JP2012181112A - Cleanliness evaluation method of metallic material - Google Patents

Cleanliness evaluation method of metallic material Download PDF

Info

Publication number
JP2012181112A
JP2012181112A JP2011044403A JP2011044403A JP2012181112A JP 2012181112 A JP2012181112 A JP 2012181112A JP 2011044403 A JP2011044403 A JP 2011044403A JP 2011044403 A JP2011044403 A JP 2011044403A JP 2012181112 A JP2012181112 A JP 2012181112A
Authority
JP
Japan
Prior art keywords
cleanliness
sample
inclusions
steel
flaw detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011044403A
Other languages
Japanese (ja)
Inventor
Shingo Nagoshi
慎悟 名越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2011044403A priority Critical patent/JP2012181112A/en
Publication of JP2012181112A publication Critical patent/JP2012181112A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cleanliness evaluation method of metallic material which enables a fast and accurate evaluation of a distribution of the cleanliness (the number of nonmetallic inclusions) of a material.SOLUTION: Ultrasonic having a frequency of at least 50 MHz or more is applied from a focus type probe for ultrasonic crack inspection orthogonally to a sample of steel at a plurality of portions on a cross section thereof in the rolling direction. The number of nonmetallic inclusions detected at each of the portions is obtained and a distribution of the number of nonmetallic inclusions is evaluated.

Description

本発明は、金属材料の清浄度評価方法に関し、清浄度要求の高い軸受用鋼、例えば、自動車用などに用いられる長寿命で信頼性の高い軸受用鋼の清浄度評価方法に関する。   The present invention relates to a method for evaluating the cleanliness of metal materials, and relates to a method for evaluating the cleanliness of bearing steels with high cleanliness requirements, for example, long-life and reliable bearing steels used for automobiles.

従来より、軸受用鋼の転動疲労寿命は、鋼中の非金属介在物の量、特に、酸化物系介在物の量と強い相関関係があることが知られている。そのため、鋼中の非金属介在物の量は、JIS法(JIS−G0555)や、ASTM:E45法(アメリ力材料試験協会)で測定され、その結果を製鋼工程にフィードバックすることによって、一定の品質の鋼、あるいは、より高品質の鋼が製造されていた。   Conventionally, it is known that the rolling fatigue life of bearing steel has a strong correlation with the amount of non-metallic inclusions in the steel, particularly the amount of oxide inclusions. Therefore, the amount of non-metallic inclusions in steel is measured by the JIS method (JIS-G0555) and ASTM: E45 method (Amelie Force Material Testing Association), and the result is fed back to the steelmaking process. Quality steel or higher quality steel was produced.

また、鋼中の酸化物系介在物の量は、当然、鋼の酸素含有量と強い相関があることから、軸受用鋼の製造は、鋼中酸素含有量の低減のために、溶鋼脱ガスや真空精錬等の種々の製鋼方法が採用されている。
ここで、近年の製鋼技術の発達により、鋼の酸素含有量を極力減らすことが可能となったが、鋼の酸素含有量が低レベルになると、鋼中の非金属介在物は非常に少なく、且つ小さくなり、上記JIS法やASTM法では測定値が低く、定量性に欠けるため、評価方法として不十分である。そこで、それを解決する評価方法が、例えば、特許文献1〜4に開示されている。
In addition, since the amount of oxide inclusions in the steel is naturally strongly correlated with the oxygen content of the steel, the manufacture of bearing steel is a process for degassing molten steel to reduce the oxygen content in the steel. Various steel making methods such as vacuum refining are employed.
Here, with the recent development of steelmaking technology, it has become possible to reduce the oxygen content of steel as much as possible. In addition, the above JIS method or ASTM method has a low measured value and lacks quantitativeness, so that it is insufficient as an evaluation method. Then, the evaluation method which solves it is disclosed by patent documents 1-4, for example.

また、数十μmの介在物を評価する方法として、新たに極値統計法が採用されている。極値統計法は、製鋼メーカーにおいて現時点で一般的な評価方法であり、その評価方法は、単位面積100〜200mm程度でサンプル数15〜30個を観察し、サンプル毎で最大の介在物径を記録し、統計学により想定面積中に存在する最大介在物径を推測するというものである。 In addition, an extreme value statistical method is newly adopted as a method for evaluating inclusions of several tens of μm. Extremum statistical method is a general evaluation methods at present in steel manufacturers, the evaluation method is to observe the number 15-30 samples per unit area 100 to 200 mm 2 approximately, the maximum inclusion diameter in each sample The maximum inclusion diameter existing in the assumed area is estimated by statistics.

しかし、上記極値統計法は、ある一定の面積を評価し、想定面積中に存在する最大介在物径を予想するという統計学を利用した評価手法であるため、サンプルの準備や評価及び解析に非常に多大な時間とロードがかかるという問題点があった。
そこで、このような問題点を解決するために、特許文献5では、高速化のため超音波探傷を利用した極値統計法が提案されている。特許文献5には、超音波探傷による非金属介在物の大きさに基づいて極値統計を行い、金属材料中の清浄度を評価する技術が開示されている。
However, the above extreme value statistical method is an evaluation method that uses statistics to evaluate a certain area and predict the maximum inclusion diameter existing in the assumed area. There was a problem that it took a lot of time and load.
In order to solve such problems, Patent Document 5 proposes an extreme value statistical method using ultrasonic flaw detection for speeding up. Patent Literature 5 discloses a technique for performing extreme value statistics based on the size of non-metallic inclusions by ultrasonic flaw detection and evaluating the cleanliness in a metal material.

特開平3−56640号公報Japanese Patent Laid-Open No. 3-56640 特開平7−109541号公報JP-A-7-109541 特開平5−117804号公報Japanese Patent Laid-Open No. 5-117804 特開平6−192790号公報JP-A-6-192790 特開2001−141704号公報JP 2001-141704 A

しかしながら、特許文献5に開示された発明は、サンプル準備という点での改善はなく、サンプルの準備において非常に多くのロードがかかるため、材料の清浄度分布などを測定するのには不向きであった。
また、一方では、鍛造技術の進歩により軸受軌道面に現れる材料の部位をある程度制御することが可能となったため、材料内の清浄度分布を明らかにすることが求められている。
そこで、本発明は上記の問題点に着目してなされたものであり、その目的は、材料の清浄度(非金属介在物個数)分布を迅速且つより正確に評価することができる金属材料の清浄度評価方法を提供することにある。
However, the invention disclosed in Patent Document 5 is not improved in terms of sample preparation, and is very unsuitable for measuring the cleanliness distribution of materials, etc., because it takes a great deal of load in sample preparation. It was.
On the other hand, the progress of forging technology has made it possible to control to a certain extent the material portion appearing on the bearing raceway surface, so that it is required to clarify the cleanliness distribution in the material.
Therefore, the present invention has been made paying attention to the above-mentioned problems, and its purpose is to clean a metal material capable of quickly and more accurately evaluating the cleanliness (number of non-metallic inclusions) distribution of the material. It is to provide a degree evaluation method.

本発明の請求項1に係る金属材料の清浄度評価方法は、超音波探傷用焦点型探触子から発振した超音波エコーの波形に基づき、金属材料の表面及び内部に存在する欠陥を評価する金属材料の清浄度評価方法において、
鋼製の試料の圧延方向の断面上の複数の部位に対して、超音波探傷用焦点型探触子から少なくとも50MHz以上の周波数の超音波を垂直に発振し、それぞれの前記部位で検出された非金属介在物の個数を求め、それらの非金属介在物の個数の分布を評価することを特徴としている。
The metal material cleanliness evaluation method according to claim 1 of the present invention evaluates defects existing on the surface and inside of a metal material based on the waveform of an ultrasonic echo oscillated from a focal probe for ultrasonic flaw detection. In the method for evaluating the cleanliness of metal materials,
Ultrasonic waves having a frequency of at least 50 MHz or more are vertically oscillated from a focal point probe for ultrasonic flaw detection on a plurality of portions on a cross section in the rolling direction of a steel sample, and are detected at the respective portions. It is characterized in that the number of non-metallic inclusions is obtained and the distribution of the number of non-metallic inclusions is evaluated.

本発明に係る金属材料の清浄度評価方法によれば、超音波探傷による非金属介在物の大きさではなく、個数を評価すると共に、極値統計による推定値ではなく、実際に発見された介在物数を評価するため、迅速且つ正確に材料の清浄度(非金属介在物個数)分布を評価することができる。金属材料からなる試料の清浄度を評価するにあたって、清浄度が比較的低い材料については、試料全体の清浄度を明らかにすることが特に必要である。   According to the method for evaluating the cleanliness of a metallic material according to the present invention, the number of non-metallic inclusions by ultrasonic flaw detection is evaluated, and the number is evaluated. Since the number of objects is evaluated, the cleanliness (number of non-metallic inclusions) distribution of the material can be evaluated quickly and accurately. In evaluating the cleanliness of a sample made of a metal material, it is particularly necessary to clarify the cleanliness of the entire sample for a material having a relatively low cleanliness.

上述のように、本発明に係る金属材料の清浄度評価方法によれば、迅速且つより正確に材料の清浄度(非金属介在物個数)分布を評価することができる。   As described above, according to the method for evaluating the cleanliness of a metal material according to the present invention, the cleanliness (number of nonmetallic inclusions) distribution of the material can be evaluated quickly and more accurately.

本発明に係る金属材料の清浄度評価方法の一実施形態における試験片の加工態様を示す図であり、(a)は正面図、(b)は平面図である。It is a figure which shows the process aspect of the test piece in one Embodiment of the cleanliness evaluation method of the metallic material which concerns on this invention, (a) is a front view, (b) is a top view. 本発明に係る金属材料の清浄度評価方法の一実施形態における各サンプルの超音波探傷による清浄度(介在物個数)を示すグラフである。It is a graph which shows the cleanliness (the number of inclusions) by ultrasonic flaw detection of each sample in one embodiment of the method for evaluating the cleanliness of a metal material according to the present invention.

以下、本発明に係る金属材料の清浄度評価方法の実施形態について図面を参照して説明する。
図1は、本発明に係る金属材料の清浄度評価方法の一実施形態における試験片の加工態様を示す図であり、(a)は正面図、(b)は平面図である。また、図2は、本発明に係る金属材料の清浄度評価方法の一実施形態における各サンプルの超音波探傷による清浄度(介在物個数)を示すグラフである。なお、図2において、材料部位は0%が中心部を示し、100%が表面を示す。
本実施形態は、試料の断面上の複数の部位に対して、超音波探傷用焦点型探触子から少なくとも50MHz以上の周波数の超音波を垂直に発振し、それぞれの前記部位で検出された非金属介在物の個数を求め、それらの非金属介在物の個数の分布を評価することを特徴としている。
Hereinafter, embodiments of a method for evaluating the cleanliness of a metal material according to the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a processing mode of a test piece in an embodiment of a method for evaluating the cleanliness of a metal material according to the present invention, wherein (a) is a front view and (b) is a plan view. FIG. 2 is a graph showing the cleanliness (number of inclusions) by ultrasonic flaw detection of each sample in one embodiment of the method for evaluating the cleanliness of a metal material according to the present invention. In FIG. 2, 0% of the material portion indicates the central portion and 100% indicates the surface.
In the present embodiment, ultrasonic waves having a frequency of at least 50 MHz or more are vertically oscillated from a focal point probe for ultrasonic flaw detection to a plurality of portions on a cross section of a sample, and non-detections detected at the respective portions. It is characterized by determining the number of metal inclusions and evaluating the distribution of the number of non-metallic inclusions.

<試料>
試料は、鋼製であり、例えば直径50mm程度、長さDは合計1000mm以上(分割されていてもよい)に圧延された丸棒材が好ましい。この試料は、予め材料内組織を安定させるために焼入れ焼戻しの熱処理が行われている。
また、この試料は、切断取代を考慮し、切断後に直径長さが維持できる位置で圧延方向の断面(長手方向の断面)が現れるように切断される。この切断面1aは、試料1の軸方向中心線から径方向に所定距離ずれた面である。そして、この切断面1aには研削が施され、この研削された面上の複数の部位が試料の断面上の複数の部位である。
<Sample>
The sample is made of steel, and for example, a round bar that is rolled to a diameter of about 50 mm and a length D of a total of 1000 mm or more (may be divided) is preferable. This sample is preliminarily quenched and tempered in order to stabilize the internal structure of the material.
Further, this sample is cut so that a cross section in the rolling direction (longitudinal cross section) appears at a position where the diameter length can be maintained after cutting in consideration of cutting allowance. The cut surface 1a is a surface that is shifted from the axial center line of the sample 1 by a predetermined distance in the radial direction. The cut surface 1a is ground, and a plurality of portions on the ground surface are a plurality of portions on the cross section of the sample.

<超音波探傷方法>
次に、超音波探傷方法について説明する。本実施形態の超音波探傷方法は、垂直探傷法が採用される。また、送信する超音波の周波数は50MHz以上が好ましい。周波数の下限を50MHz以上としたのは、評価対象であるの介在物の平均径が数十μmであるため、50MHz未満の周波数であると、試料内の欠陥を検出することが極めて困難となるためである。但し、送信する超音波の周波数を上げすぎると減衰が大きくなり、試料(鋼材)内部の探傷が困難となるため、評価体積が少なくなり、評価のバラツキが大きくなるため、80MHz以下が好ましい。
<Ultrasonic flaw detection method>
Next, an ultrasonic flaw detection method will be described. A vertical flaw detection method is adopted as the ultrasonic flaw detection method of the present embodiment. The frequency of the ultrasonic wave to be transmitted is preferably 50 MHz or more. The reason why the lower limit of the frequency is set to 50 MHz or more is that the average diameter of inclusions to be evaluated is several tens of μm. Therefore, if the frequency is less than 50 MHz, it is extremely difficult to detect defects in the sample. Because. However, if the frequency of the ultrasonic wave to be transmitted is increased too much, the attenuation becomes large and it becomes difficult to detect flaws inside the sample (steel material), so that the evaluation volume is reduced and the variation in evaluation becomes large.

ここで、周波数と、各周波数によって発見できる介在物の大きさとの関係は、理論上、下記表1のように示される。本実施形態において設定される超音波の周波数は、鋼材内の介在物を評価することができる周波数であれば、特に制限はなく、目的に応じて適宜選択されるが、鋼材内の数十μmの介在物を評価するという目的の下では、鋼材内の介在物の存在を見落とす可能性があるという点で50MHz以上に設定することが好ましい。このようにして、試料の研削された面を超音波探傷にて探傷する。   Here, the relationship between the frequency and the size of the inclusion that can be found by each frequency is theoretically shown in Table 1 below. The frequency of the ultrasonic wave set in the present embodiment is not particularly limited as long as it is a frequency at which inclusions in the steel material can be evaluated, and is appropriately selected according to the purpose. For the purpose of evaluating the inclusions, it is preferable to set the frequency to 50 MHz or higher in view of the possibility of overlooking the presence of inclusions in the steel material. In this way, the ground surface of the sample is detected by ultrasonic flaw detection.

Figure 2012181112
Figure 2012181112

ここで、例えば、試料が直径50mmの丸棒であれば、50mm×1000mm×探傷深さ1.5mmを探傷領域とする。そして、試料の軸中心から表面にかけて径方向に0%〜100%に区分し、10%位置なら5%〜15%の範囲にある介在物数を、30%位置なら25%〜35%位置の範囲にある介在物数を数え、評価した体積から単位体積あたりの個数を求め、清浄度とする。図1(b)に示すように、試料1の切断面において、25%位置がA1で表される範囲であり、30%位置がA2で表される範囲であり、35%位置がA3で表される範囲である。すなわち、試料の30%の位置にある介在物数を数える場合、図1(b)に示すA4の範囲にある介在物数を数える。なお、図1(b)中、「C」は試料1の軸中心線を示す。また、試料を加工する際には、プローブ焦点位置が試料の径方向断面の中心線Bの位置と一致するように加工する。   Here, for example, if the sample is a round bar having a diameter of 50 mm, 50 mm × 1000 mm × 1.5 mm flaw detection depth is set as the flaw detection area. And, it is divided into 0% to 100% in the radial direction from the axial center to the surface of the sample, and the number of inclusions in the range of 5% to 15% at the 10% position is 25% to 35% at the 30% position. The number of inclusions in the range is counted, the number per unit volume is determined from the evaluated volume, and the degree of cleanliness is obtained. As shown in FIG. 1B, in the cut surface of the sample 1, the 25% position is a range represented by A1, the 30% position is a range represented by A2, and the 35% position is represented by A3. It is a range. That is, when counting the number of inclusions at 30% of the sample, the number of inclusions in the range A4 shown in FIG. 1B is counted. In FIG. 1B, “C” indicates the axis center line of the sample 1. Further, when processing the sample, processing is performed so that the probe focal point position coincides with the position of the center line B of the radial cross section of the sample.

以上のように、本実施形態の評価方法によれば、統計値として介在物の大きさのみを評価する従来の極値統計法に対して、個数を評価しているので、迅速な評価を行うことができる。また、本実施形態の評価方法は、顕微鏡等を用いて狭い評価面積から介在物の大きさを推定する従来の極値統計法に対して評価面積も広く、評価時間も短縮されるので、評価の迅速化と相まって評価精度をより高めることができる。また、送信する超音波の周波数を50MHz以上に設定することで、鋼材内の数十μmの介在物の個数をより正確に認識し、評価することができる。   As described above, according to the evaluation method of the present embodiment, since the number is evaluated with respect to the conventional extreme value statistical method that evaluates only the size of inclusions as a statistical value, quick evaluation is performed. be able to. In addition, the evaluation method of the present embodiment has a wider evaluation area and shorter evaluation time than the conventional extreme value statistical method for estimating the size of inclusions from a narrow evaluation area using a microscope or the like. The accuracy of evaluation can be further increased in combination with the speeding up of the process. Moreover, by setting the frequency of the ultrasonic wave to be transmitted to 50 MHz or more, the number of inclusions of several tens of μm in the steel material can be more accurately recognized and evaluated.

(実施例1)
軸受用鋼JIS−SUJ2より、酸素含有量が12ppm(近年の酸素含有量デー夕を基に決定)以下である鋼材6種類を採取し、試料とした。
試料はそれぞれ、直径50mm程度、長さ(D)1000mm(分割なし)に圧延された丸棒材である。
6種類の試料を試料a〜fとし、材料のD/4位置より切り出した試料を燃焼−赤外線吸収法によって検出したそれぞれの酸素値を表2に示す。
Example 1
Six types of steel materials having an oxygen content of 12 ppm or less (determined based on recent oxygen content data) were collected from bearing steel JIS-SUJ2 and used as samples.
Each sample is a round bar rolled to a diameter of about 50 mm and a length (D) of 1000 mm (no division).
Table 2 shows the respective oxygen values detected by the combustion-infrared absorption method of the samples cut out from the D / 4 position of the material as six types of samples a to f.

Figure 2012181112
Figure 2012181112

次に各試料に対し、試料の径方向断面の中心線B位置を焦点位置として、周波数を50MHzとした条件で超音波探傷を実施した結果を図2に示す。
表2に示すように、試料a〜fでは、鋼中酸素量についてほぼ同等レベルであるものの、図2に示すように、数十μmの介在物の含有量(個数)には大きな違いがあり、特に、100%の部位(表面)と0%の部位(軸中心)とでは評価結果が全く異なることがわかる。すなわち、清浄度の高い試料(試料a〜c)の清浄度は表面から中心部にかけて殆ど差が無いことがわかるが、清浄度に安定性のない試料(試料d〜f)は表面から中心にかけて清浄度に差があることがわかる。
このように、本発明によれば、鋼中酸素量についてほぼ同等レベルである試料(a〜f)のそれぞれの清浄度(非金属介在物個数)分布を迅速且つより正確に材料の評価することができる。
Next, FIG. 2 shows the result of performing ultrasonic flaw detection on each sample under the condition that the center line B position in the radial cross section of the sample is the focal position and the frequency is 50 MHz.
As shown in Table 2, in samples a to f, although the amount of oxygen in the steel is almost the same level, the content (number) of inclusions of several tens of μm is greatly different as shown in FIG. In particular, it can be seen that the evaluation results are completely different between the 100% region (surface) and the 0% region (axis center). That is, it can be seen that the cleanliness of samples with high cleanliness (samples a to c) has almost no difference from the surface to the center, but samples with low cleanliness (samples df) range from the surface to the center. It can be seen that there is a difference in cleanliness.
Thus, according to the present invention, it is possible to quickly and more accurately evaluate the cleanliness (number of nonmetallic inclusions) distributions of the samples (af) that are substantially equivalent to the amount of oxygen in the steel. Can do.

1 試験片(試料)   1 Test piece (sample)

Claims (1)

超音波探傷用焦点型探触子から発振した超音波エコーの波形に基づき、金属材料の表面及び内部に存在する欠陥を評価する金属材料の清浄度評価方法において、
鋼製の試料の圧延方向の断面上の複数の部位に対して、超音波探傷用焦点型探触子から少なくとも50MHz以上の周波数の超音波を垂直に発振し、それぞれの前記部位で検出された非金属介在物の個数を求め、それらの非金属介在物の個数の分布を評価することを特徴とする金属材料の清浄度評価方法。
In the metal material cleanliness evaluation method for evaluating defects existing on the surface and inside of the metal material based on the waveform of the ultrasonic echo oscillated from the focus type probe for ultrasonic flaw detection,
Ultrasonic waves having a frequency of at least 50 MHz or more are vertically oscillated from a focal point probe for ultrasonic flaw detection on a plurality of portions on a cross section in the rolling direction of a steel sample, and are detected at the respective portions. A method for evaluating the cleanliness of a metallic material, characterized in that the number of nonmetallic inclusions is obtained and the distribution of the number of nonmetallic inclusions is evaluated.
JP2011044403A 2011-03-01 2011-03-01 Cleanliness evaluation method of metallic material Withdrawn JP2012181112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011044403A JP2012181112A (en) 2011-03-01 2011-03-01 Cleanliness evaluation method of metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011044403A JP2012181112A (en) 2011-03-01 2011-03-01 Cleanliness evaluation method of metallic material

Publications (1)

Publication Number Publication Date
JP2012181112A true JP2012181112A (en) 2012-09-20

Family

ID=47012428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011044403A Withdrawn JP2012181112A (en) 2011-03-01 2011-03-01 Cleanliness evaluation method of metallic material

Country Status (1)

Country Link
JP (1) JP2012181112A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103630665A (en) * 2013-12-03 2014-03-12 北京科技大学 Multistage sampling and system analyzing method for analyzing nonmetallic inclusions in steels
JP2021060373A (en) * 2019-10-09 2021-04-15 日本精工株式会社 Steel material cleanliness evaluation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103630665A (en) * 2013-12-03 2014-03-12 北京科技大学 Multistage sampling and system analyzing method for analyzing nonmetallic inclusions in steels
JP2021060373A (en) * 2019-10-09 2021-04-15 日本精工株式会社 Steel material cleanliness evaluation method
WO2021070751A1 (en) * 2019-10-09 2021-04-15 日本精工株式会社 Method for evaluating purity of steel material
JP7092101B2 (en) 2019-10-09 2022-06-28 日本精工株式会社 Cleanliness evaluation method for steel materials

Similar Documents

Publication Publication Date Title
JP5085013B2 (en) Steel reliability evaluation method
JP2006349698A (en) Evaluation method for cleanliness of high cleanliness steel
JP2006138865A (en) Evaluation method for cleanliness of alloy steel for highly clean structure
JP2012181112A (en) Cleanliness evaluation method of metallic material
JP2009281738A (en) Prediction method of largest inclusion diameter in steel product, and estimation method of rolling fatigue life of steel product
US6318178B1 (en) Cleanliness evaluation method for metallic materials based on ultrasonic flaw detection and metallic material affixed with evaluation of cleanliness
JP2004045095A (en) Method of evaluating cleanliness of steel by submerged ultrasonic flaw detection method
JP3712254B2 (en) Estimation method of defect diameter in metal materials
JP6032166B2 (en) Method for estimating hydrogen-resistant cracking characteristics of calcium-added steel
JP2001240937A (en) High cleanliness steel
JP2012012697A (en) Electric resistance welded steel pipe for oil well excellent in pipe expandability and method of producing the same
KR102098458B1 (en) Steel material cleanliness evaluation method and cleanliness evaluation device
JP3505415B2 (en) Evaluation method of cleanliness of metallic materials by ultrasonic testing
JP4015935B2 (en) Inclusion detection evaluation method in steel by water immersion ultrasonic flaw detection
JP7092101B2 (en) Cleanliness evaluation method for steel materials
JP4084979B2 (en) Detection method of inclusions in steel by water immersion ultrasonic flaw detection
JP4002842B2 (en) Evaluation method of steel cleanliness by water immersion ultrasonic testing
JP3563313B2 (en) Method for evaluating the cleanliness of metallic materials by ultrasonic flaw detection
JP2013238454A (en) Cleaning degree evaluation method of steel and manufacturing method
JP2008128863A (en) Method for estimating diameter of inclusion in steel
JP4362194B2 (en) Inclusion detection method in metal materials
JP4559160B2 (en) Inspection method of high reliability bearing steel
JPH03108658A (en) Method of detecting nonmetallic inclusion in high carbon steel
JP2009300369A (en) Cleanliness evaluation method for steel material
JP4559254B2 (en) Method for evaluating white spot defects in steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513