JP2012189352A - Sonic velocity measuring apparatus and method for ultrasonic waves propagated on surface - Google Patents

Sonic velocity measuring apparatus and method for ultrasonic waves propagated on surface Download PDF

Info

Publication number
JP2012189352A
JP2012189352A JP2011051169A JP2011051169A JP2012189352A JP 2012189352 A JP2012189352 A JP 2012189352A JP 2011051169 A JP2011051169 A JP 2011051169A JP 2011051169 A JP2011051169 A JP 2011051169A JP 2012189352 A JP2012189352 A JP 2012189352A
Authority
JP
Japan
Prior art keywords
ultrasonic
sound
waveform
wave
propagation time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011051169A
Other languages
Japanese (ja)
Inventor
Takahiro Arakawa
敬弘 荒川
Hiroaki Hatanaka
宏明 畠中
Mitsugi Fujiwara
貢 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Inspection and Instrumentation Co Ltd
Original Assignee
IHI Inspection and Instrumentation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Inspection and Instrumentation Co Ltd filed Critical IHI Inspection and Instrumentation Co Ltd
Priority to JP2011051169A priority Critical patent/JP2012189352A/en
Publication of JP2012189352A publication Critical patent/JP2012189352A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sonic velocity measuring apparatus and method for ultrasonic waves in which a sonic velocity propagated on a surface can be measured with high accuracy without being affected by an incidence point position and a rising position of a waveform.SOLUTION: A sonic velocity measuring apparatus comprises an ultrasonic transmitting section 12 and an ultrasonic receiving section 14 which are disposed along a surface 1 of a target, and an ultrasonic arithmetic section 16 which calculates a sonic velocity of an ultrasonic wave 5 from an ultrasonic waveform 6 detected by the ultrasonic receiving section. The ultrasonic transmitting section 12 or the ultrasonic receiving section 14 is comprised of a plurality of ultrasonic elements which are disposed at accurately measured intervals along the surface of the target. Ultrasonic waves are transmitted or received by the ultrasonic elements, a propagation time difference of the ultrasonic waveforms received by the ultrasonic receiving section is determined by a waveform correlation, and the sonic velocity is measured therefrom.

Description

本発明は、表面を伝播する超音波の音速を測定する装置と方法に関する。   The present invention relates to an apparatus and method for measuring the speed of sound of ultrasonic waves propagating on a surface.

材料は、材料組成や加工方法、熱処理方法や材料の使用環境(負荷応力や熱履歴など)で音速が変化することが知られている。従って、材料の音速変化を監視することで材料特性の変化を監視することができる。具体的には材料に加わる応力の変化、材質の劣化の監視あるいは表面改質(浸炭処理など)などの加工の監視などができる。   It is known that the speed of sound of a material changes depending on the material composition, processing method, heat treatment method, and material usage environment (load stress, thermal history, etc.). Therefore, a change in material properties can be monitored by monitoring a change in sound velocity of the material. Specifically, it is possible to monitor changes in stress applied to the material, deterioration of the material, or processing such as surface modification (such as carburization).

また例えば、溶射、メッキ、浸炭などの表面処理が施されている材料では、母材と表面改質部の音速は異なってくる。例えば、より波長の長い低い周波数成分では、超音波はより深い層までの表層部を伝播することで、母材の音速の影響をより大きく受ける。一方、短い波長の高い周波数の超音波は、より表層部を伝播するために表面改質部の音速の影響を大きく受ける。このために、音速の周波数依存性を評価することにより、表面改質部の膜厚などの把握が可能になる。   Further, for example, in a material that has been subjected to a surface treatment such as thermal spraying, plating, or carburizing, the sound speed of the base material and the surface modified portion is different. For example, in a low-frequency component having a longer wavelength, the ultrasonic wave is more greatly affected by the sound velocity of the base material by propagating through the surface layer portion up to a deeper layer. On the other hand, high-frequency ultrasonic waves having a short wavelength are greatly affected by the sound velocity of the surface modification portion in order to propagate through the surface layer portion. For this reason, it is possible to grasp the film thickness of the surface modification portion by evaluating the frequency dependence of the sound velocity.

上述した目的のため、表面を伝播する表面波の音速測定手段が、既に提案されている(例えば、特許文献1)。   For the above-mentioned purpose, a sound velocity measuring means for surface waves propagating on the surface has already been proposed (for example, Patent Document 1).

特開平10−300565号公報、「表面波音速測定方法及び表面波音速測定装置」Japanese Patent Application Laid-Open No. 10-300565, “Surface wave sound velocity measuring method and surface wave sound velocity measuring apparatus”

音速の変化量は、1%未満の極微量であることがほとんどであり、上述の目的のためには高精度な音速計測が必要となる。また、高精度な音速計測のためには、超音波の正確な伝播時間の計測と共に、超音波の伝播距離を正確に求める必要がある。   The amount of change in sound speed is almost an extremely small amount of less than 1%, and high-accuracy sound speed measurement is required for the above-described purpose. In addition, for high-accuracy sound speed measurement, it is necessary to accurately determine the ultrasonic propagation distance as well as the measurement of the ultrasonic propagation time.

図1は従来の測定法を示す模式図である。この図において、1は材料表面、2は表面波用探触子、3は振動子、4はくさび形部材である。
従来の測定法では、この図に示すように2つの表面波用探触子2を対向させ、超音波5の伝播時間を測定する。測定した超音波5の伝播時間には、くさび形部材4内を伝播する時間も含まれるので、表面波用探触子2内での超音波伝播時間を予め求めておき、補正する必要がある。この補正した伝播時間と、表面波用探触子2の入射点間距離から表面波(超音波5)の音速を求めることができる。
FIG. 1 is a schematic diagram showing a conventional measurement method. In this figure, 1 is a material surface, 2 is a surface wave probe, 3 is a vibrator, and 4 is a wedge-shaped member.
In the conventional measuring method, as shown in this figure, two surface wave probes 2 are opposed to each other, and the propagation time of the ultrasonic wave 5 is measured. Since the measured propagation time of the ultrasonic wave 5 includes the propagation time in the wedge-shaped member 4, the ultrasonic wave propagation time in the surface wave probe 2 needs to be obtained in advance and corrected. . The sound velocity of the surface wave (ultrasonic wave 5) can be obtained from the corrected propagation time and the distance between the incident points of the surface wave probe 2.

図2は、表面波用探触子内での伝播時間の測定法を示す模式図である。
従来の測定法で測定する伝播時間は図1に示すt1+t2+t3であり、表面波用探触子2内での伝播時間t1+t3は例えば、図2に示すように表面波用探触子2を反対向きに重ね合わせて伝播時間を測定することで求める。このときの超音波5の入射点位置は、振動子3が置かれている面の法線上であり、振動子3の中心線上として求められる。
FIG. 2 is a schematic diagram showing a method for measuring the propagation time in the surface wave probe.
The propagation time measured by the conventional measuring method is t1 + t2 + t3 shown in FIG. 1, and the propagation time t1 + t3 in the surface wave probe 2 is, for example, the surface wave probe 2 facing in the opposite direction as shown in FIG. It is obtained by measuring the propagation time by superimposing on. The incident point position of the ultrasonic wave 5 at this time is on the normal line of the surface on which the transducer 3 is placed, and is obtained as the center line of the transducer 3.

しかし、この方法にはいくつかの問題点があり、測定精度の限界がある。例えば、実際に探傷するときの超音波5の入射点位置は、くさび形部材4の振動子3が置かれている面の傾きから幾何学的に求められる位置とは異なる位置にずれる。実際の超音波5の屈折はスネルの法則に従うので、試験体の表面波の音速によって異なる位置となり、振動子3の中心線上に必ずしも位置しない。従って、この入射点位置のずれに伴う誤差が必然的に発生する。   However, this method has some problems and has a limit of measurement accuracy. For example, the position of the incident point of the ultrasonic wave 5 when the flaw detection is actually performed deviates from a position geometrically determined from the inclination of the surface on which the transducer 3 of the wedge-shaped member 4 is placed. Since the actual refraction of the ultrasonic wave 5 follows Snell's law, the position varies depending on the speed of sound of the surface wave of the specimen, and is not necessarily located on the center line of the vibrator 3. Therefore, an error accompanying the deviation of the incident point position inevitably occurs.

図3は、超音波波形の立ち上がり位置とノイズを示す模式図である。
また超音波の伝播時間の測定に関しても誤差が発生する。正確な伝播時間は、図3(A)に示すように波形6の立ち上がり位置で定義される。しかし超音波の伝播にはノイズの発生が必然的にあり、ノイズを伴う場合には、図3(B)に示すように波形6の立ち上がり位置を正確に読み取ることが不可能になる。従って、従来の測定方法には、誤差が含まれる。
FIG. 3 is a schematic diagram showing the rising position of the ultrasonic waveform and noise.
An error also occurs with respect to the measurement of ultrasonic propagation time. The exact propagation time is defined by the rising position of the waveform 6 as shown in FIG. However, noise is inevitably generated in the propagation of ultrasonic waves, and when the noise is accompanied, it is impossible to accurately read the rising position of the waveform 6 as shown in FIG. Therefore, the conventional measurement method includes an error.

本発明は、上述した問題点を解決するために創案されたものである。すなわち、本発明の目的は、入射点位置と波形の立ち上がり位置の影響を受けることなく、表面を伝播する音速を高い精度で計測することができる超音波の音速測定装置と方法を提供することにある。   The present invention has been developed to solve the above-described problems. That is, an object of the present invention is to provide an ultrasonic sound velocity measuring apparatus and method capable of measuring the sound velocity propagating on the surface with high accuracy without being affected by the position of the incident point and the rising position of the waveform. is there.

本発明によれば、対象物の表面に沿って配置された超音波送信部及び超音波受信部と、
超音波受信部で検出した超音波波形から超音波の音速を算出する超音波演算部とを備え、
前記超音波送信部又は超音波受信部は、対象物の表面に沿って正確に測定された間隔で配置された複数の超音波素子からなり、
各超音波素子により超音波を送信又は受信し、超音波受信部で受信した超音波波形の伝播時間差を波形相関により求め、これから音速を測定する、ことを特徴とする表面を伝播する超音波の音速測定装置が提供される。
According to the present invention, an ultrasonic transmission unit and an ultrasonic reception unit arranged along the surface of the object,
An ultrasonic calculation unit that calculates the sound velocity of the ultrasonic wave from the ultrasonic waveform detected by the ultrasonic receiving unit,
The ultrasonic transmission unit or the ultrasonic reception unit is composed of a plurality of ultrasonic elements arranged at intervals accurately measured along the surface of the object,
Transmitting or receiving ultrasonic waves by each ultrasonic element, obtaining a propagation time difference of ultrasonic waveforms received by the ultrasonic receiving unit by waveform correlation, and measuring the speed of sound from this, and measuring ultrasonic velocity propagating on the surface A sound speed measuring device is provided.

また本発明によれば、対象物の表面に沿って配置された超音波送信部及び超音波受信部と、
超音波受信部で検出した超音波波形から超音波の音速を算出する超音波演算部とを備え、
前記超音波送信部又は超音波受信部は、対象物の表面に沿って正確に測定された間隔で配置された複数の超音波素子からなり、
各超音波素子により超音波を送信又は受信し、超音波受信部で受信した超音波波形の伝播時間差を波形相関により求め、これから音速を測定する、ことを特徴とする表面を伝播する超音波の音速測定方法が提供される。
Moreover, according to the present invention, an ultrasonic transmitter and an ultrasonic receiver arranged along the surface of the object,
An ultrasonic calculation unit that calculates the sound velocity of the ultrasonic wave from the ultrasonic waveform detected by the ultrasonic receiving unit,
The ultrasonic transmission unit or the ultrasonic reception unit is composed of a plurality of ultrasonic elements arranged at intervals accurately measured along the surface of the object,
Transmitting or receiving ultrasonic waves by each ultrasonic element, obtaining a propagation time difference of ultrasonic waveforms received by the ultrasonic receiving unit by waveform correlation, and measuring the speed of sound from this, and measuring ultrasonic velocity propagating on the surface A method of measuring the speed of sound is provided.

上記本発明の装置及び方法によれば、超音波送信部又は超音波受信部が、対象物の表面に沿って正確に測定された間隔で配置された複数の超音波素子からなるので、超音波の送信又は受信の条件は全ての超音波素子間で同一であり、各超音波素子で送信又は受信する超音波の伝播時間差は、唯一超音波素子間の距離に依存する。
また、受信した超音波波形の重ね合わせによる相関処理を行うので、超音波の立ち上がり時間を測定することなく伝播時間差を正確に求めることができ、ノイズの発生に対しても正確に伝播時間差を測定することができる。
従って、超音波の入射点位置と波形の立ち上がり位置の影響を受けることなく、表面を伝播する音速を高い精度で計測することができる
According to the apparatus and method of the present invention, since the ultrasonic transmission unit or the ultrasonic reception unit is composed of a plurality of ultrasonic elements arranged at intervals accurately measured along the surface of the object, The transmission / reception conditions are the same for all ultrasonic elements, and the difference in the propagation time of ultrasonic waves transmitted or received by each ultrasonic element depends solely on the distance between the ultrasonic elements.
In addition, since correlation processing is performed by superimposing received ultrasonic waveforms, it is possible to accurately determine the propagation time difference without measuring the rise time of the ultrasonic wave, and accurately measure the propagation time difference even when noise is generated. can do.
Therefore, the speed of sound propagating on the surface can be measured with high accuracy without being affected by the position of the ultrasonic incident point and the rising position of the waveform.

従来の測定法を示す模式図である。It is a schematic diagram which shows the conventional measuring method. 表面波用探触子内での伝播時間の測定法を示す模式図である。It is a schematic diagram which shows the measuring method of the propagation time in the probe for surface waves. 超音波波形の立ち上がり位置とノイズを示す模式図である。It is a schematic diagram which shows the rising position and noise of an ultrasonic waveform. 本発明による音速測定装置の第1実施形態図である。1 is a diagram showing a first embodiment of a sound velocity measuring device according to the present invention. 本発明による音速測定装置の第2実施形態図である。It is 2nd Embodiment figure of the sound speed measuring apparatus by this invention. 本発明による音速測定の概念図である。It is a conceptual diagram of the sound speed measurement by this invention. 本発明による測定結果の整理方法を示す概念図である。It is a conceptual diagram which shows the organizing method of the measurement result by this invention. 各超音波素子で受信した波形を示す図である。It is a figure which shows the waveform received with each ultrasonic element. 図8の表面波7に対して求めた関数f(Δt)を示す図である。It is a figure which shows the function f ((DELTA) t) calculated | required with respect to the surface wave 7 of FIG. 図9から求めた伝播時間差Δtと伝播距離Xの関係図である。FIG. 10 is a relationship diagram between a propagation time difference Δt obtained from FIG. 9 and a propagation distance X.

以下、本発明の好ましい実施形態を、図面を参照して説明する。なお各図において、共通する部分には同一の符号を付し、重複した説明は省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted.

図4は、本発明による音速測定装置の第1実施形態図である。
この図において、本発明の音速測定装置10は、超音波送信部12、超音波受信部14及び超音波演算部16を備える。
FIG. 4 is a diagram showing a first embodiment of a sound velocity measuring device according to the present invention.
In this figure, the sound velocity measuring apparatus 10 of the present invention includes an ultrasonic transmission unit 12, an ultrasonic reception unit 14, and an ultrasonic calculation unit 16.

超音波送信部12及び超音波受信部14は、対象物の表面1に沿って配置されている。対象物の表面1は、この例では平面であるが、曲面であってもよい。   The ultrasonic transmitter 12 and the ultrasonic receiver 14 are disposed along the surface 1 of the object. The surface 1 of the object is a flat surface in this example, but may be a curved surface.

この例において、超音波送信部12は、表面波用探触子であるが、本発明はこれに限定されず、微小平板の振動子であってもよい。微小平板の振動子は、例えば圧電素子からなる。
表面波用探触子を超音波送信部12として送信に用いることで、より強い表面波を送信できる。一方、微小平板の振動子を用いた場合、垂直方法にも縦波が送信され、板厚が薄い場合には底面の多重反射を受信して計測の妨害になるおそれがある。
In this example, the ultrasonic transmission unit 12 is a surface wave probe, but the present invention is not limited to this and may be a micro-plate vibrator. The fine flat plate vibrator is made of, for example, a piezoelectric element.
By using the surface wave probe as the ultrasonic transmitter 12 for transmission, a stronger surface wave can be transmitted. On the other hand, when a micro flat plate vibrator is used, a longitudinal wave is transmitted also in the vertical method, and when the plate thickness is thin, there is a possibility that measurement may be disturbed by receiving multiple reflections on the bottom surface.

この例において、超音波受信部14は、対象物の表面1に沿って同一の間隔(ピッチ)ΔXで配置された複数(この例で12)の超音波素子15からなる。各超音波素子15は、この例では微小平板の振動子からなる。超音波素子15の間隔ΔXは、正確に距離が求められることが好ましい。以下、超音波素子15の間隔(ピッチ)を「素子間距離」と呼ぶ。
このような複数の超音波素子15は、単一の超音波素子を精密機械加工で微小な超音波素子に分割することで、素子間距離ΔXを均一に精度よく加工が可能である。また予め、素子間距離ΔXを正確に測定し、測定結果に反映させてもよい。
In this example, the ultrasonic receiving unit 14 includes a plurality (12 in this example) of ultrasonic elements 15 arranged at the same interval (pitch) ΔX along the surface 1 of the object. In this example, each ultrasonic element 15 is composed of a fine flat plate vibrator. The distance ΔX between the ultrasonic elements 15 is preferably determined accurately. Hereinafter, the interval (pitch) between the ultrasonic elements 15 is referred to as “inter-element distance”.
Such a plurality of ultrasonic elements 15 can be processed with a uniform and accurate inter-element distance ΔX by dividing a single ultrasonic element into fine ultrasonic elements by precision machining. In addition, the inter-element distance ΔX may be accurately measured in advance and reflected in the measurement result.

超音波演算部16は、記憶装置、出力装置を備えたコンピュータ(PC)であり、超音波受信部14で検出した超音波波形から超音波の音速vを算出する。   The ultrasonic calculation unit 16 is a computer (PC) having a storage device and an output device, and calculates the ultrasonic velocity v from the ultrasonic waveform detected by the ultrasonic reception unit 14.

上述した音速測定装置10を用い、本発明の方法では、超音波送信部12により対象物の表面1に超音波5を送信し、対象物の表面1を伝播する超音波5を超音波受信部14の複数の超音波素子15により順次受信し、受信した超音波波形6から超音波演算部16によりその伝播時間差Δtを波形相関により求め、これから音速vを測定するようになっている。   In the method of the present invention using the above-described sound velocity measuring apparatus 10, the ultrasonic wave transmitting unit 12 transmits the ultrasonic wave 5 to the surface 1 of the object, and the ultrasonic wave receiving unit transmits the ultrasonic wave 5 propagating through the surface 1 of the object. The ultrasonic wave is sequentially received by a plurality of ultrasonic elements 15, and the propagation time difference Δt is obtained from the received ultrasonic waveform 6 by the ultrasonic calculation unit 16 by waveform correlation, and the sound velocity v is measured therefrom.

なお、本発明は上述した構成に限定されず、超音波受信部14の代わりに、超音波送信部12を対象物の表面1に沿って同一の間隔ΔXで配置された複数の超音波素子で構成してもよい。
この場合、本発明の方法では、超音波送信部12の複数の超音波素子から対象物の表面1に超音波を同時に送信し、対象物の表面1を伝播する超音波5を1又は複数の超音波受信部14により順次受信し、受信した超音波波形6から超音波演算部16によりその伝播時間差Δtを波形相関により求め、これから音速vを測定する。
In addition, this invention is not limited to the structure mentioned above, Instead of the ultrasonic receiver 14, the ultrasonic transmitter 12 is a plurality of ultrasonic elements arranged at the same interval ΔX along the surface 1 of the object. It may be configured.
In this case, in the method of the present invention, ultrasonic waves are simultaneously transmitted from the plurality of ultrasonic elements of the ultrasonic transmission unit 12 to the surface 1 of the object, and one or more ultrasonic waves 5 that propagate through the surface 1 of the object are transmitted. The ultrasonic wave receiving unit 14 sequentially receives the ultrasonic wave 6, the ultrasonic wave calculating unit 16 obtains the propagation time difference Δt by the waveform correlation, and the sound velocity v is measured therefrom.

図5は、本発明による音速測定装置の第2実施形態図である。
この図に示すように、各超音波素子15をフレキシブルな台座に取り付けておくことで、対象物の表面1が曲面であっても精度よい音速vの測定が可能になる。
その他の構成は、第1実施形態と同様である。
FIG. 5 is a diagram showing a second embodiment of the sound velocity measuring device according to the present invention.
As shown in this figure, by attaching each ultrasonic element 15 to a flexible pedestal, even if the surface 1 of the object is a curved surface, it is possible to accurately measure the sound velocity v.
Other configurations are the same as those of the first embodiment.

図6は、本発明による音速測定の概念図である。
この図は、図4の装置に対応しており、複数(この例では12)の超音波素子15の位置をからX1,X2,X3,X4,X5・・・Xn、各超音波素子15が超音波波形6を検出した時間を最初の時点からt1,t2,t3,t4,t5・・・tnで示している。
位置X1,X2,X3,X4,X5・・・Xnは、予め測定することができる既知の距離であり、時間t1,t2,t3,t4,t5・・・tnは、超音波受信部14により検出され、超音波演算部16により記憶される。また、素子間距離ΔXは、位置X1,X2,X3,X4,X5・・・Xnの間隔であり、超音波の伝播時間差Δtは、時間t1,t2,t3,t4,t5・・・tnの間隔である。
FIG. 6 is a conceptual diagram of sound speed measurement according to the present invention.
This figure corresponds to the apparatus of FIG. 4, and the positions of a plurality of (in this example, 12) ultrasonic elements 15 are X1, X2, X3, X4, X5. The time when the ultrasonic waveform 6 is detected is indicated by t1, t2, t3, t4, t5.
The positions X1, X2, X3, X4, X5,... Xn are known distances that can be measured in advance, and the times t1, t2, t3, t4, t5,. Detected and stored by the ultrasonic calculator 16. The inter-element distance ΔX is an interval between the positions X1, X2, X3, X4, X5... Xn, and the ultrasonic wave propagation time difference Δt is the time t1, t2, t3, t4, t5. It is an interval.

図7は、本発明による測定結果の整理方法を示す概念図である。
この図において、横軸は時間t、縦軸は距離Xであり、図中の各点(○印)は、図6における計測データである。超音波の音速vは、距離X/tで表される。
すなわち、図4の装置で得られた計測データから、伝播時間差Δtと素子間の間隔(素子間距離ΔX)との関係を最小二乗法により求め、その勾配より音速vを求める。
また、受信した超音波波形6からウェーブレット解析により複数の異なる周波数における波形を抽出し、次いでそれぞれの周波数における音速を求め、音速の周波数依存性を求めることが好ましい。
FIG. 7 is a conceptual diagram showing a method for organizing measurement results according to the present invention.
In this figure, the horizontal axis is time t, the vertical axis is distance X, and each point (circle mark) in the figure is measurement data in FIG. The sound velocity v of the ultrasonic wave is represented by a distance X / t.
That is, the relationship between the propagation time difference Δt and the distance between elements (interelement distance ΔX) is obtained from the measurement data obtained by the apparatus of FIG. 4 by the least square method, and the sound velocity v is obtained from the gradient.
Further, it is preferable to extract waveforms at a plurality of different frequencies from the received ultrasonic waveform 6 by wavelet analysis, then obtain the sound speed at each frequency, and obtain the frequency dependence of the sound speed.

以下、本発明の実施例を説明する。
図4に示した装置において、幅0.55mmの超音波素子15をピッチ0.6mmの素子間距離ΔXで並べた探触子(超音波受信部14)を用いて測定を行った。超音波素子15の幅は用いた探傷周波数5MHzの波長に比べて小さく、指向性の鈍いものであり、超音波素子15を試験片に平行に配置しても、表面波や縦波成分のラテラル波を送受信(送信及び受信)することができる。
Examples of the present invention will be described below.
In the apparatus shown in FIG. 4, measurement was performed using a probe (ultrasonic receiving unit 14) in which ultrasonic elements 15 having a width of 0.55 mm were arranged at an element distance ΔX having a pitch of 0.6 mm. The width of the ultrasonic element 15 is smaller than the wavelength of the flaw detection frequency of 5 MHz used, and the directivity is dull. Even if the ultrasonic element 15 is arranged in parallel to the test piece, the lateral of the surface wave and the longitudinal wave component is obtained. Waves can be transmitted and received (transmitted and received).

この実施例では、超音波素子15と同一形状の超音波素子を送信用に用いた。また、板厚50mmの軟鋼製試験片の表面1に、送信用の超音波素子から3.6mm離れた位置に1番目の超音波素子15を配置し、0.6mm間隔で合計26個の超音波素子15を配置して計測した。   In this embodiment, an ultrasonic element having the same shape as the ultrasonic element 15 is used for transmission. Further, the first ultrasonic element 15 is arranged at a position 3.6 mm away from the transmitting ultrasonic element on the surface 1 of the test piece made of mild steel having a thickness of 50 mm, and a total of 26 ultrasonic elements are arranged at intervals of 0.6 mm. The sound wave element 15 was arranged and measured.

図8は、各超音波素子15で受信した波形を示す図である。この図において、横軸は超音波伝播時間(μsec)であり、縦軸は26個の超音波素子15の波形を送信用素子に近い順に上から分離して示している。
この図から、表面波7の伝播によるエコー群に加えて、縦波成分のラテラル波8の伝播によるエコー群が観察されていることがわかる。なお、ここでのサンプリングピッチは100MHzとしたが、更に高いサンプリングピッチを用いることでデータの読み取り精度を改善できる。
FIG. 8 is a diagram showing a waveform received by each ultrasonic element 15. In this figure, the horizontal axis represents the ultrasonic wave propagation time (μsec), and the vertical axis represents the waveforms of the 26 ultrasonic elements 15 separated from the top in the order of proximity to the transmitting elements.
From this figure, it can be seen that in addition to the echo group due to the propagation of the surface wave 7, an echo group due to the propagation of the lateral wave 8 of the longitudinal wave component is observed. Although the sampling pitch here is 100 MHz, the data reading accuracy can be improved by using a higher sampling pitch.

ほぼ中央にある超音波素子の受信波Aを基準波形とし、表面波7及びラテラル波8のエコーの伝播時間差を求めた。このとき波形相関を用いた。
用いた波形相関は、基準の波形をf(t)とし、伝播時間差Δtを求める波形のf(t+Δt)を掛け合わせて関数f(Δt)を求め、これが最大値を示すときのΔtを求めるものである。
この実施例では、掛け合わせる時間範囲を0.4μsecの範囲とし、図8の基準波形Aに対象とした時間範囲を両矢印で示した。
Using the received wave A of the ultrasonic element at approximately the center as a reference waveform, the propagation time difference between echoes of the surface wave 7 and the lateral wave 8 was obtained. At this time, waveform correlation was used.
The waveform correlation used is that the reference waveform is f 0 (t), and the function f (Δt) is obtained by multiplying f (t + Δt) of the waveform for obtaining the propagation time difference Δt, and Δt when this shows the maximum value is obtained. Is.
In this embodiment, the time range to be multiplied is set to a range of 0.4 μsec, and the time range targeted for the reference waveform A in FIG. 8 is indicated by a double arrow.

図9は、図8の表面波7に対して求めた関数f(Δt)を示す図である。この図において、横軸は伝播時間差Δt(μsec)、縦軸は関数f(Δt)である。また、図中の各曲線は、26個の超音波素子15の波形に対する関数f(Δt)を送信用素子に近い順で左から示している。
各曲線において、最大値を示すときのΔtが基準波形Aとの伝播時間差に相当する。
FIG. 9 is a diagram showing a function f (Δt) obtained for the surface wave 7 of FIG. In this figure, the horizontal axis represents the propagation time difference Δt (μsec), and the vertical axis represents the function f (Δt). Each curve in the figure shows the function f (Δt) with respect to the waveforms of the 26 ultrasonic elements 15 from the left in the order closer to the transmitting element.
In each curve, Δt corresponding to the maximum value corresponds to the propagation time difference from the reference waveform A.

図10は、図9から求めた伝播時間差Δtと伝播距離Xの関係図である。
相関係数は、表面波に対してr=1.0000で、ラテラル波に対してr=0.9999であり、いずれも極めて精度よく測定ができているのがわかる。この直線の勾配より音速を求めると、表面波で3035m/sec、ラテラル波で5808m/secが得られている。
FIG. 10 is a relationship diagram of the propagation time difference Δt and the propagation distance X obtained from FIG.
Correlation coefficient, with r 2 = 1.0000 with respect to the surface wave is r 2 = 0.9999 against lateral wave, either it can be seen that are made very accurate measurement. When the sound speed is obtained from the gradient of this straight line, 3035 m / sec is obtained for the surface wave and 5808 m / sec is obtained for the lateral wave.

上述したように、本発明は、従来の測定法の課題を克服して、精度よく表面を伝播する超音波の音速vを測定するものである。
本発明では、微小に分割した超音波素子15を等間隔に並べて表面1を伝播する超音波5を受信する。次いで、各超音波素子15での超音波5の受信時間差Δtを、超音波5の波形相関を用いることで正確に求める。得られた伝播時間差Δtと素子間距離ΔXとの相関を求めて、この相関曲線より音速vを正確に測定する。
As described above, the present invention overcomes the problems of the conventional measurement method and measures the sound velocity v of the ultrasonic wave propagating on the surface with high accuracy.
In the present invention, the ultrasonic waves 15 propagating through the surface 1 are received by arranging the ultrasonic elements 15 that are finely divided at equal intervals. Next, the reception time difference Δt of the ultrasonic wave 5 at each ultrasonic element 15 is accurately obtained by using the waveform correlation of the ultrasonic wave 5. The correlation between the obtained propagation time difference Δt and the inter-element distance ΔX is obtained, and the sound velocity v is accurately measured from this correlation curve.

本発明の計測方法では、超音波5の受信条件は全ての超音波素子15間で同一であり、各超音波素子15で受信する超音波5の伝播時間差Δtは、唯一素子間の距離ΔXに依存する。また、受信した波形6の重ね合わせによる相関処理を行うので、超音波5の立ち上がり時間を測定することなく伝播時間差Δtを正確に求めることができ、ノイズの発生に対しても正確に伝播時間差Δtを測定することができる。   In the measurement method of the present invention, the reception condition of the ultrasonic wave 5 is the same among all the ultrasonic elements 15, and the propagation time difference Δt of the ultrasonic wave 5 received by each ultrasonic element 15 is only the distance ΔX between the elements. Dependent. Further, since the correlation process is performed by superimposing the received waveform 6, the propagation time difference Δt can be accurately obtained without measuring the rise time of the ultrasonic wave 5, and the propagation time difference Δt can be accurately detected even when noise is generated. Can be measured.

なお、超音波5が伝播する過程で、より高い周波数成分の方が減衰が大きく、超音波の周波数成分に変化が生じる。この場合には、受信波形のウェーブレット変換を行い、同一周波数の波形を抽出して波形相関をすることで、正確な伝播時間差を求めることができる。   In the process of propagation of the ultrasonic wave 5, the higher frequency component is more attenuated and changes in the ultrasonic frequency component. In this case, an accurate propagation time difference can be obtained by performing wavelet transform of the received waveform, extracting a waveform of the same frequency, and performing waveform correlation.

なお、本発明は、上述した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々に変更することができることは勿論である。
例えば、ここでは同一の間隔に配置された素子での伝播時間差より音速を求める方法について述べたが、素子間の距離を予め正確に測定してあれば、同一の間隔でなくても素子間距離と超音波の伝播時間差より同様に音速を正確に求めることができる。
また、各素子間での送受信時のエコー高さと超音波の伝播距離の関係より、音速と同時に超音波の減衰率を求めることもできる。
In addition, this invention is not limited to embodiment mentioned above, Of course, it can change variously in the range which does not deviate from the summary of this invention.
For example, the method for obtaining the sound speed from the propagation time difference between the elements arranged at the same interval has been described here. However, if the distance between the elements is accurately measured in advance, the distance between the elements is not necessarily the same interval. Similarly, the speed of sound can be accurately obtained from the difference in propagation time between the ultrasonic wave and the ultrasonic wave.
Also, the ultrasonic attenuation rate can be obtained simultaneously with the sound velocity from the relationship between the echo height during transmission / reception between the elements and the propagation distance of the ultrasonic wave.

1 表面、2 表面波用探触子、3 振動子、4 くさび形部材、
5 超音波、6 波形、7 表面波、8 ラテラル波、
10 音速測定装置、12 超音波送信部、
14 超音波受信部、15 超音波素子、16 超音波演算部
1 surface, 2 surface wave probe, 3 transducers, 4 wedge-shaped member,
5 ultrasonic waves, 6 waveforms, 7 surface waves, 8 lateral waves,
10 sound velocity measuring device, 12 ultrasonic transmitter,
14 Ultrasonic receiver, 15 Ultrasonic element, 16 Ultrasonic calculator

Claims (4)

対象物の表面に沿って配置された超音波送信部及び超音波受信部と、
超音波受信部で検出した超音波波形から超音波の音速を算出する超音波演算部とを備え、
前記超音波送信部又は超音波受信部は、対象物の表面に沿って正確に測定された間隔で配置された複数の超音波素子からなり、
各超音波素子により超音波を送信又は受信し、超音波受信部で受信した超音波波形の伝播時間差を波形相関により求め、これから音速を測定する、ことを特徴とする表面を伝播する超音波の音速測定装置。
An ultrasonic transmitter and an ultrasonic receiver disposed along the surface of the object;
An ultrasonic calculation unit that calculates the sound velocity of the ultrasonic wave from the ultrasonic waveform detected by the ultrasonic receiving unit,
The ultrasonic transmission unit or the ultrasonic reception unit is composed of a plurality of ultrasonic elements arranged at intervals accurately measured along the surface of the object,
Transmitting or receiving ultrasonic waves by each ultrasonic element, obtaining a propagation time difference of ultrasonic waveforms received by the ultrasonic receiving unit by waveform correlation, and measuring the speed of sound from this, and measuring ultrasonic velocity propagating on the surface Sound velocity measuring device.
対象物の表面に沿って配置された超音波送信部及び超音波受信部と、
超音波受信部で検出した超音波波形から超音波の音速を算出する超音波演算部とを備え、
前記超音波送信部又は超音波受信部は、対象物の表面に沿って正確に測定された間隔で配置された複数の超音波素子からなり、
各超音波素子により超音波を送信又は受信し、超音波受信部で受信した超音波波形の伝播時間差を波形相関により求め、これから音速を測定する、ことを特徴とする表面を伝播する超音波の音速測定方法。
An ultrasonic transmitter and an ultrasonic receiver disposed along the surface of the object;
An ultrasonic calculation unit that calculates the sound velocity of the ultrasonic wave from the ultrasonic waveform detected by the ultrasonic receiving unit,
The ultrasonic transmission unit or the ultrasonic reception unit is composed of a plurality of ultrasonic elements arranged at intervals accurately measured along the surface of the object,
Transmitting or receiving ultrasonic waves by each ultrasonic element, obtaining a propagation time difference of ultrasonic waveforms received by the ultrasonic receiving unit by waveform correlation, and measuring the speed of sound from this, and measuring ultrasonic velocity propagating on the surface Sound speed measurement method.
前記伝播時間差と超音波素子間の前記間隔との関係を最小二乗法により求め、その勾配より音速を求める、ことを特徴とする請求項2に記載の音速測定方法。   The sound speed measurement method according to claim 2, wherein a relationship between the propagation time difference and the interval between the ultrasonic elements is obtained by a least square method, and a sound speed is obtained from a gradient thereof. 前記超音波波形からウェーブレット解析により複数の異なる周波数における波形を抽出し、次いでそれぞれの周波数における音速を求め、音速の周波数依存性を求める、ことを特徴とする請求項2に記載の音速測定方法。

The sound speed measurement method according to claim 2, wherein waveforms at a plurality of different frequencies are extracted from the ultrasonic waveform by wavelet analysis, sound speeds at the respective frequencies are obtained, and frequency dependence of the sound speed is obtained.

JP2011051169A 2011-03-09 2011-03-09 Sonic velocity measuring apparatus and method for ultrasonic waves propagated on surface Pending JP2012189352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011051169A JP2012189352A (en) 2011-03-09 2011-03-09 Sonic velocity measuring apparatus and method for ultrasonic waves propagated on surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011051169A JP2012189352A (en) 2011-03-09 2011-03-09 Sonic velocity measuring apparatus and method for ultrasonic waves propagated on surface

Publications (1)

Publication Number Publication Date
JP2012189352A true JP2012189352A (en) 2012-10-04

Family

ID=47082711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011051169A Pending JP2012189352A (en) 2011-03-09 2011-03-09 Sonic velocity measuring apparatus and method for ultrasonic waves propagated on surface

Country Status (1)

Country Link
JP (1) JP2012189352A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017032478A (en) * 2015-08-05 2017-02-09 株式会社神戸製鋼所 Residual stress evaluation method
DE102019205584A1 (en) * 2019-04-17 2020-10-22 Siemens Aktiengesellschaft Method and device for adjusting and / or calibrating an ultrasonic test

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63304157A (en) * 1987-06-05 1988-12-12 Koden Electronics Co Ltd Ultrasonic inspection method
JPH08201356A (en) * 1995-01-24 1996-08-09 Hitachi Ltd Sonic velocity measuring method for solid material and ultrasonic probe
US6587213B1 (en) * 2000-11-15 2003-07-01 The United States Of America As Represented By The Secretary Of The Army Nondestruction coating adhesion evaluation using surface ultrasonic waves and wavelet analysis
JP2010246692A (en) * 2009-04-14 2010-11-04 Furuno Electric Co Ltd Sonic speed measuring device and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63304157A (en) * 1987-06-05 1988-12-12 Koden Electronics Co Ltd Ultrasonic inspection method
JPH08201356A (en) * 1995-01-24 1996-08-09 Hitachi Ltd Sonic velocity measuring method for solid material and ultrasonic probe
US6587213B1 (en) * 2000-11-15 2003-07-01 The United States Of America As Represented By The Secretary Of The Army Nondestruction coating adhesion evaluation using surface ultrasonic waves and wavelet analysis
JP2010246692A (en) * 2009-04-14 2010-11-04 Furuno Electric Co Ltd Sonic speed measuring device and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017032478A (en) * 2015-08-05 2017-02-09 株式会社神戸製鋼所 Residual stress evaluation method
DE102019205584A1 (en) * 2019-04-17 2020-10-22 Siemens Aktiengesellschaft Method and device for adjusting and / or calibrating an ultrasonic test

Similar Documents

Publication Publication Date Title
Santhanam et al. Reflection of Lamb waves obliquely incident on the free edge of a plate
Michaels Detection, localization and characterization of damage in plates with an in situ array of spatially distributed ultrasonic sensors
EP2029966B1 (en) Acoustic method and system of measuring material loss from a solid structure
JP2012141230A (en) Nondestructive testing system
Medina et al. Elastic constants of a plate from impact-echo resonance and Rayleigh wave velocity
RU2604562C2 (en) Method of resilient properties ultrasonic measurement
CN115540790A (en) High-precision ultrasonic thickness measurement method and device
JP2012052963A (en) Ultrasonic inspection method
CN103075981A (en) Ultrasonic thickness measuring method
Papadakis Absolute measurements of ultrasonic attenuation using damped nondestructive testing transducers
KR20080018596A (en) Thickness measurement instrumentation and method using ultrasonic longitudinal wave and shear wave
Santhanam et al. Reflection and transmission of fundamental Lamb wave modes obliquely incident on a crack in a plate
JP2012189352A (en) Sonic velocity measuring apparatus and method for ultrasonic waves propagated on surface
JP2006084447A (en) Ultrasonic nondestructive measuring method and ultrasonic nondestructive measuring apparatus used therefor
JP2003130851A (en) Elastic parameter measuring device for material surface and coating layer
CN111256630B (en) Method for rapidly measuring thickness of metal plate by utilizing electromagnetic ultrasonic guided wave frequency dispersion characteristic
Zhang et al. Fast Fourier transform method for determining velocities of ultrasonic Rayleigh waves using a comb transducer
JP2001343365A (en) Thickness resonance spectrum measuring method for metal sheet and electromagnetic ultrasonic measuring method for metal sheet
RU2231753C1 (en) Procedure measuring thickness of article with use of ultrasonic pulses
Simonetti et al. Ultrasonic interferometry for the measurement of shear velocity and attenuation in viscoelastic solids
Miqueleti et al. Acoustic impedance measurement method using spherical waves
US11796511B1 (en) Structural monitoring system
JP4982604B2 (en) Ultrasonic inspection method
JP2012053026A (en) Ultrasonic inspection method
JP2009139188A (en) Ultrasonic apparatus for measuring surface roughness and method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150318