JP2012177457A - Foil bearing - Google Patents

Foil bearing Download PDF

Info

Publication number
JP2012177457A
JP2012177457A JP2011041844A JP2011041844A JP2012177457A JP 2012177457 A JP2012177457 A JP 2012177457A JP 2011041844 A JP2011041844 A JP 2011041844A JP 2011041844 A JP2011041844 A JP 2011041844A JP 2012177457 A JP2012177457 A JP 2012177457A
Authority
JP
Japan
Prior art keywords
foil
elastic support
support member
bearing
top foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011041844A
Other languages
Japanese (ja)
Inventor
Kazunori Harada
和慶 原田
Natsuhiko Mori
夏比古 森
Tetsuya Kurimura
栗村  哲弥
Yoshihiko Bito
仁彦 尾藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2011041844A priority Critical patent/JP2012177457A/en
Priority to PCT/JP2012/052123 priority patent/WO2012117792A1/en
Publication of JP2012177457A publication Critical patent/JP2012177457A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Supercharger (AREA)
  • Support Of The Bearing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a foil bearing for achieving its lower manufacturing cost and simpler adjusting work for bearing performance at the same time.SOLUTION: The foil bearing 1 includes a cylindrical top foil 4 having flexibility and forming a radial bearing clearance C between a shaft member 2 inserted into the inner circumference and itself, a cylindrical elastic support member 5 disposed on the outer diameter side of the top foil 4 for elastically supporting the top foil, and a cylindrical housing 3 storing the top foil 4 and the elastic support member 5 inside the inner circumference. A cylindrically formed porous body is used as the elastic supporting member 5.

Description

本発明は、軸部材と、軸部材を内周に収容した円筒状の外方部材との間に、可撓性を有する薄膜状のフォイルを介在させた、いわゆるフォイル軸受に関する。   The present invention relates to a so-called foil bearing in which a thin film-like foil having flexibility is interposed between a shaft member and a cylindrical outer member that accommodates the shaft member on the inner periphery.

従前、ガスタービンや過給機の主軸等、高温環境下で高速回転する軸を支持するための軸受として、油潤滑の転がり軸受の他、すべり軸受の一種である動圧軸受(流体動圧軸受)が使用されていた。特に、油循環用の補機を別途設けることが困難な場合、潤滑油のせん断抵抗が問題となる場合、油による汚染が問題となる場合等には、潤滑流体として空気を用いる空気動圧軸受が好適に使用されていた。   Conventionally, as a bearing for supporting a shaft that rotates at high speed in a high temperature environment, such as a main shaft of a gas turbine or a turbocharger, in addition to an oil-lubricated rolling bearing, a hydrodynamic bearing that is a type of a sliding bearing (fluid hydrodynamic bearing) ) Was used. Air dynamic pressure bearings that use air as the lubricating fluid, especially when it is difficult to separately provide auxiliary equipment for oil circulation, when shear resistance of lubricating oil becomes a problem, or when contamination by oil becomes a problem Was suitably used.

一般的な動圧軸受(空気動圧軸受)は、回転側と静止側の双方の軸受面が剛体で構成される。この種の動圧軸受において、回転側と静止側の軸受面間に形成されるラジアル軸受隙間の隙間幅管理が不十分であると、安定限界を超えた際にホワールと称される自励的な主軸の振れ回りが生じ易くなる。従って、一般的な動圧軸受において、所望の軸受性能を安定的に発揮させ、かつそれを維持するには、ラジアル軸受隙間の隙間幅を高精度に管理(常時適正範囲内に維持)する必要がある。しかしながら、上記したガスタービンや過給機の支持軸受には、例えば下記の特許文献1に開示されているように一般的に300℃程度以上の耐熱性が要求される。このように高温となる環境下で動圧軸受を使用する場合には、熱膨張の影響でラジアル軸受隙間の隙間幅が変動し易く、所望の軸受性能を安定的に維持するのが困難である。   In general dynamic pressure bearings (air dynamic pressure bearings), both the rotating and stationary bearing surfaces are formed of a rigid body. In this type of hydrodynamic bearing, if the clearance width management of the radial bearing gap formed between the bearing surface on the rotating side and the stationary side is insufficient, self-excited, called a whirl when the stability limit is exceeded This makes it easy for the main spindle to swing. Therefore, in general dynamic pressure bearings, it is necessary to manage the gap width of the radial bearing gap with high accuracy (maintain within the proper range at all times) in order to stably exhibit and maintain the desired bearing performance. There is. However, the support bearings of the gas turbine and the supercharger generally require heat resistance of about 300 ° C. or more as disclosed in, for example, Patent Document 1 below. When the hydrodynamic bearing is used in such a high temperature environment, the clearance width of the radial bearing gap is likely to fluctuate due to the effect of thermal expansion, and it is difficult to stably maintain the desired bearing performance. .

そこで、フォイル軸受と称される軸受が提案され、また実用されるに至っている。フォイル軸受は、曲げに対して剛性の低い可撓性を有する薄膜(薄板)状のフォイルで軸受面を構成し、この軸受面のたわみを許容することで荷重を支持するものであり、例えば下記の特許文献2,3に開示されているものが公知である。詳述すると、同文献に開示されたフォイル軸受は、可撓性を有し、内周に挿入した軸部材との間に楔状のラジアル軸受隙間を形成するトップフォイルと、トップフォイルの外径側に配置され、トップフォイルを弾性的に支持する弾性支持部材としてのバックフォイルと、トップフォイルおよびバックフォイルを内周に収容した円筒状の外方部材とを備える。このようなフォイル軸受において、軸部材が回転(偏芯回転)すると、軸部材の外周面とトップフォイルの内径面との間に楔状のラジアル軸受隙間が形成され、このラジアル軸受隙間に形成される流体膜(空気膜)で軸部材がラジアル方向に相対回転自在に支持される。そして、軸部材の回転中には、ラジアル軸受隙間における圧力分布の変動に応じてトップフォイルおよびバックフォイルが変形することにより、ラジアル軸受隙間の隙間幅が常時適正範囲内に維持される。また、このトップファオイルおよびバックフォイルの変形に伴ってトップフォイルに作用する摩擦力が軸・軸受系の振動を抑制するため、フォイル軸受は安定性に優れるという特徴があり、一般的な空気動圧軸受と比較して高速での使用が可能である。   Thus, a bearing called a foil bearing has been proposed and put into practical use. The foil bearing is a thin film (thin plate) -like foil having a low rigidity with respect to bending, and the load is supported by allowing the bearing surface to bend. Those disclosed in Patent Documents 2 and 3 are known. More specifically, the foil bearing disclosed in the same document is flexible, and has a top foil that forms a wedge-shaped radial bearing gap between the shaft member inserted in the inner periphery and an outer diameter side of the top foil. A back foil as an elastic support member that elastically supports the top foil, and a cylindrical outer member that houses the top foil and the back foil in the inner periphery. In such a foil bearing, when the shaft member rotates (eccentric rotation), a wedge-shaped radial bearing gap is formed between the outer peripheral surface of the shaft member and the inner surface of the top foil, and this radial bearing gap is formed. The shaft member is supported by the fluid film (air film) so as to be relatively rotatable in the radial direction. During rotation of the shaft member, the top foil and the back foil are deformed according to the pressure distribution variation in the radial bearing gap, so that the gap width of the radial bearing gap is always maintained within an appropriate range. In addition, the frictional force acting on the top foil accompanying the deformation of the top foil and back foil suppresses vibration of the shaft / bearing system, so that the foil bearing is characterized by excellent stability. It can be used at a higher speed than a pressure bearing.

また、一般的な動圧軸受のラジアル軸受隙間は、軸径の1/1000のオーダーで管理する必要があることから、例えば軸径が数mm程度の軸を支持する動圧軸受であっても、ラジアル軸受隙間の隙間幅を数μm程度に管理する必要がある。従って、製造時の公差、さらには熱膨張量まで考慮すると、一般的な動圧軸受において隙間幅管理を厳密に行うことは極めて困難であると言わざるを得ない。これに対してフォイル軸受の場合には、ラジアル軸受隙間を形成するトップフォイル自体が弾性変形するため、ラジアル軸受隙間の隙間幅を数十μm程度に管理すれば足りる。従って、製造や隙間管理を容易化することができる。   Further, since the radial bearing clearance of a general dynamic pressure bearing needs to be managed on the order of 1/1000 of the shaft diameter, for example, even a dynamic pressure bearing that supports a shaft having a shaft diameter of about several millimeters. Therefore, it is necessary to manage the gap width of the radial bearing gap to about several μm. Therefore, in consideration of manufacturing tolerances and even the amount of thermal expansion, it must be said that it is extremely difficult to strictly manage the gap width in a general dynamic pressure bearing. On the other hand, in the case of a foil bearing, since the top foil itself that forms the radial bearing gap is elastically deformed, it is sufficient to manage the gap width of the radial bearing gap to about several tens of μm. Therefore, manufacturing and gap management can be facilitated.

なお、特許文献2のフォイル軸受は、矩形状の金属薄板を筒状に丸めてなるバックフォイルに複数設けた切り上げ部により、トップフォイルが弾性的に支持される構造となっており、また、特許文献3のフォイル軸受は、矩形状の金属薄板を筒状に丸めてなるバックフォイルに複数設けた折り曲げ部により、トップフォイルが弾性的に支持される構造となっている。   The foil bearing of Patent Document 2 has a structure in which a top foil is elastically supported by a plurality of rounded portions provided on a back foil obtained by rounding a rectangular metal thin plate into a cylindrical shape. The foil bearing of Document 3 has a structure in which the top foil is elastically supported by a plurality of bent portions provided on a back foil obtained by rounding a rectangular thin metal plate into a cylindrical shape.

特許2669419号公報Japanese Patent No. 26669419 特開2002−364643号公報JP 2002-364463 A 特開2009−299748号公報JP 2009-299748 A

しかしながら、特許文献2,3に記載のフォイル軸受では、バックフォイルとなる金属薄板に機械加工や塑性加工を施すことにより、トップフォイルを弾性的に支持する切り上げ部や折り曲げ部(以下、弾性支持部という)を形成していることから、所定形状のバックフォイルを製作するのに多くの手間を要するという問題がある。また、バックフォイルを外方部材の内周に組み付けるまでの間に弾性支持部が変形等すると、所望の軸受性能(支持能力)を発揮することができなくなるおそれがあることから、バックフォイルの取り扱いに格別の配慮を要する。以上のように、従来構成のフォイル軸受においてはバックフォイルの製造コストが嵩み、このことがフォイル軸受の製造コストを増大させているのが実情である。   However, in the foil bearings described in Patent Documents 2 and 3, a rounded portion or a bent portion (hereinafter referred to as an elastic support portion) that elastically supports the top foil by performing machining or plastic processing on a metal thin plate serving as a back foil. Therefore, there is a problem that it takes a lot of labor to manufacture a back foil having a predetermined shape. In addition, if the elastic support portion is deformed before the back foil is assembled to the inner periphery of the outer member, the desired bearing performance (support capability) may not be exhibited. Requires special consideration. As described above, in the foil bearing of the conventional configuration, the manufacturing cost of the back foil is increased, and this actually increases the manufacturing cost of the foil bearing.

また、フォイル軸受の構造上、フォイル軸受の軸受性能は、バックフォイルの弾性支持能力(剛性)を調整することで変更することができる。しかしながら、特許文献2,3に記載されたバックフォイルの剛性を調整するには、バックフォイルを構成する金属薄板の材質や厚み等を変更したり、弾性支持部の形状を変更したりする必要がある。そのため、バックフォイルの剛性を調整するのに多大な手間を要し、フォイル軸受の軸受性能を要求レベルに簡便に適合させることができないという問題もある。   Further, the bearing performance of the foil bearing can be changed by adjusting the elastic support capability (rigidity) of the back foil due to the structure of the foil bearing. However, in order to adjust the rigidity of the back foil described in Patent Documents 2 and 3, it is necessary to change the material and thickness of the metal thin plate constituting the back foil, or to change the shape of the elastic support portion. is there. Therefore, it takes a lot of time to adjust the rigidity of the back foil, and there is a problem that the bearing performance of the foil bearing cannot be easily adapted to the required level.

このような実情に鑑み、本発明の目的は、この種のフォイル軸受において、製造コストの低廉化、および軸受性能の調整作業の簡便化を同時に達成可能とすることにある。   In view of such circumstances, an object of the present invention is to enable reduction in manufacturing cost and simplification of adjustment of bearing performance at the same time in this type of foil bearing.

上記の目的を達成するために創案された本発明に係るフォイル軸受は、可撓性を有し、内周に挿入した軸部材との間に楔状のラジアル軸受隙間を形成するトップフォイルと、トップフォイルの外径側に配置され、トップフォイルを弾性的に支持する弾性支持部材と、トップフォイルおよび弾性支持部材を内周に収容した円筒状の外方部材とを備え、弾性支持部材を、多孔質体で形成したことを特徴とする。なお、ここでいう「多孔質体」には、いわゆる独立気孔タイプおよび連続気孔タイプの双方が含まれる。   The foil bearing according to the present invention, which was created to achieve the above object, has a top foil that is flexible and forms a wedge-shaped radial bearing gap with a shaft member inserted in the inner periphery. An elastic support member that is disposed on the outer diameter side of the foil and elastically supports the top foil, and a cylindrical outer member that houses the top foil and the elastic support member on the inner periphery thereof. It is formed of a solid material. The “porous body” referred to here includes both so-called independent pore type and continuous pore type.

このように、トップフォイルを弾性的に支持する弾性支持部材を多孔質体で形成すれば、この多孔質体の多孔質組織を、トップフォイルを弾性的に支持する弾性支持部として機能させることができる。この場合、従来のバックフォイル(弾性支持部材)のように、適当な材質及び厚みの金属薄板に機械加工や塑性加工を施すことによって複雑形状の弾性支持部を形成せずとも、弾性支持部材の形成段階にて気孔率を調整するだけで弾性支持能力(剛性)を調整することができる。従って、弾性支持部材は、トップフォイルと接する内径面が平滑な円筒面状に形成された単純な円筒形態に形成すれば足りるので、この形状の単純化を通じて弾性支持部材の生産性を向上することができる。また、形状が単純化される分、弾性支持部材の取り扱い性が向上する。   Thus, if the elastic support member that elastically supports the top foil is formed of a porous body, the porous structure of the porous body can function as an elastic support portion that elastically supports the top foil. it can. In this case, unlike a conventional backfoil (elastic support member), a metal thin plate having an appropriate material and thickness may be machined or plastically processed to form an elastic support member having a complicated shape. The elastic support capability (rigidity) can be adjusted simply by adjusting the porosity at the formation stage. Therefore, it is sufficient that the elastic support member is formed in a simple cylindrical shape in which the inner diameter surface in contact with the top foil is formed in a smooth cylindrical surface shape. Therefore, the productivity of the elastic support member can be improved through simplification of this shape. Can do. Further, the handleability of the elastic support member is improved because the shape is simplified.

弾性支持部材を構成する多孔質体は、フォイル軸受の使用温度範囲内において、求められる弾性支持能力を発揮可能なもの(所望の態様でトップフォイルを弾性的に支持可能なもの)であれば、樹脂、金属又はセラミックスの何れの材料で形成されたものであっても良い。このうち、樹脂の多孔質体からなる弾性支持部材は、例えば、気孔形成材を配合した樹脂材料を用いて成形した略完成品形状の中間成形品から、これに含まれる気孔形成材を適当な溶媒で除去することにより、あるいは、適当な樹脂材料を発泡成形することにより得ることができる。   If the porous body constituting the elastic support member is capable of exhibiting the required elastic support ability within the operating temperature range of the foil bearing (that can elastically support the top foil in a desired manner), It may be formed of any material of resin, metal or ceramics. Among these, the elastic support member made of a resin porous body is suitable for, for example, appropriately forming the pore-forming material contained in an intermediate molded product having a substantially finished product shape formed by using a resin material containing the pore-forming material. It can be obtained by removing with a solvent or by foaming an appropriate resin material.

以上の構成において、弾性支持部材は、周方向で有端の円筒状に形成されたもの(板状の多孔質部材を丸めることで円筒形態としたもの)であっても良いし、周方向で無端の円筒状に形成されたもの(予め円筒状に形成されたもの)であっても良い。特に、弾性支持部材が、周方向で無端の円筒状に形成されたものであれば、機械的又は人為的作業によって板状の多孔質部材を円筒形態に丸める手間を省略することができる他、フォイル軸受相互間で軸受性能にバラツキが生じ難くなる。   In the configuration described above, the elastic support member may be formed in a cylindrical shape with ends in the circumferential direction (a cylindrical shape obtained by rolling a plate-like porous member), or in the circumferential direction. It may be formed in an endless cylindrical shape (formed in a cylindrical shape in advance). In particular, if the elastic support member is formed in an endless cylindrical shape in the circumferential direction, the trouble of rounding the plate-like porous member into a cylindrical shape by mechanical or artificial work can be omitted, Variations in bearing performance between foil bearings are less likely to occur.

弾性支持部材を外方部材に固定するための手段としては、圧入、接着、圧入接着(圧入と接着の併用)、あるいは溶着等を採用しても良いし、これに替えて、もしくはこれに加えて、外方部材と弾性支持部材の何れか一方に設けた凹部に、他方に設けた凸部を嵌合する、いわゆる凹凸嵌合を採用しても良い。外方部材と弾性支持部材を凹凸嵌合させる場合、何れか一方に設けた凹部に対し、他方に設けた凸部が軸方向および周方向の双方で係合するように凹部と凸部の形成態様を考慮するのが望ましい。使用中に外方部材と弾性支持部材が相対移動するのを確実に防止するためである。   As means for fixing the elastic support member to the outer member, press-fitting, bonding, press-fitting adhesion (combination of press-fitting and bonding), welding, or the like may be employed, or instead of or in addition to this. Thus, a so-called concave-convex fitting in which a convex portion provided on the other side is fitted into a concave portion provided on one of the outer member and the elastic support member may be employed. When the outer member and the elastic support member are concavo-convexly fitted, the concave portion and the convex portion are formed such that the convex portion provided on the other side is engaged with the concave portion provided on one side in both the axial direction and the circumferential direction. It is desirable to consider aspects. This is to reliably prevent the outer member and the elastic support member from moving relative to each other during use.

本発明に係るフォイル軸受は、トップフォイルおよび弾性支持部材の少なくとも一方の軸方向端部に設けた径方向の突出部を、外方部材の端面との間で(軸方向に)挟持固定する挟持部材をさらに有するものとすることができる。このようにすれば、外方部材に対し、トップフォイルおよび弾性支持部材の少なくとも一方を簡便に固定することが可能となるので、フォイル軸受の生産性向上を図ることができる。   The foil bearing according to the present invention is configured to clamp a radial protrusion provided at an axial end of at least one of the top foil and the elastic support member between the end surface of the outer member (in the axial direction). It can further have a member. In this way, it is possible to easily fix at least one of the top foil and the elastic support member to the outer member, so that the productivity of the foil bearing can be improved.

多孔質体からなるバックフォイルの内部気孔には、潤滑油を含浸させることもできる。   The internal pores of the back foil made of a porous material can be impregnated with lubricating oil.

フォイル軸受の構造上、トップフォイルとバックフォイル(弾性支持部材)は相対的に摺動移動させることが可能であり、この場合には、両者間で少なからず摩擦・摩耗が発生する。この摺動部での潤滑性を高めるため、一般的に固体潤滑材が用いられている。バックフォイルとして機能する弾性支持部材を多孔質体で形成した本発明においては、その内部気孔に潤滑油を含浸させることが可能であり、この場合には、バックフォイルの表面開孔から滲み出す潤滑油により、トップフォイルとバックフォイルの繰り返しの摺動接触による摩耗を抑制あるいは防止することができる。 Due to the structure of the foil bearing, the top foil and the back foil (elastic support member) can be slid relative to each other. In this case, friction and wear occur between the two. In order to improve the lubricity at the sliding portion, a solid lubricant is generally used. In the present invention in which the elastic support member functioning as a back foil is formed of a porous body, it is possible to impregnate the internal pores with a lubricating oil, and in this case, the lubrication that exudes from the surface opening of the back foil The oil can suppress or prevent wear due to repeated sliding contact between the top foil and the back foil.

以上に述べた本発明に係るフォイル軸受は、ガスタービンのロータの他、過給機(ターボチャージャやスーパーチャージャ)のロータ等の支持に好ましく用いることができる。   The foil bearing according to the present invention described above can be preferably used for supporting a rotor of a supercharger (turbocharger or supercharger) in addition to a rotor of a gas turbine.

以上より、本発明に係るフォイル軸受では、バックフォイルとして機能する弾性支持部材が、比較的低コストに製作可能で、取り扱い性に優れ、かつ剛性を容易に調整可能なものに置換される。これにより、この種のフォイル軸受において、製造コストの低廉化、および軸受性能の調整作業の簡便化を同時に達成することが可能となる。   As described above, in the foil bearing according to the present invention, the elastic support member functioning as the back foil is replaced with one that can be manufactured at a relatively low cost, has excellent handleability, and can easily adjust the rigidity. As a result, in this type of foil bearing, it is possible to simultaneously reduce the manufacturing cost and simplify the adjustment of the bearing performance.

(a)図は、本発明の一実施形態に係るフォイル軸受を概念的に示す軸平行断面図であり、(b)図は、同軸直交断面図である。(A) is an axial parallel sectional view conceptually showing a foil bearing according to an embodiment of the present invention, and (b) is a coaxial orthogonal sectional view. 本発明の他の実施形態に係るフォイル軸受を示す軸直交断面図である。It is an axial orthogonal cross section which shows the foil bearing which concerns on other embodiment of this invention. (a)図および(b)図共に、本発明の他の実施形態に係るフォイル軸受を示す軸平行断面図である。Both (a) figure and (b) figure are axial parallel sectional drawings which show the foil bearing which concerns on other embodiment of this invention. 本発明の他の実施形態に係るフォイル軸受を示す軸直交断面図である。It is an axial orthogonal cross section which shows the foil bearing which concerns on other embodiment of this invention.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に、本発明の一実施形態に係るフォイル軸受1の含軸断面図を概念的に示す。同図に示すフォイル軸受1は、例えば、ガスタービンのロータや過給機のロータ等、高温環境下で高速回転する軸部材2を支持するためのものであり、内周に挿入した軸部材2との間にラジアル軸受隙間を形成するトップフォイル4と、トップフォイル4の外径側に配置され、トップフォイル4を弾性的に支持する弾性支持部材5と、トップフォイル4および弾性支持部材5を内周に収容した円筒状の外方部材3とを主要な構成部材として備える。軸部材2の外周面は、凹凸のない平滑な円筒面に形成されている。   FIG. 1 conceptually shows an axial cross-sectional view of a foil bearing 1 according to an embodiment of the present invention. A foil bearing 1 shown in FIG. 1 is for supporting a shaft member 2 that rotates at high speed in a high temperature environment, such as a rotor of a gas turbine or a rotor of a supercharger, and the shaft member 2 inserted in the inner periphery. A top foil 4 that forms a radial bearing gap between the top foil 4, an elastic support member 5 that is disposed on the outer diameter side of the top foil 4 and elastically supports the top foil 4, and the top foil 4 and the elastic support member 5. A cylindrical outer member 3 accommodated in the inner periphery is provided as a main constituent member. The outer peripheral surface of the shaft member 2 is formed as a smooth cylindrical surface without unevenness.

外方部材3は、ソリッド(非多孔質)の金属材料や樹脂材料により周方向で無端の円筒状に形成され、図示しない静止側部材の内周に固定されている。トップフォイル4は、略矩形状をなす金属薄板(薄膜)をその長手方向に沿って丸めることで略円筒状に形成されており、金属薄板としては、ラジアル軸受隙間における圧力分布の変動に応じて弾性変形可能な可撓性を有するものが使用される。トップフォイル4の周方向一端部は、弾性支持部材5の内径面に接着、溶着等の適宜の手段で固定されており、トップフォイル4の周方向他端部は、トップフォイル4の周方向一端部の内径面に摺動自在に接触している。トップフォイル4の周方向一端部を弾性支持部材5に固定した状態で、弾性支持部材5の内径面には、トップフォイル4の外径面が摺動可能に接触している。   The outer member 3 is formed in an endless cylindrical shape in the circumferential direction with a solid (non-porous) metal material or resin material, and is fixed to the inner periphery of a stationary side member (not shown). The top foil 4 is formed in a substantially cylindrical shape by rolling a thin metal plate (thin film) having a substantially rectangular shape along its longitudinal direction, and the thin metal plate corresponds to a variation in pressure distribution in the radial bearing gap. A flexible material that can be elastically deformed is used. One end in the circumferential direction of the top foil 4 is fixed to the inner diameter surface of the elastic support member 5 by an appropriate means such as adhesion or welding, and the other circumferential end of the top foil 4 is one end in the circumferential direction of the top foil 4. It is slidably in contact with the inner diameter surface of the part. With the circumferential end of the top foil 4 fixed to the elastic support member 5, the outer diameter surface of the top foil 4 is slidably in contact with the inner diameter surface of the elastic support member 5.

弾性支持部材5は、多孔質体、ここでは樹脂の多孔質体(多孔質樹脂)で周方向に無端の円筒状に形成され、圧入、接着、圧入接着、溶着等の適宜の手段で外方部材3の内周に固定される。本実施形態では、弾性支持部材5を外方部材3の内周に軽圧入(外方部材3と弾性支持部材5の相対的な摺動移動が許容される程度の締め代で圧入)することにより、外方部材3の内周に弾性支持部材5が固定されている。弾性支持部材5の内径面および外径面は、双方共に、凹凸のない平滑な円筒面状に形成されている。このような弾性支持部材5は、例えば、気孔形成材を配合した樹脂材料を用いて略完成品形状の中間成形品を射出成形した後、この中間成形品に含まれる気孔形成材を適当な溶媒で除去することにより得られる。なお中間成形品は、射出成形の他、ベース樹脂の材質等に応じて、圧縮成形、押出し成形などの手法を用いて得ることもできる。   The elastic support member 5 is a porous body, here a resin porous body (porous resin), which is formed in an endless cylindrical shape in the circumferential direction, and is externally attached by appropriate means such as press-fitting, adhesion, press-fitting adhesion, and welding. It is fixed to the inner periphery of the member 3. In this embodiment, the elastic support member 5 is lightly press-fitted into the inner periphery of the outer member 3 (press-fitted with a tightening allowance that allows relative sliding movement between the outer member 3 and the elastic support member 5). Thus, the elastic support member 5 is fixed to the inner periphery of the outer member 3. Both the inner diameter surface and the outer diameter surface of the elastic support member 5 are formed in a smooth cylindrical surface shape without irregularities. Such an elastic support member 5 is formed by, for example, injection-molding a substantially finished intermediate product using a resin material containing a pore-forming material, and then using the appropriate solvent for the pore-forming material contained in the intermediate molded product. It can be obtained by removing with In addition to the injection molding, the intermediate molded product can be obtained by a technique such as compression molding or extrusion molding according to the material of the base resin.

弾性支持部材5(中間成形品)の成形に用いるベース樹脂としては、射出成形や押出し成形等の一般的な成形手法を採用することができ、かつ求められる耐熱性や機械的強度等を満足できれば熱可塑性樹脂、熱硬化性樹脂を問わず使用可能である。ベース樹脂としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)等の汎用プラスチック、ポリアセタール(POM)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)等のエンジニアリングプラスチック、およびポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)等のスーパーエンジニアリングプラスチックから選定された一または複数種混合したものが使用可能である。但し、この種のフォイル軸受1が300℃程度の高温環境下で用いられることを考慮すると、スーパーエンジニアリングプラスチックの中でも特に高い耐熱性(融点が300℃以上)や機械的強度を具備するもの、具体的にはポリエーテルエーテルケトン(PEEK)や熱硬化性ポリイミドをベース樹脂とするのが望ましい。ベース樹脂には、強化材、潤滑剤、導電化材、寸法安定材等の各種充填材を一又は複数種配合することもできる。   As a base resin used for molding the elastic support member 5 (intermediate molded product), a general molding technique such as injection molding or extrusion molding can be adopted, and the required heat resistance and mechanical strength can be satisfied. A thermoplastic resin or a thermosetting resin can be used. Examples of the base resin include general-purpose plastics such as polyethylene (PE) and polypropylene (PP), engineering plastics such as polyacetal (POM), polybutylene terephthalate (PBT), and polyethylene terephthalate (PET), and polyphenylene sulfide (PPS), A mixture of one or more selected from super engineering plastics such as polyetheretherketone (PEEK) can be used. However, considering that this type of foil bearing 1 is used in a high temperature environment of about 300 ° C., super engineering plastics having particularly high heat resistance (melting point of 300 ° C. or higher) and mechanical strength, Specifically, it is desirable to use polyether ether ketone (PEEK) or thermosetting polyimide as a base resin. One or more kinds of various fillers such as a reinforcing material, a lubricant, a conductive material, and a dimension stabilizing material can be blended in the base resin.

そして、弾性支持部材5(中間成形品)の成形に用いる樹脂材料は、上記のベース樹脂に、ドライブレンド、溶融混錬等、樹脂の混合に一般に使用する混錬法で気孔形成材や充填材を混合させることによって生成される。気孔形成材としては、成形時の融解を防止するため、選定されるベース樹脂の成形温度よりも高い融点を有し、ベース樹脂に配合して中間成形品を成形した後、ベース樹脂を溶解しない溶媒を用いて除去可能なものを使用することができる。この中でも、特に、中間成形品からの除去作業を容易に行い得る水溶性で、また、防錆剤としても機能するアルカリ性化合物からなる気孔形成材を好ましく使用することができる。   The resin material used for molding the elastic support member 5 (intermediate molded product) is a pore forming material or filler by a kneading method generally used for mixing the resin with the base resin, such as dry blending or melt kneading. It is produced by mixing. As a pore-forming material, it has a melting point higher than the molding temperature of the selected base resin in order to prevent melting during molding, and does not dissolve the base resin after blending with the base resin and molding an intermediate molded product Those that can be removed using a solvent can be used. Among these, in particular, a pore-forming material composed of an alkaline compound that is water-soluble and can also be easily removed from the intermediate molded product and functions as a rust preventive can be preferably used.

使用可能な気孔形成材としては、安息香酸ナトリウム、酢酸ナトリウム、セバシン酸ナトリウム、コハク酸ナトリウム、あるいはステアリン酸ナトリウム等に代表される有機アルカリ金属塩や、炭酸カリウム、モリブデン酸ナトリウム、モリブデン酸カリウム、タングステン酸ナトリウム、三リン酸ナトリウム、ピロリン酸ナトリウム等に代表される無機アルカリ金属塩等を挙げることができる。この中でも、高融点で、ベース樹脂の選定自由度を高められ、かつ水溶性に優れる安息香酸ナトリウム、酢酸ナトリウム、セバシン酸ナトリウムが特に好ましい。気孔形成材は一種のみ使用する他、二種以上混合して使用しても良い。   Examples of usable pore-forming materials include organic alkali metal salts such as sodium benzoate, sodium acetate, sodium sebacate, sodium succinate, or sodium stearate, potassium carbonate, sodium molybdate, potassium molybdate, Examples thereof include inorganic alkali metal salts represented by sodium tungstate, sodium triphosphate, sodium pyrophosphate and the like. Among these, sodium benzoate, sodium acetate, and sodium sebacate are particularly preferable because they have a high melting point, increase the degree of freedom in selecting a base resin, and are excellent in water solubility. The pore forming material may be used alone or in combination of two or more.

中間成形品から気孔形成材を除去するための溶媒としては、水の他、水と相溶するアルコール系、エステル系、あるいはケトン系の溶媒を用いることができる。これらの溶媒は、一種のみ使用する他、二種以上を混合して使用することもできる。但し、廃液処理が容易で、かつ安価であることから、気孔形成材の除去溶媒としては水が最も好ましい。   As a solvent for removing the pore-forming material from the intermediate molded product, alcohol-based, ester-based, or ketone-based solvents that are compatible with water can be used in addition to water. These solvents may be used alone or in combination of two or more. However, water is the most preferable solvent for removing the pore-forming material because waste liquid treatment is easy and inexpensive.

以上の構成からなるフォイル軸受1において、図1(b)に示すように、軸部材2に対して図示しない駆動機構から回転駆動力が付与されることによって軸部材2が回転(偏芯回転)すると、軸部材2の外周面とトップフォイル4の内径面との間に楔状のラジアル軸受隙間Cが形成され、このラジアル軸受隙間Cに形成される流体膜(空気膜)によって軸部材2がラジアル方向に回転自在に非接触支持される。そして、軸部材2の回転中には、ラジアル軸受隙間Cにおける圧力分布の変動に応じて(楔状のラジアル軸受隙間Cの形成領域が周方向および軸方向で変化するのに応じて)トップフォイル4および弾性支持部材5が弾性変形することにより、ラジアル軸受隙間Cの隙間幅が常時適正範囲内に維持(自動調整)される。   In the foil bearing 1 having the above configuration, as shown in FIG. 1B, the shaft member 2 rotates (eccentric rotation) by applying a rotational driving force to the shaft member 2 from a drive mechanism (not shown). Then, a wedge-shaped radial bearing gap C is formed between the outer peripheral surface of the shaft member 2 and the inner diameter surface of the top foil 4, and the shaft member 2 is radialized by a fluid film (air film) formed in the radial bearing gap C. Non-contact supported so as to be rotatable in the direction. During the rotation of the shaft member 2, the top foil 4 is changed according to the pressure distribution variation in the radial bearing gap C (according to the change in the formation area of the wedge-shaped radial bearing gap C in the circumferential direction and the axial direction). As the elastic support member 5 is elastically deformed, the gap width of the radial bearing gap C is always maintained within an appropriate range (automatic adjustment).

また、トップフォイル4が弾性支持部材5によって弾性的に支持されていること、トップフォイル4の径方向他端部がトップフォイル4の径方向一端部の内径面に対して摺動自在に接触しており、トップフォイル4の拡縮変形が可能であること、さらに弾性支持部材5が外方部材3の内周に軽圧入されており、弾性支持部材5が外方部材3に対して摺動移動可能であること、などの理由から、ラジアル軸受隙間Cの隙間幅の自己調整能力が強化されると共に、振動の減衰効果が得られるため、高温・高速回転といった過酷な運転条件でも軸部材2の回転が一層安定的に支持される。   Further, the top foil 4 is elastically supported by the elastic support member 5, and the other radial end portion of the top foil 4 is slidably contacted with the inner diameter surface of the radial end portion of the top foil 4. The top foil 4 can be expanded and contracted, and the elastic support member 5 is lightly press-fitted into the inner periphery of the outer member 3 so that the elastic support member 5 slides relative to the outer member 3. For this reason, the self-adjustment capability of the radial width of the radial bearing gap C is enhanced and a vibration damping effect is obtained, so that the shaft member 2 can be used even under severe operating conditions such as high temperature and high speed rotation. The rotation is supported more stably.

本発明に係るフォイル軸受1では、トップフォイル4を弾性的に支持する弾性支持部材5を多孔質体(本実施形態では樹脂の多孔質体)で形成した。このようにすれば、多孔質体の多孔質組織を、トップフォイル4を弾性的に支持する弾性支持部として機能させることができる。この場合、従来のバックフォイルのように、適当な材質及び厚みの金属薄板に機械加工や塑性加工を施すことによって複雑形状の弾性支持部を形成せずとも、弾性支持部材5の形成段階で気孔率を調整するだけで剛性を調整することができる。従って、弾性支持部材5は、トップフォイル4と接する内径面が平滑な円筒面状に形成された単純な円筒形態に形成すれば足りるので、この形状の単純化を通じて弾性支持部材5の生産性を向上することができる。また、形状が単純化される分、弾性支持部材5の取り扱い性が向上する。このように、本発明に係るフォイル軸受1では、弾性支持部材5が、低コストに製作可能で、取り扱い性に優れ、かつ剛性を容易に調整可能なものに置換される。これにより、フォイル軸受1の製造コストの低廉化、および軸受性能の調整作業の簡便化を同時に達成することが可能となる。   In the foil bearing 1 according to the present invention, the elastic support member 5 that elastically supports the top foil 4 is formed of a porous body (in this embodiment, a resin porous body). In this way, the porous structure of the porous body can function as an elastic support portion that elastically supports the top foil 4. In this case, unlike the conventional back foil, pores can be formed in the formation stage of the elastic support member 5 without forming a complex-shaped elastic support portion by machining or plastic processing a metal thin plate having an appropriate material and thickness. Rigidity can be adjusted simply by adjusting the rate. Therefore, it is sufficient that the elastic support member 5 is formed in a simple cylindrical shape in which the inner diameter surface in contact with the top foil 4 is formed in a smooth cylindrical surface shape. Therefore, the productivity of the elastic support member 5 can be improved through simplification of this shape. Can be improved. Moreover, the handleability of the elastic support member 5 is improved by the simplification of the shape. As described above, in the foil bearing 1 according to the present invention, the elastic support member 5 is replaced with one that can be manufactured at low cost, has excellent handleability, and can easily adjust rigidity. As a result, it is possible to simultaneously reduce the manufacturing cost of the foil bearing 1 and simplify the adjustment of the bearing performance.

また、弾性支持部材5を、予め周方向で無端の円筒状に形成したので、機械的又は人為的作業によって板状の多孔質部材を円筒形態に丸める手間を省略することができる他、固体間(フォイル軸受1相互間)で軸受性能にバラツキが生じ難くなる。   In addition, since the elastic support member 5 is formed in an endless cylindrical shape in the circumferential direction in advance, it is possible to omit the trouble of rounding the plate-like porous member into a cylindrical shape by mechanical or artificial work. Variations in bearing performance are difficult to occur between the foil bearings 1.

以上では、気孔形成材を配合した樹脂材料を用いて中間成形品を成形し、この中間成形品に含まれる気孔形成材を適当な溶媒で除去することで樹脂の多孔質体からなる弾性支持部材5を得る場合について説明を行ったが、樹脂の多孔質体からなる弾性支持部材5は、空気や炭酸ガス等を混練した溶融状態の樹脂材料を用いて所定形状に射出成形する(樹脂材料を発泡成形する)ことによって得ることも可能である。また、弾性支持部材5は、所望の剛性を有し、必要とされる弾性支持能力を発揮することができるのであれば、樹脂以外の多孔質体、具体的には金属又はセラミックスの多孔質体で形成することもできる。後述するその他の実施形態についても同様である。   In the above, an elastic support member made of a porous resin body is formed by molding an intermediate molded product using a resin material containing a pore forming material and removing the pore forming material contained in the intermediate molded product with an appropriate solvent. The elastic support member 5 made of a resin porous body is injection-molded into a predetermined shape using a molten resin material kneaded with air, carbon dioxide gas, or the like (resin material It can also be obtained by foam molding). In addition, the elastic support member 5 has a desired rigidity and can exhibit the required elastic support capability, so long as it is a porous body other than resin, specifically a porous body of metal or ceramics. It can also be formed. The same applies to other embodiments described later.

弾性支持部材5を金属の多孔質体で形成する場合には、例えば、発泡剤を混練した金属材料を発泡成形することで得られる発泡金属の多孔質体とすることができる。この場合に使用する金属材料としては、融点が300℃以上で、加工性に富み、かつ容易に入手することができる一般的なものが好ましく、純金属では銅やニッケル等を挙げることができ、合金ではステンレス鋼やニッケルクロム合金等を挙げることができる。   When the elastic support member 5 is formed of a metal porous body, for example, a foamed metal porous body obtained by foam molding of a metal material kneaded with a foaming agent can be obtained. As the metal material used in this case, a general material having a melting point of 300 ° C. or higher, rich in workability, and easily available is preferable, and pure metals can include copper and nickel, Examples of the alloy include stainless steel and nickel chromium alloy.

また、弾性支持部材5をセラミックスの多孔質体で形成する場合、セラミックス材料としては、特に高融点のアルミナ(酸化アルミニウム)、ジルコニア(二酸化ジルコニウム)等を好ましく使用することができ、セラミックスの多孔質体は、例えば、以下に示す方法を用いて得ることができる。   When the elastic support member 5 is formed of a ceramic porous body, as the ceramic material, high melting point alumina (aluminum oxide), zirconia (zirconium dioxide) or the like can be preferably used. The body can be obtained, for example, using the method shown below.

まず、所望の気孔率を有し、後述する焼成段階において焼失する紙製もしくはスポンジ(発泡樹脂)製の多孔質基材を準備し、この基材に金属アルコキシドの溶液を含浸させる。ここで、金属アルコキシドの溶液は、目的とするセラミックスに対応する金属のアルコキシドに、アルコール、水および酸を加えることで生成される。この溶液において、加える水の量は、金属アルコキシドが部分加水分解する程度の少量に抑える。加える水の量をあまりに多くすると、金属アルコキシドが一気に加水分解・重合し、基材の微小な気孔内に入り込み難い粒径のゾル粒子となるからである。   First, a porous substrate made of paper or sponge (foamed resin) having a desired porosity and burnt down in a firing step described later is prepared, and this substrate is impregnated with a metal alkoxide solution. Here, the solution of a metal alkoxide is produced | generated by adding alcohol, water, and an acid to the alkoxide of the metal corresponding to the target ceramics. In this solution, the amount of water to be added is suppressed to such a small amount that the metal alkoxide is partially hydrolyzed. This is because if the amount of water to be added is too large, the metal alkoxide is hydrolyzed and polymerized at once, resulting in a sol particle having a particle size that is difficult to enter into the minute pores of the substrate.

金属アルコキシドの溶液を多孔質基材に含浸させる前には、(1)当該溶液の溶媒の沸点直下で還流し、(2)多孔質基材をアルカリ金属もしくはアルカリ土類金属を含まない界面活性剤により洗浄し、(3)溶液が多孔質基材の微細な気孔内に入り込むように上記溶液を溶媒で希釈する。さらに、多孔質基材に金属アルコキシドの溶液を含浸させた後、これを焼成する前に、多孔質基材の分解温度以上に所定時間保ち、多孔質基材を炭化させる。これらの処理を行った後、金属アルコキシドの溶液を含浸させた多孔質基材を所定温度で焼成すると、多孔質基材は焼失する一方、金属アルコキシドは焼結されてセラミックスとなる。このようにして得られたセラミックスは、多孔質基材の気孔形状や気孔率が反映(転写)された多孔質構造を有する。   Before impregnating the porous substrate with the metal alkoxide solution, (1) refluxing just below the boiling point of the solvent of the solution, and (2) the porous substrate does not contain alkali metal or alkaline earth metal. (3) The solution is diluted with a solvent so that the solution enters the fine pores of the porous substrate. Further, after impregnating the porous base material with the metal alkoxide solution and before firing, the porous base material is carbonized by maintaining the temperature above the decomposition temperature of the porous base material for a predetermined time. After performing these treatments, when the porous base material impregnated with the metal alkoxide solution is fired at a predetermined temperature, the porous base material is burned out, while the metal alkoxide is sintered to become ceramics. The ceramic thus obtained has a porous structure in which the pore shape and porosity of the porous substrate are reflected (transferred).

以上では、圧入、接着、圧入接着、溶着等の手段によって弾性支持部材5を外方部材3の内径面に固定する場合について説明を行ったが、外方部材3に対する弾性支持部材5の固定手段はこれに限られない。   The case where the elastic support member 5 is fixed to the inner diameter surface of the outer member 3 by means such as press-fitting, adhesion, press-fitting adhesion, and welding has been described. Is not limited to this.

例えば、図2に示すように、外方部材3の内径面に凹部12を設け、この凹部12に対して弾性支持部材5の外径面に設けた凸部11を嵌合させる凹凸嵌合構造によって両者を固定することもできる。この凹凸嵌合構造は、弾性支持部材5の外径面に設けた凹部12に、外方部材3の内径面に設けた凸部11を嵌合することによって構成することもできる(図示省略)。また、この凹凸嵌合構造は、外方部材3の内径面に弾性部材5を接着、圧入、圧入接着、溶着等で固定する場合にも追加的に採用することができる。なお、このような凹凸嵌合構造は、凸部11と凹部12が、周方向のみならず、軸方向でも係合するように形成することもできる。   For example, as shown in FIG. 2, a concave / convex fitting structure in which a concave portion 12 is provided on the inner diameter surface of the outer member 3 and a convex portion 11 provided on the outer diameter surface of the elastic support member 5 is fitted to the concave portion 12. It is also possible to fix both. This concave-convex fitting structure can also be configured by fitting the convex portion 11 provided on the inner diameter surface of the outer member 3 to the concave portion 12 provided on the outer diameter surface of the elastic support member 5 (not shown). . Moreover, this uneven | corrugated fitting structure can be additionally employ | adopted also when fixing the elastic member 5 to the internal-diameter surface of the outer member 3 by adhesion | attachment, press-fit, press-fit adhesion, welding, etc. In addition, such an uneven | corrugated fitting structure can also be formed so that the convex part 11 and the recessed part 12 may engage not only in the circumferential direction but in an axial direction.

また、例えば図3(a)に示すように、外方部材3の軸方向外側に円筒状の挟持部材8をさらに設け、この挟持部材8と外方部材3とで、弾性支持部材5の軸方向端部(図示例では軸方向一端部としているが、軸方向両端部としてもよい)に設けた径方向の突出部13を軸方向に挟持固定するようにしても良い。この場合、突出部13は、全周に亘って設けても良いし、周方向一部領域に(扇状に)設けても良い。このような挟持構造を採用すれば、接着や溶着で弾性支持部材5を外方部材3に固定する場合に比べ、固定プロセスを簡便化しつつ、外方部材3の内周から弾性支持部材5が抜脱するのを効果的に防止することができる。この場合、突出部13は、外方部材3と弾性支持部材5の相対的な摺動移動が許容される程度の力で挟持しても良いし、外方部材3と弾性支持部材5の相対的な摺動移動が許容されないように強固に挟持しても良い。振動の減衰効果を高めたい場合には、外方部材3と弾性支持部材5の相対的な摺動移動が許容される程度の力で突出部13を挟持するのが望ましい。   Further, for example, as shown in FIG. 3A, a cylindrical clamping member 8 is further provided on the axially outer side of the outer member 3, and the shaft of the elastic support member 5 is formed by the clamping member 8 and the outer member 3. The radial protrusions 13 provided at the end portions in the direction (in the illustrated example, one end portion in the axial direction may be both end portions in the axial direction) may be clamped and fixed in the axial direction. In this case, the protrusion 13 may be provided over the entire circumference, or may be provided in a circumferential partial region (in a fan shape). If such a sandwiching structure is adopted, the elastic support member 5 can be moved from the inner periphery of the outer member 3 while simplifying the fixing process as compared with the case where the elastic support member 5 is fixed to the outer member 3 by adhesion or welding. It is possible to effectively prevent the removal. In this case, the protruding portion 13 may be clamped with a force that allows relative sliding movement between the outer member 3 and the elastic support member 5, or the relative relationship between the outer member 3 and the elastic support member 5. It may be firmly held so that a typical sliding movement is not allowed. When it is desired to increase the vibration damping effect, it is desirable to hold the protruding portion 13 with a force that allows the relative sliding movement of the outer member 3 and the elastic support member 5.

挟持部材8は、トップフォイル4を外方部材3に固定するための部材としても活用することができる。すなわち、図3(b)に示すようにトップフォイル4の軸方向端部(図示例では軸方向両端部)の周方向一又は複数箇所、あるいは全周に亘って径方向の突出部13を設け、この突出部13を挟持部材8と外方部材3とで軸方向に挟持固定することもできる。この場合、トップフォイル4の軸方向両端部に設けた突出部13により、外方部材3内周からの弾性支持部材5の抜脱を防止することができる。そのため、外方部材3に対する弾性支持部材5の固定方法の選択自由度が増す、というメリットもある。また、図示は省略しているが、弾性支持部材5の軸方向端部、およびトップフォイル4の軸方向端部の双方に径方向の突出部13を設け、これら突出部13の双方を、挟持部材8と外方部材3とで軸方向に挟持固定するようにすることもできる。   The clamping member 8 can also be used as a member for fixing the top foil 4 to the outer member 3. That is, as shown in FIG. 3 (b), one or a plurality of circumferential end portions of the top foil 4 in the axial direction (in the illustrated example, both ends in the axial direction) or a radial protrusion 13 is provided over the entire circumference. The projecting portion 13 can be clamped and fixed in the axial direction by the clamping member 8 and the outer member 3. In this case, the protrusions 13 provided at both axial ends of the top foil 4 can prevent the elastic support member 5 from being detached from the inner periphery of the outer member 3. Therefore, there is also an advantage that the degree of freedom in selecting the fixing method of the elastic support member 5 with respect to the outer member 3 is increased. Although not shown, radial protrusions 13 are provided at both the axial end of the elastic support member 5 and the axial end of the top foil 4, and both of these protrusions 13 are sandwiched. The member 8 and the outer member 3 can be clamped and fixed in the axial direction.

また、以上で説明したフォイル軸受1においては、周方向で無端の円筒状に形成された弾性支持部材5を用いているが、フォイル軸受1の生産性の低下が問題とならないのであれば、弾性支持部材5は、図4に示すように、板状に形成した多孔質部材を丸めることで円筒形態としたもの(周方向で有端の円筒状に形成されたもの)を用いることも可能である。この場合、弾性支持部材5の周方向一端部と周方向他端部とは、切れ目9が形成されるように周方向に離隔配置しても良い(図4を参照)し、相互に当接するように配置(図示省略)しても良い。   Moreover, in the foil bearing 1 demonstrated above, although the elastic support member 5 formed in the endless cylindrical shape in the circumferential direction is used, if the fall of the productivity of the foil bearing 1 does not become a problem, it will be elastic. As shown in FIG. 4, the support member 5 may be a cylindrical member formed by rolling a plate-like porous member (formed in a cylindrical shape with a circumferential end). is there. In this case, the one end portion in the circumferential direction and the other end portion in the circumferential direction of the elastic support member 5 may be spaced apart from each other in the circumferential direction so as to form the cuts 9 (see FIG. 4), and contact each other. It may be arranged (not shown).

また、以上で説明したフォイル軸受1において、多孔質体からなる弾性支持部材5の内部気孔には、潤滑油を含浸させることも可能である。このようにすれば、トップフォイル4と弾性支持部材5が摺動接触する際に、弾性支持部材5の表面開孔から滲み出す潤滑油によりトップフォイル4と弾性支持部材5間での摩耗を抑制あるいは防止することができる。   In the foil bearing 1 described above, the internal pores of the elastic support member 5 made of a porous body can be impregnated with lubricating oil. In this way, when the top foil 4 and the elastic support member 5 are in sliding contact, the lubricant between the top foil 4 and the elastic support member 5 is suppressed by the lubricating oil that oozes from the surface opening of the elastic support member 5. Alternatively, it can be prevented.

また、以上で説明したフォイル軸受1は、軸部材2を回転側、外方部材3(さらに、トップフォイル4および弾性支持部材5)を静止側としたものであるが、本発明は、軸部材2を静止側、外方部材3を回転側としたフォイル軸受1にも好ましく適用することができる。   In the foil bearing 1 described above, the shaft member 2 is the rotating side, and the outer member 3 (further, the top foil 4 and the elastic support member 5) is the stationary side. The present invention can also be preferably applied to a foil bearing 1 in which 2 is a stationary side and the outer member 3 is a rotating side.

1 フォイル軸受
2 軸部材
3 ハウジング
4 トップフォイル
5 弾性支持部材
8 挟持部材
11 凸部
12 凹部
13 突出部
C ラジアル軸受隙間
DESCRIPTION OF SYMBOLS 1 Foil bearing 2 Shaft member 3 Housing 4 Top foil 5 Elastic support member 8 Nipping member 11 Convex part 12 Concave part 13 Protrusion part C Radial bearing clearance

Claims (8)

可撓性を有し、内周に挿入した軸部材との間に楔状のラジアル軸受隙間を形成するトップフォイルと、トップフォイルの外径側に配置され、トップフォイルを弾性的に支持する弾性支持部材と、トップフォイルおよび弾性支持部材を内周に収容した円筒状の外方部材とを備え、ラジアル軸受隙間に生じた流体膜で軸部材と外方部材の相対回転を支持するフォイル軸受において、
弾性支持部材を、多孔質体で形成したことを特徴とするフォイル軸受。
A top foil that is flexible and forms a wedge-shaped radial bearing gap with the shaft member inserted in the inner periphery, and an elastic support that is disposed on the outer diameter side of the top foil and elastically supports the top foil In a foil bearing that includes a member and a cylindrical outer member that houses a top foil and an elastic support member on the inner periphery, and supports relative rotation of the shaft member and the outer member with a fluid film generated in a radial bearing gap.
A foil bearing, wherein the elastic support member is formed of a porous body.
弾性支持部材を、樹脂、金属又はセラミックスの多孔質体で形成した請求項1に記載のフォイル軸受。   The foil bearing according to claim 1, wherein the elastic support member is formed of a porous body of resin, metal, or ceramics. 弾性支持部材が、周方向で無端の円筒状に形成された請求項1に記載のフォイル軸受。   The foil bearing according to claim 1, wherein the elastic support member is formed in an endless cylindrical shape in the circumferential direction. 外方部材と弾性支持部材の何れか一方に設けた凹部に、他方に設けた凸部を嵌合することにより外方部材と弾性支持部材を固定した請求項1に記載のフォイル軸受。   The foil bearing according to claim 1, wherein the outer member and the elastic support member are fixed by fitting the convex portion provided on the other side into the concave portion provided on either the outer member or the elastic support member. トップフォイルおよび弾性支持部材の少なくとも一方の軸方向端部に設けた径方向の突出部を、外方部材の端面との間で挟持固定する挟持部材をさらに有する請求項1に記載のフォイル軸受。   2. The foil bearing according to claim 1, further comprising a clamping member that clamps and fixes a radial protrusion provided at an axial end of at least one of the top foil and the elastic support member with an end surface of the outer member. 弾性支持部材の内部気孔に潤滑油を含浸させてなる請求項1に記載のフォイル軸受。   The foil bearing according to claim 1, wherein the internal pores of the elastic support member are impregnated with lubricating oil. ガスタービンのロータの支持に使用される請求項1に記載のフォイル軸受。   The foil bearing of Claim 1 used for support of the rotor of a gas turbine. 過給機のロータの支持に使用される請求項1に記載のフォイル軸受。   The foil bearing according to claim 1 used for supporting a rotor of a supercharger.
JP2011041844A 2011-02-28 2011-02-28 Foil bearing Withdrawn JP2012177457A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011041844A JP2012177457A (en) 2011-02-28 2011-02-28 Foil bearing
PCT/JP2012/052123 WO2012117792A1 (en) 2011-02-28 2012-01-31 Foil bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011041844A JP2012177457A (en) 2011-02-28 2011-02-28 Foil bearing

Publications (1)

Publication Number Publication Date
JP2012177457A true JP2012177457A (en) 2012-09-13

Family

ID=46979420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011041844A Withdrawn JP2012177457A (en) 2011-02-28 2011-02-28 Foil bearing

Country Status (1)

Country Link
JP (1) JP2012177457A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019527316A (en) * 2016-07-26 2019-09-26 フロリダ タービン テクノロジーズ インコーポレイテッドFlorida Turbine Technologies, Inc. Turbocharger with oil-free hydrostatic bearing
KR102166622B1 (en) * 2020-05-08 2020-10-16 주식회사 뉴로스 Air foil journal bearing
WO2021037413A1 (en) * 2019-08-28 2021-03-04 Robert Bosch Gmbh Bearing holder for a foil bearing, and foil bearing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019527316A (en) * 2016-07-26 2019-09-26 フロリダ タービン テクノロジーズ インコーポレイテッドFlorida Turbine Technologies, Inc. Turbocharger with oil-free hydrostatic bearing
WO2021037413A1 (en) * 2019-08-28 2021-03-04 Robert Bosch Gmbh Bearing holder for a foil bearing, and foil bearing
KR102166622B1 (en) * 2020-05-08 2020-10-16 주식회사 뉴로스 Air foil journal bearing
CN113623320A (en) * 2020-05-08 2021-11-09 纽若斯有限公司 Foil air sliding bearing
CN113623320B (en) * 2020-05-08 2023-10-13 纽若斯有限公司 Foil air slide bearing

Similar Documents

Publication Publication Date Title
WO2012127998A1 (en) Foil bearing and manufacturing method therefor
US7147376B2 (en) Dynamic bearing device
JP6479456B2 (en) Foil, foil bearing, and method of assembling foil bearing
US8864381B2 (en) Fluid dynamic bearing device
WO2015087675A1 (en) Foil bearing, and foil bearing unit and turbo machine each having same
US10228014B2 (en) Internal combustion engine bearing and method of manufacturing internal combustion engine bearing
JP2011047495A (en) Slide bearing, slide bearing unit with the same, and motor with this bearing unit
EP2463536B1 (en) High-pressure fuel pump
JP2012177457A (en) Foil bearing
KR20150053922A (en) Fluid dynamic bearing device and motor with same
WO2012132731A1 (en) Sealing device and sealing structure
JP2010121683A (en) Shaft seal device
JP4865015B2 (en) Hydrodynamic bearing device
WO2007037169A1 (en) Bearing device with sliding bearing
JP2007263311A (en) Dynamic pressure bearing device
WO2012117792A1 (en) Foil bearing
WO2016194808A1 (en) Sliding member for internal combustion engine
JP2012177458A (en) Foil bearing
JP2006084023A (en) Fluid dynamic pressure bearing
JP2007309351A (en) Rolling bearing
JP4794966B2 (en) Bearing device, motor provided with the same, and method for manufacturing bearing device
JP2008032081A (en) Fluid bearing device
JP2006161928A (en) Dynamic pressure bearing device
JP2007092816A (en) Bearing device
JP2019070406A (en) Foil bearing

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513