JP2012179603A - Hollow porous membrane and method of manufacturing the same - Google Patents

Hollow porous membrane and method of manufacturing the same Download PDF

Info

Publication number
JP2012179603A
JP2012179603A JP2012120025A JP2012120025A JP2012179603A JP 2012179603 A JP2012179603 A JP 2012179603A JP 2012120025 A JP2012120025 A JP 2012120025A JP 2012120025 A JP2012120025 A JP 2012120025A JP 2012179603 A JP2012179603 A JP 2012179603A
Authority
JP
Japan
Prior art keywords
porous membrane
support
hollow
membrane layer
hollow porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012120025A
Other languages
Japanese (ja)
Other versions
JP5666502B2 (en
Inventor
Toshinori Sumi
敏則 隅
Yasuo Hiromoto
泰夫 広本
Hiroyuki Fujiki
浩之 藤木
Masaki Kurashina
正樹 倉科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2012120025A priority Critical patent/JP5666502B2/en
Publication of JP2012179603A publication Critical patent/JP2012179603A/en
Application granted granted Critical
Publication of JP5666502B2 publication Critical patent/JP5666502B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hollow porous membrane which can suppress the cost and is excellent in adhesion between a support and a porous membrane layer, and to provide a method capable of manufacturing the hollow porous membrane at a low cost.SOLUTION: The hollow porous membrane 1 includes the hollow support 10 and the porous membrane layer 11 disposed on the outer circumferential surface of the support 10, wherein the support 10 is made of a hollow knitted cord produced by circularly knitting one piece of thread made of multifilament and has the maximum width of opening of a stitch of 0.05 to 0.3 mm. The method of manufacturing the hollow porous membrane 1 includes a process of applying a membrane-forming raw liquid comprising material of the porous membrane layer 11 and solvent onto the outer circumferential surface of the support 10 made of the hollow knitted cord produced by circularly knitting one piece of thread made of multifilament and coagulating the membrane-forming raw liquid to form the porous membrane layer 11.

Description

本発明は、中空状多孔質膜およびその製造方法に関する。   The present invention relates to a hollow porous membrane and a method for producing the same.

近年、分離の完全性、コンパクト性等に優れた濾過膜を用いた水処理が注目を集めている。該水処理の濾過膜としては、例えば、中空状多孔質膜が用いられている。該中空状多孔質膜には、優れた分離特性および透過特性のみならず、高い機械特性も必要とされる。機械特性に優れた中空状多孔質膜としては、糸を丸打した中空状組紐からなる支持体の外周面に多孔質膜層を設けた中空状多孔質膜が開示されている(特許文献1)。該中空状多孔質膜においては、支持体の内部に多孔質膜層の一部を侵入させて、支持体と多孔質膜層との接着性を向上させている。   In recent years, water treatment using a filtration membrane excellent in separation completeness, compactness and the like has attracted attention. As the water treatment filtration membrane, for example, a hollow porous membrane is used. The hollow porous membrane requires not only excellent separation and permeation properties but also high mechanical properties. As a hollow porous membrane excellent in mechanical properties, a hollow porous membrane is disclosed in which a porous membrane layer is provided on the outer peripheral surface of a support made of a hollow braid obtained by rounding yarn (Patent Document 1). ). In the hollow porous membrane, a part of the porous membrane layer is intruded into the support to improve the adhesion between the support and the porous membrane layer.

支持体の中空状組紐は、通常、製紐機により製造される。製紐機においては、平板上に立設した多数のボビンから各糸を引き出し、各糸を相互に交差させて組むとともに、各ボビンを所定の経路に沿って移動させることにより糸の位置関係を所定のパターンで変化させて組紐が製造される。製紐機によって製造された組紐および該組紐を支持体とする中空状多孔質膜には、下記問題点がある。   The hollow braid of the support is usually manufactured by a string making machine. In a stringing machine, each thread is pulled out from a large number of bobbins erected on a flat plate, each thread is crossed and assembled, and each bobbin is moved along a predetermined path to thereby determine the positional relationship of the threads. A braid is manufactured by changing the pattern in a predetermined pattern. The braid manufactured by the string making machine and the hollow porous membrane using the braid as a support have the following problems.

問題点1:
製紐機は、糸を小分けした多数のボビンが複雑な動きをしているため、製紐速度が遅い。そのため、支持体の生産性が低いという問題がある。生産性が低いと、支持体のコストが上昇し、その結果、該支持体を用いる中空状多孔質膜のコストの上昇にもつながる。
Problem 1:
The stringing machine has a slow stringing speed because a large number of bobbins divided into yarns perform complicated movements. Therefore, there is a problem that the productivity of the support is low. If the productivity is low, the cost of the support increases, and as a result, the cost of the hollow porous membrane using the support also increases.

問題点2:
製紐機の製紐速度は、中空状多孔質膜の製造速度に比べ、一桁以上遅い。そのため、中空状多孔質膜を連続して製造するために必要な支持体を供給するためには、多くの製紐機が必要となる。しかも、該製紐機においては、ボビンの糸がなくなると、製紐機を一旦停止し、ボビンの交換、新しい糸の組紐への組み込み、組紐の表面から突出した糸の端部の切り取り、といった糸継ぎ作業を、ボビンの数(糸の打ち数)×製紐機の数だけ行う必要がある。このような煩雑な作業により支持体のコストが上昇し、その結果、該支持体を用いる中空状多孔質膜のコストの上昇にもつながる。
Problem 2:
The stringing speed of the stringing machine is one order or more slower than the manufacturing speed of the hollow porous membrane. Therefore, in order to supply the support necessary for continuously producing the hollow porous membrane, many stringers are required. In addition, in the stringing machine, when the bobbin thread runs out, the stringing machine is temporarily stopped, the bobbin is replaced, a new thread is assembled into the braid, and the end of the thread protruding from the braid surface is cut off. It is necessary to perform the yarn splicing operation by the number of bobbins (number of yarn hits) × the number of string making machines. Such complicated operations increase the cost of the support, and as a result, increase the cost of the hollow porous membrane using the support.

問題点3:
支持体と多孔質膜層との接着性を十分に得るためには、支持体の内部に多孔質膜層の一部を十分に侵入させる必要がある。しかし、組紐の組目が緻密だったり、糸を構成する単繊維間が緻密だったりする場合、多孔質膜層の製膜時に、製膜原液が支持体の組目または繊維間に十分に侵入できず、多孔質膜層が支持体から剥離しやすくなる。
Problem 3:
In order to obtain sufficient adhesion between the support and the porous membrane layer, it is necessary to sufficiently penetrate a part of the porous membrane layer into the support. However, if the braided stitches are dense or the single fibers constituting the yarn are dense, the membrane-forming stock solution sufficiently penetrates between the support fabric or the fibers when forming the porous membrane layer. This is not possible, and the porous membrane layer is easily peeled off from the support.

特開2006−068710号公報JP 2006-0668710 A

よって、本発明の目的は、コストが抑えられ、かつ支持体と多孔質膜層との接着性に優れた中空状多孔質膜;該中空状多孔質膜を低いコストで製造できる方法を提供することにある。   Therefore, an object of the present invention is to provide a hollow porous membrane that is low in cost and excellent in adhesion between the support and the porous membrane layer; and a method for producing the hollow porous membrane at a low cost. There is.

本発明の中空状多孔質膜は、中空状の支持体と、該支持体の外周面に設けられた多孔質膜層とを有し、前記支持体が、マルチフィラメントからなる1本の糸を丸編した中空状編紐であり、かつ編目の最大開口幅が0.05〜0.3mmであることを特徴とする。   The hollow porous membrane of the present invention has a hollow support and a porous membrane layer provided on the outer peripheral surface of the support, and the support has a single yarn composed of multifilaments. It is a circular knitted hollow knitted string, and the maximum opening width of the stitch is 0.05 to 0.3 mm.

前記多孔質膜層は、前記支持体の編目を通って、支持体の厚さの50%以上浸入していることが好ましい。
前記マルチフィラメントは、種類の異なる繊維を2種類以上混合したものであることが好ましい。
The porous membrane layer preferably penetrates 50% or more of the thickness of the support through the stitches of the support.
The multifilament is preferably a mixture of two or more different types of fibers.

本発明の中空状多孔質膜の製造方法は、中空状の支持体の外周面に、多孔質膜層の材料および溶剤を含む製膜原液を塗布し、凝固させることによって多孔質膜層を形成する中空状多孔質膜の製造方法において、前記支持体として、マルチフィラメントからなる1本の糸を丸編した中空状編紐であり、かつ編目の最大開口幅が0.05〜0.3mmであるものを用いることによって本発明の中空状多孔質膜を製造することを特徴とする。   In the method for producing a hollow porous membrane of the present invention, a porous membrane layer is formed by applying a film-forming stock solution containing a material of a porous membrane layer and a solvent to the outer peripheral surface of a hollow support and solidifying it. In the method for producing a hollow porous membrane, the support is a hollow knitted string obtained by circularly knitting a single yarn made of multifilament, and the maximum opening width of the stitch is 0.05 to 0.3 mm. The hollow porous membrane of the present invention is produced by using a certain one.

本発明の中空状多孔質膜は、コストが抑えられ、かつ支持体と多孔質膜層との接着性に優れる。
本発明の中空状多孔質膜の製造方法によれば、支持体と多孔質膜層との接着性に優れた中空状多孔質膜を低いコストで製造できる。
The hollow porous membrane of the present invention is low in cost and excellent in adhesion between the support and the porous membrane layer.
According to the method for producing a hollow porous membrane of the present invention, a hollow porous membrane having excellent adhesion between the support and the porous membrane layer can be produced at a low cost.

本発明の中空状多孔質膜の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the hollow porous membrane of this invention. 中空状編紐からなる支持体の一例を示す側面図である。It is a side view which shows an example of the support body which consists of a hollow knitted string. 従来の中空状組紐の一例を示す側面図である。It is a side view which shows an example of the conventional hollow braid. 中空状編紐の構造を示す図である。It is a figure which shows the structure of a hollow knitted string. 中空状編紐の編目を示す拡大図である。It is an enlarged view which shows the stitch of a hollow knitted string. 支持体製造装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of a support body manufacturing apparatus. 中空状多孔質膜製造装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of a hollow porous membrane manufacturing apparatus.

<中空状多孔質膜>
図1は、本発明の中空状多孔質膜の一例を示す概略断面図である。中空状多孔質膜1は、中空状の支持体10と、支持体10の外周面に設けられた多孔質膜層11とを有する。
<Hollow porous membrane>
FIG. 1 is a schematic cross-sectional view showing an example of a hollow porous membrane of the present invention. The hollow porous membrane 1 has a hollow support 10 and a porous membrane layer 11 provided on the outer peripheral surface of the support 10.

(支持体)
図2は、支持体の一例を示す側面図である。支持体10は、1本の糸16を丸編した中空状編紐12からなる。中空状編紐12は、図3に示すような、従来の中空状組紐14とは異なるものである。
(Support)
FIG. 2 is a side view showing an example of a support. The support 10 includes a hollow knitted string 12 formed by circularly knitting a single yarn 16. The hollow knitted string 12 is different from the conventional hollow braid 14 as shown in FIG.

丸編とは、丸編機を用いて筒状のよこメリヤス生地を編成することである。
中空状編紐12は、図4および図5に示すように、糸16を湾曲させたループ17(図5中の黒い部分)を螺旋状に連続して形成し、これらループ17を上下につなげたものであり、図5に示すように、ループ17内およびループ17同士の接続部に編目18を有する。
Circular knitting is knitting a cylindrical weft fabric using a circular knitting machine.
As shown in FIGS. 4 and 5, the hollow knitted string 12 is formed by continuously forming a loop 17 (black portion in FIG. 5) in which the yarn 16 is bent in a spiral shape, and connecting the loops 17 up and down. As shown in FIG. 5, stitches 18 are provided in the loop 17 and at the connecting portions between the loops 17.

糸としては、複数の単繊維からなるマルチフィラメントを用いる。
糸を構成する繊維としては、合成繊維、半合成繊維、再生繊維、天然繊維等が挙げられる。
As the yarn, a multifilament composed of a plurality of single fibers is used.
Examples of the fibers constituting the yarn include synthetic fibers, semi-synthetic fibers, regenerated fibers, and natural fibers.

合成繊維としては、ナイロン6、ナイロン66、芳香族ポリアミド等のポリアミド系繊維;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリ乳酸、ポリグリコール酸等のポリエステル系繊維;ポリアクリロニトリル等のアクリル系繊維;ポリエチレン、ポリプロピレン等のポリオレフィン系繊維;ポリビニルアルコール系繊維;ポリ塩化ビニリデン系繊維;ポリ塩化ビニル系繊維:ポリウレタン系繊維;フェノール樹脂系繊維;ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系繊維;ポリアルキレンパラオキシベンゾエート系繊維等が挙げられる。   Synthetic fibers include polyamide fibers such as nylon 6, nylon 66 and aromatic polyamide; polyester fibers such as polyethylene terephthalate, polybutylene terephthalate, polylactic acid and polyglycolic acid; acrylic fibers such as polyacrylonitrile; polyethylene and polypropylene Polyolefin fiber such as polyvinyl alcohol fiber; polyvinylidene chloride fiber; polyvinyl chloride fiber: polyurethane fiber; phenol resin fiber; fluorine fiber such as polyvinylidene fluoride and polytetrafluoroethylene; polyalkylene paraoxybenzoate System fibers and the like.

半合成繊維としては、セルロースジアセテート、セルローストリアセテート、キチン、キトサン等を原料としたセルロース誘導体系繊維:プロミックスと呼称される蛋白質系繊維等が挙げられる。
再生繊維としては、ビスコース法、銅−アンモニア法、有機溶剤法等により得られるセルロース系再生繊維(レーヨン、キュプラ、ポリノジック等。)が挙げられる。
天然繊維としては、亜麻、黄麻等が挙げられる。
Examples of the semi-synthetic fibers include cellulose derivative fibers made from cellulose diacetate, cellulose triacetate, chitin, chitosan and the like: protein fibers called promix.
Examples of the regenerated fiber include cellulosic regenerated fibers (rayon, cupra, polynosic, etc.) obtained by a viscose method, a copper-ammonia method, an organic solvent method, or the like.
Examples of natural fibers include flax and jute.

繊維としては、耐薬品性に優れる点から、ポリエステル系繊維、アクリル系繊維、ポリビニルアルコール系繊維、ポリアミド系繊維、またはポリオレフィン系繊維、ポリ塩化ビニル系繊維が好ましく、ポリエステル系繊維、アクリル系繊維、またはポリ塩化ビニル系繊維が特に好ましい。
繊維としては、多孔質膜層11と支持体10との接着性の点から、製膜原液に含まれる溶剤に可溶な繊維が好ましい。該繊維としては、アクリル系繊維、ポリ塩化ビニル系繊維等が挙げられる。
The fiber is preferably a polyester fiber, an acrylic fiber, a polyvinyl alcohol fiber, a polyamide fiber, or a polyolefin fiber, or a polyvinyl chloride fiber from the viewpoint of excellent chemical resistance, a polyester fiber, an acrylic fiber, Or polyvinyl chloride fiber is particularly preferred.
The fiber is preferably a fiber that is soluble in the solvent contained in the film-forming stock solution from the viewpoint of adhesiveness between the porous membrane layer 11 and the support 10. Examples of the fibers include acrylic fibers and polyvinyl chloride fibers.

マルチフィラメントは、種類の異なる繊維を2種類以上混合したものであってもよい。種類が異なるとは、繊度、単繊維径、機械特性および材料のうち少なくとも1つが異なることを意味する。
例えば、繊度の異なる繊維を複数組み合わせ、単一の糸では得られない繊度とすることで、支持体10の構造、特性等の自由度を広げることができる。
また、強度は低いが安価な汎用繊維と、高価な高強力繊維とを組み合わせることで、支持体10に必要とされる外径および内径を得るための繊度を汎用繊維で確保し、汎用繊維だけでは不足する強度を高強力繊維で確保することができ、コストと強度とのバランスに優れた支持体10を得ることができる。
また、材料の異なる繊維を複数組み合わせる場合は、例えば、比較的強度が高く安価で、中空多孔質膜の洗浄に用いる次亜塩素酸に対する耐性に優れたポリエステル系繊維と、製膜原液に含まれる溶剤に可溶で、安価であり、中空多孔質膜の洗浄に用いる次亜塩素酸に対する耐性にも優れるアクリル系繊維とを組み合わせたものが好ましい。
The multifilament may be a mixture of two or more kinds of different kinds of fibers. Different types mean that at least one of fineness, single fiber diameter, mechanical properties and materials is different.
For example, by combining a plurality of fibers having different fineness to obtain a fineness that cannot be obtained with a single yarn, the degree of freedom of the structure and characteristics of the support 10 can be expanded.
Also, by combining low-strength but inexpensive general-purpose fiber with expensive high-strength fiber, the general-purpose fiber ensures the fineness to obtain the outer diameter and inner diameter required for the support 10, and only the general-purpose fiber In this case, the insufficient strength can be secured with high-strength fibers, and the support 10 having an excellent balance between cost and strength can be obtained.
In addition, when a plurality of fibers of different materials are combined, for example, they are included in a film-forming stock solution and a polyester fiber that is relatively high in strength and inexpensive and excellent in resistance to hypochlorous acid used for cleaning a hollow porous membrane. A combination with an acrylic fiber that is soluble in a solvent, inexpensive, and excellent in resistance to hypochlorous acid used for cleaning the hollow porous membrane is preferable.

単繊維の繊度は、5dtex以下が好ましく、3dtex以下がより好ましい。単繊維の繊度が5dtex以下であれば、支持体10の表面に糸継ぎ部または繊維破断部の単繊維端が突出していた場合でも、単繊維の熱伝導性や熱容量が小さいため、支持体10表面を火炎処理することで突出した単繊維端を選択的に焼き除いたり、支持体10表面方向に熱収縮させることができ、それらが多孔質膜層11を貫通するのを防ぐことができる。さらに、単繊維の繊度が3dtex以下であれば、単繊維の剛性も大きく低下するため、支持体10の表面に糸継ぎ部または繊維破断部の単繊維端が突出していても、製膜原液の塗布時に多孔質膜層11を貫通することがない。
製膜原液の塗布時に支持体10の表面に突出した糸継ぎ部または繊維破断部の単繊維端が多孔質膜層11を貫通すると、その周りに大きなピンホールが発生したり、当初密着していた単繊維と多孔質膜層11が、繰り返し応力作用で剥離した部分がピンホールとなり、中空状多孔質膜1の分離特性が低下する場合がある。
The fineness of the single fiber is preferably 5 dtex or less, and more preferably 3 dtex or less. If the fineness of the single fiber is 5 dtex or less, even if the single fiber end of the yarn splicing portion or fiber breakage portion protrudes from the surface of the support 10, the support 10 has a small thermal conductivity and heat capacity. By flame-treating the surface, the protruding single fiber ends can be selectively burned out or thermally contracted toward the surface of the support 10, and they can be prevented from penetrating the porous membrane layer 11. Furthermore, if the fineness of the single fiber is 3 dtex or less, the rigidity of the single fiber is also greatly reduced. Therefore, even if the single fiber end of the yarn splicing portion or the fiber breakage portion protrudes from the surface of the support 10, The porous membrane layer 11 is not penetrated at the time of application.
When a single fiber end of a spliced portion or a fiber breakage portion that protrudes from the surface of the support 10 at the time of application of the film-forming stock solution penetrates the porous membrane layer 11, a large pinhole is generated around it or is initially in close contact with it. The portion where the single fiber and the porous membrane layer 11 are peeled off by repeated stress acts as a pinhole, and the separation characteristics of the hollow porous membrane 1 may deteriorate.

ループ17の数は、1周あたり5以上が好ましい。ループ17の数は、後述の丸編機のメリヤス針の数と同じである。ループ17の数が5以上であれば、支持体10の中空部の断面形状が略円形となり、外圧に対する耐潰れ性が向上し、内径縮小化による通水性の低下が抑えられる。
ループ17の数の上限は、中空状編紐12の外径、糸16の繊度、編目の大きさ等により決まる。
The number of loops 17 is preferably 5 or more per round. The number of loops 17 is the same as the number of knitting needles of a circular knitting machine described later. If the number of the loops 17 is 5 or more, the cross-sectional shape of the hollow portion of the support 10 is substantially circular, the resistance to crushing against external pressure is improved, and a reduction in water permeability due to a reduction in the inner diameter is suppressed.
The upper limit of the number of loops 17 is determined by the outer diameter of the hollow knitted string 12, the fineness of the yarn 16, the size of the stitches, and the like.

ループ17(図5中の黒い部分)の長さと支持体10の外径との比(長さ/外径)は、0.1〜0.5が好ましい。該比が0.1以上であれば、支持体10に曲げや捻りの力が作用した際、ループ17が変形し支持体として必要な屈曲特性や捻れ特性を発揮することができる。該比が0.5以下であれば、支持体10の耐つぶれ性を維持し、支持体10の中心軸に並行な圧縮力に対し耐座屈性を維持することができる。   The ratio of the length of the loop 17 (black portion in FIG. 5) to the outer diameter of the support 10 (length / outer diameter) is preferably 0.1 to 0.5. When the ratio is 0.1 or more, when a bending or twisting force is applied to the support 10, the loop 17 is deformed and the necessary bending characteristics and twisting characteristics can be exhibited. If the ratio is 0.5 or less, the crush resistance of the support 10 can be maintained, and the buckling resistance can be maintained against the compressive force parallel to the central axis of the support 10.

編目18の数は、1mmあたり5以上が好ましい。編目18の数が1mmあたり5以上であれば、多孔質膜層11と支持体10とを強く接着できる。編目18の数は多いほど立体的接着部が増えるため、多孔質膜層11と支持体10の強く接着することができるが、単位面積あたりの編目18の数を多くするほど編目18が緻密化し、製膜原液を、編目18を通って支持体10の厚さ方向に十分侵入させることが困難になる。
単位面積あたりの編目18の数を多くしながら編目18の緻密化を防ぐには、支持体10を構成する糸16の繊度を落さなければならない。しかし、その場合には支持体10の破断強度低下や外圧による耐潰れ性の低下を招くため、編目18の数の上限は、支持体10に必要な特性を損なわない範囲で適宜決定する必要がある。
The number of stitches 18 is preferably 5 or more per 1 mm 2 . If the number of stitches 18 is 5 or more per 1 mm 2 , the porous membrane layer 11 and the support 10 can be strongly bonded. As the number of stitches 18 increases, the number of three-dimensional adhesion portions increases, so that the porous membrane layer 11 and the support 10 can be strongly bonded. However, as the number of stitches 18 per unit area increases, the stitches 18 become denser. It becomes difficult for the film-forming stock solution to sufficiently penetrate through the stitches 18 in the thickness direction of the support 10.
In order to prevent densification of the stitches 18 while increasing the number of stitches 18 per unit area, the fineness of the yarns 16 constituting the support 10 must be reduced. However, in that case, since the breaking strength of the support 10 is reduced and the crushing resistance is reduced due to external pressure, the upper limit of the number of stitches 18 needs to be appropriately determined within a range that does not impair the characteristics required for the support 10. is there.

編目18の大きさは、多孔質膜層11の製膜温度、製膜原液の塗布圧力、製膜原液の粘度、支持体10の厚さ等の条件に対し、製膜原液が支持体10の厚さの50%以上侵入し、かつ中空部に過剰に流入しないよう適正な大きさになるよう調節される。編目18の大きさは、1周当たりのループ17の数、糸16の繊度、編目18の長さ、熱処理条件等により決まる。   The size of the stitch 18 is such that the film-forming stock solution has a thickness of the support 10 with respect to conditions such as the film-forming temperature of the porous membrane layer 11, the coating pressure of the film-forming stock solution, the viscosity of the film-forming stock solution, the thickness of the support 10 The thickness is adjusted to an appropriate size so as to penetrate more than 50% of the thickness and not excessively flow into the hollow portion. The size of the stitch 18 is determined by the number of loops 17 per round, the fineness of the yarn 16, the length of the stitch 18, the heat treatment conditions, and the like.

編目18の最大開口幅(図5中のL)は、製膜原液の支持体10への侵入性に大きく関係し、製膜条件により適性範囲は異なるが、通常の湿式紡糸に用いられる数百ポイズ前後の製膜原液粘度であれば0.05mm〜0.3mmの範囲が好ましい。編目18の最大開口幅が0.05mm以上であれば、製膜原液が編目18から支持体10に侵入可能であり、0.3mm以下であれば、製膜原液が編目18から支持体10の中空部を閉塞させるほどの過剰流入は抑えることができる。   The maximum opening width (L in FIG. 5) of the stitch 18 is largely related to the penetration property of the film-forming stock solution into the support 10, and the appropriate range varies depending on the film-forming conditions, but it is several hundreds used in ordinary wet spinning. If it is the film forming stock solution viscosity before and after poise, the range of 0.05 mm-0.3 mm is preferable. If the maximum opening width of the stitch 18 is 0.05 mm or more, the film-forming stock solution can enter the support body 10 from the stitch 18, and if it is 0.3 mm or less, the film-forming stock solution passes from the stitch 18 to the support body 10. Excessive inflow to block the hollow portion can be suppressed.

支持体10は、その表面の一部または全部が、多孔質膜層11と異なる色であることが好ましい。支持体10の表面の色が多孔質膜層11と異なれば、多孔質膜層11が支持体10から脱落した場合、脱落箇所を目視にて容易に確認できる。   It is preferable that a part or all of the surface of the support 10 has a color different from that of the porous membrane layer 11. If the color of the surface of the support 10 is different from that of the porous membrane layer 11, when the porous membrane layer 11 is dropped from the support 10, it is possible to easily confirm the drop-off location visually.

(支持体の製造方法)
図6は、支持体製造装置の一例を示す概略構成図である。支持体製造装置20は、ボビン22と、ボビン22から引き出された糸16を丸編する丸編機24と、丸編機24によって編成された中空状編紐12を一定の張力で引っ張る紐供給装置26と、中空状編紐12を熱処理する加熱ダイス28と、熱処理された中空状編紐12を引き取る引取り装置30と、中空状編紐12を支持体10としてボビンに巻き取る巻取り機32とを具備する。
(Manufacturing method of support)
FIG. 6 is a schematic configuration diagram illustrating an example of a support manufacturing apparatus. The support body manufacturing apparatus 20 supplies a bobbin 22, a circular knitting machine 24 that circularly knits the yarn 16 drawn from the bobbin 22, and a string supply that pulls the hollow knitted string 12 knitted by the circular knitting machine 24 with a constant tension. A device 26; a heating die 28 for heat-treating the hollow knitted string 12; a take-up device 30 for taking up the heat-treated hollow knitted string 12; and a winder for winding the hollow knitted string 12 on a bobbin using the support 10 as a support 10 32.

丸編機24は、回転可能な中空状のシリンダと、該シリンダの内側に配置された回転しないスピンドルと、該スピンドルの外円周上に配置された上下動する複数のメリヤス針と、シリンダに固定され一緒に回転し、上下動する複数のメリヤス針に糸を供給するための糸ガイドとを有して構成される。支持体10の外径、内径、1周あたりのループ17の数および編目18の大きさは、メリヤス針の数、メリヤス針を配置するスピンドルの円周直径、糸16の繊度等により決まる。   The circular knitting machine 24 includes a rotatable hollow cylinder, a non-rotating spindle disposed inside the cylinder, a plurality of knitted needles disposed on the outer circumference of the spindle, and a cylinder. A thread guide for supplying thread to a plurality of knitted needles that are fixed, rotate together, and move up and down. The outer diameter and inner diameter of the support 10, the number of loops 17 per round and the size of the stitches 18 are determined by the number of knitted needles, the circumferential diameter of the spindle on which the knitted needles are arranged, the fineness of the yarn 16, and the like.

加熱ダイス28は、金属製のブロック、プレート等からなる本体と、加熱手段とを有して構成される。加熱ダイス28の本体には、貫通孔(図示略)が形成されている。
貫通孔の、中空状編紐12の入り口側の内径Dは、熱処理前の中空状編紐12の外径D’と等しいか、若干大きく、中空状編紐12の出口側の内径dは、熱処理前の中空状編紐12の外径D’以下であり、熱処理後の中空状編紐12の外径d’と等しい。
The heating die 28 includes a main body made of a metal block, a plate, or the like, and heating means. A through hole (not shown) is formed in the main body of the heating die 28.
The inner diameter D on the entrance side of the hollow knitted string 12 of the through hole is equal to or slightly larger than the outer diameter D ′ of the hollow knitted string 12 before heat treatment, and the inner diameter d on the outlet side of the hollow knitted string 12 is The outer diameter D ′ of the hollow knitted string 12 before the heat treatment is equal to or less than the outer diameter d ′ of the hollow knitted string 12 after the heat treatment.

紐供給装置26および引取り装置30としては、ネルソンロール、ニップロール、カレンダーロール等が挙げられる。ニップロールは中空状編紐12をつぶすおそれがあるため、ネルソンロールまたはカレンダーロールが好ましい。   Examples of the string supply device 26 and the take-up device 30 include a Nelson roll, a nip roll, and a calendar roll. Since the nip roll may crush the hollow knitted string 12, a Nelson roll or a calendar roll is preferable.

なお、ボビン22は、1つであってもよく、2つ以上であってもよく、2つ以上が好ましい。繊度Xの糸16が巻かれた1つのボビンから引き出した糸を編成する場合に比べ、繊度X/nの糸が巻かれたn個のボビンから引き出した糸を1つにまとめて編成する場合(ただし、nは2以上の整数である。)は、1つのボビンから引き出される単位時間あたりの糸の量は1/nとなるため、1つのボビンに巻かれた糸の質量が同じであれば、糸継ぎの間隔がn倍長くなる。また、種類の異なる2種類以上の繊維を混合しやすくなる。   The number of bobbins 22 may be one, two or more, and two or more are preferable. Compared to knitting yarn pulled out from one bobbin wound with yarn 16 having fineness X, knitting together yarns pulled out from n bobbins wound with yarn having fineness X / n (Where n is an integer greater than or equal to 2), the amount of yarn drawn from one bobbin per unit time is 1 / n, so the mass of yarn wound around one bobbin is the same. In this case, the yarn splicing interval becomes n times longer. Moreover, it becomes easy to mix two or more types of fibers of different types.

以下、支持体製造装置20を用いた支持体10の製造方法を説明する。
支持体10は、下記(a)工程、および必要に応じて下記(b)工程を有する製造方法によって製造される。
(a)糸16を丸編して中空状編紐12を編成する工程。
(b)前記中空状編紐12を、外径を規制しつつ、繊維の熱変形温度より高く、かつ繊維の溶融温度よりも低い温度で熱処理する工程。
Hereinafter, a method for manufacturing the support 10 using the support manufacturing apparatus 20 will be described.
The support 10 is manufactured by a manufacturing method having the following step (a) and, if necessary, the following step (b).
(A) A step of circularly knitting the yarn 16 to knit the hollow knitted string 12.
(B) A step of heat-treating the hollow knitted string 12 at a temperature higher than the thermal deformation temperature of the fiber and lower than the melting temperature of the fiber while regulating the outer diameter.

(a)工程:
中空状編紐12は、丸編機24を用いて編成される。
製紐速度は、中空状編紐12の形状により若干変わるが、シリンダの回転数によってほぼ決まる。シリンダ回転数は、1〜4000rpmに設定可能であり、安定して編成できる点から、100〜3000rpmが好ましい。この際の製紐速度は、およそ6〜200m/hrであり、組紐の製紐速度に比べ一桁以上速い。
(A) Process:
The hollow knitted string 12 is knitted using a circular knitting machine 24.
The stringing speed varies slightly depending on the shape of the hollow knitted string 12, but is substantially determined by the number of rotations of the cylinder. Cylinder rotation speed can be set to 1-4000 rpm, and 100-3000 rpm is preferable from the point which can be knitted stably. The stringing speed at this time is approximately 6 to 200 m / hr, which is one digit or more faster than the stringing speed of the braid.

(b)工程:
中空状編紐12は、糸継ぎ部または繊維破断部に、表面に突出した繊維端を有している。よって、中空状編紐12を、外径を規制しつつ熱処理することによって、糸継ぎ部または繊維破断部の繊維端を支持体10の表面に押さえつけた状態で形態固定することが好ましい。これにより、繊維端が多孔質膜層を貫通してピンホールが発生することがなく、その結果、中空状多孔質膜の分離特性が低下することがない。
(B) Process:
The hollow knitted string 12 has a fiber end protruding to the surface at a yarn splicing portion or a fiber breaking portion. Therefore, it is preferable that the shape of the hollow knitted string 12 is fixed in a state where the fiber end of the yarn splicing portion or the fiber breaking portion is pressed against the surface of the support 10 by heat treatment while regulating the outer diameter. As a result, the fiber end does not penetrate the porous membrane layer to generate a pinhole, and as a result, the separation characteristic of the hollow porous membrane does not deteriorate.

中空状編紐12が加熱ダイス28を通過するとき、繊維の熱変形温度より高い温度で中空状編紐12が熱処理され、かつ内径dが熱処理前の中空状編紐12の外径D’以下である、貫通孔の出口側において中空状編紐12の外径が規制されることにより、表面に突出した繊維端が支持体10の表面に押さえつけた状態で形態固定される。また、中空状編紐12は、繊維の溶融温度未満で熱処理されているため、編目18がつぶれることがない。その結果、製膜原液が十分に編目18に侵入でき、多孔質膜層11と支持体10との密着性を維持できる。   When the hollow knitted string 12 passes through the heating die 28, the hollow knitted string 12 is heat-treated at a temperature higher than the thermal deformation temperature of the fiber, and the inner diameter d is equal to or less than the outer diameter D ′ of the hollow knitted string 12 before the heat treatment. By restricting the outer diameter of the hollow braided string 12 at the outlet side of the through hole, the shape of the fiber end protruding from the surface is fixed in a state of pressing against the surface of the support 10. Further, since the hollow knitted string 12 is heat-treated at a temperature lower than the fiber melting temperature, the stitches 18 are not crushed. As a result, the film-forming stock solution can sufficiently enter the stitches 18, and the adhesion between the porous membrane layer 11 and the support 10 can be maintained.

(多孔質膜層)
多孔質膜層11の材料としては、ポリフッ化ビニリデン、ポリスルホン、ポリアクリロニトリル、ポリビニルピロリドン、ポリエチレングリコール等が挙げられ、耐薬品性、耐熱性等の点から、ポリフッ化ビニリデン、またはポリフッ化ビニリデンとポリビニルピロリドンとの組み合わせが好ましい。
多孔質膜層11は、単層であってもよく、2層以上の複合多孔質膜層であってもよい。
(Porous membrane layer)
Examples of the material of the porous membrane layer 11 include polyvinylidene fluoride, polysulfone, polyacrylonitrile, polyvinyl pyrrolidone, and polyethylene glycol. From the viewpoint of chemical resistance and heat resistance, polyvinylidene fluoride, or polyvinylidene fluoride and polyvinyl A combination with pyrrolidone is preferred.
The porous membrane layer 11 may be a single layer or a composite porous membrane layer of two or more layers.

多孔質膜層11は、支持体10の編目18を通り、支持体10の表面から中空部に向かって、支持体10の厚さの50%以上浸入していることが好ましい。支持体10においては、糸16のループ17が重なった部分と重なっていない部分とがあり、ループ17が重なった部分の厚さを支持体10の厚さとする。   It is preferable that the porous membrane layer 11 penetrates 50% or more of the thickness of the support 10 from the surface of the support 10 toward the hollow portion through the stitch 18 of the support 10. In the support 10, there are a portion where the loop 17 of the yarn 16 overlaps and a portion where the loop 17 does not overlap, and the thickness of the portion where the loop 17 overlaps is defined as the thickness of the support 10.

多孔質膜層11が支持体10の厚さ方向に50%以上侵入すれば、多孔質膜層11がループ17を形成する糸16の一部を包み込むことができ、多孔質膜層11と支持体10とを強く接着できる。なお、多孔質膜層11が支持体10の厚さを超えて進入し、支持体10の中空部の狭化が生じると、水の中空部流動圧損が増し、透水性が低下するため、多孔質膜層11の支持体10の厚さ方向への侵入は、50%以上100%未満が好ましい。   If the porous membrane layer 11 penetrates 50% or more in the thickness direction of the support 10, the porous membrane layer 11 can wrap a part of the thread 16 forming the loop 17, and the porous membrane layer 11 and the support are supported. The body 10 can be strongly bonded. Note that when the porous membrane layer 11 enters beyond the thickness of the support 10 and the hollow portion of the support 10 is narrowed, the flow pressure loss of the hollow portion of water increases and the water permeability decreases. The penetration of the membrane layer 11 in the thickness direction of the support 10 is preferably 50% or more and less than 100%.

多孔質膜層11中には、多孔質膜層11にピンホールが発生しない範囲において、支持体10の表面に突出した糸継ぎ部または繊維破断部の繊維端が存在することが好ましい。多孔質膜層11中に繊維端が存在すれば、多孔質膜層11と支持体10とを強く接着できる。多孔質膜層11中に存在する繊維端の数は、1mmあたり10〜40が好ましい。 In the porous membrane layer 11, it is preferable that the fiber ends of the yarn splicing portion or the fiber breaking portion that protrude from the surface of the support 10 exist within a range where no pinhole is generated in the porous membrane layer 11. If fiber ends are present in the porous membrane layer 11, the porous membrane layer 11 and the support 10 can be strongly bonded. The number of fiber ends present in the porous membrane layer 11 is preferably 10 to 40 per 1 mm 2 .

<中空状多孔質膜の製造方法>
中空状多孔質膜1は、多孔質膜層11が2層の複合多孔質膜層の場合、下記(i)〜(vii)工程を有する製造方法によって製造される。
(i)支持体10の外周面に製膜原液を塗布する工程。
(ii)支持体10に塗布された製膜原液を凝固させて、第1の多孔質膜層を形成し、中空状多孔質膜前駆体を得る工程。
(iii)中空状多孔質膜前駆体の外周面に製膜原液を塗布する工程。
(iv)中空状多孔質膜前駆体に塗布された製膜原液を凝固させて、第2の多孔質膜層を形成し、中空状多孔質膜1を得る工程。
(v)中空状多孔質膜1を洗浄する工程。
(vi)中空状多孔質膜1を乾燥する工程。
(vii)中空状多孔質膜1を巻き取る工程。
<Method for producing hollow porous membrane>
When the porous membrane layer 11 is a two-layer composite porous membrane layer, the hollow porous membrane 1 is produced by a production method having the following steps (i) to (vii).
(I) The process of apply | coating film forming undiluted | stock solution to the outer peripheral surface of the support body 10. FIG.
(Ii) A step of solidifying the film-forming stock solution applied to the support 10 to form a first porous membrane layer to obtain a hollow porous membrane precursor.
(Iii) A step of applying a film-forming stock solution to the outer peripheral surface of the hollow porous membrane precursor.
(Iv) A step of solidifying a film-forming stock solution applied to the hollow porous membrane precursor to form a second porous membrane layer to obtain the hollow porous membrane 1.
(V) A step of cleaning the hollow porous membrane 1.
(Vi) A step of drying the hollow porous membrane 1.
(Vii) A step of winding up the hollow porous membrane 1.

図7は、(i)〜(iv)工程に用いられる中空状多孔質膜製造装置の一例を示す概略構成図である。中空状多孔質膜製造装置40は、巻き出し装置(図示略)から連続的に供給された支持体10に、連続的に製膜原液を塗布する第1の環状ノズル42と、第1の環状ノズル42に製膜原液を供給する第1の原液供給装置44と、支持体10に塗布された製膜原液を凝固させる凝固液が入った第1の凝固浴槽46と、製膜原液が塗布された支持体10を第1の凝固浴槽46に連続的に導入する第1のガイドロール48と、第1の凝固浴槽46から連続的に引き出された中空状多孔質膜前駆体50に、連続的に製膜原液を塗布する第2の環状ノズル52と、第2の環状ノズル52に製膜原液を供給する第2の原液供給装置54と、中空状多孔質膜前駆体50に塗布された製膜原液を凝固させる凝固液が入った第2の凝固浴槽56と、製膜原液が塗布された中空状多孔質膜前駆体50を第2の凝固浴槽56に連続的に導入する第2のガイドロール58とを具備する。   FIG. 7 is a schematic configuration diagram illustrating an example of a hollow porous membrane manufacturing apparatus used in steps (i) to (iv). The hollow porous membrane manufacturing apparatus 40 includes a first annular nozzle 42 for continuously applying a film-forming stock solution to the support 10 continuously supplied from an unwinding device (not shown), and a first annular A first stock solution supply device 44 for supplying a film-forming stock solution to the nozzle 42, a first coagulation bath 46 containing a coagulation solution for coagulating the film-forming stock solution applied to the support 10, and a film-forming stock solution are applied. The first guide roll 48 for continuously introducing the support 10 into the first coagulation bath 46 and the hollow porous membrane precursor 50 continuously drawn out from the first coagulation bath 46 are continuously The second annular nozzle 52 for applying the film-forming stock solution to the second, the second stock solution supplying device 54 for supplying the film-forming stock solution to the second annular nozzle 52, and the product applied to the hollow porous membrane precursor 50 A second coagulation bath 56 containing a coagulating liquid for coagulating the film stock solution and a film forming stock solution are applied. The hollow porous membrane precursor 50, which is provided with a second guide roll 58 continuously introducing into a second coagulation bath 56.

(i)工程:
第1の環状ノズル42の中央には、支持体10が通過する管路が形成されている。管路の途中には、管路の円周方向にスリット状の製膜原液吐出口が上流側および下流側に2箇所形成され、組成の異なる2種類の製膜原液を吐出する構造となっている。
支持体10が管路を通過する際、第1の原液供給装置44から2種類の製膜原液が一定量で供給され、まず支持体10の外周面に製膜原液(2)が塗布され、ついで、製膜原液(2)の上に製膜原液(1)が塗布されて所定の膜厚の塗膜が形成される。
(I) Process:
In the center of the first annular nozzle 42, a conduit through which the support 10 passes is formed. In the middle of the pipe, two slit-form film forming solution discharge ports are formed on the upstream side and the downstream side in the circumferential direction of the pipe line, so that two types of film forming solution having different compositions are discharged. Yes.
When the support 10 passes through the pipeline, two types of film-forming stock solutions are supplied from the first stock solution supply device 44 in a constant amount. First, the film-forming stock solution (2) is applied to the outer peripheral surface of the support 10, Next, the film-forming stock solution (1) is applied onto the film-forming stock solution (2) to form a coating film having a predetermined film thickness.

第1の環状ノズル42の管路の内径は、支持体10の外径より若干大きく、環状ノズル42の管路の内周面と支持体とは一定の間隙を有する。該間隙は、塗膜の厚さ、製膜原液の粘度、支持体10の走行速度等によって決まり、通常、0.15〜0.25mmである。   The inner diameter of the pipe line of the first annular nozzle 42 is slightly larger than the outer diameter of the support 10, and the inner peripheral surface of the pipe line of the annular nozzle 42 and the support have a certain gap. The gap is determined by the thickness of the coating film, the viscosity of the film-forming stock solution, the running speed of the support 10 and the like, and is usually 0.15 to 0.25 mm.

製膜原液は、上述の多孔質膜層の材料と溶剤とを含む液である。溶剤としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド等が挙げられ、形成される多孔質膜層の透水性が高い点から、N,N−ジメチルアセトアミドが好ましい。   The film-forming stock solution is a liquid containing the above-mentioned porous membrane layer material and a solvent. Examples of the solvent include N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, and the like, and N, N-dimethylacetamide is preferable from the viewpoint of high water permeability of the formed porous membrane layer.

製膜原液(1)(100質量%)中の多孔質膜層の材料の濃度は、12〜25質量%が好ましい。
製膜原液(2)(100質量%)中の多孔質膜層の材料の濃度は、0.1〜12質量%が好ましい。
環状ノズル42の温度は、20〜40℃が好ましい。
As for the density | concentration of the material of the porous membrane layer in film forming undiluted | stock solution (1) (100 mass%), 12-25 mass% is preferable.
As for the density | concentration of the material of the porous membrane layer in film forming undiluted | stock solution (2) (100 mass%), 0.1-12 mass% is preferable.
The temperature of the annular nozzle 42 is preferably 20 to 40 ° C.

(ii)工程:
第1の凝固浴槽46内の凝固液と製膜原液の塗膜とを接触させ、製膜原液を凝固させて、第1の多孔質膜層を形成し、中空状多孔質膜前駆体50を得る。
凝固液としては、製膜原液の溶剤と同じ溶剤を含む水溶液が好ましい。製膜原液の溶剤がN,N−ジメチルアセトアミドの場合、溶剤の濃度は、凝固液(100質量%)中、1〜50質量%が好ましい。
凝固液の温度は、50〜90℃が好ましい。
(Ii) Process:
The coagulating liquid in the first coagulation bath 46 is brought into contact with the coating film of the film-forming stock solution, the film-forming stock solution is solidified to form the first porous film layer, and the hollow porous film precursor 50 is obtained. obtain.
As the coagulation liquid, an aqueous solution containing the same solvent as that of the film-forming stock solution is preferable. When the solvent of the film forming stock solution is N, N-dimethylacetamide, the concentration of the solvent is preferably 1 to 50% by mass in the coagulation liquid (100% by mass).
The temperature of the coagulation liquid is preferably 50 to 90 ° C.

(iii)〜(iv)工程:
(i)〜(ii)工程と同様な条件にて、中空状多孔質膜前駆体50の外周面に第2の多孔質膜層を形成し、中空状多孔質膜1を得る。
(iii)工程においては、製膜原液(2)として内部凝固液を用いてもよい。内部凝固液としては、グリセリン、アルコール類、エチレングリコール等が挙げられる。
Steps (iii) to (iv):
Under the same conditions as in steps (i) to (ii), a second porous membrane layer is formed on the outer peripheral surface of the hollow porous membrane precursor 50 to obtain the hollow porous membrane 1.
In the step (iii), an internal coagulation liquid may be used as the film forming stock solution (2). Examples of the internal coagulation liquid include glycerin, alcohols, ethylene glycol and the like.

(v)工程:
例えば、中空状多孔質膜1を60〜100℃の熱水中で洗浄して溶剤を除去し、ついで、次亜塩素酸等の薬液で洗浄し、ついで、60〜100℃の熱水中で洗浄して薬液を除去する。
(V) Process:
For example, the hollow porous membrane 1 is washed in hot water at 60 to 100 ° C. to remove the solvent, then washed with a chemical solution such as hypochlorous acid, and then in hot water at 60 to 100 ° C. Wash to remove chemicals.

(vi)〜(vii)工程:
中空状多孔質膜1を、60℃以上100℃未満で、1分以上24時間未満乾燥した後、ボビン、カセ等に巻き取る。
Steps (vi) to (vii):
The hollow porous membrane 1 is dried at 60 ° C. or more and less than 100 ° C. for 1 minute or more and less than 24 hours, and then wound on a bobbin, a cassette or the like.

以上説明した中空状多孔質膜1にあっては、支持体10がマルチフィラメントからなる1本の糸16を丸編した中空状編紐12であるため、コストが抑えられ、かつ支持体10と多孔質膜層11との接着性に優れる。
すなわち、1本の連続した糸16を筒状に丸編した中空状編紐12は、組紐より製紐速度が一桁以上速い。そして、糸16を多数のボビンに小分けする必要がないため、糸継ぎ作業も簡便である。よって、中空状編紐12は、生産性、作業性が非常に高いため、組紐に比べコストを抑えることができ、該中空状編紐12を中空状多孔質膜1の支持体10として用いることで中空状多孔質膜1のコストを低減できる。
また、中空状編紐12の編目18は、糸16の単繊維間の隙間に比べ非常に大きく、かつ中空状編紐12の表面から中空部に貫通しているため、多孔質膜層11の製膜時に、製膜原液が編目18を通って支持体10の内部に侵入でき、多孔質膜層11と支持体10との接着性が向上する。
In the hollow porous membrane 1 described above, since the support 10 is a hollow knitted string 12 formed by circularly knitting a single yarn 16 made of multifilament, the cost can be reduced, and the support 10 Excellent adhesion to the porous membrane layer 11.
That is, the hollow knitted string 12 obtained by circularly knitting a single continuous thread 16 is faster than the braid by one digit or more. Further, since it is not necessary to subdivide the yarn 16 into a large number of bobbins, the splicing operation is also simple. Therefore, since the hollow knitted string 12 has very high productivity and workability, the cost can be reduced compared to the braided string, and the hollow knitted string 12 is used as the support 10 of the hollow porous membrane 1. Thus, the cost of the hollow porous membrane 1 can be reduced.
Further, the stitches 18 of the hollow knitted string 12 are very large compared to the gaps between the single fibers of the yarn 16 and penetrate from the surface of the hollow knitted string 12 to the hollow portion. At the time of film formation, the film-forming stock solution can penetrate into the inside of the support 10 through the stitches 18, and the adhesion between the porous membrane layer 11 and the support 10 is improved.

本発明を以下の実施例により具体的に説明する。
(支持体の外径)
支持体の外径は、以下の方法で測定した。
測定するサンプルを約10cmに切断し、数本を束ねて、全体をポリウレタン樹脂で覆った。ポリウレタン樹脂は支持体の中空部にも入るようにした。
ポリウレタン樹脂硬化後、カミソリ刃を用いて厚さ(膜の長手方向)約0.5mmの薄片をサンプリングした。
次にサンプリングした支持体の断面を、投影機(ニコン社製、PROFILE PROJECTOR V−12)を用い、対物レンズ100倍にて観察した。
観察している支持体断面のX方向、Y方向の外表面の位置にマーク(ライン)をあわせて外径を読み取った。これを3回測定して外径の平均値を求めた。
The present invention will be specifically described by the following examples.
(Outer diameter of support)
The outer diameter of the support was measured by the following method.
A sample to be measured was cut into approximately 10 cm, several bundles were bundled, and the whole was covered with a polyurethane resin. The polyurethane resin also entered the hollow part of the support.
After the polyurethane resin was cured, a thin piece having a thickness (longitudinal direction of the film) of about 0.5 mm was sampled using a razor blade.
Next, the sampled cross section of the support was observed with a projector (Nikon Corporation, PROFILE PROJECTOR V-12) at an objective lens of 100 times.
A mark (line) was aligned with the position of the outer surface in the X direction and Y direction of the cross section of the support being observed, and the outer diameter was read. This was measured three times to determine the average value of the outer diameter.

(支持体の内径)
支持体の内径は、以下の方法で測定した。
測定するサンプルは外径を測定したサンプルと同様の方法でサンプリングした。
次にサンプリングした支持体の断面を、投影機(ニコン社製、PROFILE PROJECTOR V−12)を用い、対物レンズ100倍にて観察した。
観察している支持体断面のX方向、Y方向の内表面の位置にマーク(ライン)をあわせて内径を読み取った。これを3回測定して内径の平均値を求めた。
(Inner diameter of support)
The inner diameter of the support was measured by the following method.
The sample to be measured was sampled in the same manner as the sample whose outer diameter was measured.
Next, the sampled cross section of the support was observed with a projector (Nikon Corporation, PROFILE PROJECTOR V-12) at an objective lens of 100 times.
A mark (line) was aligned with the position of the inner surface in the X direction and Y direction of the cross section of the support being observed, and the inner diameter was read. This was measured three times to determine the average inner diameter.

(中空状多孔質膜の外径)
中空状多孔質膜の外径は、以下の方法で測定した。
測定するサンプルを約10cmに切断し、数本を束ねて、全体をポリウレタン樹脂で覆った。ポリウレタン樹脂は支持体の中空部にも入るようにした。
ポリウレタン樹脂硬化後、カミソリ刃を用いて厚さ(膜の長手方向)約0.5mmの薄片をサンプリングした。
次に、サンプリングした中空状多孔質膜の断面を、投影機(ニコン社製、PROFILE PROJECTOR V−12)を用い、対物レンズ100倍にて観察した。
観察している中空状多孔質膜断面のX方向、Y方向の外表面の位置にマーク(ライン)をあわせて外径を読み取った。これを3回測定して外径の平均値を求めた。
(Outer diameter of hollow porous membrane)
The outer diameter of the hollow porous membrane was measured by the following method.
A sample to be measured was cut into approximately 10 cm, several bundles were bundled, and the whole was covered with a polyurethane resin. The polyurethane resin also entered the hollow part of the support.
After the polyurethane resin was cured, a thin piece having a thickness (longitudinal direction of the film) of about 0.5 mm was sampled using a razor blade.
Next, the sampled cross section of the hollow porous membrane was observed with a projector (Nikon Corporation, PROFILE PROJECTOR V-12) at an objective lens of 100 times.
A mark (line) was placed at the position of the outer surface in the X direction and Y direction of the cross section of the hollow porous membrane being observed, and the outer diameter was read. This was measured three times to determine the average value of the outer diameter.

(中空状多孔質膜の内径)
中空状多孔質膜の内径は、以下の方法で測定した。
測定するサンプルは外径を測定したサンプルと同様の方法でサンプリングした。
次に、サンプリングした中空状多孔質膜の断面を、投影機(ニコン社製、PROFILE PROJECTOR V−12)を用い、対物レンズ100倍にて観察した。
観察している中空状多孔質膜断面のX方向、Y方向の支持体内面の位置にマーク(ライン)をあわせて内径を読み取った。これを3回測定して内径の平均値を求めた。
(Inner diameter of hollow porous membrane)
The inner diameter of the hollow porous membrane was measured by the following method.
The sample to be measured was sampled in the same manner as the sample whose outer diameter was measured.
Next, the sampled cross section of the hollow porous membrane was observed with a projector (Nikon Corporation, PROFILE PROJECTOR V-12) at an objective lens of 100 times.
A mark (line) was aligned with the position of the inner surface of the support in the X and Y directions of the cross section of the hollow porous membrane being observed, and the inner diameter was read. This was measured three times to determine the average inner diameter.

(多孔質膜層の膜厚)
実施例における多孔質膜層の膜厚は、支持体の表面から中空状多孔質膜の表面までの厚さであり、以下の方法で測定した。
測定するサンプルは外径を測定したサンプルと同様の方法でサンプリングした。
次に、サンプリングした中空状多孔質膜の断面を、投影機(ニコン社製、PROFILE PROJECTOR V−12)を用い、対物レンズ100倍にて観察した。
観察している中空状多孔質膜断面の3時方向位置の膜厚の外表面と内表面の位置にマーク(ライン)をあわせて膜厚を読み取った。同様に、9時方向、12時方向、6時方向の順で膜厚を読み取った。これを3回測定して内径の平均値を求めた。
(Thickness of porous membrane layer)
The film thickness of the porous membrane layer in the examples is the thickness from the surface of the support to the surface of the hollow porous membrane, and was measured by the following method.
The sample to be measured was sampled in the same manner as the sample whose outer diameter was measured.
Next, the sampled cross section of the hollow porous membrane was observed with a projector (Nikon Corporation, PROFILE PROJECTOR V-12) at an objective lens of 100 times.
The film thickness was read by aligning marks (lines) at the positions of the outer surface and the inner surface of the film at the 3 o'clock position on the cross section of the hollow porous film being observed. Similarly, the film thickness was read in the order of 9 o'clock, 12 o'clock, and 6 o'clock. This was measured three times to determine the average inner diameter.

(中空状多孔質膜の透水性能)
中空状多孔質膜の透水性能は、以下の方法で測定した。
測定するサンプルを4cmに切断し、片端面をポリウレタン樹脂で中空部を封した。
次に、サンプルをエタノール中で5分間以上減圧した後、純水中に浸して置換した。
容器に純水(25℃)を入れ、サンプルの他端面とチューブで繋ぎ、容器に200kPaの空気圧をかけてサンプルから出る純水の量を1分間測定した。これを3回測定して平均値を求めた。この数値をサンプルの表面積で割り、透水性能とした。
(Water permeability performance of hollow porous membrane)
The water permeability of the hollow porous membrane was measured by the following method.
The sample to be measured was cut into 4 cm, and one end face was sealed with a polyurethane resin.
Next, the sample was decompressed in ethanol for 5 minutes or more and then immersed in pure water for replacement.
Pure water (25 ° C.) was placed in the container, connected to the other end of the sample with a tube, and an air pressure of 200 kPa was applied to the container to measure the amount of pure water coming out of the sample for 1 minute. This was measured three times to obtain an average value. This value was divided by the surface area of the sample to determine the water permeability.

(中空状多孔質膜の破断強度)
中空状多孔質膜の破断強度は、テンシロン型引張試験機(オリエンテック社製、UCT−1T型)を用い、中空状多孔質膜を試長10cmになるようにテンシロン型引張試験機のチャック部に把持させた状態で引張荷重を加え、荷重変化における支持体伸度を中空状多孔質膜が破断するまで測定した。この測定を3回行い、中空状多孔質膜が破断した荷重の平均値を求めた。
(Breaking strength of hollow porous membrane)
The tensile strength of the hollow porous membrane is determined by using a Tensilon type tensile tester (Orientec, UCT-1T type), and the chuck portion of the Tensilon type tensile tester so that the hollow porous membrane has a test length of 10 cm. A tensile load was applied in a state of being held by the substrate, and the elongation of the support in the load change was measured until the hollow porous membrane was broken. This measurement was performed 3 times, and the average value of the load at which the hollow porous membrane was broken was determined.

〔実施例1〕
(支持体の製造)
図6に示す支持体製造装置20を用いて、中空状編紐12からなる支持体10を製造した。
糸としては、ポリエステル繊維(繊度:84dtex、フィラメント数:72)を用いた。ボビン22としては、該ポリエステル繊維の5kgを巻いたものを5つ用意した。丸編機24としては、卓上型紐編機(圓井繊維機械社製、メリヤス針数:8本、針サイズ:16ゲージ、スピンドルの円周直径:6mm)を用いた。紐供給装置26および引取り装置30としては、ネルソンロールを用いた。加熱ダイス28としては、加熱手段を有するアルミニウム合金製のダイス(内径D:5mm、内径d:2.2mm、長さ:300mm)を用いた。
[Example 1]
(Manufacture of support)
The support body 10 which consists of the hollow knitted string 12 was manufactured using the support body manufacturing apparatus 20 shown in FIG.
As the yarn, a polyester fiber (fineness: 84 dtex, number of filaments: 72) was used. As the bobbin 22, five pieces of the polyester fiber wound with 5kg were prepared. As the circular knitting machine 24, a table type string knitting machine (manufactured by Sakurai Textile Machinery Co., Ltd., number of knitted needles: 8, needle size: 16 gauge, spindle circumferential diameter: 6 mm) was used. As the string supply device 26 and the take-up device 30, a Nelson roll was used. As the heating die 28, an aluminum alloy die having an heating means (inner diameter D: 5 mm, inner diameter d: 2.2 mm, length: 300 mm) was used.

5つボビン22から引き出されたポリエステル繊維を1つにまとめて糸16とした後、丸編機24によって丸編して中空状編紐12を編成し、該中空状編紐12を200℃の加熱ダイス28に通し、熱処理された中空状編紐12を支持体10として巻き取り速度90m/hrで巻取り装置32に巻き取った。ボビン22のポリエステル繊維がなくなるまで支持体10の製造を続けた。
得られた支持体10の外径は約2.1mmであり、内径は約1.3mmであった。支持体10を構成する中空状編紐12のループ17の数は、1周あたり8個、編目18の最大開口幅は約0.2mmであった。支持体10の長さは12000mであった。
The polyester fibers drawn out from the five bobbins 22 are combined into one yarn 16 and then circular knitted by a circular knitting machine 24 to knit the hollow knitted string 12. The hollow knitted string 12 is heated to 200 ° C. The heat-treated hollow knitted string 12 was passed through the heating die 28 and wound around the winding device 32 at a winding speed of 90 m / hr as the support 10. Production of the support 10 was continued until the polyester fibers on the bobbin 22 were exhausted.
The obtained support 10 had an outer diameter of about 2.1 mm and an inner diameter of about 1.3 mm. The number of the loops 17 of the hollow knitted string 12 constituting the support 10 was 8 per round, and the maximum opening width of the stitch 18 was about 0.2 mm. The length of the support 10 was 12000 m.

(中空状多孔質膜の製造)
ついで、図7に示す中空状多孔質膜製造装置40を用いて中空状多孔質膜1を製造した。
ポリフッ化ビニリデンA(アトフィナジャパン社製、商品名:カイナー301F)、ポリフッ化ビニリデンB(アトフィナジャパン社製、商品名:カイナー9000LD)、ポリビニルピロリドン(ISP社製、商品名:K−90)、N,N−ジメチルアセトアミドを、表1に示す質量比となるように混合し、製膜原液(1)および製膜原液(2)を調製した。
(Manufacture of hollow porous membrane)
Subsequently, the hollow porous membrane 1 was manufactured using the hollow porous membrane manufacturing apparatus 40 shown in FIG.
Polyvinylidene fluoride A (manufactured by Atofina Japan, trade name: Kyner 301F), polyvinylidene fluoride B (manufactured by Atofina Japan, trade name: Kyner 9000LD), polyvinylpyrrolidone (manufactured by ISP, trade name: K-90) , N, N-dimethylacetamide were mixed so as to have a mass ratio shown in Table 1 to prepare a film-forming stock solution (1) and a film-forming stock solution (2).

Figure 2012179603
Figure 2012179603

(i)工程:
第1の環状ノズル42を30℃に保温し、管路に支持体10を通しながら、上流側の第1の吐出口から製膜原液(2)を吐出して支持体10の外周面に製膜原液(2)を塗布し、さらに下流側の第2の吐出口から製膜原液(1)を吐出して製膜原液(2)上に製膜原液(1)を塗布した。
(I) Process:
While keeping the first annular nozzle 42 at 30 ° C. and passing the support 10 through the pipe, the film-forming stock solution (2) is discharged from the first discharge port on the upstream side to produce the outer peripheral surface of the support 10. The membrane stock solution (2) was applied, and the film-forming stock solution (1) was further discharged from the second discharge port on the downstream side to apply the film-forming stock solution (1) onto the film-forming stock solution (2).

(ii)工程:
ついで、製膜原液が塗布された支持体10を、第1の凝固浴槽46内にて80℃に保温した凝固液(N,N−ジメチルアセトアミド5質量%および水95質量%)中に通して、第1の多孔質膜層を形成し、第1のガイドロール48にて方向転換して第1の凝固浴槽46から引き上げ、中空状多孔質膜前駆体50を得た。
(Ii) Process:
Next, the support 10 coated with the film-forming stock solution is passed through a coagulation liquid (5% by mass of N, N-dimethylacetamide and 95% by mass of water) kept at 80 ° C. in the first coagulation bath 46. Then, a first porous membrane layer was formed, the direction was changed by the first guide roll 48, and the first porous membrane layer 50 was pulled up from the first coagulation bath 46 to obtain a hollow porous membrane precursor 50.

(iii)工程:
ついで、30℃に保温した第2の環状ノズル52に、中空状多孔質膜前駆体50を通しながら、上流側の第1の吐出口から内部凝固液としてグリセリン(和光純薬工業社製、一級)を吐出して第1の多孔質膜層上にグリセリンを塗布し、さらに下流側の第2の吐出口から製膜原液(1)を吐出してグリセリン上に製膜原液(1)を塗布した。
(Iii) Process:
Next, while passing the hollow porous membrane precursor 50 through the second annular nozzle 52 kept at 30 ° C., glycerin (first grade, manufactured by Wako Pure Chemical Industries, Ltd.) from the first discharge port on the upstream side. ) To apply glycerin on the first porous membrane layer, and further discharge the film forming stock solution (1) from the second discharge port on the downstream side to apply the film forming stock solution (1) on the glycerin. did.

(iv)工程:
ついで、(ii)工程と同様の条件にて、中空状多孔質膜前駆体50の外周面に第2の多孔質膜層を形成し、中空状多孔質膜1を得た。
(Iv) Process:
Next, a second porous membrane layer was formed on the outer peripheral surface of the hollow porous membrane precursor 50 under the same conditions as in the step (ii), and the hollow porous membrane 1 was obtained.

(v)工程:
ついで、中空状多孔質膜1を98℃の熱水中で3分間洗浄して、残存するN,N−ジメチルアセトアミドおよびポリビニルピロリドンの一部を除去した後、下記(x)〜(z)の工程を2回繰り返し、残存するポリビニルピロリドンを、多孔質膜層11に対する質量比で2%未満まで除去した。
(x)中空状多孔質膜1を50000mg/Lの次亜塩素酸ナトリウム水溶液に浸漬する工程。
(y)中空状多孔質膜1を90℃のスチーム槽中で2分間加熱する工程。
(z)中空状多孔質膜1を90℃の熱水中で3分間洗浄する工程。
(V) Process:
Next, after the hollow porous membrane 1 was washed in hot water at 98 ° C. for 3 minutes to remove a part of the remaining N, N-dimethylacetamide and polyvinylpyrrolidone, the following (x) to (z) The process was repeated twice, and the remaining polyvinyl pyrrolidone was removed by mass ratio with respect to the porous membrane layer 11 to less than 2%.
(X) A step of immersing the hollow porous membrane 1 in a 50000 mg / L aqueous sodium hypochlorite solution.
(Y) The process of heating the hollow porous membrane 1 for 2 minutes in a 90 degreeC steam tank.
(Z) A step of washing the hollow porous membrane 1 in hot water at 90 ° C. for 3 minutes.

(vi)〜(vii)工程:
中空状多孔質膜1を85℃で10分間乾燥した後、巻取り機にてボビンに巻き取った。
Steps (vi) to (vii):
The hollow porous membrane 1 was dried at 85 ° C. for 10 minutes and then wound around a bobbin with a winder.

得られた中空状多孔質膜1の外径は、約2.80mmであり、内径は約1.2mmであり、多孔質膜層11の膜厚は平均約350μmであり、透水性能は105m/m/h/MPaであった。
該中空状多孔質膜1を中心軸に直交する方向に切断し、断面を観察した。多孔質膜層11は、糸16には、その表面から約30%程度しか侵入していなかった。一方、多孔質膜層11は、編目18を通って支持体10の中空部まで侵入しており、多孔質膜層11と支持体10とは強固に接着されていた。なお、支持体10の中空部の内周面に多孔質膜層11の一部が薄く付着していたが、中空部の内径は製膜原液の塗布前とほぼ同じであった。
The resulting hollow porous membrane 1 has an outer diameter of about 2.80 mm, an inner diameter of about 1.2 mm, an average thickness of the porous membrane layer 11 of about 350 μm, and a water permeability of 105 m 3. / M 2 / h / MPa.
The hollow porous membrane 1 was cut in a direction perpendicular to the central axis, and the cross section was observed. The porous membrane layer 11 penetrated only about 30% from the surface of the yarn 16. On the other hand, the porous membrane layer 11 penetrated through the stitch 18 to the hollow portion of the support 10, and the porous membrane layer 11 and the support 10 were firmly bonded. Although a part of the porous membrane layer 11 was thinly attached to the inner peripheral surface of the hollow portion of the support 10, the inner diameter of the hollow portion was almost the same as that before application of the membrane forming stock solution.

〔実施例2〕
(中空状多孔質膜の製造)
第1の環状ノズル42において、支持体10の外周面に製膜原液(1)のみを塗布した以外は、実施例1と同様にして中空状多孔質膜1を製造した。
[Example 2]
(Manufacture of hollow porous membrane)
A hollow porous membrane 1 was produced in the same manner as in Example 1 except that only the membrane-forming solution (1) was applied to the outer peripheral surface of the support 10 in the first annular nozzle 42.

得られた中空状多孔質膜1の外径は、約2.78mmであり、内径は約1.2mmであり、多孔質膜層11の膜厚は平均約340μmであり、透水性能は115m/m/h/MPaであった。
該中空状多孔質膜1を中心軸に直交する方向に切断し、断面を観察した。多孔質膜層11は、糸16には、その極表面にしか侵入していなかった。一方、多孔質膜層11は、編目を通って支持体10の厚さの約100%近くまで侵入しており、糸16のループ17の一部が多孔質膜層11に覆われた状態で、多孔質膜層11と支持体10とは強固に接着されていた。
The obtained hollow porous membrane 1 has an outer diameter of about 2.78 mm, an inner diameter of about 1.2 mm, an average thickness of the porous membrane layer 11 of about 340 μm, and a water permeability of 115 m 3. / M 2 / h / MPa.
The hollow porous membrane 1 was cut in a direction perpendicular to the central axis, and the cross section was observed. The porous membrane layer 11 had penetrated into the thread 16 only on the pole surface. On the other hand, the porous membrane layer 11 penetrates through the stitch to about 100% of the thickness of the support 10, and a part of the loop 17 of the yarn 16 is covered with the porous membrane layer 11. The porous membrane layer 11 and the support 10 were firmly bonded.

〔実施例3〕
(支持体の製造)
糸16として、ポリエステル繊維A(繊度:84dtex、フィラメント数:72)およびポリエステル繊維B(高強力ポリエステル繊維、繊度:235dtex、フィラメント数:24)を用い、ボビン22として、ポリエステル繊維Aの5kgを巻いたボビンAを1つおよびポリエステル繊維Bの5kgを巻いたボビンBを2つ用意し、丸編機24として、卓上型紐編機(圓井繊維機械社製、メリヤス針数:10本、針サイズ:16ゲージ、スピンドルの円周直径:6mm)を用いた以外は、実施例1と同様にして、ボビンAのポリエステル繊維Aがなくなるまで支持体10を製造した。
得られた支持体10の外径は約2.1mmであり、内径は約1.2mmであった。支持体10を構成する中空状編紐12のループ17の数は、1周あたり10個、編目18の最大開口幅は約0.15mmであった。支持体10の長さは4200mであった。
Example 3
(Manufacture of support)
Polyester fiber A (fineness: 84 dtex, number of filaments: 72) and polyester fiber B (high-strength polyester fiber, fineness: 235 dtex, number of filaments: 24) are used as the yarn 16, and 5 kg of polyester fiber A is wound as the bobbin 22. 1 bobbin A and 2 bobbins B wound with 5 kg of polyester fiber B are prepared. As the circular knitting machine 24, a table-type string knitting machine (manufactured by Sakurai Textile Machinery Co., Ltd., number of knitted needles: 10 needles) The support 10 was manufactured in the same manner as in Example 1 except that the size: 16 gauge and the circumference diameter of the spindle: 6 mm were used until the polyester fiber A of the bobbin A was exhausted.
The obtained support 10 had an outer diameter of about 2.1 mm and an inner diameter of about 1.2 mm. The number of the loops 17 of the hollow knitted string 12 constituting the support 10 was 10, and the maximum opening width of the stitch 18 was about 0.15 mm. The length of the support 10 was 4200 m.

(中空状多孔質膜の製造)
該中空状編紐12を支持体10として用いた以外は、実施例2と同様にして中空状多孔質膜1を製造した。
(Manufacture of hollow porous membrane)
A hollow porous membrane 1 was produced in the same manner as in Example 2 except that the hollow knitted string 12 was used as the support 10.

得られた中空状多孔質膜1の外径は、約2.8mmであり、内径は約1.1mmであり、多孔質膜層11の膜厚は平均約340μmであり、透水性能は105m/m/h/MPaであった。
該中空状多孔質膜1を中心軸に直交する方向に切断し、断面を観察した。多孔質膜層11は、ポリエステル繊維Aが表面に位置する部分では、糸16の深部まで侵入し、ポリエステル繊維Bが表面に位置する部分では、糸16の極表面にしか侵入していなかった。一方、多孔質膜層11は、編目18を通って支持体10の厚さの約80%まで侵入しており、多孔質膜層11と支持体10とは強固に接着されていた。
また、中空状多孔質膜1の破断強度は、実施例2の中空状多孔質膜1の約1.5倍の約400Nであった。
The obtained hollow porous membrane 1 has an outer diameter of about 2.8 mm, an inner diameter of about 1.1 mm, an average thickness of the porous membrane layer 11 of about 340 μm, and a water permeability of 105 m 3. / M 2 / h / MPa.
The hollow porous membrane 1 was cut in a direction perpendicular to the central axis, and the cross section was observed. The porous membrane layer 11 penetrated to the deep part of the yarn 16 at the portion where the polyester fiber A was located on the surface, and only penetrated the pole surface of the yarn 16 where the polyester fiber B was located on the surface. On the other hand, the porous membrane layer 11 penetrated through the stitch 18 to about 80% of the thickness of the support 10, and the porous membrane layer 11 and the support 10 were firmly bonded.
The breaking strength of the hollow porous membrane 1 was about 400 N, which is about 1.5 times that of the hollow porous membrane 1 of Example 2.

本発明の中空状多孔質膜は、精密濾過、限外濾過等による水処理に用いる濾過膜として好適である。   The hollow porous membrane of the present invention is suitable as a filtration membrane used for water treatment by microfiltration, ultrafiltration or the like.

1 中空状多孔質膜
10 支持体
11 多孔質膜層
12 中空状編紐
16 糸
18 編目
DESCRIPTION OF SYMBOLS 1 Hollow porous membrane 10 Support body 11 Porous membrane layer 12 Hollow knitted string 16 Yarn 18 stitch

Claims (4)

中空状の支持体と、該支持体の外周面に設けられた多孔質膜層とを有し、
前記支持体が、マルチフィラメントからなる1本の糸を丸編した中空状編紐であり、かつ編目の最大開口幅が0.05〜0.3mmである、中空状多孔質膜。
A hollow support, and a porous membrane layer provided on the outer peripheral surface of the support,
A hollow porous membrane in which the support is a hollow knitted string obtained by circularly knitting a single yarn made of multifilaments, and the maximum opening width of a stitch is 0.05 to 0.3 mm.
前記多孔質膜層が、前記支持体の編目を通って、支持体の厚さの50%以上浸入している、請求項1に記載の中空状多孔質膜。   The hollow porous membrane according to claim 1, wherein the porous membrane layer penetrates 50% or more of the thickness of the support through the stitch of the support. 前記マルチフィラメントが、種類の異なる繊維を2種類以上混合したものである、請求項1または2に記載の中空状多孔質膜。   The hollow porous membrane according to claim 1 or 2, wherein the multifilament is a mixture of two or more types of different fibers. 中空状の支持体の外周面に、多孔質膜層の材料および溶剤を含む製膜原液を塗布し、凝固させることによって多孔質膜層を形成する中空状多孔質膜の製造方法において、
前記支持体として、マルチフィラメントからなる1本の糸を丸編した中空状編紐であり、かつ編目の最大開口幅が0.05〜0.3mmであるものを用いることによって請求項1〜3のいずれかに記載の中空状多孔質膜を製造することを特徴とする中空状多孔質膜の製造方法。
In the method for producing a hollow porous membrane, a porous membrane layer is formed by applying a film-forming stock solution containing a material and a solvent for the porous membrane layer to the outer peripheral surface of the hollow support, and solidifying the solution.
The support is a hollow knitted string obtained by circularly knitting a single yarn made of multifilament and having a maximum opening width of 0.05 to 0.3 mm. A method for producing a hollow porous membrane, comprising producing the hollow porous membrane according to any one of the above.
JP2012120025A 2012-05-25 2012-05-25 Hollow porous membrane and method for producing the same Active JP5666502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012120025A JP5666502B2 (en) 2012-05-25 2012-05-25 Hollow porous membrane and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012120025A JP5666502B2 (en) 2012-05-25 2012-05-25 Hollow porous membrane and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006317029A Division JP2008126199A (en) 2006-11-24 2006-11-24 Hollow porous film and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2012179603A true JP2012179603A (en) 2012-09-20
JP5666502B2 JP5666502B2 (en) 2015-02-12

Family

ID=47011302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012120025A Active JP5666502B2 (en) 2012-05-25 2012-05-25 Hollow porous membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP5666502B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016010792A (en) * 2014-06-04 2016-01-21 Nok株式会社 Method for production of porous hollow fiber membrane of fiber-reinforced polyvinylidene fluoride
JP2018075522A (en) * 2016-11-09 2018-05-17 Nok株式会社 Method for producing fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane
WO2018151217A1 (en) 2017-02-15 2018-08-23 Nok株式会社 Braid joining method for braid-reinforced hollow fiber membrane and manufacturing method for braid-reinforced porous hollow fiber membrane

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4964574A (en) * 1972-08-01 1974-06-22
JPS5145760Y2 (en) * 1972-09-25 1976-11-05
JPS5281076A (en) * 1975-12-29 1977-07-07 Asahi Chem Ind Co Ltd Semipermeable membrane made of hollow yarn
JPS553826A (en) * 1978-06-26 1980-01-11 Asahi Chem Ind Co Ltd Filter element
JPS5711650A (en) * 1980-06-23 1982-01-21 Mitsubishi Rayon Co Manufacture of artificial blood vessel
JPH02501400A (en) * 1987-09-22 1990-05-17 ブツク,アルフレート carbon filter
JPH02241448A (en) * 1989-03-15 1990-09-26 Gunze Ltd Artificial blood tube and manufacture thereof
JPH08269841A (en) * 1995-03-21 1996-10-15 Hoechst Trevira Gmbh & Co Kg Structure of network structure with opening which is secondarily moldable and thermally stabilizable
JP2002129450A (en) * 2000-10-23 2002-05-09 Toray Ind Inc Knitted fabric structure and method for producing the same
JP2003225542A (en) * 2001-12-07 2003-08-12 Kolon Ind Inc Composite hollow fiber membrane reinforced with woven fabric
JP2006150270A (en) * 2004-11-30 2006-06-15 Daicel Chem Ind Ltd Hollow fiber semipermeable membrane

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4964574A (en) * 1972-08-01 1974-06-22
JPS5145760Y2 (en) * 1972-09-25 1976-11-05
JPS5281076A (en) * 1975-12-29 1977-07-07 Asahi Chem Ind Co Ltd Semipermeable membrane made of hollow yarn
JPS553826A (en) * 1978-06-26 1980-01-11 Asahi Chem Ind Co Ltd Filter element
JPS5711650A (en) * 1980-06-23 1982-01-21 Mitsubishi Rayon Co Manufacture of artificial blood vessel
JPH02501400A (en) * 1987-09-22 1990-05-17 ブツク,アルフレート carbon filter
JPH02241448A (en) * 1989-03-15 1990-09-26 Gunze Ltd Artificial blood tube and manufacture thereof
JPH08269841A (en) * 1995-03-21 1996-10-15 Hoechst Trevira Gmbh & Co Kg Structure of network structure with opening which is secondarily moldable and thermally stabilizable
JP2002129450A (en) * 2000-10-23 2002-05-09 Toray Ind Inc Knitted fabric structure and method for producing the same
JP2003225542A (en) * 2001-12-07 2003-08-12 Kolon Ind Inc Composite hollow fiber membrane reinforced with woven fabric
JP2006150270A (en) * 2004-11-30 2006-06-15 Daicel Chem Ind Ltd Hollow fiber semipermeable membrane

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016010792A (en) * 2014-06-04 2016-01-21 Nok株式会社 Method for production of porous hollow fiber membrane of fiber-reinforced polyvinylidene fluoride
JP2018075522A (en) * 2016-11-09 2018-05-17 Nok株式会社 Method for producing fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane
WO2018151217A1 (en) 2017-02-15 2018-08-23 Nok株式会社 Braid joining method for braid-reinforced hollow fiber membrane and manufacturing method for braid-reinforced porous hollow fiber membrane

Also Published As

Publication number Publication date
JP5666502B2 (en) 2015-02-12

Similar Documents

Publication Publication Date Title
JP5549768B2 (en) Hollow porous membrane
JP2008126199A (en) Hollow porous film and its manufacturing method
JP2008114180A (en) Support for hollow porous membrane, hollow porous membrane and manufacturing method of them
JP5745510B2 (en) Hollow fiber membrane reinforced with non-braided fabric
JP6115592B2 (en) Hollow porous membrane
JP5207220B2 (en) HOLLOW POROUS MEMBRANE SUPPORT, HOLLOW POROUS MEMBRANE AND METHOD FOR PRODUCING THEM
KR102171580B1 (en) Method to make a yarn-reinforced hollow fibre membranes around a soluble core
TW201237078A (en) Supported hollow fiber membrane
JP4361901B2 (en) Porous hollow fiber membrane and method for producing the same
JP5666502B2 (en) Hollow porous membrane and method for producing the same
JP5458141B2 (en) Method for producing hollow porous membrane
JP5637176B2 (en) Method for producing support for hollow porous membrane, hollow porous membrane and method for producing the same
JP5796433B2 (en) Thin hollow porous membrane
JP2013128865A (en) Support for hollow fiber membrane, hollow fiber membrane, and method for producing them
JP5197865B2 (en) HOLLOW POROUS MEMBRANE SUPPORT, HOLLOW POROUS MEMBRANE AND METHOD FOR PRODUCING THEM
JP5565621B2 (en) Method for producing support for porous membrane and support for porous membrane

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141210

R151 Written notification of patent or utility model registration

Ref document number: 5666502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250