JP2012182271A - Solar battery lead wire, manufacturing method thereof, and solar battery using the same - Google Patents

Solar battery lead wire, manufacturing method thereof, and solar battery using the same Download PDF

Info

Publication number
JP2012182271A
JP2012182271A JP2011043561A JP2011043561A JP2012182271A JP 2012182271 A JP2012182271 A JP 2012182271A JP 2011043561 A JP2011043561 A JP 2011043561A JP 2011043561 A JP2011043561 A JP 2011043561A JP 2012182271 A JP2012182271 A JP 2012182271A
Authority
JP
Japan
Prior art keywords
conductive material
strip
solar cell
lead wire
molten solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011043561A
Other languages
Japanese (ja)
Inventor
Hajime Nishi
甫 西
Hiromitsu Kuroda
洋光 黒田
Satoshi Chinda
聡 珍田
Katsunori Sawahata
勝憲 沢畠
Yoshiharu Mazaki
義治 真崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Hitachi Cable Fine Tech Ltd
Original Assignee
Hitachi Cable Ltd
Hitachi Cable Fine Tech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Hitachi Cable Fine Tech Ltd filed Critical Hitachi Cable Ltd
Priority to JP2011043561A priority Critical patent/JP2012182271A/en
Publication of JP2012182271A publication Critical patent/JP2012182271A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solar battery lead wire which allows a sufficient reduction in optical loss.SOLUTION: The solar battery lead wire 10 has a molten solder plated layer formed by supplying molten solder to the surface of a strip-like conductive material 11. In the solar battery lead wire 10, top and rear molten solder plated layers 12a and 12b are formed by supplying the molten solder to top and rear faces 11a and 11b of the strip-like conductive material 11, and concave and convex portions are formed on the top and rear molten solder plated layers 12a and 12b. Further, a glossy plated layer 13 made of Ni, Sn or Sn -based alloy having a brightener added thereto is formed on the resultant molten solder plated layers 12a and 12b.

Description

本発明は、太陽電池用リード線に係り、特に、太陽電池用リード線での光学損失を低減することができる太陽電池用リード線およびその製造方法並びにそれを用いた太陽電池に関するものである。   The present invention relates to a solar cell lead, and more particularly to a solar cell lead capable of reducing optical loss in the solar cell lead, a method for manufacturing the same, and a solar cell using the same.

太陽電池には、半導体基板として多結晶および単結晶のSiセルが用いられる。   In solar cells, polycrystalline and single crystal Si cells are used as semiconductor substrates.

図6(a)〜(c)に示されるように、太陽電池100は、半導体基板101の所定の領域、すなわち半導体基板101の表面に設けられた表面電極102と裏面に設けられた裏面電極103に、太陽電池用リード線104a、104bをはんだあるいは接着剤で接合して作製される。半導体基板101内で発電された電力を太陽電池用リード線104a、104bを通じて外部へ伝送する。   As shown in FIGS. 6A to 6C, the solar cell 100 includes a surface electrode 102 provided on a predetermined region of the semiconductor substrate 101, that is, a surface of the semiconductor substrate 101, and a back electrode 103 provided on the back surface. In addition, the solar cell lead wires 104a and 104b are joined by solder or an adhesive. The electric power generated in the semiconductor substrate 101 is transmitted to the outside through the solar cell lead wires 104a and 104b.

図6に示した電極部では一般に光入射による電子や正孔の発生が起こらず光学損失が起きる。これを低減する方法として、太陽電池用リード線の幅方向における断面(横断面)が複数の山形形状を有するタイプの太陽電池用リード線が提案されている(特許文献1参照)。透光性部材(透明ガラスや透明フィルム)を通過して太陽電池用リード線に入射した光は凹凸の表面で反射し、さらにその反射した光は透光性部材と空気との界面で反射しSiセルに入射する。これにより、太陽電池用リード線での光学損失の低減が可能である。   In the electrode portion shown in FIG. 6, in general, generation of electrons and holes due to light incidence does not occur and optical loss occurs. As a method for reducing this, a solar cell lead wire of a type in which the cross section (transverse cross section) in the width direction of the solar cell lead wire has a plurality of chevron shapes has been proposed (see Patent Document 1). The light that has passed through the translucent member (transparent glass or transparent film) and entered the solar cell lead is reflected by the uneven surface, and the reflected light is reflected by the interface between the translucent member and air. Incident on the Si cell. Thereby, the optical loss in the lead wire for solar cells can be reduced.

特開2006−13406号公報JP 2006-13406 A

前述のように、特許文献1の太陽電池用リード線によれば、太陽電池用リード線の幅方向における断面(横断面)が複数の山形形状を有しているので、透光性部材を通過して太陽電池用リード線に入射した光は凹凸の表面で反射し、その反射した光が透光性部材と空気との界面で反射しSiセルに入射する。これにより、太陽電池用リード線での光学損失の低減が可能との記載がある。しかしながら、この太陽電池用リード線の構造であれば、太陽電池用リード線での光学損失の低減が可能であるが、かかる光学損失の低減は、太陽電池用リード線の表面の材質によっても左右されるものであり、太陽電池用リード線の表面の材質については未だ十分な検討がなされているとはいえない。   As described above, according to the lead wire for solar cell of Patent Document 1, the cross section (transverse cross section) in the width direction of the lead wire for solar cell has a plurality of mountain shapes, and thus passes through the translucent member. Then, the light incident on the solar cell lead is reflected by the uneven surface, and the reflected light is reflected by the interface between the translucent member and air and enters the Si cell. Thereby, it is described that the optical loss in the solar cell lead wire can be reduced. However, with this solar cell lead structure, it is possible to reduce the optical loss in the solar cell lead, but the reduction in optical loss depends on the material of the surface of the solar cell lead. However, it cannot be said that sufficient studies have been made on the material of the surface of the solar cell lead wire.

即ち、最も反射率に優れるAgを太陽電池用リード線に用いた場合は、表面の酸化による反射率の減少が著しいために長期信頼性に乏しい問題や、材料が高価であることによるコストの問題がある。一方、安価ではあっても、Snやはんだのような材料では十分な反射率を示さないため、光学損失の低減効果を効果的に実現することができない。   That is, when Ag having the highest reflectivity is used for a solar cell lead wire, the decrease in reflectivity due to oxidation of the surface is remarkable, so the problem of poor long-term reliability and the problem of cost due to expensive materials There is. On the other hand, even if it is inexpensive, a material such as Sn or solder does not exhibit sufficient reflectivity, so that the effect of reducing optical loss cannot be effectively realized.

そこで、本発明の目的は、上記課題を解決し、十分な光学損失の低減が可能な太陽電池用リード線およびその製造方法並びにそれを用いた太陽電池を提供することにある。   Accordingly, an object of the present invention is to solve the above-described problems and provide a solar cell lead wire capable of sufficiently reducing optical loss, a manufacturing method thereof, and a solar cell using the same.

上記目的を達成するために請求項1の発明は、帯板状導電材の表面に溶融はんだを供給して溶融はんだめっき層を形成した太陽電池用リード線において、前記帯板状導電材の上下面に溶融はんだを供給すると共にその上下の溶融はんだめっき層に凹凸部を形成し、その溶融はんだめっき層の上にさらに光沢剤を添加したNi、SnまたはSn系合金のいずれかからなる光沢めっき層を形成したことを特徴とする太陽電池用リード線である。   In order to achieve the above object, the invention of claim 1 is directed to a solar cell lead wire in which a molten solder is supplied to the surface of a strip-shaped conductive material to form a molten solder plating layer. Luster plating made of Ni, Sn, or Sn-based alloy in which molten solder is supplied to the lower surface, uneven portions are formed on the upper and lower molten solder plating layers, and a brightening agent is further added on the molten solder plating layers It is the lead wire for solar cells characterized by having formed the layer.

請求項2の発明は、帯板状導電材の表面に凹凸部を形成し、その帯板状導電材の上に光沢剤を添加したNi、SnまたはSn系合金のいずれかからなる光沢めっき層を形成したことを特徴とする太陽電池用リード線である。   The invention according to claim 2 is a bright plating layer made of any one of Ni, Sn, or Sn-based alloy in which a concavo-convex portion is formed on the surface of a strip-shaped conductive material and a brightener is added on the strip-shaped conductive material. It is the lead wire for solar cells characterized by having formed.

請求項3の発明は、上記溶融はんだめっき層の上に被覆したNiからなる光沢めっき層は光沢剤の第一成分として、1,3,6ナフタレントリスルホン酸ナトリウム、ベンゼンスルホン酸、p−トルエンスルホンアミド、サッカリンの少なくとも1種以上を含み、第二成分として、クマリン、ホルムアルデヒド、アリルスルホン酸、2−ブチン−1,4−ジオール、プロバルギルアルコール、チオ尿素、エチルシアンヒドリン、ピリジンの少なくとも1種以上を含むことを特徴とする請求項1又は2記載の太陽電池用リード線である。   In the invention of claim 3, the bright plating layer made of Ni coated on the molten solder plating layer is used as a first component of the brightener, 1,3,6 sodium naphthalene trisulfonate, benzenesulfonic acid, p-toluene It contains at least one or more of sulfonamide and saccharin, and as a second component, coumarin, formaldehyde, allyl sulfonic acid, 2-butyne-1,4-diol, propargyl alcohol, thiourea, ethyl cyanohydrin, pyridine The lead wire for a solar cell according to claim 1, comprising at least one kind.

請求項4の発明は、素線を圧延加工することにより帯板状導電材を形成し、該帯板状導電材を熱処理し、その後、溶融はんだを供給して帯板状導電材にはんだめっきすると共に、そのめっきした帯板状導電材をはんだ溶融状態において、凹凸加工したロールで挟むことにより、溶融はんだめっき層に凹凸部を形成し、さらに光沢剤を添加したNi、SnまたはSn系合金のいずれかからなる光沢めっきを施すことを特徴とする太陽電池用リード線の製造方法である。   The invention of claim 4 is to form a strip-shaped conductive material by rolling a wire, heat-treat the strip-shaped conductive material, and then supply molten solder to the strip-shaped conductive material At the same time, by sandwiching the plated strip-like conductive material in a solder melt state with a concavo-convex roll, a concavo-convex part is formed in the molten solder plating layer, and a brightening agent is further added to a Ni, Sn or Sn-based alloy A method for producing a lead wire for a solar cell, characterized by performing bright plating comprising any of the above.

請求項5の発明は、素線を圧延加工することにより、帯板状導電材を形成し、該帯板状導電材をダイス加工して凹凸部を形成し、その後、この帯板状導電材を熱処理し、さらに、光沢剤を添加したNi、SnまたはSn系合金のいずれかからなる光沢めっきを施すことを特徴とする太陽電池用リード線の製造方法である。   The invention of claim 5 forms a strip-shaped conductive material by rolling a wire, and dies to form the concavo-convex portion, and then the strip-shaped conductive material And a bright plating made of any one of Ni, Sn, and Sn-based alloys to which a brightening agent is added, and a method for producing a solar cell lead wire.

請求項6の発明は、請求項1〜3いずれか記載の太陽電池用リード線を、その溶融はんだめっき層のはんだによって半導体基板の表面電極および裏面電極にはんだ付け又は樹脂により接着したことを特徴とする太陽電池である。   The invention of claim 6 is characterized in that the solar cell lead wire according to any one of claims 1 to 3 is bonded to the front electrode and the back electrode of the semiconductor substrate by solder of the molten solder plating layer or by resin. It is a solar cell.

本発明によれば、十分な光学損失の低減が可能な太陽電池用リード線を得ることができるという優れた効果を発揮するものである。   According to the present invention, an excellent effect is obtained that a solar cell lead wire capable of sufficiently reducing optical loss can be obtained.

本発明の一実施の形態を示し(a)が太陽電池用リード線の上面図および横断面図、(b)は太陽電池用リード線の材料となる帯板状導電材の斜視概略図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows an embodiment of the present invention, (a) is a top view and a cross-sectional view of a solar cell lead, and (b) is a schematic perspective view of a strip-like conductive material used as a material for a solar cell lead. . 本発明において、溶融はんだめっき層を形成する溶融めっき設備の概略図である。In this invention, it is the schematic of the hot dipping equipment which forms a hot-dip solder plating layer. (a)〜(c)は本発明の他の実施の形態を示す太陽電池用リード線の上面図および横断面図である。(A)-(c) is the top view and cross-sectional view of the lead wire for solar cells which shows other embodiment of this invention. 本発明の太陽電池を示し、(a)は太陽電池の上面図、(b)は横断面図、(c)はリード線を表面電極に接合した縦断面図である。The solar cell of this invention is shown, (a) is the top view of a solar cell, (b) is a cross-sectional view, (c) is the longitudinal cross-sectional view which joined the lead wire to the surface electrode. 本発明において、電気めっき層を形成する電気めっき設備の概略図である。In this invention, it is the schematic of the electroplating installation which forms an electroplating layer. 従来の太陽電池を示し、(a)は太陽電池の上面図、(b)は横断面図、(c)はリード線を表面電極に接合した縦断面図である。A conventional solar cell is shown, (a) is a top view of the solar cell, (b) is a transverse sectional view, and (c) is a longitudinal sectional view in which a lead wire is joined to a surface electrode. 本発明の他の実施の形態を示す太陽電池用リード線に使用する帯板状導電材に凹凸加工を施すための伸線ダイスを示す図面である。It is drawing which shows the wire drawing die | dye for giving an uneven | corrugated process to the strip | belt-plate-shaped electrically conductive material used for the lead wire for solar cells which shows other embodiment of this invention.

以下、本発明の好適な一実施の形態を添付図面に基づいて詳述する。   A preferred embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

図1(a)に示されるように、本発明に係る太陽電池用リード線10は、帯板状導電材11の上下面11a、11bに溶融はんだを供給し、はんだ浴出口でめっきした帯板状導電材11をはんだの固相点以上の温度において、あらかじめ凹凸加工したロールではさみ、めっき厚を調整しつつ、上下の溶融はんだめっき層12a、12bに凹凸部を形成したものである。   As shown in FIG. 1 (a), a solar cell lead wire 10 according to the present invention is a strip obtained by supplying molten solder to the upper and lower surfaces 11a and 11b of a strip-like conductive material 11 and plating at the solder bath outlet. The conductive material 11 is sandwiched between rolls that have been processed with unevenness in advance at a temperature equal to or higher than the solid phase point of the solder, and the uneven portions are formed on the upper and lower molten solder plating layers 12a and 12b while adjusting the plating thickness.

帯板状導電材11は、素線(断面円形状の線材)を圧延加工することにより形成し、これを連続通電加熱炉又は連続式加熱炉又はバッチ式加熱設備で熱処理して形成される。   The strip-shaped conductive material 11 is formed by rolling an element wire (wire material having a circular cross section), and is formed by heat-treating it with a continuous energizing heating furnace, a continuous heating furnace, or a batch heating facility.

図1(b)は、帯板状導電材11の斜視図を示したもので、上面11aと下面11bとが平坦面にされ、側面11cが凸状に膨らんで形成され、端面11dが適時の長さにカットされて形成される。   FIG. 1B shows a perspective view of the strip-like conductive material 11, where the upper surface 11a and the lower surface 11b are formed as flat surfaces, the side surface 11c is formed in a convex shape, and the end surface 11d is formed in a timely manner. Cut to length to form.

図2は、溶融はんだめっき層12a、12bに凹凸部を形成するための溶融めっき設備20を示し、はんだ浴21内に帯板状導電材11を反転させて上方に向く反転ローラ22が設けられ、その反転ローラ22の上方に位置したはんだ浴21の上方に、上下一対のロール23a、23b、24a、24bを設け、その上方に引き上げローラ25を設けて構成される。下部のロール23a、23bにはあらかじめめっきに凹凸部を形成するための凹凸加工を施している。   FIG. 2 shows a hot dipping equipment 20 for forming uneven portions in the hot solder plating layers 12a and 12b, and a reversing roller 22 is provided in the solder bath 21 to turn the strip plate-like conductive material 11 upward. A pair of upper and lower rolls 23 a, 23 b, 24 a, 24 b is provided above the solder bath 21 positioned above the reversing roller 22, and a pulling roller 25 is provided above them. The lower rolls 23a and 23b have been subjected to concavo-convex processing for forming concavo-convex portions in the plating in advance.

帯板状導電材11は、はんだ浴21に浸漬されることで上下面11a、11bにはんだが供給され、反転ローラ22で反転されて上方に向い、下部のロール23a、23bで、溶融はんだめっき層12a、12bが挟まれて凹凸部が形成される。上部のロール24a、24bで心材(Cu)の位置を調整することによって、図1(a)に示すように溶融はんだめっき層12a、12bに凹凸部を形成した太陽電池用リード線10が製造される。   The strip-shaped conductive material 11 is immersed in the solder bath 21 so that the solder is supplied to the upper and lower surfaces 11a and 11b, is reversed by the reversing roller 22 and faces upward, and the lower rolls 23a and 23b are molten solder plated. An uneven portion is formed by sandwiching the layers 12a and 12b. By adjusting the position of the core material (Cu) with the upper rolls 24a, 24b, the solar cell lead wire 10 having the concavo-convex portions formed on the molten solder plating layers 12a, 12b as shown in FIG. 1 (a) is manufactured. The

帯板状導電材11に凹凸部を有する溶融はんだめっき層12a、12bを形成する為の上下のロール23a、23b、24a、24bは、はんだ浴21の出口で帯板状導電材11の上下面11a、11bを挟むように配置され、その上下のロール23a、23b、24a、24bの間隔を微調整することで、溶融はんだめっき層12a、12bのめっき厚およびその溶融はんだめっき層12a、12bの横断面形状を調整することができる。   Upper and lower rolls 23 a, 23 b, 24 a, 24 b for forming molten solder plating layers 12 a, 12 b having concavo-convex portions on the strip-shaped conductive material 11 are the upper and lower surfaces of the strip-shaped conductive material 11 at the outlet of the solder bath 21. 11a and 11b are arranged so as to sandwich the upper and lower rolls 23a, 23b, 24a and 24b by finely adjusting the plating thickness of the molten solder plating layers 12a and 12b and the molten solder plating layers 12a and 12b. The cross-sectional shape can be adjusted.

溶融はんだめっき層12a、12bに凹凸部を形成した太陽電池用リード線10を光沢剤を添加した電解液に浸漬し、連続的に溶融はんだめっき層12a、12bの上に光沢Niめっきあるいは光沢Snめっきあるいは光沢Sn系合金めっきを施す。光沢めっき層13の厚さの値は凹凸部の凹部と凸部の高低差の値よりも小さいため、光沢めっき層13の表面には溶融はんだめっき層12a、12bの表面の凹凸部と同様の形状が表れる。   The solar cell lead wire 10 having uneven portions formed on the molten solder plating layers 12a and 12b is dipped in an electrolytic solution to which a brightening agent is added, and is continuously plated with bright Ni plating or bright Sn on the molten solder plating layers 12a and 12b. Plating or bright Sn alloy plating is applied. Since the value of the thickness of the bright plating layer 13 is smaller than the height difference between the concave and convex portions of the concave and convex portions, the surface of the bright plated layer 13 is similar to the concave and convex portions on the surface of the molten solder plating layers 12a and 12b. Shape appears.

図3は、本発明に係る太陽電池用リード線の他の形状を示したものである。   FIG. 3 shows another shape of the solar cell lead wire according to the present invention.

図3(a)の太陽電池用リード線30は、帯板状導電材11の上下面11a、11bの溶融はんだめっき層31a、31bに、線の長手方法に対して垂直に凹凸の縞が並ぶように形成したものである。   In the solar cell lead wire 30 of FIG. 3A, uneven stripes are arranged on the upper and lower surfaces 11a and 11b of the strip-like conductive material 11 perpendicular to the longitudinal direction of the wire. It is formed as follows.

また図3(b)の太陽電池用リード線40は、帯板状導電材11の上下面11a、11bの溶融はんだめっき層41a、41bに、線の長手方法に対して平行に図1とは異なるピッチで凹凸の縞が並ぶように形成したものである。   Further, the solar cell lead wire 40 of FIG. 3B is parallel to the longitudinal direction of the wire on the molten solder plating layers 41a and 41b of the upper and lower surfaces 11a and 11b of the strip plate-like conductive material 11 as shown in FIG. It is formed so that uneven stripes are arranged at different pitches.

また図3(c)の太陽電池用リード線50は、帯板状導電材11の上下面11a、11bの溶融はんだめっき層51a、51bに、ローレット加工が施されるように形成したものである。   Further, the solar cell lead wire 50 in FIG. 3C is formed so that the molten solder plating layers 51a and 51b on the upper and lower surfaces 11a and 11b of the strip-like conductive material 11 are knurled. .

これらの形状は、溶融はんだめっきの量と上下のロール23a、23b、24a、24bの間隔とその位置を調整することで、ロール23a、23bの凹凸加工パターンを変えることで形成できる。   These shapes can be formed by changing the concavo-convex pattern of the rolls 23a, 23b by adjusting the amount of molten solder plating, the distance between the upper and lower rolls 23a, 23b, 24a, 24b and the positions thereof.

本発明の別の製法としては、帯板状導電材11を図7に示すような開口71a、71bを有するダイス70a、70bで凹凸加工し、その後、熱処理工程を経て、光沢剤を添加した電気めっきを施す方法がある。この製法の場合、溶融はんだめっき工程での凹凸形成とは異なり、機械加工で精巧に作製したダイス70a、70bでの凹凸加工のため、凹凸部の寸法を精密に加工することができ、寸法の再現性にも優れている。   As another manufacturing method of the present invention, the belt-like conductive material 11 is processed to be uneven with dies 70a and 70b having openings 71a and 71b as shown in FIG. 7, and then a heat treatment step is performed to add an electric brightener. There is a method of plating. In the case of this manufacturing method, unlike the concave and convex formation in the molten solder plating process, the concave and convex portions are precisely processed by the dies 70a and 70b that are elaborately manufactured by machining. Excellent reproducibility.

この図1、図3に示した太陽電池用リード線10、30、40、50の溶融はんだめっき層12a、12b、31a、31b、41a、41b、51a、51bの上にさらに光沢NiあるいはSnあるいはSn系合金めっきを施すことで、太陽電池用リード線10、30、40、50の部分に入射した太陽光を反射させ、透光性部材と空気との界面で再反射した太陽光をSiセルに入射させることにより、シャドウロス抑制に優れる太陽電池用リード線を得ることができる。   Further, on the molten solder plating layers 12a, 12b, 31a, 31b, 41a, 41b, 51a, 51b of the solar cell lead wires 10, 30, 40, 50 shown in FIGS. By applying the Sn-based alloy plating, the sunlight incident on the solar cell lead wires 10, 30, 40, 50 is reflected, and the sunlight reflected again at the interface between the translucent member and the air is converted into the Si cell. The solar cell lead wire excellent in shadow loss suppression can be obtained.

帯板状導電材11には、例えば、体積抵抗率が50μΩ・mm以下の平角線を用いる。この平角線を圧延加工することによって図1(b)のような横断面形状の帯板状導電材11を得ることができる。   For the strip-shaped conductive material 11, for example, a rectangular wire having a volume resistivity of 50 μΩ · mm or less is used. By rolling this flat wire, a strip-like conductive material 11 having a cross-sectional shape as shown in FIG. 1B can be obtained.

帯板状導電材11は、Cu、Al、Ag、Auのいずれか、あるいは、タフピッチCu、低酸素Cu、無酸素Cu、リン脱酸Cu、純度99.9999%以上の高純度Cuのいずれかからなる。   The strip-shaped conductive material 11 is any one of Cu, Al, Ag, Au, or any of tough pitch Cu, low oxygen Cu, oxygen free Cu, phosphorus deoxidized Cu, and high purity Cu having a purity of 99.9999% or more. Consists of.

溶融はんだめっき層12a、12b、31a、31b、41a、41b、51a、51bとしては、Sn系はんだ(Sn系はんだ合金)を用いる。Sn系はんだは、成分重量が最も重い第1成分としてSnを用い、第2成分としてPb、In、Bi、Sb、Ag、Zn、Ni、Cuから選択される少なくとも1つの元素を0.1mass%以上含むものである。   As the molten solder plating layers 12a, 12b, 31a, 31b, 41a, 41b, 51a, 51b, Sn-based solder (Sn-based solder alloy) is used. Sn-based solder uses Sn as the first component having the heaviest component weight, and 0.1 mass% of at least one element selected from Pb, In, Bi, Sb, Ag, Zn, Ni, and Cu as the second component. Including the above.

溶融はんだめっき層12a、12b、31a、31b、41a、41b、51a、51bの上のめっき層としては、光沢Niめっきを用いる。一次光沢剤としては、1,3,6ナフタレントリスルホン酸ナトリウム、ベンゼンスルホン酸、p−トルエンスルホンアミド、サッカリン、二次光沢剤としては、クマリン、ホルムアルデヒド、アリルスルホン酸、2−ブチン−1,4−ジオール、プロバルギルアルコール、チオ尿素、エチルシアンヒドリン、ピリジンなどを用いる。一次光沢剤は皮膜の結晶を微細化することにより光沢を付与する働き、二次光沢剤は小さな傷を埋める働き(レベリング効果を付与する働き)を担っており、これらを所定の割合で混合して使用することで優れた鏡面反射効果を発揮することができる。   As the plating layer on the molten solder plating layers 12a, 12b, 31a, 31b, 41a, 41b, 51a, 51b, bright Ni plating is used. As primary brighteners, 1,3,6 sodium naphthalene trisulfonate, benzenesulfonic acid, p-toluenesulfonamide, saccharin, and secondary brighteners include coumarin, formaldehyde, allylsulfonic acid, 2-butyne-1, 4-diol, provalgyl alcohol, thiourea, ethyl cyanohydrin, pyridine and the like are used. The primary brightener functions to give gloss by refining the crystals of the film, and the secondary brightener functions to fill small scratches (function to give a leveling effect), and these are mixed at a predetermined ratio. Can be used to exhibit an excellent specular reflection effect.

太陽電池用リード線10と半導体基板41の接合方法は、例えば、太陽電池用リード線10の溶融はんだによって接合する方法と、はんだよりも低温接合可能な樹脂や導電性ペースト、異方性導電性フィルムを介して接合する方法を採用することができる。   The solar cell lead wire 10 and the semiconductor substrate 41 may be joined by, for example, a method of joining the solar cell lead wire 10 by molten solder, a resin or conductive paste that can be joined at a lower temperature than the solder, or anisotropic conductivity. A method of joining via a film can be employed.

上記接合時の加熱方法は、例えば、半導体基板41をホットプレート上に設置し、このホットプレートからの加熱と半導体基板41に設置された太陽電池用リード線10の上方からの加熱とを併用するものである。   As the heating method at the time of bonding, for example, the semiconductor substrate 41 is placed on a hot plate, and heating from the hot plate and heating from above the solar cell lead wire 10 placed on the semiconductor substrate 41 are used in combination. Is.

本発明は、溶融めっきを高速で行う際に生ずるめっき層の厚肉化をロール23a、23b、24a、24bで溶融はんだを絞り落とすことによって抑制できるため、所定のめっき厚形成を従来よりも高速で行うことができ、量産性にも優れている。また、Agに比べて低コストで耐食性に優れ、長期間安定した反射率を示すNi光沢めっきを施しているため、シャドウロス低減の機能を有する。その結果、本発明は、太陽電池用リード線10での光学損失を低減することができる太陽電池用リード線を提供することができる。   Since the present invention can suppress the thickening of the plating layer that occurs when performing hot dipping at a high speed by squeezing out the molten solder with the rolls 23a, 23b, 24a, and 24b, the predetermined plating thickness can be formed faster than before. It is possible to carry out with this, and is also excellent in mass productivity. In addition, it has a function of reducing shadow loss because it is provided with Ni gloss plating that is low in cost and superior in corrosion resistance compared to Ag and has a long-term stable reflectance. As a result, the present invention can provide a solar cell lead wire capable of reducing optical loss in the solar cell lead wire 10.

原料を帯板状導電材11に加工する加工方法としては、圧延加工、スリット加工のいずれも適用可能である。圧延加工とは、丸線を圧延して平角化する方式である。圧延加工により帯板状導電材11を形成すると、長尺で長手方向に幅が均一なものが形成できる。スリット加工は、種々の幅の材料に対応できる。つまり、原料導電材の幅が長手方向に均一でなくても、幅が異なる多様な原料導電材を使用する場合でも、スリット加工によって長尺で長手方向に幅が均一なものが形成できる。   As a processing method for processing the raw material into the strip-shaped conductive material 11, either rolling or slit processing can be applied. Rolling is a method of flattening by rolling a round wire. When the strip-shaped conductive material 11 is formed by rolling, a long and uniform width in the longitudinal direction can be formed. Slit processing can be applied to materials of various widths. That is, even if the raw material conductive material is not uniform in the longitudinal direction, even when various raw material conductive materials having different widths are used, a long and uniform width in the longitudinal direction can be formed by slit processing.

帯板状導電材11を熱処理することにより、帯板状導電材11の軟化特性を向上させることができる。帯板状導電材11の軟化特性を向上させることは、0.2%耐力を低減させるのに有効である。熱処理方法としては、連続通電加熱、連続式加熱、バッチ式加熱がある。連続して長尺にわたって熱処理するには、連続通電加熱、連続式加熱が好ましい。安定した熱処理が必要な場合には、バッチ式加熱が好ましい。酸化を防止する観点から、窒素などの不活性ガス雰囲気あるいは水素還元雰囲気の炉を用いるのが好ましい。   By heat-treating the strip-shaped conductive material 11, the softening characteristics of the strip-shaped conductive material 11 can be improved. Improving the softening characteristics of the strip-shaped conductive material 11 is effective in reducing the 0.2% proof stress. Examples of the heat treatment method include continuous energization heating, continuous heating, and batch heating. For continuous heat treatment over a long length, continuous energization heating and continuous heating are preferred. Batch heating is preferred when stable heat treatment is required. From the viewpoint of preventing oxidation, it is preferable to use a furnace having an inert gas atmosphere such as nitrogen or a hydrogen reducing atmosphere.

不活性ガス雰囲気あるいは水素還元雰囲気の炉は、連続通電加熱炉又は連続式加熱炉又はバッチ式加熱設備により提供される。   A furnace having an inert gas atmosphere or a hydrogen reduction atmosphere is provided by a continuous energizing heating furnace, a continuous heating furnace, or a batch heating facility.

はんだめっきの上へのNi光沢めっきはワット浴にて連続的に行う。一次光沢剤としては、1,3,6ナフタレントリスルホン酸ナトリウム、ベンゼンスルホン酸、p−トルエンスルホンアミド、サッカリン、二次光沢剤としては、クマリン、ホルムアルデヒド、アリルスルホン酸、2−ブチン−1,4−ジオール、プロバルギルアルコール、チオ尿素、エチルシアンヒドリン、ピリジンなどを用いることができる。一次光沢剤は皮膜の結晶を微細化することにより光沢を付与する働き、二次光沢剤は小さな傷を埋める働き(レベリング効果を付与する働き)を担っており、これらをある割合で混合して使用することで優れた鏡面反射効果を発揮することができる。   Ni bright plating on the solder plating is continuously performed in a Watt bath. As primary brighteners, 1,3,6 sodium naphthalene trisulfonate, benzenesulfonic acid, p-toluenesulfonamide, saccharin, and secondary brighteners include coumarin, formaldehyde, allylsulfonic acid, 2-butyne-1, 4-diol, provalgyl alcohol, thiourea, ethyl cyanohydrin, pyridine and the like can be used. The primary brightener works to give gloss by refining the crystals of the film, and the secondary brightener works to fill small scratches (work that gives a leveling effect). By using it, an excellent specular reflection effect can be exhibited.

次に、本発明の太陽電池について詳しく説明する。   Next, the solar cell of the present invention will be described in detail.

図4(a)及び図4(b)に示されるように、本発明の太陽電池40は、これまで説明した太陽電池用リード線10(又は30、40、50)を溶融はんだめっき層12a、12bのはんだあるいは樹脂によって半導体基板41の表面電極42及び裏面電極43に接合したものである。   As shown in FIG. 4A and FIG. 4B, the solar cell 40 of the present invention includes the solar cell lead wire 10 (or 30, 40, 50) described so far, the molten solder plating layer 12a, It is bonded to the front electrode 42 and the back electrode 43 of the semiconductor substrate 41 with 12b solder or resin.

はんだめっきの上にNi光沢あるいはSnあるいはSn系合金めっきを施しているため、反射により太陽光をセルに再入射してシャドウロスを低減させる効果を有している。また、このNi光沢めっきを1μm以下の薄めっきとすることで、接合面のみの加熱ではんだ接合させることが可能である。   Since Ni luster or Sn or Sn alloy plating is applied on the solder plating, it has an effect of reducing shadow loss by re-injecting sunlight into the cell by reflection. In addition, by using this Ni gloss plating as a thin plating of 1 μm or less, it is possible to perform solder joining by heating only the joint surface.

本発明の太陽電池40によれば、シャドウロスの低減が図れるので、太陽電池の出力の向上および歩留まりの向上が可能である。   According to the solar cell 40 of the present invention, shadow loss can be reduced, so that the output of the solar cell and the yield can be improved.

(実施例1)
原料導電材であるCu材料を圧延加工して幅1.0mm、厚さ0.2mmの平角線状の帯板状導電材を形成した。この帯板状導電材を連続式加熱炉で熱処理し、さらに、この帯板状導電材の周囲に図2に示す溶融めっき設備20でSn−3%Ag−0.5%Cuはんだめっきを施して帯板状導電材の上下面に凹凸部を有する溶融はんだめっき層(凸部のめっき厚40μm)を形成した(導体は熱処理Cu)。その後、図5に示されるように、陰極61、陽極62、電解液63を有する電気めっき設備60でNi光沢めっきを1μm形成した。一次光沢剤には荏原ユージライト(株)製のNo.83、二次光沢剤には同社のNo.81を用い、所定の配合比でワット浴に混入した。以上により、図1(a)の太陽電池用リード線10を得た。
Example 1
A Cu material as a raw material conductive material was rolled to form a rectangular wire strip-shaped conductive material having a width of 1.0 mm and a thickness of 0.2 mm. This strip-shaped conductive material is heat-treated in a continuous heating furnace, and Sn-3% Ag-0.5% Cu solder plating is applied to the periphery of the strip-shaped conductive material with the hot dipping equipment 20 shown in FIG. Then, a molten solder plating layer having a concavo-convex part (plating thickness of 40 μm) was formed on the upper and lower surfaces of the strip-like conductive material (the conductor was heat-treated Cu). Thereafter, as shown in FIG. 5, 1 μm of Ni gloss plating was formed by an electroplating facility 60 having a cathode 61, an anode 62, and an electrolytic solution 63. As the primary brightener, No. manufactured by Sugawara Eugleite Co., Ltd. 83, the secondary brightener is No. of the company. 81 was mixed in a Watt bath at a predetermined blending ratio. The solar cell lead wire 10 of FIG. 1A was obtained as described above.

(実施例2〜5、比較例1〜5、実施例6〜8)
実施例1の太陽電池用リード線10と同様に帯板状導電材を形成し、連続式加熱炉で加熱温度を変更して熱処理し(実施例6〜8は同じ温度で熱処理)、さらに、この帯板状導電材の周囲に図2に示す溶融めっき設備20でSn−3%Ag−0.5%Cuはんだめっきを実施例2〜5、比較例1〜5は実施例1と同じ凹凸加工ロールを使用し、実施例6〜8は凹凸加工を変更したロールを使用した(導体は熱処理Cu)。その後、実施例2〜3、比較例1、実施例6〜10は図5に示す電気めっき設備60でNi光沢めっき、実施例4は光沢Sn−Niめっき、実施例5は光沢Snめっきを形成した。Ni光沢めっきの場合は一次光沢剤、二次光沢剤は上記と同じ光沢剤、混合比で用いた。光沢Sn−Niめっき、光沢Snめっきの場合も、それぞれ市販の一次光沢剤、二次光沢剤を用いた。比較例2はSnめっき、比較例3はSn−Niめっき、比較例4はNiめっき、比較例5はAgめっきを形成した。以上により、実施例2〜5、比較例1〜5は図1(a)、実施例6は図3(a)、実施例7は図3(b)、実施例8は図3(c)、実施例9、10はそれぞれ図3(d)、(e)に示した太陽電池用リード線を得た。
(Examples 2-5, Comparative Examples 1-5, Examples 6-8)
A strip-shaped conductive material is formed in the same manner as the solar cell lead wire 10 of Example 1, and heat treatment is performed by changing the heating temperature in a continuous heating furnace (Examples 6 to 8 are heat treatment at the same temperature), The Sn-3% Ag-0.5% Cu solder plating is performed on the periphery of the strip-shaped conductive material using the hot dipping equipment 20 shown in FIG. A working roll was used, and Examples 6 to 8 used a roll with modified unevenness processing (the conductor was heat-treated Cu). Thereafter, Examples 2 to 3, Comparative Example 1 and Examples 6 to 10 were formed with Ni bright plating with the electroplating equipment 60 shown in FIG. 5, Example 4 with bright Sn-Ni plating, and Example 5 with bright Sn plating. did. In the case of Ni bright plating, the primary brightener and the secondary brightener were used in the same brightener and mixing ratio as described above. In the case of bright Sn-Ni plating and bright Sn plating, a commercially available primary brightener and secondary brightener were used, respectively. Comparative Example 2 was Sn plating, Comparative Example 3 was Sn-Ni plating, Comparative Example 4 was Ni plating, and Comparative Example 5 was Ag plating. As described above, Examples 2 to 5, Comparative Examples 1 to 5 are FIG. 1 (a), Example 6 is FIG. 3 (a), Example 7 is FIG. 3 (b), and Example 8 is FIG. 3 (c). In Examples 9 and 10, solar cell lead wires shown in FIGS. 3D and 3E were obtained.

(実施例9、10)
原料導電材であるCu材料を圧延加工して幅1.0mm、厚さ0.2mmの平角線状の帯板状導電材を形成した。この帯板状導電材を実施例9は図7(a)のダイス70a、実施例10は図7(b)のダイス70bで加工して凹凸部を形成し、さらに実施例6〜8と同じ温度で連続式加熱炉で熱処理した。ダイス70a、70bは直径52μmのタングステンワイヤーで加工したものを用いた。その後、さらに図5に示す電気めっき設備60でNi光沢めっきを1μm形成した。一次光沢剤、二次光沢剤は上記と同じ混合比で用いた。以上により、図3(d)、(e)の太陽電池用リード線を得た。
(Examples 9 and 10)
A Cu material as a raw material conductive material was rolled to form a rectangular wire strip-shaped conductive material having a width of 1.0 mm and a thickness of 0.2 mm. This band plate-shaped conductive material is processed with the dice 70a of FIG. 7A in Example 9 and the dice 70b of FIG. 7B to form uneven portions, and the same as in Examples 6-8. Heat treated in a continuous furnace at temperature. The dies 70a and 70b were processed with a tungsten wire having a diameter of 52 μm. Thereafter, a Ni gloss plating of 1 μm was further formed by the electroplating equipment 60 shown in FIG. The primary brightener and the secondary brightener were used in the same mixing ratio as above. Thus, solar cell lead wires shown in FIGS. 3D and 3E were obtained.

これら実施例4〜5、比較例1〜3の太陽電池用リード線にロジン系フラックスを適量塗布し、それぞれの太陽電池用リード線を縦150mm×横150mm×厚み180μmの半導体基板(Siセル)の上面の電極部位に設置して、10gの錘を載せた状態でホットプレート加熱(260℃で30秒間保持)し、はんだ付けした。一方、実施例1〜3、比較例1、実施例6〜10、比較例4、5の太陽電池用リード線に導電性接着剤(Ag/エポキシ系)を塗布し、それぞれの太陽電池用リード線を縦150mm×横150mm×厚み180μmの半導体基板(Siセル)の上面の電極部位に設置して、10gの錘を載せた状態でホットプレート加熱(180℃で3分間保持)し、接合した。   An appropriate amount of rosin-based flux was applied to the solar cell lead wires of Examples 4 to 5 and Comparative Examples 1 to 3, and each solar cell lead wire was 150 mm long × 150 mm wide × 180 μm thick semiconductor substrate (Si cell). Was placed on the electrode part on the upper surface of the substrate and hot plate heated (held at 260 ° C. for 30 seconds) with a 10 g weight placed thereon and soldered. On the other hand, a conductive adhesive (Ag / epoxy) was applied to the solar cell lead wires of Examples 1 to 3, Comparative Example 1, Examples 6 to 10, and Comparative Examples 4 and 5, and the respective solar cell leads. The wire was placed on the electrode part on the upper surface of a semiconductor substrate (Si cell) having a length of 150 mm × width 150 mm × thickness 180 μm. .

また、上記の評価とは別に、実施例1〜10及び比較例1〜5の太陽電池用リード線について、作製直後(屋外暴露前)及び4ヶ月間屋外暴露後に分光色差計で可視光領域(波長400nm、500nm、600nm、700nm)の反射率を測定し、その平均値を求めた。   Separately from the above evaluation, the solar cell lead wires of Examples 1 to 10 and Comparative Examples 1 to 5 were measured with a spectral color difference meter immediately after production (before outdoor exposure) and after outdoor exposure for 4 months ( The reflectance at wavelengths of 400 nm, 500 nm, 600 nm, and 700 nm was measured, and the average value was obtained.

実施例1〜10及び比較例1〜5の評価結果を表1に示す。   The evaluation results of Examples 1 to 10 and Comparative Examples 1 to 5 are shown in Table 1.

表1の「凹凸部形成方法」の欄は、平角線状の帯板状導電材の上下面に凹凸部を形成する方法を示す。「断面形状」の欄は、どの図に示した断面形状であったかを示す。「電気めっき」の欄は、はんだめっきの上に施した電気めっきの種類を示す。「反射率」の欄は、屋外暴露前後に測定した可視光領域の反射率の平均値を示し、反射率の平均値が70%以上を○、60%以上70%未満を△、60%未満を×とした。「セル接続方法」の欄は、セル上電極への太陽電池用リード線の接続方法(はんだあるいは接着剤)を示す。   The column of “Method for forming concavo-convex portion” in Table 1 shows a method for forming the concavo-convex portions on the upper and lower surfaces of the flat wire strip-like conductive material. The “cross-sectional shape” column indicates which cross-sectional shape is shown in the figure. The column “electroplating” indicates the type of electroplating performed on the solder plating. The column “Reflectance” indicates the average value of the reflectance in the visible light region measured before and after outdoor exposure. The average value of the reflectance is 70% or more, ○ is 60% or more and less than 70%, and is less than 60%. Was marked with x. The column “Cell connection method” indicates a connection method (solder or adhesive) of the solar cell lead wire to the electrode on the cell.

表1に示されるように、実施例1〜10の太陽電池用リード線は、屋外暴露前後の反射率が変化なく高いレベルを維持していることが確認できた。また、光沢Niを施した実施例1〜3、6〜10はセルへのはんだ接続が困難であるがACF(異方性導電性フィルム)のような導電性接着剤でセルに接合可能であることが確認できた。さらに、溶融はんだめっきの上に光沢Sn−Niや光沢Snを電気めっきした実施例4、5はセルへのはんだ接続が可能であることを確認した。   As shown in Table 1, it was confirmed that the solar cell lead wires of Examples 1 to 10 maintained a high level with no change in reflectance before and after outdoor exposure. In Examples 1 to 3 and 6 to 10 with gloss Ni, solder connection to the cell is difficult, but it can be joined to the cell with a conductive adhesive such as ACF (anisotropic conductive film). I was able to confirm. Further, it was confirmed that Examples 4 and 5 in which bright Sn-Ni or bright Sn was electroplated on the molten solder plating could be soldered to the cell.

これに対し、実施例1〜10と同様の製造プロセスであっても、比較例1では、光沢電気めっきを施さなかったため、元来はんだめっきの示す低い反射率しか得られていない。比較例2〜4では光沢めっきを施さなかったため低い反射率しか得られなかった。比較例5ではAgめっきを施しているため初期の反射率は良好であるものの、屋外暴露後は表面酸化により反射率が大きく低下している。   On the other hand, even in the manufacturing process similar to that of Examples 1 to 10, in Comparative Example 1, since gloss electroplating was not performed, only a low reflectivity originally indicated by solder plating was obtained. In Comparative Examples 2 to 4, only the low reflectance was obtained because no bright plating was applied. In Comparative Example 5, since the Ag plating is performed, the initial reflectivity is good, but after outdoor exposure, the reflectivity is greatly reduced due to surface oxidation.

以上のように、実施例1〜10及び比較例1〜5の評価結果から、本発明の太陽電池用リード線はシャドウロス低減効果を有し、Agめっきを使用する場合に比して低コストであることが確認された。   As described above, from the evaluation results of Examples 1 to 10 and Comparative Examples 1 to 5, the solar cell lead wire of the present invention has a shadow loss reducing effect and is lower in cost than the case of using Ag plating. It was confirmed that.

10 太陽電池用リード線
11 帯板状導電材
11a 上面
11b 下面
12a、12b 溶融はんだめっき層
13 光沢めっき層
DESCRIPTION OF SYMBOLS 10 Solar cell lead 11 Strip | belt-plate-shaped electrically conductive material 11a Upper surface 11b Lower surface 12a, 12b Molten solder plating layer 13 Bright plating layer

Claims (6)

帯板状導電材の表面に溶融はんだを供給して溶融はんだめっき層を形成した太陽電池用リード線において、前記帯板状導電材の上下面に溶融はんだを供給すると共にその上下の溶融はんだめっき層に凹凸部を形成し、その溶融はんだめっき層の上にさらに光沢剤を添加したNi、SnまたはSn系合金のいずれかからなる光沢めっき層を形成したことを特徴とする太陽電池用リード線。   In a solar cell lead wire in which a molten solder is supplied to the surface of a strip-shaped conductive material to form a molten solder plating layer, molten solder is supplied to the upper and lower surfaces of the strip-shaped conductive material and the upper and lower molten solder plating A lead wire for a solar cell, wherein a concavo-convex portion is formed on the layer, and a bright plating layer made of any one of Ni, Sn, or Sn-based alloy to which a brightening agent is further added is formed on the molten solder plating layer . 帯板状導電材の表面に凹凸部を形成し、その帯板状導電材の上に光沢剤を添加したNi、SnまたはSn系合金のいずれかからなる光沢めっき層を形成したことを特徴とする太陽電池用リード線。   An uneven portion is formed on the surface of the strip-shaped conductive material, and a bright plating layer made of Ni, Sn, or Sn-based alloy with a brightener added is formed on the strip-shaped conductive material. Lead wire for solar cell. 上記溶融はんだめっき層の上に被覆したNiからなる光沢めっき層は光沢剤の第一成分として、1,3,6ナフタレントリスルホン酸ナトリウム、ベンゼンスルホン酸、p−トルエンスルホンアミド、サッカリンの少なくとも1種以上を含み、第二成分として、クマリン、ホルムアルデヒド、アリルスルホン酸、2−ブチン−1,4−ジオール、プロバルギルアルコール、チオ尿素、エチルシアンヒドリン、ピリジンの少なくとも1種以上を含むことを特徴とする請求項1又は2記載の太陽電池用リード線。   The bright plated layer made of Ni coated on the molten solder plated layer is at least one of 1,3,6 sodium naphthalene trisulfonate, benzenesulfonic acid, p-toluenesulfonamide, and saccharin as the first component of the brightener. Contains at least one species, and contains at least one of coumarin, formaldehyde, allylsulfonic acid, 2-butyne-1,4-diol, provalgyl alcohol, thiourea, ethyl cyanohydrin, and pyridine as the second component. The solar cell lead wire according to claim 1 or 2. 素線を圧延加工することにより帯板状導電材を形成し、該帯板状導電材を熱処理し、その後、溶融はんだを供給して帯板状導電材にはんだめっきすると共に、そのめっきした帯板状導電材をはんだ溶融状態において、凹凸加工したロールで挟むことにより、溶融はんだめっき層に凹凸部を形成し、さらに光沢剤を添加したNi、SnまたはSn系合金のいずれかからなる光沢めっきを施すことを特徴とする太陽電池用リード線の製造方法。   A strip-shaped conductive material is formed by rolling a wire, the strip-shaped conductive material is heat-treated, and then molten solder is supplied and solder-plated on the strip-shaped conductive material. Gloss plating consisting of Ni, Sn, or Sn-based alloy with a brightened agent formed by forming a concavo-convex portion in the molten solder plating layer by sandwiching a plate-shaped conductive material with a concavo-convex processed roll in a solder molten state The manufacturing method of the lead wire for solar cells characterized by performing these. 素線を圧延加工することにより、帯板状導電材を形成し、該帯板状導電材をダイス加工して凹凸部を形成し、その後、この帯板状導電材を熱処理し、さらに、光沢剤を添加したNi、SnまたはSn系合金のいずれかからなる光沢めっきを施すことを特徴とする太陽電池用リード線の製造方法。   A strip-shaped conductive material is formed by rolling a strand, and the strip-shaped conductive material is diced to form an uneven portion, and then the strip-shaped conductive material is heat treated, and further glossy. A method for producing a lead wire for a solar cell, comprising performing bright plating made of any one of Ni, Sn, and Sn-based alloys to which an agent is added. 請求項1〜3いずれか記載の太陽電池用リード線を、その溶融はんだめっき層のはんだによって半導体基板の表面電極および裏面電極にはんだ付け又は樹脂により接着したことを特徴とする太陽電池。   A solar cell, wherein the solar cell lead wire according to any one of claims 1 to 3 is soldered or bonded to a front electrode and a back electrode of a semiconductor substrate by solder of the molten solder plating layer.
JP2011043561A 2011-03-01 2011-03-01 Solar battery lead wire, manufacturing method thereof, and solar battery using the same Pending JP2012182271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011043561A JP2012182271A (en) 2011-03-01 2011-03-01 Solar battery lead wire, manufacturing method thereof, and solar battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011043561A JP2012182271A (en) 2011-03-01 2011-03-01 Solar battery lead wire, manufacturing method thereof, and solar battery using the same

Publications (1)

Publication Number Publication Date
JP2012182271A true JP2012182271A (en) 2012-09-20

Family

ID=47013230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011043561A Pending JP2012182271A (en) 2011-03-01 2011-03-01 Solar battery lead wire, manufacturing method thereof, and solar battery using the same

Country Status (1)

Country Link
JP (1) JP2012182271A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2701271A2 (en) 2012-08-21 2014-02-26 Makita Corporation Charger
WO2014045325A1 (en) * 2012-09-21 2014-03-27 丸正株式会社 Solar cell lead wire and method for manufacturing same
WO2014058215A1 (en) * 2012-10-09 2014-04-17 (주)산코코리아 Solar battery cell connecting member, method for manufacturing same, and apparatus for manufacturing solar battery cell connecting member
KR20140114529A (en) * 2013-03-18 2014-09-29 현대중공업 주식회사 Solar cell module with ribbon reflection structure
JP2015162548A (en) * 2014-02-27 2015-09-07 三菱電機株式会社 solar cell module
JP2019169711A (en) * 2018-03-22 2019-10-03 エルジー エレクトロニクス インコーポレイティド Interconnecting member for solar cell panel and solar cell panel including the same
EP4074850A4 (en) * 2020-03-30 2023-10-25 Senju Metal Industry Co., Ltd. Flux, solder paste and method for producing soldered product

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005241420A (en) * 2004-02-26 2005-09-08 Totoku Electric Co Ltd Probe needle and its manufacturing method
JP2009218560A (en) * 2008-02-13 2009-09-24 Hitachi Cable Ltd Lead wire for solar cell, manufacturing method thereof, and solar cell
JP2010087060A (en) * 2008-09-30 2010-04-15 Sanyo Electric Co Ltd Solar cell module
JP2010185116A (en) * 2009-02-13 2010-08-26 Nissan Motor Co Ltd Chrome-plated part and manufacturing method of the same
JP2010205792A (en) * 2009-02-27 2010-09-16 Hitachi Cable Ltd Solar cell lead, method of manufacturing same, and solar cell using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005241420A (en) * 2004-02-26 2005-09-08 Totoku Electric Co Ltd Probe needle and its manufacturing method
JP2009218560A (en) * 2008-02-13 2009-09-24 Hitachi Cable Ltd Lead wire for solar cell, manufacturing method thereof, and solar cell
JP2010087060A (en) * 2008-09-30 2010-04-15 Sanyo Electric Co Ltd Solar cell module
JP2010185116A (en) * 2009-02-13 2010-08-26 Nissan Motor Co Ltd Chrome-plated part and manufacturing method of the same
JP2010205792A (en) * 2009-02-27 2010-09-16 Hitachi Cable Ltd Solar cell lead, method of manufacturing same, and solar cell using same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2701271A2 (en) 2012-08-21 2014-02-26 Makita Corporation Charger
WO2014045325A1 (en) * 2012-09-21 2014-03-27 丸正株式会社 Solar cell lead wire and method for manufacturing same
JP5611486B2 (en) * 2012-09-21 2014-10-22 丸正株式会社 Solar cell lead wire and manufacturing method thereof
WO2014058215A1 (en) * 2012-10-09 2014-04-17 (주)산코코리아 Solar battery cell connecting member, method for manufacturing same, and apparatus for manufacturing solar battery cell connecting member
KR101427000B1 (en) * 2012-10-09 2014-08-07 주식회사 산코코리아 Solar cell module connection member and manufacturing method thereof, apparatus for munufacturing solar cell module connection member
KR20140114529A (en) * 2013-03-18 2014-09-29 현대중공업 주식회사 Solar cell module with ribbon reflection structure
JP2015162548A (en) * 2014-02-27 2015-09-07 三菱電機株式会社 solar cell module
JP2019169711A (en) * 2018-03-22 2019-10-03 エルジー エレクトロニクス インコーポレイティド Interconnecting member for solar cell panel and solar cell panel including the same
CN110311002A (en) * 2018-03-22 2019-10-08 Lg电子株式会社 The interconnecting component of solar panel and solar panel including the component
US11164984B2 (en) 2018-03-22 2021-11-02 Lg Electronics Inc. Interconnecting member for solar cell panel and solar cell panel including the same
CN110311002B (en) * 2018-03-22 2022-12-23 上饶市晶科绿能科技发展有限公司 Interconnecting member for solar panels and solar panel comprising same
EP4074850A4 (en) * 2020-03-30 2023-10-25 Senju Metal Industry Co., Ltd. Flux, solder paste and method for producing soldered product

Similar Documents

Publication Publication Date Title
JP2012182271A (en) Solar battery lead wire, manufacturing method thereof, and solar battery using the same
US7754973B2 (en) Electrode wire for solar cell
US8653380B2 (en) Solar cell lead, method of manufacturing the same, and solar cell using the same
US20070062574A1 (en) Electrode wire material and solar cell having connection lead wire formed of the wire material
JP4780008B2 (en) Plating wire for solar cell and manufacturing method thereof
JP2010016320A (en) Solar cell lead, method of manufacturing the same, and solar cell using the same
JP5312368B2 (en) Metal composite substrate and manufacturing method thereof
JP5089795B2 (en) Optical semiconductor device lead frame, optical semiconductor device lead frame manufacturing method, and optical semiconductor device
JP7427649B2 (en) Method for blackening metal articles
JP5161734B2 (en) Solar cell lead wire, manufacturing method thereof, and solar cell
CN100550432C (en) The manufacture method of electrode wire for solar battery
KR101968788B1 (en) Solar cell interconnector material, solar cell interconnector, and solar cell with interconnector
EP4120369A1 (en) Ribbon and solar cell assembly
CN106159018A (en) A kind of photovoltaic welding belt and painting process of tin thereof
CN106449836A (en) Segmented slightly light-concentrating welding belt and preparation thereof
JP6615093B2 (en) Electrical contact material, method of manufacturing electrical contact material, and terminal
CN104992999A (en) Embossed photovoltaic welding band and processing method thereof
JP2011124512A (en) Wiring parts for solar cell and solar cell module using the same
WO2015147213A1 (en) Conductor, and solar-cell interconnector
JP2010283138A (en) Solar cell lead wire and method of manufacturing the same, and solar cell using the same
WO2023015885A1 (en) Method for manufacturing photovoltaic triangular solder strip
JP5418189B2 (en) Solar cell lead wire and solar cell using the same
JP2015079841A (en) Lead frame base for optical semiconductor devices, lead frame for optical semiconductor devices and method for manufacturing lead frame for optical semiconductor devices
JP2014042065A (en) Lead wire for solar battery, and solar battery
JP5407061B2 (en) Solar cell lead, manufacturing method thereof, and solar cell using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130419

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130624

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20131105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140430