JP2012179333A - Electrode - Google Patents

Electrode Download PDF

Info

Publication number
JP2012179333A
JP2012179333A JP2011057149A JP2011057149A JP2012179333A JP 2012179333 A JP2012179333 A JP 2012179333A JP 2011057149 A JP2011057149 A JP 2011057149A JP 2011057149 A JP2011057149 A JP 2011057149A JP 2012179333 A JP2012179333 A JP 2012179333A
Authority
JP
Japan
Prior art keywords
electrode
stimulation
living body
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011057149A
Other languages
Japanese (ja)
Inventor
Norio Ishikawa
則夫 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011057149A priority Critical patent/JP2012179333A/en
Publication of JP2012179333A publication Critical patent/JP2012179333A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a biomedical electrode capable of stimulating a living body with as small as possible a stimulation threshold value (energy) by devising size, a shape, or arrangement of a lead electrode of a pacemaker to change a density or a flow way (a current density distribution) of a stimulation current.SOLUTION: An electrode 14 for a positive electrode and an electrode 17 or 18 for a negative electrode are disposed in different positions on an insulative substance 13, and an electrochemical effective area of the electrode for the positive electrode is larger than an electrochemical effective area of the electrode for the negative electrode. When a prescribed stimulation portion of the living body is stimulated, the distance between the electrode for the positive electrode and the living body and the distance between the electrode for the negative electrode and the living body vary, and the stimulation current flowing to the negative electrode from the positive electrode flows obliquely to the central axis of the cylindrical or conical insulative substance. The shapes of the electrode for the positive electrode and the electrode for the negative electrode are shapes divided by a plane including the axis of the cylinder, and an insulator is disposed such that one of the semicylinders is projected leftward or upward, and that the other semicylinder is projected rightward or downward.

Description

本発明は、生体の所定の部位に装着された電極を用いて心電図の導出あるいは電気刺激を生体に加える生体用電極であって、正極用電極と負極用電極とで寸法、形状あるいは配置が異なることを特徴とする生体用電極に関する。The present invention is a biological electrode for applying electrocardiogram derivation or electrical stimulation to a living body using an electrode attached to a predetermined part of the living body, and the size, shape, or arrangement of the positive electrode and the negative electrode are different. The present invention relates to a biological electrode.

ペースメーカで心筋に電気刺激を加える際は、可能な限り小さな刺激閾値(エネルギ)で有効な刺激を加えることが重要である。なぜなら、小さい刺激エネルギで有効な刺激を加えることができれば、その分だけ生体に加わる悪影響が減少し、心不全等になりにくいと考えられているからである。さらに、刺激エネルギが小さいほど消費されるペースメーカ内蔵の電池エネルギは減少し、ペースメーカの電池寿命が延びることになる。このため、可能な限り小さな刺激エネルギで有効な刺激を得る方法あるいは装置が望まれている。
生体は電流Iで刺激される(電圧Vではない)ため、ペースメーカの電気刺激はパルス電流Iを加えることにより行われている。パルス電流を加える方法は2種類にあり、定電圧法と定電流法とがあるが、現在では定電圧法が一般的である。定電圧法における刺激強度の調整は、パルス幅Tを一定にした状態で、刺激電圧Vを変化させることによって行われる。
刺激電圧を増加させた際に有効な刺激が得られたときの刺激電圧は閾値と呼ばれる。通常ペースメーカの刺激電圧は、求められた刺激閾値より少し大きい値に設定される。定電圧法における設定は電圧Vで行うが、実際の刺激は電流Iにより行われる。
刺激電圧に設定したうえで、さらに小さな刺激エネルギを設定するためにはパルス幅を調整する。その他の方法としては、生体の刺激部位を変えて調整する方法がある。
しかし、以上の刺激エネルギの低減方法には限界がある。このような背景において、正、負の刺激電極の寸法、形状あるいは配置等の工夫を行った電極の開発が望まれている。
When applying electrical stimulation to the myocardium with a pacemaker, it is important to apply effective stimulation with the smallest possible stimulation threshold (energy). This is because it is considered that if an effective stimulus can be applied with a small stimulus energy, the adverse effect on the living body is reduced by that amount, and heart failure or the like is unlikely to occur. Furthermore, as the stimulation energy is smaller, the battery energy built in the pacemaker is reduced and the battery life of the pacemaker is extended. For this reason, a method or apparatus for obtaining effective stimulation with as little stimulation energy as possible is desired.
Since the living body is stimulated by the current I (not the voltage V), the electrical stimulation of the pacemaker is performed by applying the pulse current I. There are two methods for applying a pulse current, a constant voltage method and a constant current method. At present, the constant voltage method is common. The adjustment of the stimulation intensity in the constant voltage method is performed by changing the stimulation voltage V while keeping the pulse width T constant.
The stimulation voltage when an effective stimulation is obtained when the stimulation voltage is increased is called a threshold value. Usually, the stimulation voltage of the pacemaker is set to a value slightly larger than the determined stimulation threshold. Although the setting in the constant voltage method is performed by the voltage V, the actual stimulation is performed by the current I.
In order to set a smaller stimulation energy after setting the stimulation voltage, the pulse width is adjusted. As another method, there is a method of adjusting by changing the stimulation site of the living body.
However, there is a limit to the method for reducing the stimulation energy. In such a background, it is desired to develop an electrode that is devised such as the size, shape, or arrangement of positive and negative stimulation electrodes.

ペースメーカの刺激エネルギの低減を検討する際には、刺激のための1パルスあたりのエネルギWおよび刺激電流Iの密度σおよび刺激電流密度分布(電流の流れ方)を検討する必要がある。
第一にWは、加えた刺激電圧Vと、それによって生体に流れた刺激電流Iおよび刺激電流Iのパルス幅Tに比例する。また、このときの電極インピーダンスをZと仮定すると、Wは、I×Z×Tに比例するともいえる。
第二に、生体に有効な刺激が加えられるか否かは、正確にいえば、刺激電流Iの大きさではなく、刺激電流Iの密度、つまり刺激電流密度σの大きさで決まる。
以上を考慮したうえで、本発明では可能な限り刺激エネルギを低減するために刺激電流密度σおよび刺激電流密度分布(刺激電流の流れ方)を変えた生体用電極を提供することを目的とする。
When considering the reduction of the stimulation energy of the pacemaker, it is necessary to examine the energy W per pulse for stimulation, the density σ of the stimulation current I, and the stimulation current density distribution (how the current flows).
First, W is proportional to the applied stimulation voltage V and the stimulation current I flowing through the living body and the pulse width T of the stimulation current I. Further, assuming that the electrode impedance at this time is Z, it can be said that W is proportional to I 2 × Z × T.
Secondly, whether or not an effective stimulus is applied to a living body is not precisely determined by the magnitude of the stimulation current I, but by the density of the stimulation current I, that is, the magnitude of the stimulation current density σ.
In consideration of the above, an object of the present invention is to provide a living body electrode in which the stimulation current density σ and the stimulation current density distribution (how the stimulation current flows) are changed in order to reduce the stimulation energy as much as possible. .

本発明の請求項1に記載の生体用電極は、生体の所定の部位に装着された電極を用いて心電図の導出あるいは電気刺激を生体に加える生体用電極であって、正極用電極と負極用電極とで、寸法、形状あるいは配置が異なることを特徴とする生体用電極である。
また、本発明の請求項2に記載の生体用電極は、正極用電極と負極用電極が絶縁性物質の異なる位置に配置され、正極用電極の電気化学的実効面積が負極用電極の電気化学的実効面積より大きいことを特徴とする請求項1の生体用電極である。
本発明の請求項3に記載の生体用電極は、正極用電極と負極用電極が円柱状あるいは円錐状の絶縁性物質の異なる位置に配置され、生体の所定の刺激部位を刺激する際に、正極用電極と生体までの距離と、負極用電極と生体までの距離とが異なり、かつ、正極から負極に流れる刺激電流は円柱状あるいは円錐状の絶縁性物質の中心軸に対して斜めに流れる刺激電流を含むことを特徴とする生体用電極である。
さらに、本発明の請求項4に記載の生体用電極は、正極用電極と負極用電極が絶縁性物質の異なる位置に配置され、これらの電極の形状が円筒の軸を含む面で分割された形状で、この半円筒の一方を左あるいは上に凸(トツ)に、もう一方の半円筒を右あるいは下に凸(トツ)になるように絶縁物に配置したことを特徴とする請求項1から請求項3の生体用電極である。
The biomedical electrode according to claim 1 of the present invention is a biomedical electrode for deriving an electrocardiogram or applying electrical stimulation to a living body using an electrode attached to a predetermined part of the living body, the positive electrode and the negative electrode The electrode for living bodies is characterized in that the size, shape, or arrangement differs from electrode to electrode.
In the biological electrode according to claim 2 of the present invention, the positive electrode and the negative electrode are arranged at different positions of the insulating material, and the electrochemical effective area of the positive electrode is the electrochemical of the negative electrode. The living body electrode according to claim 1, wherein the living body electrode is larger than the effective effective area.
In the biological electrode according to claim 3 of the present invention, when the positive electrode and the negative electrode are arranged at different positions of the cylindrical or conical insulating substance and stimulate a predetermined stimulation site of the living body, The distance between the positive electrode and the living body is different from the distance between the negative electrode and the living body, and the stimulation current flowing from the positive electrode to the negative electrode flows obliquely with respect to the central axis of the cylindrical or conical insulating material. A biomedical electrode comprising a stimulation current.
Furthermore, in the biomedical electrode according to claim 4 of the present invention, the positive electrode and the negative electrode are arranged at different positions of the insulating material, and the shape of these electrodes is divided by a plane including a cylindrical axis. The shape of the half-cylinder is arranged in an insulator so that one of the half-cylinders protrudes to the left or upward (toe) and the other half-cylinder protrudes to the right or down (toe). The biomedical electrode according to claim 3.

本発明の生体用電極は、この目的を達成するために、請求項1により、生体の所定の部位に装着された電極を用いて心電図の導出あるいは電気刺激を生体に加える生体用電極であって、正極用電極と負極用電極の寸法、形状あるいは配置が異なることを特徴とする。生体(心筋)における刺激は主に負極で行われると考えられ、少なくともひとつの細胞で刺激閾値を越えて有効な刺激が得られれば、ペースメーカのペーシングは可能とされる。刺激閾値は通常、刺激電圧の大きさで表わすが、実際は、刺激電流の密度で決まる。生体刺激においては刺激電流密度分布、つまり刺激電流の流れ方も重要と考えられている。正極用電極と負極用電極の寸法、形状あるいは配置を変えることによって、刺激電流の密度分布(刺激電流の流れ方)を変えることができる。生体の電気伝導率は、刺激電流の流れ方に影響を与える。例えば、電極が心房筋に装着された場合に心房筋のみならず横隔神経まで刺激が加わり、トイッチングという悪影響が生じる場合がある。この原因は、心房筋の奥に横隔神経があり、心房筋の厚さが薄いこと、および神経の電気伝導率が比較的良いためである。これらの電気伝導率は、血液が最も良く、神経、心筋の順である。In order to achieve this object, the living body electrode of the present invention is a living body electrode according to claim 1, wherein an electrocardiogram is derived or electrical stimulation is applied to the living body using an electrode mounted on a predetermined portion of the living body. The positive electrode and the negative electrode are different in size, shape, or arrangement. Stimulation in the living body (myocardium) is considered to be mainly performed by the negative electrode, and pacemaker pacing is possible if an effective stimulation is obtained that exceeds the stimulation threshold with at least one cell. The stimulation threshold is usually expressed by the magnitude of the stimulation voltage, but in practice, it is determined by the density of the stimulation current. In biostimulation, the stimulation current density distribution, that is, how the stimulation current flows is also considered important. By changing the size, shape, or arrangement of the positive electrode and the negative electrode, the density distribution of stimulation current (how the stimulation current flows) can be changed. The electrical conductivity of a living body affects how the stimulation current flows. For example, when the electrode is attached to the atrial muscle, stimulation may be applied not only to the atrial muscle but also to the phrenic nerve, which may cause an adverse effect of toitching. This is because the phrenic nerve is behind the atrial muscle, the thickness of the atrial muscle is thin, and the electrical conductivity of the nerve is relatively good. These electrical conductivities are best for blood, followed by nerves and myocardium.

ペースメーカにおけるペーシング法は、一般に単極刺激法(ユニポーラ刺激法)あるいは双極刺激法(バイポーラ刺激法)が用いられる。単極刺激法における正極および負極はそれぞれ、ペースメーカ本体、ペーシングリード先端に配置されたリード電極である。一方双極刺激法おける正極および負極はそれぞれ、ペーシングリードの近位電極、遠位電極である。本発明では、主に双極刺激法のための双極用ペーシングリードの電極に関する。ただし本発明は、単極刺激法に用いる、ペーシングリード先端に配置された単極リードであっても有効である。As a pacing method in a pacemaker, a unipolar stimulation method (unipolar stimulation method) or a bipolar stimulation method (bipolar stimulation method) is generally used. The positive electrode and the negative electrode in the monopolar stimulation method are lead electrodes disposed at the pacemaker body and the pacing lead tip, respectively. On the other hand, the positive electrode and the negative electrode in the bipolar stimulation method are the proximal electrode and the distal electrode of the pacing lead, respectively. The present invention relates mainly to electrodes of bipolar pacing leads for bipolar stimulation. However, the present invention is effective even with a unipolar lead disposed at the tip of a pacing lead used in the unipolar stimulation method.

双極刺激法を用いたペースメーカの刺激部位は、心房あるいは心室である。心房を刺激するための双極刺激用電極の形状は、一般にリング電極である(図1)。つまり、絶縁性円柱の両端に導電性の円筒形状の電極(リング電極)が配置される。これらのリング電極の一方が正極で、もう一方が負極になり、通常、少なくともどちらかの電極が心房筋に接するように配置される。一般にはリング電極の正極あるいは負極が心房筋に接していると考えられ、心房筋に接していない残りの部分は心房内の血液中にある。この場合の刺激電流は、正極から負極に流れるが、刺激電流は最短距離を流れようとして、リング電極の正極の円周上から負極の円周上に一様に図2に示すように流れると考えられる。The stimulation site of the pacemaker using the bipolar stimulation method is the atrium or the ventricle. The shape of the bipolar stimulation electrode for stimulating the atrium is generally a ring electrode (FIG. 1). That is, conductive cylindrical electrodes (ring electrodes) are disposed at both ends of the insulating column. One of these ring electrodes is a positive electrode and the other is a negative electrode, and is usually arranged so that at least one of the electrodes is in contact with the atrial muscle. In general, the positive electrode or the negative electrode of the ring electrode is considered to be in contact with the atrial muscle, and the remaining portion not in contact with the atrial muscle is in the blood in the atrium. In this case, the stimulation current flows from the positive electrode to the negative electrode, and the stimulation current flows from the circumference of the positive electrode of the ring electrode uniformly to the circumference of the negative electrode as shown in FIG. Conceivable.

定電圧法におけるペースメーカの設定は主に、▲1▼パルス幅T、▲2▼刺激電圧V(ペーシング電圧)および▲3▼刺激周波数f(繰り返し周波数)、である。パルス幅の大きさは一般に、100μs〜1msの間で設定される。刺激電圧は、刺激電圧を次第に大きくしていって有効な刺激が得られる刺激閾値より少し大きい値に設定される。ペースメーカの一般的な仕様は1V〜20Vであるが、通常は1V〜5Vの間で設定される。刺激周波数(Basic Rate)は、通常、健常者の心拍数と同様の60bpm〜70bpmの間で設定される。The settings of the pacemaker in the constant voltage method are mainly (1) pulse width T, (2) stimulation voltage V (pacing voltage) and (3) stimulation frequency f (repetition frequency). The magnitude of the pulse width is generally set between 100 μs and 1 ms. The stimulation voltage is set to a value slightly larger than the stimulation threshold at which the stimulation voltage is gradually increased to obtain an effective stimulation. A general specification of a pacemaker is 1V to 20V, but is usually set between 1V and 5V. The stimulation frequency (Basic Rate) is usually set between 60 bpm and 70 bpm similar to the heart rate of a healthy person.

ペースメーカの場合、心筋(生体)に流れる電流の大きさは、一般に1mA〜20mAの間と考えられるが、通常は数mAと考えられる。ただし、同じ数mAの電流でも、電極の形状、寸法、電極装着部位あるいは心筋と電極の接触状態によって刺激電流密度σは変わる。したがって、これらの条件が良ければ刺激電圧(刺激電流)を低減でき、ひとつの心筋細胞(生体細胞)に有効な刺激を加えるための1パルスあたりの刺激エネルギWを低減できると考えられる。In the case of a pacemaker, the magnitude of the current flowing through the myocardium (living body) is generally considered to be between 1 mA and 20 mA, but is usually considered to be several mA. However, even with the same current of several mA, the stimulation current density σ varies depending on the shape and size of the electrode, the electrode mounting site, or the contact state between the myocardium and the electrode. Therefore, if these conditions are good, the stimulation voltage (stimulation current) can be reduced, and the stimulation energy W per pulse for applying an effective stimulation to one cardiomyocyte (biological cell) can be reduced.

請求項1、2、3及び4に記載の発明において、生体の所定の部位に装着された電極を用いて心電図の導出あるいは生体刺激ができる。またこれらの電極を用いて生体(心筋等)を刺激すると刺激閾値(電圧、電流あるいはパルス幅)を小さくすることができ、ひいては1パルスあたりの刺激エネルギWの低減ができる。この刺激エネルギの低減は、生体刺激による悪影響(心不全発生など)の抑制およびペースメーカ等の電池寿命を延ばす、等の効果をもたらす。請求項5は、請求項1から請求項4の生体用電極を用いて、心内膜あるいは心外膜に電気刺激を加える方法である。In the first, second, third, and fourth aspects of the invention, an electrocardiogram can be derived or a living body can be stimulated using an electrode attached to a predetermined part of the living body. Further, when stimulating a living body (such as myocardium) using these electrodes, the stimulation threshold (voltage, current, or pulse width) can be reduced, and the stimulation energy W per pulse can be reduced. This reduction in stimulation energy brings about such effects as suppressing adverse effects (such as the occurrence of heart failure) caused by biological stimulation and extending the battery life of pacemakers and the like. A fifth aspect of the present invention is a method of applying electrical stimulation to the endocardium or epicardium using the biological electrodes according to the first to fourth aspects.

以下、図面を参照して本発明の生体用電極の実施例について説明する。図1は、本発明の生体用電極の一実施例の構成を示す図で、ペースメーカ本体1に接続された双極性のペーシングリード電極5および7をそれぞれ、右心房4および右心室6に装着して電気刺激を加えて(ペーシング)いる状況を示す。図3Aは、本発明の双極性対角ハーフリング型リード電極10を示す。図3Bおよび3Cはいずれも、双極性タインド対角ハーフリング型リード電極11、12を示し、図3Bは先端電極が球状、図3Cが先端電極が円錐状である。双極性対角ハーフリング型リード電極10の一般的装着部位は右心房4である。一方、双極性タインド対角ハーフリング型リード電極11、12の一般的装着部位は右心室6である。なお、これらの電極は、一般的には上側が正極、下側が負極になる。Embodiments of the biological electrode of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing the configuration of an embodiment of the biomedical electrode of the present invention. Bipolar pacing lead electrodes 5 and 7 connected to the pacemaker body 1 are attached to the right atrium 4 and the right ventricle 6, respectively. This shows the situation where electrical stimulation is applied (pacing). FIG. 3A shows a bipolar diagonal half-ring type lead electrode 10 of the present invention. FIGS. 3B and 3C both show bipolar tined diagonal half-ring type lead electrodes 11 and 12, FIG. 3B has a spherical tip electrode, and FIG. 3C has a conical tip electrode. A general attachment site of the bipolar diagonal half-ring type lead electrode 10 is the right atrium 4. On the other hand, a general attachment site of the bipolar tined diagonal half-ring type lead electrodes 11 and 12 is the right ventricle 6. These electrodes generally have a positive electrode on the upper side and a negative electrode on the lower side.

双極性対角ハーフリング型リード電極10は、絶縁性物質の円柱13の両端に導電性物質の半円筒状の電極14および電極15が正極および負極として配置され、これらの電極14および電極15は絶縁性物質の円柱13の重心に対して点対称の位置に配置されている。双極性タインド対角ハーフリング型リード電極11、12の正極側には導電性物質の半円筒状の電極14が心室用ペーシングリード11に配置され、負極側には絶縁性物質15、16に導電性物質の半球状電極17あるいは半円錐状電極18が配置される。In the bipolar diagonal half-ring type lead electrode 10, a semi-cylindrical electrode 14 and an electrode 15 made of a conductive material are arranged as a positive electrode and a negative electrode on both ends of a cylinder 13 made of an insulating material. The insulating material is disposed at a point-symmetrical position with respect to the center of gravity of the cylinder 13. A semi-cylindrical electrode 14 made of a conductive material is disposed on the ventricular pacing lead 11 on the positive electrode side of the bipolar tined diagonal half-ring type lead electrodes 11, 12, and conductive on the insulating material 15, 16 on the negative electrode side. A hemispherical electrode 17 or a semi-conical electrode 18 of the active substance is disposed.

ペースメーカ本体1には、ペーシングリード接続用のコネクタがあり、図1のデュアルチャンバー型ペースメーカの場合は、心房用コネクタ8および心室用コネクタ9がある。一方シングルチャンバー型ペースメーカの場合は、図示しないが、ペーシングリード接続用コネクタはひとつしかない。The pacemaker main body 1 has a connector for connecting pacing leads, and in the case of the dual chamber pacemaker of FIG. 1, there is an atrial connector 8 and a ventricular connector 9. On the other hand, in the case of a single chamber type pacemaker, although not shown, there is only one connector for pacing lead connection.

心房電極および心室電極の正極、負極間には、一般にパルス電圧が加えられる。ペースメーカ用プログラマを用いてパルス幅、パルス電圧およびパルスの周波数(繰り返し周波数)が設定され、一般的にパルス幅、パルス電圧およびパルスの周波数はそれぞれ、100μs〜1ms、1V〜20V、60ppm〜70ppmの間で設定される。また、このときに生体(心房筋、心室筋等)に流れる刺激電流の大きさは、1mA〜20mAと考えられる。また、刺激電流密度は、刺激部位あるいは電極装着状態により異なるが、20μA/mm〜1000μA/mmと推定される。A pulse voltage is generally applied between the positive and negative electrodes of the atrial electrode and the ventricular electrode. The pulse width, pulse voltage, and pulse frequency (repetition frequency) are set using a pacemaker programmer. Generally, the pulse width, pulse voltage, and pulse frequency are 100 μs to 1 ms, 1 V to 20 V, and 60 ppm to 70 ppm, respectively. Set between. At this time, the magnitude of the stimulation current flowing through the living body (atrial muscle, ventricular muscle, etc.) is considered to be 1 mA to 20 mA. The stimulation current density is estimated to be 20 μA / mm 2 to 1000 μA / mm 2, although it varies depending on the stimulation site or the electrode mounting state.

本発明の双極性対角ハーフリング型リード電極10における刺激電流の流れ方19を図4Aに示す。刺激電流19は正極20から負極21に向かって流れる。この正極20および負極21が絶縁性物質10の重心に対して点対称の位置に配置されているため、刺激電流は絶縁性物質13の軸22に対して斜めに流れる。この刺激電流の流れ方19は、図2に示す従来の双極性リング型リード電極23の刺激電流の流れ方24とは異なる。この結果、下側の負極21に接している生体(心筋等)には大きな刺激電流が流れる。生体と接している面積が小さいこともあり、刺激電流密度σも大きい。FIG. 4A shows how the stimulation current flows 19 in the bipolar diagonal half-ring type lead electrode 10 of the present invention. The stimulation current 19 flows from the positive electrode 20 toward the negative electrode 21. Since the positive electrode 20 and the negative electrode 21 are disposed at point-symmetrical positions with respect to the center of gravity of the insulating material 10, the stimulation current flows obliquely with respect to the axis 22 of the insulating material 13. This way of flowing the stimulation current 19 is different from the way of flowing the stimulation current 24 of the conventional bipolar ring lead electrode 23 shown in FIG. As a result, a large stimulation current flows through a living body (myocardium or the like) in contact with the lower negative electrode 21. The area in contact with the living body may be small, and the stimulation current density σ is also large.

さらに詳しく説明する。従来の双極性リング型リード電極23が右心房4に装着された状態における刺激電流の流れ方24を図2を用いて説明する。双極性リング型リード電極23は、絶縁性円柱5両端に導電性リング型電極が正極25、負極26用として配置される。正極25と負極26は絶縁性円柱5の重心に対して点対称の位置にある。このため、刺激電流は基本的に正極25から最短距離を通って負極26向かって流れる。また刺激電流は正極25および負極26のリング型電極の円周上に一様に、均一に流れると考えられる。したがって、有効な刺激は生体(心筋等)に流れる刺激電流によって得られるのみで、血液側に流れる刺激電流は無効になる。また、対角ハーフリング型電極の面積は、リング型電極の面積の半分のため、等しい刺激電流を加えた場合、対角ハーフリング型とリング型電極の刺激電流密度の比は2対1と考えられ、対角ハーフリング型電極が有効な刺激を得られやすい。このためリング型電極より小さな刺激閾値(電圧、電流、パルス幅)となり、つまり、小さな刺激エネルギで有効な刺激が得られることも考えられる。This will be described in more detail. A flow 24 of the stimulation current in a state where the conventional bipolar ring lead electrode 23 is attached to the right atrium 4 will be described with reference to FIG. In the bipolar ring lead electrode 23, conductive ring electrodes are disposed at both ends of the insulating cylinder 5 for the positive electrode 25 and the negative electrode 26. The positive electrode 25 and the negative electrode 26 are point-symmetric with respect to the center of gravity of the insulating cylinder 5. For this reason, the stimulation current basically flows from the positive electrode 25 toward the negative electrode 26 through the shortest distance. Further, it is considered that the stimulation current flows uniformly and uniformly on the circumferences of the ring-shaped electrodes of the positive electrode 25 and the negative electrode 26. Therefore, effective stimulation is obtained only by stimulation current flowing through a living body (myocardium or the like), and stimulation current flowing through the blood is invalid. In addition, since the area of the diagonal half ring type electrode is half of the area of the ring type electrode, when the same stimulation current is applied, the ratio of the stimulation current density of the diagonal half ring type and the ring type electrode is 2: 1. It is conceivable that the diagonal half-ring type electrode is likely to obtain effective stimulation. For this reason, it becomes possible that the stimulation threshold (voltage, current, pulse width) is smaller than that of the ring electrode, that is, effective stimulation can be obtained with small stimulation energy.

本発明の双極性タインドリード型電極11(遠位電極17が球状)における刺激電流の流れ方27を図4Bに示す。刺激電流27は正極14から負極17に向かって流れる。この正極14および負極17がペーシングリード3の重心に対してほぼ点対称の位置に配置されているため、刺激電流はペーシングリード3の軸に対して斜めに流れる。この結果、下側の負極17に接している生体(心筋等)には大きな刺激電流が流れる。生体と接している面積が小さいこともあり、刺激電流密度も大きい。FIG. 4B shows a flow 27 of the stimulation current in the bipolar tin lead type electrode 11 (the distal electrode 17 is spherical) of the present invention. The stimulation current 27 flows from the positive electrode 14 toward the negative electrode 17. Since the positive electrode 14 and the negative electrode 17 are disposed at substantially point-symmetrical positions with respect to the center of gravity of the pacing lead 3, the stimulation current flows obliquely with respect to the axis of the pacing lead 3. As a result, a large stimulation current flows through a living body (myocardium or the like) in contact with the lower negative electrode 17. The area in contact with the living body may be small, and the stimulation current density is also large.

本発明の双極性タインドリード型電極12(遠位電極18が円錐状)における刺激電流の流れ方28を図4Cに示す。刺激電流28は、図4Cの正極14から負極18に向かって流れる。この正極14および負極18がペーシングリード3の重心に対してほぼ点対称の位置に配置されているため、刺激電流はペーシングリード3の軸に対して斜めに流れる。この結果、下側の負極18に接している生体(心筋等)には大きな刺激電流が流れる。生体と接している面積が小さいこともあり、刺激電流密度も大きい。
なお、球状電極17あるいは円錐状電極18は、右心室に接するあるいは心筋内にねじ込むように配置される。いずれにしても、正極から負極に向かって一様(均一)に刺激電流が流れる。対角ハーフ型リード電極11、12の電気化学的実効電極面積は、リング型リード電極23の電極面積より小さくなる。この結果、双極性ハーフリング型電極14、半球状電極17あるいは円錐状電極18を用いた場合の刺激電流密度は、リング型電極を用いた場合より刺激電流密度は大きくなるため、刺激閾値は小さくなり、つまり1パルスあたりの刺激エネルギが小さくできる可能性がある。
FIG. 4C shows how the stimulation current flows in the bipolar tin lead type electrode 12 of the present invention (the distal electrode 18 is conical). The stimulation current 28 flows from the positive electrode 14 to the negative electrode 18 in FIG. 4C. Since the positive electrode 14 and the negative electrode 18 are disposed at substantially point symmetrical positions with respect to the center of gravity of the pacing lead 3, the stimulation current flows obliquely with respect to the axis of the pacing lead 3. As a result, a large stimulation current flows through a living body (myocardium or the like) in contact with the lower negative electrode 18. The area in contact with the living body may be small, and the stimulation current density is also large.
The spherical electrode 17 or the conical electrode 18 is disposed so as to contact the right ventricle or screw into the myocardium. In any case, the stimulation current flows uniformly (uniformly) from the positive electrode toward the negative electrode. The electrochemical effective electrode area of the diagonal half type lead electrodes 11 and 12 is smaller than the electrode area of the ring type lead electrode 23. As a result, the stimulation current density when the bipolar half-ring electrode 14, the hemispherical electrode 17 or the conical electrode 18 is used is larger than that when the ring-type electrode is used. That is, there is a possibility that the stimulation energy per pulse can be reduced.

対角ハーフリング型リード電極、リング型リード電極、タインド型リード電極のいずれにおいても、電極は絶縁性物質の表面より少しだけ盛り上がった状態で配置されるほうが、生体(心筋等)との接触状態が良好になる。この結果、電極表面から放出される刺激電流の殆どが生体(心筋等)に流れることになり、生体以外(血液等)に流れてロスとなる刺激電流を少なくすることができる。In any of the diagonal half-ring type lead electrode, ring type lead electrode, and tinted type lead electrode, it is better to place the electrode slightly raised from the surface of the insulating material in contact with the living body (myocardium, etc.) Will be better. As a result, most of the stimulation current released from the electrode surface flows to the living body (myocardium, etc.), and the stimulation current that flows to other parts (blood, etc.) and becomes a loss can be reduced.

本発明は、ペースメーカの心房刺激用電極および心室刺激用電極などの心内膜刺激用として有用と考えられるが、心外膜刺激用電極(心外膜リード、心筋リード)としても有用と考えられる。心外膜リード電極は、小児の場合および成人でも開心術と同時にペースメーカを植込む場合や、三尖弁を人工弁に置換しているために心内膜リード電極を使用できない場合に用いられる。従来の心外膜用電極では、図5に示すように心筋の外から刺激電流を加えるため、心筋の厚さが厚く電極インピーダンスが心内膜刺激時と比べると大きくなり、刺激電流が通りにくい。このため刺激閾値は大きくなり、刺激エネルギは大きくなり、電池寿命は短くなってしまう。本発明の電極を心外膜に装着して、小さな刺激閾値つまり小さな刺激エネルギで有効な刺激が得られると考えられる。Although the present invention is considered useful for endocardial stimulation such as an atrial stimulation electrode and a ventricular stimulation electrode of a pacemaker, it is also considered useful as an epicardial stimulation electrode (epicardial lead, myocardial lead). . The epicardial lead electrode is used in children and adults when a pacemaker is implanted simultaneously with open heart surgery, or when the endocardial lead electrode cannot be used because the tricuspid valve is replaced with an artificial valve. In the conventional epicardial electrode, as shown in FIG. 5, since a stimulation current is applied from outside the myocardium, the thickness of the myocardium is thick and the electrode impedance is larger than that during endocardial stimulation, and the stimulation current is difficult to pass. . This increases the stimulation threshold, increases the stimulation energy, and shortens the battery life. It is considered that effective stimulation can be obtained with a small stimulation threshold, that is, small stimulation energy, by attaching the electrode of the present invention to the epicardium.

本発明は、双極刺激法あるいは単極刺激法における刺激電流の流れ方(刺激電流密度分布)を従来のそれと異なるものにすることによって、刺激閾値(電圧、電流あるいはパルス幅)を減少させることができる。この結果、生体刺激による悪影響を低減させ、また1パルスあたりの刺激エネルギを低減できる。刺激エネルギの低減の結果、ペースメーカ内蔵電池の寿命を延ばすこともできると考えられる。新しい心外膜刺激用電極(心外膜リード、心筋リード)としても有用と考えられる。The present invention can reduce the stimulation threshold (voltage, current, or pulse width) by making the stimulation current flow (stimulation current density distribution) different from the conventional one in the bipolar stimulation method or the monopolar stimulation method. it can. As a result, adverse effects due to biological stimulation can be reduced, and stimulation energy per pulse can be reduced. As a result of the reduction of the stimulation energy, it is considered that the life of the pacemaker built-in battery can be extended. It is also considered useful as a new epicardial stimulation electrode (epicardial lead, myocardial lead).

第1の実施の形態の全体の構成を示すブロック図。1 is a block diagram showing the overall configuration of a first embodiment. 図1を構成する本発明の生体用電極を説明する図で、主に心房刺激用の従来の双極性リング型リード電極を示す。It is a figure explaining the biomedical electrode of this invention which comprises FIG. 1, and shows the conventional bipolar ring type lead electrode for atrial stimulation mainly. 実施例の刺激電流の流れ方を示す図。図3A、図3Bおよび図3Cはそれぞれ、双極性対角ハーフリング型リード電極、遠位電極が球状の双極性対角ハーフリング型リード電極、遠位電極が円錐状の双極性対角ハーフリング型リード電極、を示す。The figure which shows how the stimulation current of an Example flows. 3A, 3B and 3C are respectively a bipolar diagonal half-ring type lead electrode, a bipolar bipolar half-ring type lead electrode having a spherical distal electrode, and a bipolar diagonal half-ring having a conical distal electrode. A type lead electrode is shown. 実施例の電極における刺激電流の流れ方を示す図。図4A、図4Bおよび図4Cはそれぞれ、双極性対角ハーフリング型リード電極、遠位電極が球状の双極性対角ハーフリング型リード電極、遠位電極が円錐状の双極性対角ハーフリング型リード電極、における刺激電流の流れ方を示す。The figure which shows how the stimulation current flows in the electrode of an Example. 4A, 4B and 4C respectively show a bipolar diagonal half ring type lead electrode, a bipolar bipolar half ring type lead electrode having a spherical distal electrode, and a bipolar diagonal half ring having a conical distal electrode. The flow of the stimulation current in the type lead electrode is shown. 心外膜に本発明の生体用電極を直接装着した図。The figure which mounted | wore with the bioelectrode of this invention directly on the epicardium.

1 ペースメーカ本体
2 心房用ペーシングリード
3 心室用ペーシングリード
4 右心房
5 リング型リード電極
6 右心室
7 タインド型リード電極
8 心房ペーシングリード用コネクタ
9 心室ペーシングリード用コネクタ
10 対角ハーフリング型リード電極
11 遠位電極が球状の対角ハーフリング型リード電極
12 遠位電極が円錐状の対角ハーフリング型リード電極
13 円柱状絶縁物質
14 ハーフリング電極
15 球状絶縁物質
16 円錐状絶縁物質
17 半球状電極
18 半円錐状電極
19 対角ハーフリング型リード電極における刺激電流の流れ方
20 正極(ハーフリング電極)
21 負極(ハーフリング電極)
22 中心軸
23 従来のリング型リード電極
24 従来のリング型リード電極における刺激電流の流れ方
25 正極(リング極)
26 負極(リング電極)
27 遠位電極が球状の対角ハーフリング型リード電極における刺激電流の流れ方
28 遠位電極が円錐状の対角ハーフリング型リード電極における刺激電流の流れ方
DESCRIPTION OF SYMBOLS 1 Pacemaker body 2 Atrial pacing lead 3 Ventricular pacing lead 4 Right atrium 5 Ring type lead electrode 6 Right ventricle 7 Tind type lead electrode 8 Atrial pacing lead connector 9 Ventricular pacing lead connector 10 Diagonal half ring type lead electrode 11 Diagonal half-ring type lead electrode 12 having a spherical distal electrode Diagonal half-ring type lead electrode 13 having a conical distal electrode 13 Cylindrical insulating material 14 Half-ring electrode 15 Spherical insulating material 16 Conical insulating material 17 Hemispherical electrode 18 Semiconical electrode 19 Flow of stimulation current in diagonal half-ring type lead electrode 20 Positive electrode (half-ring electrode)
21 Negative electrode (half ring electrode)
22 Central shaft 23 Conventional ring-type lead electrode 24 Flow of stimulation current in conventional ring-type lead electrode 25 Positive electrode (ring electrode)
26 Negative electrode (ring electrode)
27 Flow of stimulation current in a diagonal half-ring type lead electrode having a spherical distal electrode 28 Flow of stimulation current in a diagonal half-ring type lead electrode having a distal electrode having a conical shape

Claims (5)

生体の所定の部位に装着された電極を用いて心電図の導出あるいは電気刺激を生体に加える生体用電極であって、正極用電極と負極用電極とで寸法、形状あるいは配置が異なることを特徴とする生体用電極。A biomedical electrode for applying electrocardiogram derivation or electrical stimulation to a living body using an electrode attached to a predetermined part of the living body, wherein the positive electrode and the negative electrode are different in size, shape, or arrangement. A living body electrode. 正極用電極と負極用電極が絶縁性物質の異なる位置に配置され、正極用電極の電気化学的実効面積が負極用の電極の電気化学的実効面積より大きいことを特徴とする請求項1の生体用電極。2. The living body according to claim 1, wherein the positive electrode and the negative electrode are disposed at different positions of the insulating material, and the electrochemical effective area of the positive electrode is larger than the electrochemical effective area of the negative electrode. Electrode. 正極用電極と負極用電極が円柱状あるいは円錐状の絶縁性物質の異なる位置に配置され、生体の所定の刺激部位を刺激する際に、正極用電極と生体までの距離と、負極用電極と生体までの距離とが異なり、かつ、正極から負極に流れる刺激電流は円柱状あるいは円錐状の絶縁性物質の中心軸に対して斜めに流れる刺激電流を含むことを特徴とする生体用電極。When the positive electrode and the negative electrode are arranged at different positions of the cylindrical or conical insulating material and stimulate a predetermined stimulation site of the living body, the distance between the positive electrode and the living body, the negative electrode, A living body electrode characterized in that the stimulation current flowing from the positive electrode to the negative electrode is different from the distance to the living body and flows obliquely with respect to the central axis of the cylindrical or conical insulating material. 正極用電極と負極用電極が絶縁性物質の異なる位置に配置され、これらの電極の形状が円筒の軸を含む面で分割された形状で、この半円筒の一方を左に凸(トツ)に、もう一方の半円筒を右に凸(トツ)になるように絶縁物に配置したことを特徴とする請求項1から請求項3の生体用電極。The positive electrode and the negative electrode are arranged at different positions of the insulating material, and the shape of these electrodes is divided by the plane including the axis of the cylinder, and one of the half cylinders protrudes to the left. 4. The biological electrode according to claim 1, wherein the other half-cylinder is disposed on an insulator so as to be convex to the right. 請求項1から請求項4の生体用電極を用いて、心内膜あるいは心外膜に電気刺激を加える方法。A method for applying electrical stimulation to the endocardium or epicardium using the biomedical electrode according to claim 1.
JP2011057149A 2011-02-28 2011-02-28 Electrode Pending JP2012179333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011057149A JP2012179333A (en) 2011-02-28 2011-02-28 Electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011057149A JP2012179333A (en) 2011-02-28 2011-02-28 Electrode

Publications (1)

Publication Number Publication Date
JP2012179333A true JP2012179333A (en) 2012-09-20

Family

ID=47011109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011057149A Pending JP2012179333A (en) 2011-02-28 2011-02-28 Electrode

Country Status (1)

Country Link
JP (1) JP2012179333A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106455985A (en) * 2014-05-16 2017-02-22 阿莱瓦神经治疗股份有限公司 Device for interacting with neurological tissue and methods of making and using the same
US10695556B2 (en) 2010-04-01 2020-06-30 Ecole Polytechnique Federale De Lausanne Device for interacting with neurological tissue and methods of making and using the same
US10702692B2 (en) 2018-03-02 2020-07-07 Aleva Neurotherapeutics Neurostimulation device
US10952627B2 (en) 2008-07-30 2021-03-23 Ecole Polytechnique Federale De Lausanne Apparatus and method for optimized stimulation of a neurological target
US11123548B2 (en) 2008-11-12 2021-09-21 Ecole Polytechnique Federale De Lausanne Microfabricated neurostimulation device
US11167126B2 (en) 2014-08-27 2021-11-09 Aleva Neurotherapeutics Deep brain stimulation lead
US11311718B2 (en) 2014-05-16 2022-04-26 Aleva Neurotherapeutics Sa Device for interacting with neurological tissue and methods of making and using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6006134A (en) * 1998-04-30 1999-12-21 Medtronic, Inc. Method and device for electronically controlling the beating of a heart using venous electrical stimulation of nerve fibers
JP2002515766A (en) * 1995-07-25 2002-05-28 ファーマターゲット,インク. Implantable pharmacological defibrillator system
US20030204232A1 (en) * 2002-04-30 2003-10-30 Sommer John L. Method and apparatus for selecting an optimal electrode configuration of a medical electrical lead having a multiple electrode array
JP2005507718A (en) * 2001-10-31 2005-03-24 メドトロニック・インコーポレーテッド Apparatus and method for shunting current induced in an electrical lead
WO2010126503A1 (en) * 2009-04-29 2010-11-04 Proteus Biomedical, Inc. Methods and apparatus for leads for implantable devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002515766A (en) * 1995-07-25 2002-05-28 ファーマターゲット,インク. Implantable pharmacological defibrillator system
US6006134A (en) * 1998-04-30 1999-12-21 Medtronic, Inc. Method and device for electronically controlling the beating of a heart using venous electrical stimulation of nerve fibers
JP2005507718A (en) * 2001-10-31 2005-03-24 メドトロニック・インコーポレーテッド Apparatus and method for shunting current induced in an electrical lead
US20030204232A1 (en) * 2002-04-30 2003-10-30 Sommer John L. Method and apparatus for selecting an optimal electrode configuration of a medical electrical lead having a multiple electrode array
WO2010126503A1 (en) * 2009-04-29 2010-11-04 Proteus Biomedical, Inc. Methods and apparatus for leads for implantable devices

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10952627B2 (en) 2008-07-30 2021-03-23 Ecole Polytechnique Federale De Lausanne Apparatus and method for optimized stimulation of a neurological target
US11123548B2 (en) 2008-11-12 2021-09-21 Ecole Polytechnique Federale De Lausanne Microfabricated neurostimulation device
US11766560B2 (en) 2010-04-01 2023-09-26 Ecole Polytechnique Federale De Lausanne Device for interacting with neurological tissue and methods of making and using the same
US10695556B2 (en) 2010-04-01 2020-06-30 Ecole Polytechnique Federale De Lausanne Device for interacting with neurological tissue and methods of making and using the same
US11311718B2 (en) 2014-05-16 2022-04-26 Aleva Neurotherapeutics Sa Device for interacting with neurological tissue and methods of making and using the same
US10966620B2 (en) 2014-05-16 2021-04-06 Aleva Neurotherapeutics Sa Device for interacting with neurological tissue and methods of making and using the same
CN106455985A (en) * 2014-05-16 2017-02-22 阿莱瓦神经治疗股份有限公司 Device for interacting with neurological tissue and methods of making and using the same
CN106455985B (en) * 2014-05-16 2019-09-17 阿莱瓦神经治疗股份有限公司 With the device and production and preparation method thereof of nerve fiber interaction
US11167126B2 (en) 2014-08-27 2021-11-09 Aleva Neurotherapeutics Deep brain stimulation lead
US11730953B2 (en) 2014-08-27 2023-08-22 Aleva Neurotherapeutics Deep brain stimulation lead
US10702692B2 (en) 2018-03-02 2020-07-07 Aleva Neurotherapeutics Neurostimulation device
US11266830B2 (en) 2018-03-02 2022-03-08 Aleva Neurotherapeutics Neurostimulation device
US11738192B2 (en) 2018-03-02 2023-08-29 Aleva Neurotherapeutics Neurostimulation device

Similar Documents

Publication Publication Date Title
JP2012179333A (en) Electrode
Samba et al. PEDOT–CNT coated electrodes stimulate retinal neurons at low voltage amplitudes and low charge densities
US7702385B2 (en) Electrode contact configurations for an implantable stimulator
US4679572A (en) Low threshold cardiac pacing electrodes
US9855428B2 (en) Active implantable medical device with automatic optimization of the configuration of a multi-electrode stimulation lead
US20090088827A1 (en) Lead assembly providing sensing or stimulation of spaced-apart myocardial contact areas
US20090054947A1 (en) Electrode configurations for directional leads
JPH0235582B2 (en)
JP6941414B2 (en) Biocompatible and implantable electrodes
EP1666086B1 (en) Automatic capture pacing lead
US7177680B2 (en) Field stimulation about a discontinuity of the myocardium to capture the heart at reduced pacing thresholds
US7142928B2 (en) Field stimulation about a discontinuity of the myocardium to capture the heart at reduced pacing thresholds
US20130103106A1 (en) Methods, apparatus and systems to adapt programming for a medical electrical lead
WO2020102754A2 (en) Nasal neurostimulation device with electrically conductive plastic electrode
JP2007526791A (en) Medical system with a novel bipolar pacing pair
US20140067031A1 (en) Leads incorporating a laser processed electrode
US7058454B1 (en) Stimulation/sensing electrodes for use with implantable cardiac leads in coronary vein locations
US7783366B1 (en) Lead for AV nodal vagal stimulation through an epicardial fat pad
CN106994207A (en) A kind of bipolar electrode sub-assembly and stimulating system
Howell et al. Design of electrodes for stimulation and recording
Hughes Jr et al. Effect of stimulation site on ventricular threshold in dogs with heart block
US8644956B2 (en) Shock electrode line
WO2020224896A1 (en) A lead for a pacemaker device configured to provide for an intra-cardiac pacing at the his bundle
Djordjevic et al. Target Lead—Low Threshold Electrode: Une Électrode à Seuil Bas: La “Target”
Mugica et al. Clinical experience with new leads

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150721