JP2012184751A - Turbocompressor - Google Patents

Turbocompressor Download PDF

Info

Publication number
JP2012184751A
JP2012184751A JP2011050001A JP2011050001A JP2012184751A JP 2012184751 A JP2012184751 A JP 2012184751A JP 2011050001 A JP2011050001 A JP 2011050001A JP 2011050001 A JP2011050001 A JP 2011050001A JP 2012184751 A JP2012184751 A JP 2012184751A
Authority
JP
Japan
Prior art keywords
upstream
impeller
turbo compressor
opening
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011050001A
Other languages
Japanese (ja)
Other versions
JP5857421B2 (en
Inventor
Ryusuke Numakura
龍介 沼倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2011050001A priority Critical patent/JP5857421B2/en
Publication of JP2012184751A publication Critical patent/JP2012184751A/en
Application granted granted Critical
Publication of JP5857421B2 publication Critical patent/JP5857421B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/685Inducing localised fluid recirculation in the stator-rotor interface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4213Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/51Inlet

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a turbocompressor allowing expansion of an operation area to a low flow rate side without increasing a circulated air flow rate.SOLUTION: The turbocompressor 1 includes: an impeller 11 disposed rotatably around a rotational axis L; a housing 21 having a nearly cylindrical shape along the rotational axis L, and journaled with the impeller 11 thereinside; an annular cavity part 34 communicating with the inside of a cylindrical wall of the housing 21 along the peripheral direction; an upstream side opening part 32 opening to the upstream of the impeller 11 through an upstream side communication part 33 communicating with the upstream side of the cavity part 34; and a downstream side opening part 36 opening beside the impeller 11 through a downstream side communication part 35 communicating with the downstream side rather than the upstream side communication part 33 of the cavity part 34. The upstream side opening part 32 is formed with plate-like straightening plates 42 projecting to the inside diameter side along the rotational axis L direction at even intervals in the peripheral direction.

Description

本発明は、インペラを回転させることでガスを圧縮するターボ圧縮機に関する。   The present invention relates to a turbo compressor that compresses gas by rotating an impeller.

従来技術に係るターボ圧縮機として、車両用エンジンに用いられる過給器を構成する圧縮機には遠心圧縮機が広く用いられている。過給器を構成する圧縮機としては、低流量域から作動することが求められているが、遠心圧縮機においては、空気流量が減少してくると、インペラとハウジングとの間の隙間から圧縮された空気が逆流する現象が発生することが確認されている。また、この逆流流れが、インペラに吸込まれる主流を乱し、サージを引き起こす一因にもなっていることも確認されている。   As a conventional turbo compressor, a centrifugal compressor is widely used as a compressor constituting a supercharger used for a vehicle engine. The compressor constituting the supercharger is required to operate from a low flow rate range, but in a centrifugal compressor, when the air flow rate decreases, the compressor is compressed from the gap between the impeller and the housing. It has been confirmed that a phenomenon occurs in which the generated air flows backward. It has also been confirmed that this backflow flow disturbs the main flow sucked into the impeller and causes a surge.

そこで、サージの発生を抑制するとともに、圧縮機の作動領域を拡げるため、特許文献1〜特許文献3に示すように、インペラに吸込まれた空気の一部をインペラの上流側に戻し、循環させることが行なわれている。つまり、インペラに吸込まれた空気の一部を上流側に戻し、循環させることによって、圧縮機に吸込まれる空気量よりも、循環する分だけインペラに吸込まれる空気量を増やすことができる。その結果として、循環する空気流量分だけ、サージ発生の限界域を低流量側へ移動させ、遠心圧縮機の作動領域を拡大している。   Therefore, in order to suppress the occurrence of surge and expand the operating range of the compressor, as shown in Patent Documents 1 to 3, a part of the air sucked into the impeller is returned to the upstream side of the impeller and circulated. Has been done. That is, by returning a part of the air sucked into the impeller to the upstream side and circulating it, the amount of air sucked into the impeller can be increased more than the amount of air sucked into the compressor. As a result, the limit area of surge generation is moved to the low flow rate side by the circulating air flow rate, and the operating range of the centrifugal compressor is expanded.

特開2001−289197号公報JP 2001-289197 A 特開2003−314496号公報JP 2003-31496 A 特開2005−23792号公報JP 2005-23792 A

ところが、上記従来の遠心圧縮機のように、吸入空気の一部を循環させる構成に対しても、さらに低流量側へ圧縮機の作動領域を拡げることが望まれている。しかしながら、吸入空気の一部を循環させる手法は、循環する空気流量分だけ圧縮機から吐出される空気流量が減少し、損失となるため、循環させる流量をできるだけ抑えなければならない。   However, it is desired that the operating area of the compressor be further expanded to the low flow rate side even in a configuration in which a part of the intake air is circulated as in the conventional centrifugal compressor. However, in the method of circulating a part of the intake air, the flow rate of air discharged from the compressor is reduced by the amount of the circulating air flow, resulting in a loss. Therefore, the flow rate of circulation must be suppressed as much as possible.

そこで、本発明は、循環する空気流量を増大させることなく、低流量側へ作動領域を拡げることができるターボ圧縮機を提供することを目的とする。   Then, an object of this invention is to provide the turbo compressor which can expand an operation area | region to the low flow rate side, without increasing the air flow rate to circulate.

上記目的を達成するため、請求項1に記載した本発明のターボ圧縮機は、回転軸周りに回転可能に配置されたインペラと、
該回転軸に沿った略筒形状を有し、内部に該インペラが軸支されたハウジングと、
該ハウジングの筒壁内に周方向に沿って連通する環状のキャビティ部と、
該キャビティ部の上流側に連通する上流側連通部を介して、該インペラの上流に開口する上流側開口部と、
該キャビティ部の該上流側連通部よりも下流側に連通する下流側連通部を介して、該インペラの側方に開口する下流側開口部とを備えたターボ圧縮機であって、
前記上流側開口部に、前記回転軸方向に沿って、且つ内径側に突出する板状の整流板を周方向に等間隔に備えたことを特徴とする。
In order to achieve the above object, the turbo compressor according to the first aspect of the present invention includes an impeller arranged to be rotatable about a rotation axis;
A housing having a substantially cylindrical shape along the rotation axis, in which the impeller is pivotally supported;
An annular cavity communicating in the circumferential direction within the cylindrical wall of the housing;
An upstream opening opening upstream of the impeller via an upstream communication portion communicating with the upstream side of the cavity portion;
A turbo compressor provided with a downstream side opening that opens to the side of the impeller via a downstream side communication part that communicates with the downstream side of the upstream side communication part of the cavity part,
The upstream opening is provided with plate-like rectifying plates that protrude along the rotation axis direction and toward the inner diameter side at equal intervals in the circumferential direction.

請求項1に記載した本発明のターボ圧縮機によれば、上流側開口部に整流板を設けることによって、上流側開口部から流出し、インペラの回転方向に旋回しつつ、ハウジングの内周壁に沿って逆流する流れの旋回を止めつつ、逆流を弱めることができる。これによって、サージ発生の限界域が低流量側へ移動し、作動領域を拡大することができる。   According to the turbo compressor of the present invention described in claim 1, by providing the rectifying plate in the upstream opening, the air flows out from the upstream opening and swirls in the rotation direction of the impeller, and is formed on the inner peripheral wall of the housing. It is possible to weaken the backflow while stopping the swirling of the backflow. As a result, the limit area of surge generation moves to the low flow rate side, and the operating area can be expanded.

請求項2に記載した本発明のターボ圧縮機は、請求項1に記載のターボ圧縮機において、
前記上流側連通部内に、周方向に等間隔に、且つ外径側から内径側に向けて板状の導流板を備え、
前記整流板が該導流板の内径側端部に延設されたことを特徴とする。
The turbo compressor of the present invention described in claim 2 is the turbo compressor according to claim 1,
In the upstream communication portion, provided with a plate-shaped flow guide plate at equal intervals in the circumferential direction and from the outer diameter side toward the inner diameter side,
The rectifying plate is extended at an inner diameter side end portion of the flow guide plate.

請求項2に記載した本発明のターボ圧縮機よれば、上流側連通部内に導流板が立設され、導流板の内径側端部に整流板を一体に形成したことによって、
インペラの回転方向と逆回転方向の流れが、ハウジングの内周壁に沿って流出するため、インペラの回転方向に旋回しつつ、ハウジングの内周壁に沿って逆流する流れをより効果的に抑制することができる。これによって、サージ発生の限界域がさらに低流量側へ移動し、作動領域を拡大することができる。
According to the turbo compressor of the present invention described in claim 2, the flow guide plate is erected in the upstream communication portion, and the rectifying plate is integrally formed at the inner diameter side end of the flow guide plate,
Since the flow in the direction opposite to the rotation direction of the impeller flows out along the inner peripheral wall of the housing, the flow flowing back along the inner peripheral wall of the housing is more effectively suppressed while turning in the rotation direction of the impeller. Can do. As a result, the limit region of surge generation is further moved to the low flow rate side, and the operation region can be expanded.

請求項3に記載した本発明のターボ圧縮機は、請求項1に記載のターボ圧縮機において、
前記整流板が前記上流側開口部よりも上流側へ延設されたことを特徴とする。
The turbo compressor of the present invention described in claim 3 is the turbo compressor according to claim 1,
The rectifying plate is extended upstream from the upstream opening.

請求項3に記載した本発明のターボ圧縮機よれば、整流板が上流側開口部よりも上流側へ延設されたことによって、インペラの回転方向に旋回しつつ、ハウジングの内周壁に沿って逆流する流れを広い範囲で抑制することができる。これによって、サージ発生の限界域をさらに低流量側へ移動し、作動領域を拡大することができる。   According to the turbo compressor of the present invention as set forth in claim 3, the rectifying plate extends upstream from the upstream opening, thereby turning along the inner peripheral wall of the housing while turning in the rotation direction of the impeller. The reverse flow can be suppressed in a wide range. As a result, the surge generation limit region can be further moved to the low flow rate side, and the operation region can be expanded.

請求項4に記載した本発明のターボ圧縮機は、請求項1〜請求項3のいずれか1項に記載のターボ圧縮機において、
前記上流側開口部の内径側に、前記ハウジングの内周面から所定の間隔を空けて同心円状に配置される円筒状の筒状体を備え、
該筒状体が前記整流板によって支持されたことを特徴とする。
The turbo compressor of the present invention described in claim 4 is the turbo compressor according to any one of claims 1 to 3,
Provided on the inner diameter side of the upstream opening, a cylindrical tubular body arranged concentrically with a predetermined interval from the inner peripheral surface of the housing,
The cylindrical body is supported by the current plate.

請求項4に記載した本発明のターボ圧縮機よれば、上流側開口部の内径側に、ハウジングの内周面から所定の間隔を空けて同心円状に配置される円筒状の筒状体を備えたことによって、ハウジングの内周壁に沿って逆流する流れは、ハウジングの内周壁と筒状体との間に留まり、回転軸方向へ拡がることを抑制される。これにより、インペラには安定した流れが供給され、サージ発生を抑制することができる。   According to the turbo compressor of the present invention as set forth in claim 4, the cylindrical tubular body disposed concentrically at a predetermined interval from the inner peripheral surface of the housing is provided on the inner diameter side of the upstream opening. As a result, the flow flowing backward along the inner peripheral wall of the housing stays between the inner peripheral wall of the housing and the cylindrical body, and is prevented from spreading in the direction of the rotation axis. As a result, a stable flow is supplied to the impeller, and the occurrence of surge can be suppressed.

請求項5に記載した本発明のターボ圧縮機は、請求項4に記載のターボ圧縮機において、
前記筒状体が前記上流側開口部よりも上流側へ延設されたことを特徴とする。
The turbo compressor of the present invention described in claim 5 is the turbo compressor according to claim 4,
The cylindrical body is characterized by extending upstream from the upstream opening.

請求項5に記載した本発明のターボ圧縮機よれば、筒状体が上流側開口部よりも上流側へ延設されたことによって、ハウジングの内周壁に沿って逆流する流れを、回転軸方向へ拡がることを広い範囲に渡って抑制することができる。これにより、インペラにはさらに安定した流れが供給され、サージ発生をより一層抑制することができる。   According to the turbo compressor of the present invention as set forth in claim 5, when the cylindrical body is extended to the upstream side from the upstream side opening, the flow that flows backward along the inner peripheral wall of the housing is caused in the direction of the rotation axis. It can be suppressed over a wide range. Thereby, a more stable flow is supplied to the impeller, and the occurrence of surge can be further suppressed.

本発明のターボ圧縮機では、循環する空気流量を増大させることなく、サージ発生の限界域を低流量側へ移動し、作動領域を拡大することができる。   In the turbo compressor of the present invention, the operating range can be expanded by moving the surge generation limit region to the low flow rate side without increasing the circulating air flow rate.

本発明の第1実施形態に係る遠心圧縮機を示す断面図である。It is sectional drawing which shows the centrifugal compressor which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る遠心圧縮機を示す断面図である。It is sectional drawing which shows the centrifugal compressor which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る循環路内に配置される導流板と整流板を示し、(a)は斜視図、(b)は基部側から見た平面図である。The flow guide plate and current plate which are arrange | positioned in the circuit which concerns on 2nd Embodiment of this invention are shown, (a) is a perspective view, (b) is the top view seen from the base side. 本発明の第2実施形態に係る遠心圧縮機の別態様を示す断面図である。It is sectional drawing which shows another aspect of the centrifugal compressor which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る遠心圧縮機を示す断面図である。It is sectional drawing which shows the centrifugal compressor which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る遠心圧縮機を示す断面図である。It is sectional drawing which shows the centrifugal compressor which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係る循環路内に配置される導流板と整流板、および筒状体を示し、(a)は斜視図、(b)は基部側から見た平面図である。The flow guide plate, the baffle plate, and cylindrical body which are arrange | positioned in the circulation path which concerns on 4th Embodiment of this invention are shown, (a) is a perspective view, (b) is the top view seen from the base side. . 本発明の第4実施形態に係る遠心圧縮機の別態様を示す断面図である。It is sectional drawing which shows another aspect of the centrifugal compressor which concerns on 4th Embodiment of this invention.

本発明の第1実施形態について、図1を参照して説明する。本実施形態のターボ圧縮機は、車両用エンジン(図示せず)の過給器を構成し、回転軸方向に沿って導入する空気を圧縮しつつ、放射状に吐出する遠心圧縮機1である。この遠心圧縮機1は、主にインペラ11と、ハウジング21とで構成されている。   A first embodiment of the present invention will be described with reference to FIG. The turbo compressor of the present embodiment is a centrifugal compressor 1 that constitutes a supercharger of a vehicle engine (not shown) and discharges it radially while compressing the air introduced along the rotation axis direction. The centrifugal compressor 1 is mainly composed of an impeller 11 and a housing 21.

インペラ11は、回転軸L周りに回転可能に軸支され、上流側から下流側に向かって拡径する末広がりの略円錐台形状を備えたハブ12と、ハブ12の回転軸Lに対して傾斜する傾斜側面13に所定の間隔で配置されたブレード14とで構成されている。   The impeller 11 is rotatably supported around the rotation axis L, and has a hub 12 having a substantially frustoconical shape that expands from the upstream side toward the downstream side, and is inclined with respect to the rotation axis L of the hub 12. The blades 14 are arranged at predetermined intervals on the inclined side surface 13.

ハウジング21は、ハウジング21の最上流側に位置し、円筒形状を有し、筒内に導入された空気が流れる主流路50が形成され、環状の入口縁22からブレード14の上流端15に向けて主流路50が徐々に縮径する導入部23と、導入部23の下流側に位置し、上流側から下流側に向かってインペラ11の外形形状に沿って徐々に拡径する円筒形状を有し、筒内にインペラ11を回転可能に収容する圧縮部24と、圧縮部24の下流側に位置し、インペラ11から放射状に排出された圧縮空気を機外に吐出する渦巻き状の導出部25と、導出部25の中心に位置し、インペラ11を軸支する基部26と、で構成されている。   The housing 21 is located on the most upstream side of the housing 21, has a cylindrical shape, is formed with a main flow path 50 through which air introduced into the cylinder flows, and is directed from the annular inlet edge 22 toward the upstream end 15 of the blade 14. The main flow path 50 has a gradually reducing diameter, and a cylindrical shape that is located downstream of the introducing part 23 and gradually increases in diameter along the outer shape of the impeller 11 from the upstream side toward the downstream side. The compressor 24 that rotatably accommodates the impeller 11 in the cylinder, and the spiral outlet 25 that is located downstream of the compressor 24 and discharges compressed air discharged radially from the impeller 11 to the outside of the machine. And a base portion 26 that is positioned at the center of the lead-out portion 25 and pivotally supports the impeller 11.

ハウジング21の導入部23から圧縮部24に移行する部位には、筒壁内に周方向に沿って連通する環状のキャビティ部34と、キャビティ部34の上流側に連通する上流側連通部33を介して、インペラ11の上流に開口する上流側開口部32と、キャビティ部34の上流側連通部33よりも下流側に連通する下流側連通部35を介して、インペラ11の側方に開口する下流側開口部36とからなる循環路31が設けられている。   An annular cavity portion 34 communicating with the inside of the cylindrical wall along the circumferential direction and an upstream communication portion 33 communicating with the upstream side of the cavity portion 34 are provided at a portion where the introduction portion 23 of the housing 21 transitions to the compression portion 24. Via the upstream opening 32 that opens upstream of the impeller 11 and the downstream communication portion 35 that communicates downstream of the upstream communication portion 33 of the cavity portion 34 and opens to the side of the impeller 11. A circulation path 31 including a downstream opening 36 is provided.

また、上流側開口部32には、回転軸方向に沿って、且つ内径側に突出する板状の整流板42が、周方向に等間隔に設けられている。各整流板42は、上流側開口部32の上流側に突設されつつ、上流側開口部32上に重なるように延びている。整流板42の導入部23内面からの径方向高さは、回転軸Lの上流側からインペラ11を見た際に、整流板42がインペラ11に重ならないように設定されている。   The upstream opening 32 is provided with plate-like rectifying plates 42 that protrude along the rotation axis direction and toward the inner diameter side at equal intervals in the circumferential direction. Each rectifying plate 42 protrudes upstream of the upstream opening 32 and extends so as to overlap the upstream opening 32. The radial height from the inner surface of the introduction portion 23 of the rectifying plate 42 is set so that the rectifying plate 42 does not overlap the impeller 11 when the impeller 11 is viewed from the upstream side of the rotating shaft L.

上記構成において、インペラ11が回転すると、入口縁22から回転軸L方向に沿って導入部23に導入された空気は、インペラ11に吸込まれる。そして、吸込まれた空気は、ハブ12の傾斜側面13に沿いつつ、インペラ11のブレード14によって旋回しながら圧縮され、導出部25から吐出される。   In the above configuration, when the impeller 11 rotates, the air introduced into the introducing portion 23 from the inlet edge 22 along the rotation axis L direction is sucked into the impeller 11. Then, the sucked air is compressed while being swung by the blade 14 of the impeller 11 along the inclined side surface 13 of the hub 12 and is discharged from the outlet portion 25.

また、インペラ11に吸込まれた空気の一部は、下流側開口部36から循環路31を通じて上流側開口部32から導入部23内へ流出する。上流側開口部32から導入部23内へ流出した空気は、上流の入口縁22から導入された空気と合流し、インペラ11に吸込まれる。   Further, a part of the air sucked into the impeller 11 flows out from the downstream opening 36 through the circulation path 31 into the introduction part 23 from the upstream opening 32. The air that has flowed out of the upstream opening 32 into the inlet 23 merges with the air introduced from the upstream inlet edge 22 and is sucked into the impeller 11.

そして、上記構成において、サージ発生の限界域付近まで空気流量が減少した場合には、上流側開口部32から導入部23内に流出した循環流の一部が、導入部23内面に沿ってインペラ11の回転方向に旋回しながら入口縁22に向かって逆流を始めようとするが、逆流しようとする流れは、上流側開口部32に設けられた整流板42によって、旋回が妨げられて不安定になり、逆流が弱められ、あるいは消される。これによって、インペラ11に吸込まれる空気の流れが安定して、サージ発生の限界域が低流量側へ移動し、遠心圧縮機1の作動領域を拡大することができる。   In the above configuration, when the air flow rate decreases to the vicinity of the surge generation limit region, a part of the circulating flow flowing out from the upstream opening 32 into the introduction portion 23 is impeller along the inner surface of the introduction portion 23. 11, while attempting to start backflow toward the inlet edge 22 while swirling in the direction of rotation of 11, swirling is prevented by the rectifying plate 42 provided in the upstream opening 32 and unstable. And the backflow is weakened or extinguished. As a result, the flow of air sucked into the impeller 11 is stabilized, the surge generation limit region moves to the low flow rate side, and the operation region of the centrifugal compressor 1 can be expanded.

次に、本発明の第2実施形態について図2、図3を参照して説明する。本実施形態の構成と上記第1実施形態の構成とで大きく異なるのは、循環路31a、および整流板42aの構成である。その他の構成は第1実施形態と同様であり、同様の構成については同一の符号を付すとともに、詳細な説明を省略する。   Next, a second embodiment of the present invention will be described with reference to FIGS. What is greatly different between the configuration of the present embodiment and the configuration of the first embodiment is the configuration of the circulation path 31a and the rectifying plate 42a. Other configurations are the same as those in the first embodiment, and the same components are denoted by the same reference numerals and detailed description thereof is omitted.

本実施形態の循環路31aには、図3に示すように、上流側連通部33内に、周方向に等間隔に、且つ外径側から内径側に向けて板状の導流板41aを備えている。各導流板41aは、回転軸Lを中心とする半径方向に対して斜めに配置されている。各導流板41aの半径方向に対する角度は、上流側開口部32から導入部23内に流出する循環流が、インペラ11の回転方向と逆向きに旋回するように設定されている。また、整流板42aが、導流板41aの内径側端部に上流側開口部32から導入部23内へ突出するように延設されている。なお、整流板42aの導入部23内面からの径方向高さは、上記第1実施形態と同様に、回転軸Lの上流側からインペラ11を見た際に、整流板42aがインペラ11に重ならないように設定されている。   In the circulation path 31a of the present embodiment, as shown in FIG. 3, a plate-shaped flow guide plate 41a is disposed in the upstream communication portion 33 at equal intervals in the circumferential direction and from the outer diameter side toward the inner diameter side. I have. Each of the flow guide plates 41a is disposed obliquely with respect to the radial direction about the rotation axis L. The angle of each flow guide plate 41 a with respect to the radial direction is set so that the circulating flow flowing out from the upstream opening 32 into the introduction portion 23 turns in the direction opposite to the rotation direction of the impeller 11. Further, the rectifying plate 42a is extended at the inner diameter side end of the flow guide plate 41a so as to protrude from the upstream opening 32 into the introduction portion 23. Note that the radial height from the inner surface of the introduction portion 23 of the rectifying plate 42a is the same as that in the first embodiment when the rectifying plate 42a overlaps the impeller 11 when the impeller 11 is viewed from the upstream side of the rotating shaft L. It is set not to be.

上記構成において、インペラ11が回転した際に、インペラ11に吸込まれた空気の一部は、循環路31内の導流板41a、および整流板42aによって、インペラ11の回転方向と逆向きに旋回しつつ、上流側開口部32から導入部23内へ流出する。   In the above configuration, when the impeller 11 rotates, a part of the air sucked into the impeller 11 is swung in the direction opposite to the rotation direction of the impeller 11 by the flow guide plate 41a and the rectifying plate 42a in the circulation path 31. However, it flows out from the upstream opening 32 into the introduction part 23.

そして、上記構成において、サージ発生の限界域付近まで空気流量が減少した場合には、上流側開口部32から導入部23内に流出した循環流の一部が、導入部23内面に沿ってインペラ11の回転方向に旋回しながら入口縁22に向かって逆流を始めようとするが、逆流しようとする流れは、循環流がインペラ11に対して逆旋回していることによって、旋回が妨げられて不安定になり、逆流が弱められ、あるいは消される。これによって、インペラ11に吸込まれる空気の流れが安定して、サージ発生の限界域が低流量側へ移動し、遠心圧縮機1の作動領域を拡大することができる。   In the above configuration, when the air flow rate decreases to the vicinity of the surge generation limit region, a part of the circulating flow flowing out from the upstream opening 32 into the introduction portion 23 is impeller along the inner surface of the introduction portion 23. 11, while trying to start backflow toward the inlet edge 22 while swirling in the direction of rotation, the flow to be backflowed is prevented from swirling because the circulating flow is swirling backward with respect to the impeller 11. It becomes unstable and the backflow is weakened or extinguished. As a result, the flow of air sucked into the impeller 11 is stabilized, the surge generation limit region moves to the low flow rate side, and the operation region of the centrifugal compressor 1 can be expanded.

第2実施形態の別態様として、図4に示すように、上流側開口部32から導入部23内に突出する整流板42aを、上流側開口部32からの突出寸法はそのままに、上流側に延長したものがある。   As another aspect of the second embodiment, as shown in FIG. 4, the rectifying plate 42 a that protrudes from the upstream opening 32 into the introduction portion 23 is disposed on the upstream side without changing the protruding dimension from the upstream opening 32. There is an extension.

このような態様では、整流板42aが上流側へ延長されたことによって、逆流しようとする流れの発生を広い範囲で防ぐことができるので、インペラ11に吸込まれる空気の流れがさらに安定して、サージ発生の限界域が低流量側へ移動し、遠心圧縮機1の作動領域を拡大することができる。   In such an embodiment, since the flow straightening plate 42a is extended to the upstream side, it is possible to prevent the occurrence of a flow that is going to flow backward in a wide range, so that the flow of air sucked into the impeller 11 is further stabilized. The limit region of surge generation moves to the low flow rate side, and the operating region of the centrifugal compressor 1 can be expanded.

次に、本発明の第3実施形態について図5を参照して説明する。本実施形態の構成と上記第1実施形態の構成とで大きく異なるのは、整流板42bで筒状体を支持している点である。その他の構成は第1実施形態と同様であり、同様の構成については同一の符号を付すとともに、詳細な説明を省略する。   Next, a third embodiment of the present invention will be described with reference to FIG. A significant difference between the configuration of the present embodiment and the configuration of the first embodiment is that the cylindrical body is supported by the rectifying plate 42b. Other configurations are the same as those in the first embodiment, and the same components are denoted by the same reference numerals and detailed description thereof is omitted.

本実施形態の循環路31内には、第1実施形態と同様に、導流板41aは配置されておらず、回転軸方向に沿って、且つ内径側に突出する板状の整流板42bが、周方向に等間隔に設けられている。各整流板42bは、上流側開口部32の上流側に突設されつつ、上流側開口部32上に重なるように延びている。   As in the first embodiment, the flow guide plate 41a is not disposed in the circulation path 31 of the present embodiment, and a plate-like rectifying plate 42b that protrudes along the rotation axis direction and toward the inner diameter side is provided. Are provided at equal intervals in the circumferential direction. Each rectifying plate 42 b protrudes on the upstream side of the upstream opening 32 and extends so as to overlap the upstream opening 32.

そして、整流板42bの内径側端縁には、導入部23と同心円状に配置される円筒状の筒状体43bが配置されている。筒状体43bの半径は、回転軸Lの上流側からインペラ11を見た際に、筒状体43bがインペラ11に重ならないように設定されている。つまり、上流側開口部32の内径側に、筒状体43bが整流板42bによって支持されている。   A cylindrical tubular body 43b arranged concentrically with the introduction portion 23 is arranged at the inner diameter side edge of the rectifying plate 42b. The radius of the cylindrical body 43 b is set so that the cylindrical body 43 b does not overlap the impeller 11 when the impeller 11 is viewed from the upstream side of the rotation axis L. That is, the cylindrical body 43b is supported on the inner diameter side of the upstream opening 32 by the rectifying plate 42b.

上記構成において、インペラ11が回転した際に、インペラ11に吸込まれた空気の一部は、循環路31を通じて、インペラ11の回転方向に旋回しつつ、上流側開口部32から循環流として導入部23内へ流出する。導入部23内に流出した循環流は、筒状体43bの外周面と、整流板42bと導入部内面とで囲まれた筒状流路51bを通じて、インペラ11に吸込まれる。   In the above configuration, when the impeller 11 rotates, a part of the air sucked into the impeller 11 is swirled in the rotation direction of the impeller 11 through the circulation path 31 and introduced from the upstream opening 32 as a circulation flow. It flows out into 23. The circulating flow that has flowed into the introduction portion 23 is sucked into the impeller 11 through the cylindrical flow path 51b surrounded by the outer peripheral surface of the cylindrical body 43b, the rectifying plate 42b, and the inner surface of the introduction portion.

そして、上記構成において、サージ発生の限界域付近まで空気流量が減少した場合には、上流側開口部32から導入部23内に流出した循環流の一部が、導入部23内面に沿ってインペラ11の回転方向に旋回しながら入口縁22に向かって逆流を始めようとするが、逆流しようとする流れは、上流側開口部32に設けられた整流板42bと筒状体43bとによって、旋回が妨げられるとともに、内径側へ拡がることが妨げられて不安定になり、逆流が弱められ、あるいは消される。これによって、インペラ11に吸込まれる空気の流れがより一層安定して、サージ発生の限界域が低流量側へ移動し、遠心圧縮機1の作動領域を拡大することができる。   In the above configuration, when the air flow rate decreases to the vicinity of the surge generation limit region, a part of the circulating flow flowing out from the upstream opening 32 into the introduction portion 23 is impeller along the inner surface of the introduction portion 23. 11 is intended to start a reverse flow toward the inlet edge 22 while swirling in the direction of rotation 11, but the flow to be reversed is swirled by the rectifying plate 42 b and the cylindrical body 43 b provided in the upstream opening 32. In addition to being disturbed, it is prevented from spreading to the inner diameter side and becomes unstable, and the backflow is weakened or extinguished. As a result, the flow of air sucked into the impeller 11 is further stabilized, the surge generation limit region moves to the low flow rate side, and the operation region of the centrifugal compressor 1 can be expanded.

次に、本発明の第4実施形態について図6、図7を参照して説明する。本実施形態の構成と上記第2実施形態の構成とで大きく異なるのは、整流板42cで筒状体を支持している点である。その他の構成は第2実施形態と同様であり、同様の構成については同一の符号を付すとともに、詳細な説明を省略する。   Next, a fourth embodiment of the present invention will be described with reference to FIGS. The main difference between the configuration of the present embodiment and the configuration of the second embodiment is that the rectifying plate 42c supports the cylindrical body. Other configurations are the same as those of the second embodiment, and the same configurations are denoted by the same reference numerals and detailed description thereof is omitted.

本実施形態の循環路31c内には、第2実施形態と同様に、循環路31c内に導流板41cが配置され、導流板41cの内径側端部には、上流側開口部32から導入部23内へ突出するように整流板42cが延設されている。   In the circulation path 31c of the present embodiment, a flow guide plate 41c is disposed in the circulation path 31c, as in the second embodiment, and the upstream side opening 32 extends from the inner diameter side end of the flow guide plate 41c. A rectifying plate 42 c is extended so as to protrude into the introduction portion 23.

そして、整流板42cの内径側端縁には、導入部23と同心円状に配置される円筒状の筒状体43cが配置されている。筒状体43cの半径は、回転軸Lの上流側からインペラ11を見た際に、筒状体43cがインペラ11に重ならないように設定されている。   A cylindrical tubular body 43c arranged concentrically with the introduction portion 23 is arranged at the inner diameter side edge of the rectifying plate 42c. The radius of the cylindrical body 43c is set so that the cylindrical body 43c does not overlap the impeller 11 when the impeller 11 is viewed from the upstream side of the rotation axis L.

上記構成において、インペラ11が回転した際に、インペラ11に吸込まれた空気の一部は、循環路31cを通じて、インペラ11の回転方向と逆向きに旋回しつつ、上流側開口部32から循環流として導入部23内へ流出する。導入部23内に流出した循環流は、筒状体43cの外周面と、整流板42cと導入部内面とで囲まれた筒状流路51cを通じて、インペラ11に吸込まれる。   In the above configuration, when the impeller 11 rotates, a part of the air sucked into the impeller 11 circulates from the upstream opening 32 while turning in the direction opposite to the rotation direction of the impeller 11 through the circulation path 31c. As shown in FIG. The circulating flow that has flowed into the introduction portion 23 is sucked into the impeller 11 through the cylindrical flow passage 51c surrounded by the outer peripheral surface of the cylindrical body 43c, the rectifying plate 42c, and the inner surface of the introduction portion.

そして、上記構成において、サージ発生の限界域付近まで空気流量が減少した場合には、上流側開口部32から導入部23内に流出した循環流の一部が、導入部23内面に沿ってインペラ11の回転方向に旋回しながら入口縁22に向かって逆流を始めようとするが、逆流しようとする流れは、上流側開口部32に設けられた整流板42cと筒状体43cとによって、旋回が妨げられるとともに、内径側へ拡がることが妨げられて不安定になり、逆流が弱められ、あるいは消される。これによって、インペラ11に吸込まれる空気の流れがより一層安定して、サージ発生の限界域が低流量側へ移動し、遠心圧縮機1の作動領域を拡大することができる。   In the above configuration, when the air flow rate decreases to the vicinity of the surge generation limit region, a part of the circulating flow flowing out from the upstream opening 32 into the introduction portion 23 is impeller along the inner surface of the introduction portion 23. 11, while trying to start backflow toward the inlet edge 22 while swirling in the direction of rotation of 11, the flow to be backflowed is swirled by the rectifying plate 42 c and the cylindrical body 43 c provided in the upstream opening 32. In addition to being disturbed, it is prevented from spreading to the inner diameter side and becomes unstable, and the backflow is weakened or extinguished. As a result, the flow of air sucked into the impeller 11 is further stabilized, the surge generation limit region moves to the low flow rate side, and the operation region of the centrifugal compressor 1 can be expanded.

第4実施形態の別態様として、図8に示すように、上流側開口部32から導入部23内に突出する整流板42cと筒状体43cとを、上流側に延長したものがある。   As another aspect of the fourth embodiment, as shown in FIG. 8, there is one in which a rectifying plate 42 c and a cylindrical body 43 c that protrude from the upstream opening 32 into the introduction portion 23 are extended upstream.

このような態様では、整流板42cと筒状体43cとが上流側へ延長されたことによって、逆流しようとする流れの発生を広い範囲で防ぐことができるので、インペラ11に吸込まれる空気の流れがさらに安定して、サージ発生の限界域が低流量側へ移動し、遠心圧縮機1の作動領域を拡大することができる。   In such an embodiment, since the flow straightening plate 42c and the cylindrical body 43c are extended to the upstream side, it is possible to prevent the occurrence of a flow that is going to flow backward in a wide range, so that the air sucked into the impeller 11 can be prevented. The flow is further stabilized, the limit area for occurrence of surge moves to the low flow rate side, and the operating area of the centrifugal compressor 1 can be expanded.

1…遠心圧縮機(ターボ圧縮機)
21…ハウジング
32…上流側開口部
33…上流側連通部
34…キャビティ部
41a,41c…導流板
42,42a,42b,42c…整流板
43b,43c…筒状体
1 ... Centrifugal compressor (turbo compressor)
DESCRIPTION OF SYMBOLS 21 ... Housing 32 ... Upstream side opening part 33 ... Upstream side communication part 34 ... Cavity part 41a, 41c ... Flow guide plate 42, 42a, 42b, 42c ... Rectification plate 43b, 43c ... Cylindrical body

Claims (5)

回転軸周りに回転可能に配置されたインペラと、
該回転軸に沿った略筒形状を有し、内部に該インペラが軸支されたハウジングと、
該ハウジングの筒壁内に周方向に沿って連通する環状のキャビティ部と、
該キャビティ部の上流側に連通する上流側連通部を介して、該インペラの上流に開口する上流側開口部と、
該キャビティ部の該上流側連通部よりも下流側に連通する下流側連通部を介して、該インペラの側方に開口する下流側開口部とを備えたターボ圧縮機であって、
前記上流側開口部に、前記回転軸方向に沿って、且つ内径側に突出する板状の整流板を周方向に等間隔に備えたことを特徴とするターボ圧縮機。
An impeller arranged to be rotatable around a rotation axis;
A housing having a substantially cylindrical shape along the rotation axis, in which the impeller is pivotally supported;
An annular cavity communicating in the circumferential direction within the cylindrical wall of the housing;
An upstream opening opening upstream of the impeller via an upstream communication portion communicating with the upstream side of the cavity portion;
A turbo compressor provided with a downstream side opening that opens to the side of the impeller via a downstream side communication part that communicates with the downstream side of the upstream side communication part of the cavity part,
A turbo compressor characterized in that a plate-like rectifying plate projecting toward the inner diameter side along the rotational axis direction is provided at equal intervals in the circumferential direction in the upstream opening.
請求項1に記載のターボ圧縮機において、
前記上流側連通部内に、周方向に等間隔に、且つ外径側から内径側に向けて板状の導流板が立設され、
前記整流板が該導流板の内径側端部に延設されたことを特徴とするターボ圧縮機。
The turbo compressor according to claim 1, wherein
In the upstream communication portion, a plate-shaped flow guide plate is erected from the outer diameter side toward the inner diameter side at equal intervals in the circumferential direction,
A turbo compressor characterized in that the flow straightening plate is extended to an inner diameter side end portion of the flow guide plate.
請求項1に記載のターボ圧縮機において、
前記整流板が前記上流側開口部よりも上流側へ延設されたことを特徴とするターボ圧縮機。
The turbo compressor according to claim 1, wherein
The turbo compressor characterized in that the flow straightening plate extends upstream from the upstream opening.
請求項1〜請求項3のいずれか1項に記載のターボ圧縮機において、
前記上流側開口部の内径側に、前記ハウジングの内周面から所定の間隔を空けて同心円状に配置される円筒状の筒状体を備え、
該筒状体が前記整流板によって支持されたことを特徴とするターボ圧縮機。
The turbo compressor according to any one of claims 1 to 3,
Provided on the inner diameter side of the upstream opening, a cylindrical tubular body arranged concentrically with a predetermined interval from the inner peripheral surface of the housing,
A turbo compressor characterized in that the cylindrical body is supported by the current plate.
請求項4に記載のターボ圧縮機において、
前記筒状体が前記上流側開口部よりも上流側へ延設されたことを特徴とするターボ圧縮機。
The turbo compressor according to claim 4, wherein
The turbo compressor characterized in that the cylindrical body extends upstream from the upstream opening.
JP2011050001A 2011-03-08 2011-03-08 Turbo compressor Active JP5857421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011050001A JP5857421B2 (en) 2011-03-08 2011-03-08 Turbo compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011050001A JP5857421B2 (en) 2011-03-08 2011-03-08 Turbo compressor

Publications (2)

Publication Number Publication Date
JP2012184751A true JP2012184751A (en) 2012-09-27
JP5857421B2 JP5857421B2 (en) 2016-02-10

Family

ID=47015026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011050001A Active JP5857421B2 (en) 2011-03-08 2011-03-08 Turbo compressor

Country Status (1)

Country Link
JP (1) JP5857421B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046036A1 (en) * 2013-09-27 2015-04-02 株式会社Ihi Centrifugal compressor and supercharger
JP2016029273A (en) * 2014-07-16 2016-03-03 トヨタ自動車株式会社 Centrifugal compressor
EP2960526A4 (en) * 2013-02-22 2016-07-27 Mitsubishi Heavy Ind Ltd Centrifugal compressor
CN106015098A (en) * 2016-05-18 2016-10-12 中国北方发动机研究所(天津) Prewhirl quieter capable of effectively broadening flow range of gas compressor
WO2016188712A1 (en) 2015-05-27 2016-12-01 Volkswagen Aktiengesellschaft Compressor, exhaust-gas turbocharger and internal combustion engine
JP6067095B2 (en) * 2013-02-22 2017-01-25 三菱重工業株式会社 Centrifugal compressor
EP3018361A4 (en) * 2013-07-04 2017-02-22 Mitsubishi Heavy Industries, Ltd. Centrifugal compressor
JP2017044164A (en) * 2015-08-27 2017-03-02 株式会社豊田中央研究所 Centrifugal compressor and turbocharger
JP2019019695A (en) * 2017-07-12 2019-02-07 株式会社Ihi Centrifugal compressor impeller and centrifugal compressor
CN110131213A (en) * 2018-02-09 2019-08-16 开利公司 Centrifugal compressor with recirculation line
RU221560U1 (en) * 2023-08-08 2023-11-13 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский университет науки и технологий" RECIRCULATION DEVICE OF CENTRIFUGAL COMPRESSOR

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106299A (en) * 2001-09-28 2003-04-09 Mitsubishi Heavy Ind Ltd Fluid machinery
JP2005023792A (en) * 2003-06-30 2005-01-27 Toyota Central Res & Dev Lab Inc Centrifugal compressor with variable vane
JP2006342682A (en) * 2005-06-07 2006-12-21 Ishikawajima Harima Heavy Ind Co Ltd Operation range expanding method and device of centrifugal compressor
JP2010270641A (en) * 2009-05-20 2010-12-02 Ihi Corp Centrifugal compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106299A (en) * 2001-09-28 2003-04-09 Mitsubishi Heavy Ind Ltd Fluid machinery
JP2005023792A (en) * 2003-06-30 2005-01-27 Toyota Central Res & Dev Lab Inc Centrifugal compressor with variable vane
JP2006342682A (en) * 2005-06-07 2006-12-21 Ishikawajima Harima Heavy Ind Co Ltd Operation range expanding method and device of centrifugal compressor
JP2010270641A (en) * 2009-05-20 2010-12-02 Ihi Corp Centrifugal compressor

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6067095B2 (en) * 2013-02-22 2017-01-25 三菱重工業株式会社 Centrifugal compressor
US10167877B2 (en) 2013-02-22 2019-01-01 Mitsubishi Heavy Industries, Ltd. Centrifugal compressor
US10125793B2 (en) 2013-02-22 2018-11-13 Mitsubishi Heavy Industries, Ltd. Centrifugal compressor
EP2960526A4 (en) * 2013-02-22 2016-07-27 Mitsubishi Heavy Ind Ltd Centrifugal compressor
EP3018361A4 (en) * 2013-07-04 2017-02-22 Mitsubishi Heavy Industries, Ltd. Centrifugal compressor
US10337522B2 (en) 2013-07-04 2019-07-02 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Centrifugal compressor
WO2015046036A1 (en) * 2013-09-27 2015-04-02 株式会社Ihi Centrifugal compressor and supercharger
JP2015068192A (en) * 2013-09-27 2015-04-13 株式会社Ihi Centrifugal compressor and supercharger
US10364818B2 (en) 2013-09-27 2019-07-30 Ihi Corporation Centrifugal compressor and turbocharger
US9771856B2 (en) 2014-07-16 2017-09-26 Toyota Jidosha Kabushiki Kaisha Centrifugal compressor
JP2016029273A (en) * 2014-07-16 2016-03-03 トヨタ自動車株式会社 Centrifugal compressor
WO2016188712A1 (en) 2015-05-27 2016-12-01 Volkswagen Aktiengesellschaft Compressor, exhaust-gas turbocharger and internal combustion engine
DE102015209666A1 (en) * 2015-05-27 2016-12-01 Volkswagen Aktiengesellschaft compressor
US10655642B2 (en) 2015-05-27 2020-05-19 Volkswagen Aktiengesellschaft Compressor, exhaust gas turbocharger and internal combustion machine
JP2017044164A (en) * 2015-08-27 2017-03-02 株式会社豊田中央研究所 Centrifugal compressor and turbocharger
CN106015098A (en) * 2016-05-18 2016-10-12 中国北方发动机研究所(天津) Prewhirl quieter capable of effectively broadening flow range of gas compressor
JP2019019695A (en) * 2017-07-12 2019-02-07 株式会社Ihi Centrifugal compressor impeller and centrifugal compressor
CN110131213A (en) * 2018-02-09 2019-08-16 开利公司 Centrifugal compressor with recirculation line
RU221560U1 (en) * 2023-08-08 2023-11-13 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский университет науки и технологий" RECIRCULATION DEVICE OF CENTRIFUGAL COMPRESSOR

Also Published As

Publication number Publication date
JP5857421B2 (en) 2016-02-10

Similar Documents

Publication Publication Date Title
JP5857421B2 (en) Turbo compressor
JP5479316B2 (en) Centrifugal compressor scroll structure
WO2011007467A1 (en) Impeller and rotary machine
JP5005181B2 (en) Centrifugal fan
JP5221985B2 (en) Centrifugal compressor
WO2014034950A1 (en) Centrifugal air blower
JP5517981B2 (en) Centrifugal compressor scroll structure
CN108700089B (en) Centrifugal compressor and turbocharger
CN104428539A (en) Centrifugal compressor
JP2006342682A (en) Operation range expanding method and device of centrifugal compressor
WO2011007466A1 (en) Impeller and rotary machine
JP2012193716A5 (en)
JP2011064111A (en) Exhaust scroll and turbo machine
JP2005320869A (en) Suction casing, suction passage structure and fluid machine
JP2009133267A (en) Impeller of compressor
JP6073605B2 (en) Centrifugal blower
JP3841391B2 (en) Turbo machine
JP2014181642A (en) Single suction type centrifugal blower
JP2019007425A (en) Centrifugal compressor and turbocharger
JP2011149328A (en) Multiblade centrifugal fan and air conditioner using the same
JP2010270748A (en) Compressor for turbocharger and turbocharger including this compressor
JPWO2019087385A1 (en) Centrifugal compressor and turbocharger equipped with this centrifugal compressor
CN107614885A (en) Volute and centrifugal compressor
JPWO2018179112A1 (en) Compressor scroll shape and turbocharger
JP6078303B2 (en) Centrifugal fluid machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151130

R151 Written notification of patent or utility model registration

Ref document number: 5857421

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250