaiyairo
JP2012159391A (en) Optical voltage sensor
Wang et al. Polarization-noise suppression by twice 90° polarization-axis rotated splicing in resonator fiber optic gyroscope
JPS61149836A (en) Pressure measuring instrument
JPH09274056A (en) Current measuring device for optical fiber
JP2000187046A (en) Optical measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151215

R151 Written notification of patent or utility model registration

Ref document number: 5858629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees