JP2012187727A - Method for producing injection molding - Google Patents

Method for producing injection molding Download PDF

Info

Publication number
JP2012187727A
JP2012187727A JP2011050877A JP2011050877A JP2012187727A JP 2012187727 A JP2012187727 A JP 2012187727A JP 2011050877 A JP2011050877 A JP 2011050877A JP 2011050877 A JP2011050877 A JP 2011050877A JP 2012187727 A JP2012187727 A JP 2012187727A
Authority
JP
Japan
Prior art keywords
mold
injection
molded product
heat
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011050877A
Other languages
Japanese (ja)
Inventor
Takayuki Miyashita
貴之 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP2011050877A priority Critical patent/JP2012187727A/en
Priority to CN2012800119363A priority patent/CN103402727A/en
Priority to PCT/JP2012/054983 priority patent/WO2012121066A1/en
Priority to TW101107274A priority patent/TW201302426A/en
Publication of JP2012187727A publication Critical patent/JP2012187727A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3828Moulds made of at least two different materials having different thermal conductivities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2909/00Use of inorganic materials not provided for in groups B29K2803/00 - B29K2807/00, as mould material
    • B29K2909/14Stones

Abstract

PROBLEM TO BE SOLVED: To provide a technique which can sufficiently improve crystallinity of a molding even without heat treatment when the molding is produced by using a polyarylene sulfide (PAS) system resin composition having thermal deformation temperature less than 140°C as a raw material.SOLUTION: The polyarylene sulfide system resin composition having thermal deformation temperature less than 140°C is injection-molded at metal mold temperature of the thermal deformation temperature or less by using a metal mold, at an inner surface of which a heat insulation layer is formed. Preferably, a condition of metal mold temperature is 100°C or less. Moreover the metal mold, which is produced by a method of forming an heat insulation layer consisting of porous zirconia on a surface in the metal mold by thermal spraying, is preferably used.

Description

本発明は、射出成形品の製造方法に関する。   The present invention relates to a method for manufacturing an injection molded product.

ポリフェニレンサルファイド(以下PPSと略す)樹脂に代表されるポリアリーレンサルファイド(以下PASと略す)樹脂は、高い耐熱性、機械的物性、耐化学薬品性、寸法安定性、難燃性を有している。このため、PAS樹脂は、電気・電子機器部品材料、自動車機器部品材料、化学機器部品材料等に広く使用され、特に使用環境温度の高い用途に使用されている。   Polyarylene sulfide (hereinafter abbreviated as PAS) resin represented by polyphenylene sulfide (hereinafter abbreviated as PPS) resin has high heat resistance, mechanical properties, chemical resistance, dimensional stability, and flame retardancy. . For this reason, PAS resin is widely used for electrical / electronic equipment component materials, automotive equipment component materials, chemical equipment component materials, and the like, and is particularly used for applications with a high use environment temperature.

しかしながら、PAS樹脂は、結晶化速度が遅く、またガラス転移温度が高いことから、成形品表面の結晶化度が高まりにくく、局部的に不均一な結晶構造となりやすい。このため、PAS樹脂を含む成形品表面は外観的にも構造的にもムラを生じやすい。   However, since the PAS resin has a low crystallization rate and a high glass transition temperature, the crystallinity of the surface of the molded product is hardly increased, and a locally non-uniform crystal structure tends to be obtained. For this reason, the surface of the molded product containing the PAS resin is likely to be uneven in appearance and structure.

そして、成形品表面の結晶化度が高まらない場合、表面硬度が上がらず金型からの突き出しが困難になる問題や、後収縮が大きくなるため、成形品の使用環境によっては表面荒れや寸法変化・反り等の問題が起きる。そこで、射出成形により成形品を製造する場合、射出成形品表面の結晶化度を高める方法として、金型温度の条件を140℃以上にする方法が知られている。   If the crystallinity of the surface of the molded product does not increase, the surface hardness will not increase and it will be difficult to protrude from the mold, and post shrinkage will increase.・ Problems such as warping occur. Therefore, when a molded product is manufactured by injection molding, a method of increasing the mold temperature condition to 140 ° C. or higher is known as a method for increasing the crystallinity of the surface of the injection molded product.

ところで、PAS樹脂を含む樹脂組成物(以下、PAS系樹脂組成物という場合がある)の中には熱変形温度が140℃未満のものもある。熱変形温度が140℃未満の樹脂組成物を原料として、金型温度が140℃以上の条件で射出成形品を製造すると、金型から射出成形品を取り出す際に、射出成形品の変形や離型不良等の問題を生じる場合がある。   Incidentally, some resin compositions containing a PAS resin (hereinafter sometimes referred to as PAS resin compositions) have a heat distortion temperature of less than 140 ° C. When an injection molded product is manufactured using a resin composition having a thermal deformation temperature of less than 140 ° C. under a condition where the mold temperature is 140 ° C. or higher, the injection molded product is deformed or separated when the injection molded product is taken out from the mold. Problems such as mold defects may occur.

そこで、熱変形温度が140℃未満の樹脂組成物を原料として射出成形品を製造する場合、先ず、金型温度を上記熱変形温度以下の温度に設定して成形品を製造する。このような条件で得られた射出成形品は、結晶化度が低い。そこで、この結晶化度が低い射出成形品に熱処理を施し、射出成形品の結晶化度を高める。このような射出成形品に熱処理を施して結晶化度を高める技術は、一般的な技術であり、例えば特許文献1に記載されている。   Therefore, when producing an injection molded product using a resin composition having a heat distortion temperature of less than 140 ° C., first, the mold temperature is set to a temperature equal to or lower than the heat deformation temperature to produce a molded product. The injection molded product obtained under such conditions has a low crystallinity. Therefore, heat treatment is performed on the injection molded product having a low crystallinity to increase the crystallinity of the injection molded product. A technique for increasing the crystallization degree by subjecting such an injection-molded product to heat treatment is a general technique, and is described in, for example, Patent Document 1.

特開2010−110892号公報JP 2010-110892 A

上記のような、熱変形温度が140℃未満のPAS系樹脂組成物を原料として射出成形品を製造する場合、射出成形品の結晶化度を高めようとすると、射出成形品の製造後に当該射出成形品に熱処理を施すことが必要になる。熱処理を行う分だけ射出成形品の生産性は低下する。   When an injection molded product is manufactured using a PAS resin composition having a heat distortion temperature of less than 140 ° C. as described above as a raw material, if an attempt is made to increase the crystallinity of the injection molded product, the injection is performed after the injection molded product is manufactured. It is necessary to heat-treat the molded product. The productivity of the injection molded product is reduced by the amount of heat treatment.

本発明は、以上の課題を解決するためになされたものであり、その目的は、熱変形温度が140℃未満のPAS系樹脂組成物を原料として成形品を製造する場合に、上記射出成形品の変形等の問題が生じないように金型温度の条件を低くしつつ、且つ上記の熱処理を行なわなくても、成形品の結晶化度を充分高めることができる技術を提供することにある。   The present invention has been made in order to solve the above-mentioned problems, and the object thereof is to produce the above-mentioned injection molded article when a molded article is produced from a PAS resin composition having a heat distortion temperature of less than 140 ° C. as a raw material. It is an object of the present invention to provide a technique capable of sufficiently increasing the degree of crystallinity of a molded product without lowering the mold temperature condition so as not to cause problems such as deformation, and without performing the above heat treatment.

本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、熱変形温度が140℃未満のポリアリーレンサルファイド系樹脂組成物を、金型内表面に断熱層が形成された金型を用い、上記熱変形温度以下の金型温度で射出成形することで、上記課題を解決できることを見出し、本発明を完成するに至った。より具体的には、本発明は以下のものを提供する。   The inventors of the present invention have made extensive studies to solve the above problems. As a result, a polyarylene sulfide-based resin composition having a heat deformation temperature of less than 140 ° C. is injection molded at a mold temperature equal to or lower than the heat deformation temperature using a mold having a heat insulating layer formed on the inner surface of the mold. The present inventors have found that the above problems can be solved, and have completed the present invention. More specifically, the present invention provides the following.

(1) 金型内表面に断熱層が形成された金型を用い、熱変形温度が140℃未満のポリアリーレンサルファイド系樹脂組成物を、前記熱変形温度以下の金型温度で射出成形する射出成形品の製造方法。   (1) Injection in which a polyarylene sulfide-based resin composition having a heat deformation temperature of less than 140 ° C. is injection-molded at a mold temperature equal to or lower than the heat deformation temperature, using a mold having a heat insulating layer formed on the inner surface of the mold. Manufacturing method of molded products.

(2) 前記射出成形を、前記金型温度が100℃以下の条件で行なう(1)に記載の射出成形品の製造方法。   (2) The method for producing an injection-molded article according to (1), wherein the injection molding is performed under a condition where the mold temperature is 100 ° C. or less.

(3) 前記ポリアリーレンサルファイド系樹脂組成物は、実質的にポリアリーレンサルファイド系樹脂から構成されるか、又は実質的にポリアリーレンサルファイド系樹脂とエラストマー樹脂とから構成される(1)又は(2)に記載の射出成形品の製造方法。   (3) The polyarylene sulfide-based resin composition is substantially composed of a polyarylene sulfide-based resin, or is substantially composed of a polyarylene sulfide-based resin and an elastomer resin (1) or (2 ) A method for producing an injection-molded article.

(4) 前記断熱層は、多孔質ジルコニアから構成される(1)から(3)のいずれかに記載の射出成形品の製造方法。   (4) The said heat insulation layer is a manufacturing method of the injection molded product in any one of (1) to (3) comprised from porous zirconia.

(5) 前記断熱層は、熱伝導率が2W/m・K以下である(1)から(4)のいずれかに記載の射出成形品の製造方法。   (5) The said heat insulation layer is a manufacturing method of the injection molded product in any one of (1) to (4) whose heat conductivity is 2 W / m * K or less.

(6) 前記断熱層は、溶射法で形成された(1)から(5)のいずれかに記載の射出成形品の製造方法。   (6) The said heat insulation layer is a manufacturing method of the injection molded product in any one of (1) to (5) formed by the thermal spraying method.

(7) 前記断熱層は、厚みが200μm以上である(1)から(6)のいずれかに記載の射出成形品の製造方法。   (7) The said heat insulation layer is a manufacturing method of the injection molded product in any one of (1) to (6) whose thickness is 200 micrometers or more.

(8) 前記ポリアリーレンサルファイド系樹脂組成物がポリフェニレンサルファイド樹脂を含む(1)から(7)のいずれかに記載の射出成形品の製造方法。   (8) The method for producing an injection-molded article according to any one of (1) to (7), wherein the polyarylene sulfide-based resin composition contains a polyphenylene sulfide resin.

本発明によれば、熱変形温度が140℃未満のPAS樹脂を含む樹脂組成物を原料として成形品を製造する場合に、成形品に対して成形後の熱処理を行なわなくても、成形品の結晶化度を充分高めることができる。   According to the present invention, when a molded product is produced using a resin composition containing a PAS resin having a heat distortion temperature of less than 140 ° C. as a raw material, the molded product can be obtained without subjecting the molded product to heat treatment after molding. The crystallinity can be sufficiently increased.

以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。   Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited to the following embodiment.

本発明の製造方法は、金型内表面に断熱層が形成された金型を用い、熱変形温度が140℃未満のポリアリーレンサルファイド系樹脂組成物を、上記熱変形温度以下の条件で射出成形する。   The production method of the present invention uses a mold having a heat insulating layer formed on the inner surface of the mold, and injection-molds a polyarylene sulfide-based resin composition having a heat deformation temperature of less than 140 ° C. under the heat deformation temperature or lower. To do.

<ポリアリーレンサルファイド系樹脂組成物>
本発明の製造方法において、ポリアリーレンサルファイド系樹脂組成物は、熱変形温度が140℃未満である。熱変形温度は、ISO75−1,2に準拠し、荷重1.8MPaの条件で測定した値を採用する。
<Polyarylene sulfide-based resin composition>
In the production method of the present invention, the polyarylene sulfide-based resin composition has a heat distortion temperature of less than 140 ° C. As the heat distortion temperature, a value measured under conditions of a load of 1.8 MPa in accordance with ISO 75-1 and 2 is adopted.

ポリアリーレンサルファイド系樹脂組成物は、ポリアリーレンサルファイド系樹脂を含む。ポリアリーレンサルファイド樹脂は、繰り返し単位として、−(Ar−S)−(Arはアリーレン基)を主として構成されたものである。本発明では一般的に知られている分子構造のPAS樹脂を使用することができる。   The polyarylene sulfide-based resin composition includes a polyarylene sulfide-based resin. The polyarylene sulfide resin is mainly composed of-(Ar-S)-(Ar is an arylene group) as a repeating unit. In the present invention, a PAS resin having a generally known molecular structure can be used.

アリーレン基は特に限定されないが、例えばp−フェニレン基、m−フェニレン基、o−フェニレン基、置換フェニレン基、p,p’−ジフェニレンスルフォン基、p,p’−ビフェニレン基、p,p’−ジフェニレンエーテル基、p,p’−ジフェニレンカルボニル基、ナフタレン基等が挙げられる。上記アリーレン基から構成されるアリーレンサルファイド基の中で、同一の繰り返し単位を用いたホモポリマーの他、用途によっては異種のアリーレンサルファイド基の繰り返しを含んだポリマーが好ましい。   The arylene group is not particularly limited. For example, p-phenylene group, m-phenylene group, o-phenylene group, substituted phenylene group, p, p′-diphenylene sulfone group, p, p′-biphenylene group, p, p ′. -Diphenylene ether group, p, p'-diphenylenecarbonyl group, naphthalene group and the like. Among the arylene sulfide groups composed of the above arylene groups, in addition to a homopolymer using the same repeating unit, a polymer containing a repetition of different arylene sulfide groups is preferable depending on the application.

用途にもよるが、ホモポリマーとしては、アリーレン基としてp−フェニレンサルファイド基を繰り返し単位とするものが好ましい。p−フェニレンサルファイド基を繰り返し単位とするホモポリマーは極めて高い耐熱性を持ち、広範な温度領域で高強度、高剛性、さらに高い寸法安定性を示すからである。このようなホモポリマーを用いることで非常に優れた物性を備える射出成形品を得ることができる。   Although it depends on the application, the homopolymer preferably has a p-phenylene sulfide group as an arylene group as a repeating unit. This is because a homopolymer having a p-phenylene sulfide group as a repeating unit has extremely high heat resistance and exhibits high strength, high rigidity, and high dimensional stability in a wide temperature range. By using such a homopolymer, an injection molded product having very excellent physical properties can be obtained.

コポリマーとしては、上記のアリーレン基を含むアリーレンサルファイド基の中で相異なる2種以上のアリーレンサルファイド基の組み合わせが使用できる。これらの中では、p−フェニレンサルファイド基とm−フェニレンサルファイド基を含む組み合わせが、耐熱性、成形性、機械的特性等の高い物性を備える射出成形品を得るという観点から好ましい。p−フェニレンサルファイド基を70mol%以上含むポリマーがより好ましく、80mol%以上含むポリマーがさらに好ましい。   As the copolymer, a combination of two or more kinds of arylene sulfide groups different from each other among the arylene sulfide groups containing the above arylene group can be used. Among these, a combination containing a p-phenylene sulfide group and an m-phenylene sulfide group is preferable from the viewpoint of obtaining an injection molded product having high physical properties such as heat resistance, moldability, and mechanical properties. A polymer containing 70 mol% or more of p-phenylene sulfide groups is more preferred, and a polymer containing 80 mol% or more is more preferred.

上記のようなp−フェニレンサルファイド基、m−フェニレンサルファイド基を繰り返し単位として有するPAS樹脂は、特に、成形品の結晶化度の向上等が求められている材料である。本願発明の射出成形品の製造方法を用いることで、成形品の高結晶化度を実現できる。また、本願発明の射出成形品の製造方法は、作業性、生産性の問題も無い。なお、フェニレンサルファイド基を有するPAS樹脂はPPS(ポリフェニレンサルファイド)樹脂である。   The PAS resin having a p-phenylene sulfide group and an m-phenylene sulfide group as a repeating unit as described above is a material that is particularly required to improve the crystallinity of a molded product. By using the method for producing an injection molded product of the present invention, a high crystallinity of the molded product can be realized. Moreover, the manufacturing method of the injection molded product of the present invention has no problem of workability and productivity. The PAS resin having a phenylene sulfide group is a PPS (polyphenylene sulfide) resin.

ところで、本発明で用いるポリアリーレンサルファイド系樹脂組成物は、熱変形温度が140℃未満である。PAS系樹脂組成物が、実質的に上記のようなPAS樹脂からなる場合に、熱変形温度が低くなりやすい。具体的には、PAS樹脂の含有量が95質量%以上になると、熱変形温度が100℃以下になりやすい。   By the way, the polyarylene sulfide-based resin composition used in the present invention has a heat distortion temperature of less than 140 ° C. When the PAS resin composition is substantially composed of the PAS resin as described above, the heat distortion temperature tends to be low. Specifically, when the content of the PAS resin is 95% by mass or more, the heat distortion temperature tends to be 100 ° C. or less.

本発明によれば、原料となるPAS系樹脂組成物の決定後、PAS系樹脂組成物の熱変形温度が上記のような低い値になったとしても、射出成形品の製造時に射出成形品の結晶化度を充分に高めることができる。その結果、結晶化度を高めるために必要となる熱処理工程を行なわなくても、結晶化度の高い射出成形品を得ることができる。   According to the present invention, after the PAS resin composition as a raw material is determined, even if the heat distortion temperature of the PAS resin composition becomes a low value as described above, The crystallinity can be sufficiently increased. As a result, an injection molded product having a high degree of crystallinity can be obtained without performing a heat treatment step required to increase the degree of crystallinity.

[その他の成分]
本発明で用いるPAS系樹脂組成物は、本発明の効果を害さない範囲でエラストマー樹脂等の他の樹脂を含んでもよい。また、成形品に所望の特性を付与するために、核剤、カーボンブラック、無機焼成顔料等の顔料、ガラス繊維等の無機充填剤、酸化防止剤、安定剤、可塑剤、滑剤、離型剤及び難燃剤等の添加剤を添加して、所望の特性を付与した組成物も本発明で用いるPAS系樹脂組成物に含まれる。
[Other ingredients]
The PAS resin composition used in the present invention may contain other resins such as an elastomer resin as long as the effects of the present invention are not impaired. In addition, in order to impart desired properties to the molded product, pigments such as nucleating agent, carbon black and inorganic calcined pigment, inorganic fillers such as glass fiber, antioxidant, stabilizer, plasticizer, lubricant, mold release agent And the composition which added additives, such as a flame retardant, and provided the desired characteristic is also contained in the PAS type-resin composition used by this invention.

PAS系樹脂組成物に対して、他の樹脂、添加剤等を加えると、その添加剤の種類や配合量によって、PAS系樹脂組成物の熱変形温度は変化する場合がある。例えば、ガラス繊維等の繊維状充填材、タルク等の板状充填材等は、PAS系樹脂組成物の熱変形温度を高める傾向にある。   When other resins, additives, and the like are added to the PAS resin composition, the heat distortion temperature of the PAS resin composition may change depending on the type and amount of the additive. For example, fibrous fillers such as glass fibers and plate-like fillers such as talc tend to increase the heat distortion temperature of the PAS resin composition.

また、例えば、エラストマー樹脂をPAS系樹脂組成物に添加すると、PAS系樹脂組成物の熱変形温度は下がる傾向にある。したがって、このような添加剤とPAS樹脂とから構成されるPAS系樹脂組成物は熱変形温度が140℃未満、特に100℃以下になりやすい。   For example, when an elastomer resin is added to the PAS resin composition, the heat distortion temperature of the PAS resin composition tends to decrease. Therefore, a PAS resin composition composed of such an additive and a PAS resin tends to have a heat distortion temperature of less than 140 ° C., particularly 100 ° C. or less.

なお、エラストマー樹脂としては、例えば、ポリオレフィン系エラストマー樹脂、ポリエステル系エラストマー樹脂、フッ素系エラストマー樹脂、シリコーン系エラストマー樹脂、ブタジエン系エラストマー樹脂、ポリアミド系エラストマー樹脂、ポリスチレン系エラストマー樹脂、ウレタン系エラストマー樹脂、中心に架橋構造を持つ各種粒子系エラストマー樹脂等が挙げられ、1種又は2種以上を用いることができる。   Examples of the elastomer resin include polyolefin elastomer resin, polyester elastomer resin, fluorine elastomer resin, silicone elastomer resin, butadiene elastomer resin, polyamide elastomer resin, polystyrene elastomer resin, urethane elastomer resin, center Examples thereof include various types of particle-based elastomer resins having a crosslinked structure, and one or more types can be used.

上述の通り、本発明の製造方法によれば、PAS系樹脂組成物の熱変形温度が上記のような低い温度であっても、成形時に射出成形品の結晶化度を充分に高めることができる。   As described above, according to the production method of the present invention, even when the heat distortion temperature of the PAS resin composition is as low as described above, the crystallinity of the injection molded product can be sufficiently increased during molding. .

[PAS系樹脂組成物の物性]
後述する通り、金型温度を特定の範囲に調整することで、溶融状態のPAS系樹脂組成物が金型合わせ面に入り込むことで形成されるバリの量を少なく抑えることができる。PAS系樹脂組成物の溶融粘度が300Pa・s以下の場合には、特にバリが発生しやすい傾向にあるが、このようなバリを発生しやすい原料を用いてもバリの発生量を抑えることができる。なお、溶融粘度の測定はISO11443に準拠して行い得られた値を採用するものとする。具体的には、キャピラリーとして1mmφ×20mmLのフラットダイを使用し、バレル温度310℃、せん断速度1000sec−1の条件で測定した値を採用する。
[Physical properties of PAS resin composition]
As will be described later, by adjusting the mold temperature to a specific range, it is possible to reduce the amount of burrs formed when the molten PAS resin composition enters the mold mating surface. When the melt viscosity of the PAS resin composition is 300 Pa · s or less, there is a tendency that burrs are particularly likely to occur. However, even if such a raw material that tends to generate burrs is used, the amount of burrs generated can be suppressed. it can. In addition, the value obtained by measuring melt viscosity based on ISO11443 shall be employ | adopted. Specifically, a 1 mmφ × 20 mmL flat die is used as the capillary, and values measured under conditions of a barrel temperature of 310 ° C. and a shear rate of 1000 sec −1 are employed.

<金型>
本発明の製造方法に用いる金型は、金型内表面に断熱層が形成されている。断熱層が形成されているため、金型内に流れ込んだPAS系樹脂組成物の持つ熱が金型外に放出されにくくなる。その結果、金型の内表面に接するPAS系樹脂組成物が急冷されにくくなり、射出成形品表面の結晶化度も充分に高めることができる。
<Mold>
The metal mold | die used for the manufacturing method of this invention has the heat insulation layer formed in the metal mold | die inner surface. Since the heat insulating layer is formed, the heat of the PAS resin composition that has flowed into the mold becomes difficult to be released outside the mold. As a result, the PAS resin composition in contact with the inner surface of the mold is hardly quenched, and the crystallinity of the surface of the injection molded product can be sufficiently increased.

射出成形品の表面の結晶化度の低下は、上記表面のいずれの位置においても生じる可能性があるから、金型内表面全体に断熱層が形成されていることが好ましい。なお、本発明の効果を害さない範囲であれば、断熱層が形成されていない部分があってもよい。また、射出成形品に、結晶化度を特に高める必要が無い部分がある場合には、成形時にその部分と接する金型の内表面には、断熱層を形成する必要は無い。   Since a decrease in the crystallinity of the surface of the injection-molded product may occur at any position on the surface, it is preferable that a heat insulating layer is formed on the entire inner surface of the mold. In addition, as long as the effect of this invention is not impaired, there may be a part in which the heat insulation layer is not formed. Further, when there is a portion in the injection molded product that does not require a particularly high degree of crystallinity, it is not necessary to form a heat insulating layer on the inner surface of the mold that is in contact with the portion during molding.

断熱層としては、熱伝導率が低く、高温のPAS系樹脂組成物が接しても不具合を生じない程度の耐熱性を有するものであればよく、断熱層を構成する材料は特に限定されない。   As the heat insulating layer, any material may be used as long as it has low heat conductivity and has heat resistance to such an extent that it does not cause a problem even when it comes into contact with a high-temperature PAS resin composition, and the material constituting the heat insulating layer is not particularly limited.

断熱層に求められる耐熱性及び熱伝導率を満たす材料としては、ポリイミド樹脂等の耐熱性が高く熱伝導率が低い樹脂、多孔質ジルコニア等の多孔質セラミックを挙げることができる。以下、これらの材料について説明する。   Examples of the material satisfying the heat resistance and thermal conductivity required for the heat insulating layer include resins having high heat resistance such as polyimide resin and low thermal conductivity, and porous ceramics such as porous zirconia. Hereinafter, these materials will be described.

ポリイミド樹脂の具体例としては、ピロメリット酸(PMDA)系ポリイミド、ビフェニルテトラカルボン酸系ポリイミド、トリメリット酸を用いたポリアミドイミド、ビスマレイミド系樹脂(ビスマレイミド/トリアジン系等)、ベンゾフェノンテトラカルボン酸系ポリイミド、アセチレン末端ポリイミド、熱可塑性ポリイミド等が挙げられる。なお、ポリイミド樹脂から構成される断熱層であることが特に好ましい。ポリイミド樹脂以外の好ましい材料としては、例えば、テトラフルオロエチレン樹脂等が挙げられる。また、断熱層は、本発明の効果を害さない範囲で、ポリイミド樹脂、テトラフルオロエチレン樹脂以外の樹脂、添加剤等を含んでもよい。   Specific examples of the polyimide resin include pyromellitic acid (PMDA) -based polyimide, biphenyltetracarboxylic acid-based polyimide, polyamideimide using trimellitic acid, bismaleimide-based resin (bismaleimide / triazine-based, etc.), benzophenone tetracarboxylic acid Based polyimide, acetylene-terminated polyimide, thermoplastic polyimide, and the like. In addition, it is especially preferable that it is a heat insulation layer comprised from a polyimide resin. Preferable materials other than polyimide resin include, for example, tetrafluoroethylene resin. Further, the heat insulating layer may contain a resin other than polyimide resin and tetrafluoroethylene resin, additives, and the like as long as the effects of the present invention are not impaired.

金型の内表面に断熱層を形成する方法は、特に限定されない。例えば、以下の方法で断熱層を金型の内表面に形成することが好ましい。   The method for forming the heat insulating layer on the inner surface of the mold is not particularly limited. For example, it is preferable to form the heat insulating layer on the inner surface of the mold by the following method.

断熱層を形成しうるポリイミド前駆体等のポリマー前駆体の溶液を金型表面に塗布し、加熱して溶媒を蒸発させ、さらに加熱してポリマー化することによりポリイミド膜等の断熱層を形成する方法、耐熱性高分子のモノマー、例えばピロメリット酸無水物と4,4−ジアミノジフェニルエーテルを蒸着重合させる方法、又は、平面形状の金型に関しては、高分子断熱フィルムを用い適切な接着方法又は粘着テープ状の高分子断熱フィルムを用いて金型の所望部分に貼付し断熱層を形成する方法が挙げられる。また、ポリイミド膜を形成させ、さらにその表面に金属系硬膜としてのクローム(Cr)膜や窒化チタン(TiN)膜を形成させることも可能である。   A solution of a polymer precursor such as a polyimide precursor capable of forming a heat insulating layer is applied to the mold surface, heated to evaporate the solvent, and further heated to polymerize to form a heat insulating layer such as a polyimide film. Method, heat-resistant polymer monomer, for example, pyromellitic anhydride and 4,4-diaminodiphenyl ether by vapor deposition polymerization, or for planar molds, suitable adhesion method or adhesion using polymer heat insulation film The method of sticking on the desired part of a metal mold | die using a tape-shaped polymer heat insulation film and forming a heat insulation layer is mentioned. It is also possible to form a polyimide film and further form a chromium (Cr) film or a titanium nitride (TiN) film as a metal-based hard film on the surface thereof.

樹脂から構成される上記断熱層に求められる熱伝導率は、用途等によっても異なるが、2W/m・K以下であることが特に好ましい。断熱層の熱伝導率を上記の範囲に調整することで、100℃以下の金型温度で射出成形品を成形しても、結晶化度の高い射出成形品がさらに得られやすくなる。なお、上記熱伝導率は実施例に記載の方法で測定した熱伝導率を指す。   Although the heat conductivity calculated | required by the said heat insulation layer comprised from resin changes with uses etc., it is especially preferable that it is 2 W / m * K or less. By adjusting the thermal conductivity of the heat insulating layer to the above range, even when an injection molded product is molded at a mold temperature of 100 ° C. or less, an injection molded product with a high degree of crystallinity can be obtained more easily. In addition, the said heat conductivity points out the heat conductivity measured by the method as described in an Example.

樹脂から構成される上記断熱層の厚みは、特に限定されず、使用する材料、成形品の形状等によって適宜好ましい厚みに設定することができる。断熱層がポリイミド樹脂から構成される場合、断熱層の厚みが、20μm以上であれば、充分高い断熱効果が得られるため好ましい。上記金型内表面に形成される断熱層の厚みは均一でもよいし、厚みの異なる箇所を含むものであってもよい。   The thickness of the heat insulating layer made of resin is not particularly limited, and can be appropriately set to a preferable thickness depending on the material used, the shape of the molded product, and the like. When the heat insulating layer is composed of a polyimide resin, it is preferable that the heat insulating layer has a thickness of 20 μm or more because a sufficiently high heat insulating effect can be obtained. The thickness of the heat insulating layer formed on the inner surface of the mold may be uniform or may include portions having different thicknesses.

多孔質ジルコニアに含まれるジルコニアとしては、特に限定されず、安定化ジルコニア、部分安定化ジルコニア、未安定化ジルコニアのいずれでもよい。安定化ジルコニアとは、立方晶ジルコニアが室温でも安定化されているものであり、強度及び靱性等の機械的特性や耐磨耗性に優れている。また、部分安定化ジルコニアとは、正方晶ジルコニアが室温でも一部残存した状態を指し、外部応力を受けると正方晶から単斜晶へのマルテンサイト変態が生じ、特に引張応力の作用によって進展する亀裂の成長を抑制し、高い破壊靭性を持つ。また、未安定化ジルコニアとは安定化剤で安定化されていないジルコニアを指す。なお、安定化ジルコニア、部分安定化ジルコニア、及び未安定化ジルコニアから選択される少なくとも2種以上を組み合わせて使用してもよい。   The zirconia contained in the porous zirconia is not particularly limited, and may be any of stabilized zirconia, partially stabilized zirconia, and unstabilized zirconia. Stabilized zirconia is one in which cubic zirconia is stabilized even at room temperature, and is excellent in mechanical properties such as strength and toughness and wear resistance. Partially stabilized zirconia refers to a state in which tetragonal zirconia partially remains even at room temperature, and when subjected to external stress, a martensitic transformation from tetragonal to monoclinic crystal occurs, and is particularly advanced by the action of tensile stress. Suppresses crack growth and has high fracture toughness. Unstabilized zirconia refers to zirconia that is not stabilized by a stabilizer. In addition, you may use combining at least 2 or more types selected from stabilized zirconia, partially stabilized zirconia, and unstabilized zirconia.

安定化ジルコニア、部分安定化ジルコニアに含まれる安定化剤としては、従来公知の一般的なものを採用することができる。例えば、イットリア,セリア,マグネシア等が挙げられる。安定化剤の使用量も特に限定されず、その使用量は、用途、使用材料等に応じて適宜設定できる。   A conventionally well-known general thing can be employ | adopted as a stabilizer contained in stabilized zirconia and partially stabilized zirconia. For example, yttria, ceria, magnesia and the like can be mentioned. The amount of the stabilizer used is not particularly limited, and the amount used can be appropriately set according to the application, the material used, and the like.

なお、多孔質ジルコニア以外の多孔質セラミックも使用することができるが、多孔質ジルコニアはその他の多孔質セラミックと比較して耐久性が高い。このため、多孔質ジルコニアから構成される断熱層を形成した金型を用いれば、断熱層の変形等の不具合が生じ難いため、連続して射出成形できる射出成形品の数が多く、射出成形品の生産性が非常に高まる。   In addition, porous ceramics other than porous zirconia can be used, but porous zirconia has higher durability than other porous ceramics. For this reason, if a mold having a heat insulating layer composed of porous zirconia is used, problems such as deformation of the heat insulating layer are unlikely to occur, so there are a large number of injection molded products that can be continuously injection molded. Productivity is greatly increased.

断熱層を形成するための原料は、本発明の効果を害さない範囲で、上記のジルコニア、安定化剤以外に従来公知の添加剤等をさらに含んでもよい。   The raw material for forming the heat insulation layer may further contain conventionally known additives in addition to the above-mentioned zirconia and stabilizer, as long as the effects of the present invention are not impaired.

上記の原料を用いて断熱層を形成する方法は特に限定されないが、溶射法を採用することが好ましい。溶射法を採用することで、多孔質ジルコニアの熱伝導率が所望の範囲に調整されやすくなる。また、多孔質ジルコニアの内部に気泡が形成され過ぎることにより断熱層の機械的強度が大幅に低下する等の問題も生じない。このように溶射により断熱層を形成することで、断熱層の構造は本発明の用途に適したものになる。   The method for forming the heat insulating layer using the above raw materials is not particularly limited, but it is preferable to employ a thermal spraying method. By adopting the thermal spraying method, the thermal conductivity of porous zirconia is easily adjusted to a desired range. Moreover, problems such as a significant decrease in the mechanical strength of the heat insulating layer due to excessive formation of bubbles inside the porous zirconia do not occur. Thus, by forming a heat insulation layer by thermal spraying, the structure of a heat insulation layer becomes a thing suitable for the use of this invention.

溶射による断熱層の形成は、例えば以下のようにして行なうことができる。先ず、原料を溶融させて液体とする。この液体を加速させキャビティの内表面に衝突させる。最後に、キャビティの内表面に衝突し付着した原料を固化させる。このようにすることで、非常に薄い断熱層が金型の内表面に形成される。この非常に薄い断熱層上にさらに溶融した原料を衝突させ固化させることで、断熱層の厚みを調整することができる。なお、原料を固化させる方法は、従来公知の冷却手段を用いてもよいし、単に放置することで固化させてもよい。なお、溶射方法は特に限定されず、アーク溶射、プラズマ溶射、フレーム溶射等の従来公知の方法から好ましい方法を適宜選択することができる。   Formation of the heat insulation layer by thermal spraying can be performed as follows, for example. First, the raw material is melted to form a liquid. This liquid is accelerated and collides with the inner surface of the cavity. Finally, the material that collides with and adheres to the inner surface of the cavity is solidified. By doing so, a very thin heat insulating layer is formed on the inner surface of the mold. The thickness of the heat insulating layer can be adjusted by causing the melted raw material to collide with the very thin heat insulating layer and solidify it. As a method for solidifying the raw material, a conventionally known cooling means may be used, or the raw material may be solidified simply by leaving it to stand. The thermal spraying method is not particularly limited, and a preferable method can be appropriately selected from conventionally known methods such as arc spraying, plasma spraying, and flame spraying.

多孔質セラミックから構成される上記断熱層の熱伝導率は、成形品の用途、PAS系樹脂の種類等に応じて適宜調整可能である。本発明においては、2W/m・K以下であることが好ましく、より好ましくは0.3W/m・K以上2W/m・K以下である。熱伝導率が2W/m・K以下であれば、100℃以下の金型温度で射出成形品を成形しても、結晶化度の高い射出成形品が得られやすい傾向にあるため好ましい。熱伝導率が0.3W/m・K以上であれば、断熱層内の気泡が多くなり過ぎることによる断熱層の強度の低下によって、射出成形品の生産性を大きく低下させることがほとんど無いため好ましい。特に、断熱層の熱伝導率が0.7W/m・K以上であれば、断熱層内の気泡が多くなり過ぎることによる断熱層の強度の低下を非常に小さい範囲に抑えられる傾向にあるため好ましい。なお、上記熱伝導率は実施例に記載の測定方法で得られた値を採用する。   The thermal conductivity of the heat insulating layer made of porous ceramic can be appropriately adjusted according to the use of the molded product, the type of PAS resin, and the like. In the present invention, it is preferably 2 W / m · K or less, more preferably 0.3 W / m · K or more and 2 W / m · K or less. A thermal conductivity of 2 W / m · K or less is preferable because an injection-molded product having a high degree of crystallinity tends to be obtained even when an injection-molded product is molded at a mold temperature of 100 ° C. or less. If the thermal conductivity is 0.3 W / m · K or more, the productivity of the injection-molded product is hardly lowered due to the decrease in the strength of the heat insulating layer due to the excessive number of bubbles in the heat insulating layer. preferable. In particular, if the thermal conductivity of the heat insulating layer is 0.7 W / m · K or more, the decrease in strength of the heat insulating layer due to excessive bubbles in the heat insulating layer tends to be suppressed to a very small range. preferable. In addition, the value obtained with the measuring method as described in an Example is employ | adopted for the said heat conductivity.

断熱層が多孔質ジルコニアから構成される場合の、断熱層の厚みは特に限定されないが200μm以上であることが好ましく、より好ましくは500μm以上1000μm以下である。500μm以上であれば、ジルコニア断熱層の強度が高くなるという理由で好ましい。また、断熱層の厚みが1000μm以下であれば、成形サイクルが長くならないという理由で好ましい。   The thickness of the heat insulating layer when the heat insulating layer is composed of porous zirconia is not particularly limited, but is preferably 200 μm or more, and more preferably 500 μm or more and 1000 μm or less. If it is 500 micrometers or more, it is preferable because the intensity | strength of a zirconia heat insulation layer becomes high. Moreover, if the thickness of a heat insulation layer is 1000 micrometers or less, it is preferable for the reason that a shaping | molding cycle does not become long.

<射出成形品の製造方法>
本発明の製造方法は、上述のPAS系樹脂組成物、金型を用い、金型温度が上記熱変形温度以下の条件で射出成形を行う。本発明によれば、金型に断熱層が形成されているため140℃未満の金型温度の条件で射出成形品を製造しても、射出成形品の結晶化度を充分に高めることができる。
<Manufacturing method of injection molded product>
The production method of the present invention uses the above-described PAS resin composition and mold, and performs injection molding under conditions where the mold temperature is equal to or lower than the heat distortion temperature. According to the present invention, since the heat insulating layer is formed on the mold, the crystallinity of the injection molded article can be sufficiently increased even if the injection molded article is manufactured under a mold temperature condition of less than 140 ° C. .

上記の本発明の効果は、上述の通り、金型内に流れ込んだPAS系樹脂組成物の持つ熱が金型外に放出されにくいために起きるものである。つまり、金型内に流れ込んだPAS系樹脂組成物の持つ熱が断熱層と接しても、断熱層が熱の金型外への放出を抑えるため、樹脂組成物は金型内で結晶化に必要な程度の高温を維持することができる。   The effects of the present invention described above are caused because the heat of the PAS resin composition that has flowed into the mold is not easily released outside the mold as described above. In other words, even if the heat of the PAS resin composition flowing into the mold comes into contact with the heat insulation layer, the heat insulation layer suppresses the release of heat to the outside of the mold, so that the resin composition is crystallized in the mold. A necessary high temperature can be maintained.

上述の通り、PAS系樹脂組成物に含まれるPAS樹脂は、金型内に流れ込むPAS系樹脂組成物の有する熱で結晶化するため、金型の内表面に断熱層が形成されていれば、金型温度をPAS系樹脂組成物の熱変形温度以下に調整しても、PAS樹脂の結晶化度を充分に高めることができる。したがって、射出成形品を金型から離型する際の金型の温度も上記熱変形温度以下であり、射出成形品を金型から取り出す際の変形や離型不良を抑えることができる。「結晶化度を充分に高められる」とは、金型温度の条件を100℃以下に設定しているにもかかわらず、成形品の結晶化度が、金型温度を140℃の条件に設定して断熱層を形成していない金型を用いて作製した成形品の結晶化度と比較して、同程度以上であることを指す。   As described above, since the PAS resin contained in the PAS resin composition is crystallized by the heat of the PAS resin composition flowing into the mold, if a heat insulating layer is formed on the inner surface of the mold, Even if the mold temperature is adjusted to be equal to or lower than the heat distortion temperature of the PAS resin composition, the crystallinity of the PAS resin can be sufficiently increased. Therefore, the temperature of the mold when releasing the injection-molded product from the mold is also equal to or lower than the above-described heat deformation temperature, and it is possible to suppress deformation and defective release when the injection-molded product is removed from the mold. “The degree of crystallinity can be increased sufficiently” means that the crystallinity of the molded product is set at a mold temperature of 140 ° C. even though the mold temperature is set at 100 ° C. or less. Thus, it indicates that the degree of crystallinity is equal to or higher than the degree of crystallinity of a molded product produced using a mold in which a heat insulating layer is not formed.

即ち、PAS系樹脂組成物を、断熱層が形成されていない金型を用い、金型温度が140℃の条件で射出成形してなる成形品の、X線回折法により測定された結晶化度を100とした場合、本発明の製造方法で得られた射出成形品の、X線回折法により測定された結晶化度(相対結晶化度)は95以上である。ここで、「断熱層を形成していない金型」とは、具体的には積層物が全く形成されていない金型を用いればよく、その金型を用いて射出成形品を製造し、その射出成形品の結晶化度を導出して100とすればよい。   That is, the degree of crystallinity measured by the X-ray diffraction method of a molded product obtained by injection-molding a PAS resin composition using a mold without a heat insulating layer and a mold temperature of 140 ° C. Is 100, the injection molded product obtained by the production method of the present invention has a crystallinity (relative crystallinity) of 95 or more as measured by the X-ray diffraction method. Here, the “mold having no heat insulation layer” may be a mold in which a laminate is not formed at all, and an injection molded product is manufactured using the mold, The crystallinity of the injection molded product may be derived and set to 100.

上記の通り、本発明の製造方法によれば、射出成形品を金型から取り出す際の、射出成形品の変形や離型不良を抑えることができる。したがって、上記変形や離型不良が生じやすい形状の射出成形品であっても、本発明の製造方法を採用することで、上記変形や離型不良を生じにくくすることができる。ここで、「変形や離型不良が生じやすい形状」とは、長尺状であり、例えば、角棒状、丸棒状、円筒状、角筒状、中空の直方体状、中空の円柱状のいずれであっても変形や離型不良を生じやすい。特に長尺状の射出成形品の中でも、射出成形品が延びる方向の最大長さと、上記延びる方向に垂直な方向における射出成形品の最大長さとの比が1以上の場合に、上記変形や離型不良が生じやすい。   As described above, according to the manufacturing method of the present invention, it is possible to suppress deformation of the injection molded product and defective mold release when the injection molded product is taken out from the mold. Therefore, even if it is an injection-molded product having a shape that tends to cause deformation and mold release defects, the deformation and mold release defects can be made difficult to occur by employing the manufacturing method of the present invention. Here, the “shape that is likely to cause deformation or mold release failure” is a long shape, for example, a square bar shape, a round bar shape, a cylindrical shape, a rectangular tube shape, a hollow rectangular parallelepiped shape, or a hollow columnar shape. Even if it exists, it is easy to produce a deformation | transformation and a mold release defect. Particularly in the case of a long injection molded product, when the ratio of the maximum length in the direction in which the injection molded product extends to the maximum length of the injection molded product in the direction perpendicular to the extending direction is 1 or more, the deformation or separation is performed. Mold defects are likely to occur.

特に、本発明の製造方法によれば、金型温度を100℃以下に調整しても、射出成形品中のPAS樹脂の結晶化度を充分に高めることができる。金型温度の条件を100℃以下に調整することで以下の効果が得られる。   In particular, according to the production method of the present invention, even when the mold temperature is adjusted to 100 ° C. or lower, the crystallinity of the PAS resin in the injection-molded product can be sufficiently increased. The following effects can be obtained by adjusting the mold temperature condition to 100 ° C. or lower.

先ず、金型温度が100℃以下の条件であれば、金型の併せ面等に溶融状態のPAS系樹脂組成物が流れ込んだとしても、金型温度が低いため直ちに固化する。このため、バリの発生量を大幅に抑えることができる。   First, if the mold temperature is 100 ° C. or less, even if a molten PAS resin composition flows into the mold mating surface or the like, the mold temperature is low, so that it immediately solidifies. For this reason, the generation amount of burrs can be significantly suppressed.

また、金型温度を100℃以下に調整することにより、金型の温度調節を水で行うことができる。したがって、金型温度を100℃以下に調整することで、高結晶化度の成形品を容易に得ることができる。特に、本発明においては、金型温度を40℃以上80℃以下に設定することが好ましい。成形品の結晶化度を充分高めつつ、バリの発生量を大幅に抑えることができるからである。   Moreover, the temperature of the mold can be adjusted with water by adjusting the mold temperature to 100 ° C. or lower. Therefore, by adjusting the mold temperature to 100 ° C. or less, a molded product having a high crystallinity can be easily obtained. In particular, in the present invention, the mold temperature is preferably set to 40 ° C. or higher and 80 ° C. or lower. This is because the amount of burrs can be greatly suppressed while sufficiently increasing the crystallinity of the molded product.

以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

<材料>
PAS系樹脂組成物:ポリフェニレンサルファイド樹脂組成物(「フォートロン0220A9」、ポリプラスチックス社製)、ISO75−1,2に準拠し、荷重1.8MPaの条件で測定した熱変形温度100℃(なお、熱変形温度は表中の「荷重たわみ温度」にあたる)
断熱層の原料:ジルコニア又はポリイミド樹脂
金型1(結晶化度測定用):幅40mm×長さ40mm×厚さ2mmの金型
金型2(離型性評価用):内径12mm、外径15mm×長さ30mmの円筒状の金型
<Material>
PAS resin composition: Polyphenylene sulfide resin composition (“Fortron 0220A9”, manufactured by Polyplastics Co., Ltd.), heat deformation temperature of 100 ° C. measured under conditions of a load of 1.8 MPa according to ISO 75-1 and 2 (note that The thermal deformation temperature corresponds to the “deflection temperature under load” in the table)
Insulating layer raw material: Zirconia or polyimide resin Mold 1 (for crystallinity measurement): Width 40 mm x Length 40 mm x Thickness 2 mm Mold 2 (For releasability evaluation): Inner diameter 12 mm, Outer diameter 15 mm × Cylindrical mold with a length of 30 mm

<断熱層の形成>
金型の内表面にポリイミド前駆体を塗布し加熱固化させ断熱層の厚みを150μmとし金型1を作製した。また、主としてジルコニアから構成される原料を、溶射法にて金型の内表面に溶射した。断熱層の表面は密度が高くなるように調整し、多層構造の断熱層を金型内表面に形成した。断熱層の厚みが500μmになるまで溶射を続けた。このようにして、実施例の製造方法で用いる金型2に断熱層を形成した。なお、比較例で用いた金型は、断熱層が形成されていない以外は実施例と同様である。
<Formation of heat insulation layer>
A polyimide precursor was applied to the inner surface of the mold and solidified by heating to prepare a mold 1 with a heat insulating layer thickness of 150 μm. A raw material mainly composed of zirconia was sprayed on the inner surface of the mold by a thermal spraying method. The surface of the heat insulating layer was adjusted so as to have a high density, and a heat insulating layer having a multilayer structure was formed on the inner surface of the mold. Thermal spraying was continued until the thickness of the heat insulating layer reached 500 μm. Thus, the heat insulation layer was formed in the metal mold | die 2 used with the manufacturing method of an Example. In addition, the metal mold | die used by the comparative example is the same as that of an Example except the heat insulation layer not being formed.

<断熱層の熱伝導率の算出方法>
断熱層の熱伝導率はレーザーフラッシュ法にて熱拡散率、DSCにて比熱、水中置換法(JIS Z8807固体比重測定方法に準拠)にて比重を測定し、[熱伝導率]=[熱拡散率×比熱×比重]により算出した。熱伝導率の値は表1に示した。なお、多層構造の断熱層の熱伝導率(λ)は密度の低い層と高い層のそれぞれの熱伝導率を求め、密度の低い層の熱伝導率(λl)、密度の高い層の熱伝導率(λh)、断熱層全体の厚さに対する密度の低い層の厚さ割合(t)とした場合、[1/λ]=[t/λl]+[(1−t)/λh]の式を用い計算により求めた。
<Calculation method of thermal conductivity of heat insulation layer>
The thermal conductivity of the heat insulating layer is measured by the laser flash method, the thermal diffusivity by DSC, the specific heat by DSC, and the specific gravity by water displacement method (based on the JIS Z8807 solid specific gravity measurement method). Rate × specific heat × specific gravity]. The values of thermal conductivity are shown in Table 1. The thermal conductivity (λ) of the heat insulating layer having a multilayer structure is obtained by calculating the thermal conductivity of each of the low density layer and the high density layer, and the thermal conductivity (λl) of the low density layer and the thermal conductivity of the high density layer. When the ratio (λh) and the thickness ratio (t) of the low-density layer to the total thickness of the heat insulating layer are expressed as [1 / λ] = [t / λl] + [(1-t) / λh] Was obtained by calculation.

<実施例1>
成形用材料としてPAS樹脂組成物を用い、金型1を用い下記の成形条件で射出成形品を製造した。エジェクトピンを用いた突き出しによって、金型から射出成形品を取り出した。
[成形条件]
スクリュー回転数:100rpm
射出速度:100mm/sec
金型温度:80℃
樹脂温度:320℃
<Example 1>
The PAS resin composition was used as a molding material, and an injection molded product was produced using the mold 1 under the following molding conditions. The injection molded product was taken out from the mold by ejection using an eject pin.
[Molding condition]
Screw rotation speed: 100rpm
Injection speed: 100mm / sec
Mold temperature: 80 ℃
Resin temperature: 320 ° C

<実施例2>
金型1を金型2に変更し、金型温度の条件を80℃から90℃に変更した以外は、実施例1と同様の方法で射出成形品を作製した。
<Example 2>
An injection-molded product was produced in the same manner as in Example 1 except that the mold 1 was changed to the mold 2 and the mold temperature condition was changed from 80 ° C. to 90 ° C.

<比較例1>
金型温度の条件を140℃に変更した以外は、実施例1と同様の条件で射出成形品を作製した。
<Comparative Example 1>
An injection molded product was produced under the same conditions as in Example 1 except that the mold temperature was changed to 140 ° C.

<比較例2>
金型を断熱層が形成されていない金型に変更し、金型温度を60℃に設定した以外は実施例1と同様の条件で射出成形品を作製した。
<Comparative example 2>
An injection-molded article was produced under the same conditions as in Example 1 except that the mold was changed to a mold without a heat insulating layer and the mold temperature was set to 60 ° C.

<比較例3>
金型温度の条件を80℃に変更した以外は、比較例2と同様の方法で射出成形品を作製した。
<Comparative Example 3>
An injection molded product was produced in the same manner as in Comparative Example 2 except that the mold temperature condition was changed to 80 ° C.

<比較例4>
金型温度の条件を140℃に変更した以外は、比較例2と同様の方法で射出成形品を作製した。
<Comparative example 4>
An injection-molded article was produced in the same manner as in Comparative Example 2 except that the mold temperature condition was changed to 140 ° C.

<評価1>
[相対結晶化度の評価]
先ず、実施例の射出成形品及び比較例の射出成形品の結晶化度をX線回折法により測定した。比較例4の結晶化度を100として、実施例1〜2の射出成形品、比較例1〜3の射出成形品の相対結晶化度を算出した。
<Evaluation 1>
[Evaluation of relative crystallinity]
First, the crystallinity of the injection molded product of the example and the injection molded product of the comparative example was measured by an X-ray diffraction method. With the crystallization degree of Comparative Example 4 as 100, the relative crystallization degree of the injection molded articles of Examples 1 and 2 and the injection molded articles of Comparative Examples 1 to 3 was calculated.

なお、X線回折法による結晶化度の測定は、広角X線回折(反射法)を用いて行なった。具体的には、Ruland法により結晶化度を求めた。   Note that the measurement of crystallinity by the X-ray diffraction method was performed using wide-angle X-ray diffraction (reflection method). Specifically, the degree of crystallinity was determined by the Ruland method.

<評価2>
金型2を用い、エジェクトピン(EP)痕凹み量、及び離型性の評価を実施した。EP痕凹み量の評価としては、射出成形品のエジェクトピンによる突き出しで、射出成形品が凹んだか否かを確認し、凹んだものについては、凹み量(EP痕凹み量)を測定した。また、離型性については、エジェクトピンによる突き出し時に変形せず金型から離型したか否かを確認し、離型したものは○、離型しなかったものは×として評価した。
<Evaluation 2>
The mold 2 was used to evaluate the amount of eject pin (EP) dents and releasability. As an evaluation of the amount of EP indentation, it was confirmed whether or not the injection molded product was indented by ejecting the injection molded product with an eject pin, and the amount of indentation (EP indentation amount) was measured for the indented one. In addition, as for releasability, it was confirmed whether or not it was released from the mold without being deformed at the time of ejection with an eject pin.

Figure 2012187727
Figure 2012187727

表1の実施例1及び2の結果と比較例2〜4の結果とから、断熱層を形成した金型を用いることで、射出成形品の結晶化度を充分に高めることができ、射出成形品の変形や離型不良の問題も生じないことが確認された。   From the results of Examples 1 and 2 in Table 1 and the results of Comparative Examples 2 to 4, by using a mold having a heat insulating layer, the crystallinity of the injection molded product can be sufficiently increased, and the injection molding is performed. It was confirmed that there was no problem of product deformation or mold release failure.

実施例1の結果と比較例1の結果とから、金型温度を低い条件に設定すれば、射出成形品の変形や離型不良等の問題が生じないことに加え、金型温度を低い条件に設定しても大幅な結晶化度の低下が無いことが確認された。   From the result of Example 1 and the result of Comparative Example 1, if the mold temperature is set to a low condition, problems such as deformation of the injection-molded product and defective mold release do not occur, and the mold temperature is set to a low condition. It was confirmed that there was no significant decrease in crystallinity even when set to.

Claims (8)

金型内表面に断熱層が形成された金型を用い、熱変形温度が140℃未満のポリアリーレンサルファイド系樹脂組成物を、前記熱変形温度以下の金型温度で射出成形する射出成形品の製造方法。   An injection molded product in which a polyarylene sulfide-based resin composition having a heat deformation temperature of less than 140 ° C. is injection-molded at a mold temperature equal to or lower than the heat deformation temperature, using a mold having a heat insulating layer formed on the inner surface of the mold. Production method. 前記射出成形を、前記金型温度が100℃以下の条件で行なう請求項1に記載の射出成形品の製造方法。   The method for producing an injection-molded article according to claim 1, wherein the injection molding is performed under a condition that the mold temperature is 100 ° C or less. 前記ポリアリーレンサルファイド系樹脂組成物は、実質的にポリアリーレンサルファイド系樹脂から構成されるか、又は実質的にポリアリーレンサルファイド系樹脂とエラストマー樹脂とから構成される請求項1又は2に記載の射出成形品の製造方法。   The injection according to claim 1 or 2, wherein the polyarylene sulfide-based resin composition is substantially composed of a polyarylene sulfide-based resin or substantially composed of a polyarylene sulfide-based resin and an elastomer resin. Manufacturing method of molded products. 前記断熱層は、多孔質ジルコニアから構成される請求項1から3のいずれかに記載の射出成形品の製造方法。   The said heat insulation layer is a manufacturing method of the injection molded product in any one of Claim 1 to 3 comprised from porous zirconia. 前記断熱層は、熱伝導率が2W/m・K以下である請求項1から4のいずれかに記載の射出成形品の製造方法。   The method for manufacturing an injection-molded article according to any one of claims 1 to 4, wherein the heat insulating layer has a thermal conductivity of 2 W / m · K or less. 前記断熱層は、溶射法で形成された請求項1から5のいずれかに記載の射出成形品の製造方法。   The said heat insulation layer is a manufacturing method of the injection molded product in any one of Claim 1 to 5 formed by the thermal spraying method. 前記断熱層は、厚みが200μm以上である請求項1から6のいずれかに記載の射出成形品の製造方法。   The method for manufacturing an injection-molded article according to any one of claims 1 to 6, wherein the heat insulating layer has a thickness of 200 µm or more. 前記ポリアリーレンサルファイド系樹脂組成物がポリフェニレンサルファイド樹脂を含む請求項1から7のいずれかに記載の射出成形品の製造方法。   The method for producing an injection-molded article according to any one of claims 1 to 7, wherein the polyarylene sulfide-based resin composition contains a polyphenylene sulfide resin.
JP2011050877A 2011-03-08 2011-03-08 Method for producing injection molding Pending JP2012187727A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011050877A JP2012187727A (en) 2011-03-08 2011-03-08 Method for producing injection molding
CN2012800119363A CN103402727A (en) 2011-03-08 2012-02-28 Production method for injection-molded article
PCT/JP2012/054983 WO2012121066A1 (en) 2011-03-08 2012-02-28 Production method for injection-molded article
TW101107274A TW201302426A (en) 2011-03-08 2012-03-05 Production method for injection-molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011050877A JP2012187727A (en) 2011-03-08 2011-03-08 Method for producing injection molding

Publications (1)

Publication Number Publication Date
JP2012187727A true JP2012187727A (en) 2012-10-04

Family

ID=46798034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011050877A Pending JP2012187727A (en) 2011-03-08 2011-03-08 Method for producing injection molding

Country Status (4)

Country Link
JP (1) JP2012187727A (en)
CN (1) CN103402727A (en)
TW (1) TW201302426A (en)
WO (1) WO2012121066A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014088009A (en) * 2012-10-31 2014-05-15 Polyplastics Co Insert and method of producing insert

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3020304B1 (en) * 2014-04-28 2016-12-30 Valeo Systemes Thermiques METHOD FOR THERMALLY INSULATING A METALLIC MOLD FOR MOLDING PLASTIC MATERIAL
CN111319199A (en) * 2020-03-06 2020-06-23 盐城摩因宝新材料有限公司 Cold circulation easy-demoulding injection mould and manufacturing process thereof
CN117067451B (en) * 2023-10-16 2024-04-09 歌尔股份有限公司 Die, thermoplastic composite material, processing method of thermoplastic composite material and electronic equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0391563A (en) * 1989-09-05 1991-04-17 Nippon G Ii Plast Kk Polyphenylene sulfide resin composition
JPH04209654A (en) * 1990-12-07 1992-07-31 Idemitsu Petrochem Co Ltd Polyarylene sulfide resin composition
JP2006062369A (en) * 1997-05-28 2006-03-09 Mitsubishi Engineering Plastics Corp Mold assembly for molding thermoplastic resin and method for manufacturing molded article
JP2009274352A (en) * 2008-05-15 2009-11-26 Mitsubishi Engineering Plastics Corp Die assembly, injection molding method, and molded product

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4782383B2 (en) * 2004-02-12 2011-09-28 株式会社クレハ Polyarylene sulfide and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0391563A (en) * 1989-09-05 1991-04-17 Nippon G Ii Plast Kk Polyphenylene sulfide resin composition
JPH04209654A (en) * 1990-12-07 1992-07-31 Idemitsu Petrochem Co Ltd Polyarylene sulfide resin composition
JP2006062369A (en) * 1997-05-28 2006-03-09 Mitsubishi Engineering Plastics Corp Mold assembly for molding thermoplastic resin and method for manufacturing molded article
JP2009274352A (en) * 2008-05-15 2009-11-26 Mitsubishi Engineering Plastics Corp Die assembly, injection molding method, and molded product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014088009A (en) * 2012-10-31 2014-05-15 Polyplastics Co Insert and method of producing insert

Also Published As

Publication number Publication date
WO2012121066A1 (en) 2012-09-13
TW201302426A (en) 2013-01-16
CN103402727A (en) 2013-11-20

Similar Documents

Publication Publication Date Title
JP5812631B2 (en) Manufacturing method of injection molded products
US20120175816A1 (en) Method for manufacturing an injection-molded article
WO2012121066A1 (en) Production method for injection-molded article
CN103038037B (en) Manufacturing method for die
WO2012121075A1 (en) Production method for injection-molded article
KR101447669B1 (en) Process for producing mold
WO2013035443A1 (en) Method for producing resin composite molded body and resin composite molded body
WO2012121065A1 (en) Production method for injection-molded article
WO2013054592A1 (en) Die and method for producing resin molded body
WO2014132702A1 (en) Insulated mold and molding manufacturing method
WO2014024656A1 (en) Molding method and mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150421