JP2012177145A - Method and device for producing high strength cold rolled steel sheet - Google Patents

Method and device for producing high strength cold rolled steel sheet Download PDF

Info

Publication number
JP2012177145A
JP2012177145A JP2011039564A JP2011039564A JP2012177145A JP 2012177145 A JP2012177145 A JP 2012177145A JP 2011039564 A JP2011039564 A JP 2011039564A JP 2011039564 A JP2011039564 A JP 2011039564A JP 2012177145 A JP2012177145 A JP 2012177145A
Authority
JP
Japan
Prior art keywords
width direction
steel sheet
water
temperature distribution
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011039564A
Other languages
Japanese (ja)
Other versions
JP5573728B2 (en
Inventor
Yoshimichi Hino
善道 日野
Gentaro Takeda
玄太郎 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011039564A priority Critical patent/JP5573728B2/en
Publication of JP2012177145A publication Critical patent/JP2012177145A/en
Application granted granted Critical
Publication of JP5573728B2 publication Critical patent/JP5573728B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To suppress occurrence of streak-like deformation in the sheet width direction of a steel sheet.SOLUTION: A steel sheet S conveyed from a gas jet cooling zone side is cooled by cooling water 7 jetted through spray nozzles 6 of cooling equipment 4a, 4b before the steel sheet is immersed into cooling water 5 in a water tank 2. At this time, the spray nozzles 6 are arranged so that the number of the arranged spray nozzles decreases from both ends in the sheet width direction toward the center in the sheet width direction. Accordingly, a distribution state of the isothermal lines of the steel sheet S has a projecting arc shape relative to the water surface of the cooling water 5. In other words, a temperature distribution in which temperatures rise from both ends in the sheet width direction toward the center in the sheet width direction is formed in the sheet width direction of the steel sheet S.

Description

本発明は、高強度冷延鋼板の製造方法及び製造装置に関するものである。   The present invention relates to a manufacturing method and a manufacturing apparatus for a high-strength cold-rolled steel sheet.

近年、衝突時における乗員の安全性の確保や車体の軽量化による燃費の改善を目的として、引張強さが750[MPa]以上で板厚の薄い高強度冷延鋼板が車両の構造部材として積極的に利用されるようになっている。このような鋼板を製造するためには、水焼入れ装置を有する連続焼鈍設備を利用することによって鋼板中におけるマルテンサイト相の体積率を高めることが有効である(特許文献1参照)。すなわち、鋼板の組織がフェライト相とオーステナイト相との混合組織又はオーステナイト単相の組織になる温度(水焼き入れ温度)まで鋼板を加熱した後、水焼入れ装置において鋼板を水に浸漬させることによって鋼板を臨界冷却速度以上で冷却することにより、フェライト相とマルテンサイト相との混合組織又はマルテンサイト単相の組織を有する鋼板を製造することができる。マルテンサイト相の体積率は水焼き入れ温度が高くなるほど増加し、鋼板の強度はマルテンサイト相の体積率の増加に比例して高くなる。   In recent years, high-strength cold-rolled steel sheets with a tensile strength of 750 [MPa] or more and a thin plate thickness have been actively used as vehicle structural members for the purpose of ensuring the safety of passengers in the event of a collision and improving fuel economy by reducing the weight of the vehicle body Has come to be used. In order to manufacture such a steel sheet, it is effective to increase the volume ratio of the martensite phase in the steel sheet by using a continuous annealing facility having a water quenching device (see Patent Document 1). That is, after heating the steel sheet to a temperature (water quenching temperature) at which the structure of the steel sheet becomes a mixed structure of ferrite phase and austenite phase or a single structure of austenite (water quenching temperature), the steel sheet is immersed in water in a water quenching apparatus. By cooling at a critical cooling rate or higher, a steel sheet having a mixed structure of a ferrite phase and a martensite phase or a structure of a martensite single phase can be produced. The volume ratio of the martensite phase increases as the water quenching temperature increases, and the strength of the steel sheet increases in proportion to the increase in the volume ratio of the martensite phase.

ところで、鋼板の強度を高めるために鋼板に対し上述のような水焼入れ処理を施す場合、鋼板の板幅方向に円弧状の反りが発生し、水焼入れ処理前は平坦であった鋼板が水焼入れ処理後に平坦でなくなることがある。これは、水焼入れ処理による急激な温度低下によって急激な熱収縮が生じ、この熱収縮によって鋼板が座屈するためである。鋼板の平坦性が悪化すると、連続焼鈍設備内の通板性が劣化し、鋼板の搬送速度の低下や通板トラブルを招くと共に、プレス加工等の次工程にも支障をきたす。このような背景から、水焼入れ処理に伴う円弧状の反りの発生を抑制する方法が提案されている。具体的には、特許文献2には、水焼入れ処理を行う際に鋼板の表裏面の幅方向全域を加圧することによって、付与した圧力によって変形した鋼板部分を平坦状に矯正する技術が開示されている。   By the way, in order to increase the strength of the steel sheet, when the steel sheet is subjected to the water quenching process as described above, an arc-shaped warp occurs in the sheet width direction of the steel sheet, and the flat steel sheet before the water quenching process is water quenched. May not be flat after processing. This is because a rapid thermal contraction occurs due to a rapid temperature drop due to the water quenching process, and the steel sheet buckles due to the thermal contraction. When the flatness of the steel plate deteriorates, the plate passing property in the continuous annealing equipment deteriorates, which causes a decrease in the conveying speed of the steel plate and a plate passing trouble, and also hinders the next process such as press working. From such a background, a method for suppressing the occurrence of arc-shaped warpage accompanying water quenching has been proposed. Specifically, Patent Document 2 discloses a technique for correcting the steel plate portion deformed by the applied pressure to a flat shape by pressurizing the entire width direction of the front and back surfaces of the steel plate when performing the water quenching process. ing.

特開2002−294351号公報JP 2002-294351 A 特開平11−193418号公報Japanese Patent Laid-Open No. 11-193418

しかしながら、本発明の発明者らの検討によれば、水焼入れ処理後の鋼板は、鋼板の板幅方向に円弧状に変形するのは稀で、鋼板の板幅方向に複数の筋状(波状)に変形するものが大半であった。このような筋状の変形は、水焼入れ装置の水槽内に設けられたシンクロールに乗り上がることによって絞り疵となり、鋼板の製造歩留まり低下の要因となる。このため、鋼板の板幅方向に筋状の変形が発生することを抑制可能な技術の提供が期待されていた。   However, according to the study by the inventors of the present invention, the steel sheet after the water quenching process rarely deforms in an arc shape in the sheet width direction of the steel sheet, and has a plurality of streaks (wavy shapes) in the sheet width direction of the steel sheet. ) Was mostly deformed. Such streak-like deformation is caused by striking a sink roll provided in the water tank of the water quenching apparatus, resulting in reduction of the steel sheet manufacturing yield. For this reason, provision of the technique which can suppress that a linear deformation | transformation generate | occur | produces in the board width direction of a steel plate was anticipated.

本発明は、上記課題に鑑みてなされたものであって、その目的は、鋼板の板幅方向に筋状の変形が発生することを抑制可能な高強度冷延鋼板の製造方法及び製造装置を提供することにある。   This invention is made | formed in view of the said subject, Comprising: The objective is to manufacture the manufacturing method and manufacturing apparatus of a high-strength cold-rolled steel plate which can suppress that a linear deformation | transformation generate | occur | produces in the board width direction of a steel plate. It is to provide.

上記課題を解決し、目的を達成するために、本発明に係る高強度冷延鋼板の製造方法は、鋼板の板幅方向端部から板幅方向中心部に向かって鋼板の温度が高くなるように鋼板の板幅方向に温度分布を形成する温度分布形成ステップと、板幅方向に温度分布が形成された鋼板を冷却水に浸漬させることによって該鋼板に対して水焼入れ処理を施す水焼入れステップと、を含む。   In order to solve the above problems and achieve the object, the manufacturing method of the high-strength cold-rolled steel sheet according to the present invention is such that the temperature of the steel sheet increases from the sheet width direction end of the steel sheet toward the center of the sheet width direction. A temperature distribution forming step for forming a temperature distribution in the sheet width direction of the steel sheet, and a water quenching step for subjecting the steel sheet to water quenching by immersing the steel sheet in which the temperature distribution is formed in the sheet width direction in cooling water. And including.

上記課題を解決し、目的を達成するために、本発明に係る高強度冷延鋼板の製造装置は、鋼板の板幅方向端部から板幅方向中心部に向かって鋼板の温度が高くなるように鋼板の板幅方向に温度分布を形成する温度分布形成手段と、前記温度分布形成手段によって板幅方向に温度分布が形成された鋼板を冷却水に浸漬させることによって該鋼板に対して水焼入れ処理を施す水焼入れ手段と、を備える。   In order to solve the above-described problems and achieve the object, the high-strength cold-rolled steel sheet manufacturing apparatus according to the present invention increases the temperature of the steel sheet from the sheet width direction end of the steel sheet toward the sheet width direction center. A temperature distribution forming means for forming a temperature distribution in the sheet width direction of the steel sheet, and water quenching the steel sheet by immersing the steel sheet in which the temperature distribution is formed in the sheet width direction by the temperature distribution forming means in cooling water. Water quenching means for performing the treatment.

本発明に係る高強度冷延鋼板の製造方法及び製造装置によれば、鋼板の板幅方向に筋状の変形が発生することを抑制できる。   According to the manufacturing method and manufacturing apparatus of a high-strength cold-rolled steel sheet according to the present invention, it is possible to suppress the occurrence of line-like deformation in the sheet width direction of the steel sheet.

図1は、板幅方向の温度分布の違いに伴う鋼板の変形状態の変化を解析するために用いた鋼板の構造解析シミュレーションモデルを示す図である。FIG. 1 is a diagram showing a structural analysis simulation model of a steel plate used for analyzing a change in deformation state of the steel plate due to a difference in temperature distribution in the plate width direction. 図2は、等温線が水焼入れ装置の水面に対し平行になるように温度分布を形成した場合の鋼板形状のシミュレーション結果を示す図である。FIG. 2 is a diagram showing a simulation result of the steel plate shape when the temperature distribution is formed so that the isotherm is parallel to the water surface of the water quenching apparatus. 図3は、等温線が水焼入れ装置の水面に対し凹の円弧形状になるように温度分布を形成した場合の鋼板形状のシミュレーション結果を示す図である。FIG. 3 is a diagram showing a simulation result of the steel plate shape when the temperature distribution is formed so that the isotherm has a concave arc shape with respect to the water surface of the water quenching apparatus. 図4は、等温線が水焼入れ装置の水面に対し凸の円弧形状になるように温度分布を形成した場合の鋼板形状のシミュレーション結果を示す図である。FIG. 4 is a diagram showing a steel plate shape simulation result when the temperature distribution is formed so that the isotherm has a convex arc shape with respect to the water surface of the water quenching apparatus. 図5は、板幅方向の温度分布の違いに伴う熱応力の変化を説明するための模式図である。FIG. 5 is a schematic diagram for explaining a change in thermal stress accompanying a difference in temperature distribution in the plate width direction. 図6は、板幅方向の温度分布の違いに伴う鋼板の変形状態(断面の変形状態)の変化を説明するための模式図である。FIG. 6 is a schematic diagram for explaining a change in the deformation state (cross-sectional deformation state) of the steel plate due to the difference in temperature distribution in the plate width direction. 図7は、本発明の第1及び第2の実施形態である高強度冷延鋼板の製造方法及び製造装置が適用される連続焼鈍設備の構成を示す模式図である。FIG. 7 is a schematic diagram showing the configuration of a continuous annealing facility to which the manufacturing method and manufacturing apparatus for high-strength cold-rolled steel sheets according to the first and second embodiments of the present invention are applied. 図8は、本発明の第1の実施形態である高強度冷延鋼板の製造装置の構成を示す模式図である。FIG. 8 is a schematic diagram showing a configuration of a manufacturing apparatus for a high-strength cold-rolled steel sheet according to the first embodiment of the present invention. 図9は、図8に示す高強度冷延鋼板の製造装置を用いた場合に形成される鋼板の板幅方向の温度分布を示す模式図である。FIG. 9 is a schematic diagram showing a temperature distribution in the plate width direction of a steel plate formed when the high-strength cold-rolled steel plate manufacturing apparatus shown in FIG. 8 is used. 図10は、本発明の第2の実施形態である高強度冷延鋼板の製造装置の構成を示す模式図である。FIG. 10 is a schematic diagram showing the configuration of a high-strength cold-rolled steel plate manufacturing apparatus according to the second embodiment of the present invention. 図11は、図10に示す高強度冷延鋼板の製造装置を用いた場合に形成される鋼板の板幅方向の温度分布を示す模式図である。FIG. 11 is a schematic diagram showing a temperature distribution in the plate width direction of a steel plate formed when the high-strength cold-rolled steel plate manufacturing apparatus shown in FIG. 10 is used. 図12は、鋼板の板反り量の定義を説明するための図である。FIG. 12 is a diagram for explaining the definition of the amount of warpage of the steel sheet.

以下、本発明の一実施形態である高強度冷延鋼板の製造方法及び製造装置について説明する。   Hereinafter, the manufacturing method and manufacturing apparatus of the high-strength cold-rolled steel sheet which are one Embodiment of this invention are demonstrated.

〔本発明の概念〕
始めに、図1乃至図6を参照して、本発明に係る高強度冷延鋼板の製造方法及び製造装置の概念について説明する。
[Concept of the present invention]
First, with reference to FIG. 1 thru | or FIG. 6, the concept of the manufacturing method and manufacturing apparatus of the high intensity | strength cold-rolled steel plate concerning this invention is demonstrated.

本発明の発明者らは、鋭意研究を重ねてきた結果、鋼板の板幅方向の温度分布の違いに応じて水焼入れ処理に伴う鋼板の板幅方向の変形状態が変化することを知見した。以下、板幅方向の温度分布の違いに伴う鋼板の熱応力変形状態の変化を構造解析シミュレーションによって解析した結果について説明する。   As a result of intensive studies, the inventors of the present invention have found that the deformation state in the plate width direction of the steel plate accompanying water quenching changes according to the difference in temperature distribution in the plate width direction of the steel plate. Hereinafter, the result of analyzing the change in the thermal stress deformation state of the steel sheet due to the difference in the temperature distribution in the sheet width direction by the structural analysis simulation will be described.

図1は、板幅方向の温度分布の違いに伴う鋼板の変形状態の変化を解析するために用いた鋼板の構造解析シミュレーションモデルであり、図1(a)は等温線が水焼入れ装置の水面に対し平行になるように温度分布を形成したもの、図1(b)は等温線が水焼入れ装置の水面に対し凹の円弧形状になるように温度分布を形成したもの、図1(c)は等温線が水焼入れ装置の水面に対し凸の円弧形状になるように温度分布を形成したものである。   FIG. 1 is a structural analysis simulation model of a steel plate used for analyzing a change in the deformation state of the steel plate due to a difference in temperature distribution in the plate width direction. FIG. 1 (a) is an isotherm showing the water surface of the water quenching apparatus. FIG. 1 (b) shows the temperature distribution formed so that the isotherm has a concave arc shape with respect to the water surface of the water quenching apparatus, FIG. 1 (c). The temperature distribution is formed so that the isotherm has a convex arc shape with respect to the water surface of the water quenching apparatus.

図1に示すように、各シミュレーションモデルには、水焼入れ装置に浸漬されている状態を模倣した水槽浸漬領域,温度分布が形成されている調整領域,及び板幅方向に温度分布が形成されていない未処理領域が定義されている。本実施形態では、各シミュレーションモデルの厚さ,幅W,長さLをそれぞれ0.8,1200,5000[mm]とし、鋼板Sの物性値として低炭素鋼の物性値(25〜800℃における真応力−真ひずみの関係、ヤング率、ポアソン比、平均線膨張率)を用いた。また、水槽浸漬領域及び未処理領域の温度はそれぞれ40,740[℃]とし、調整領域の長さ方向には未処理領域から水槽浸漬領域に向かって温度が低下するように温度分布が形成されている。そして、図示X方向(長さ方向),図示Y方向(板幅方向),及び図示Z方向(厚さ方向)の回転を拘束し、図示Y方向の変形のみを許容した状態で、汎用の構造解析ソフト(SIMULIA社製構造解析ソフトウェアABAQUS6.9)を利用して板幅方向の温度分布の違いに伴う鋼板Sの変形状態の変化を解析した。以下、各シミュレーションモデルの解析結果について説明する。   As shown in FIG. 1, each simulation model has a water bath immersion region imitating a state immersed in a water quenching device, an adjustment region where a temperature distribution is formed, and a temperature distribution in the plate width direction. There are no unprocessed areas defined. In this embodiment, the thickness, width W, and length L of each simulation model are 0.8, 1200, and 5000 [mm], respectively, and the physical property values of the steel sheet S are the physical property values of low carbon steel (at 25 to 800 ° C. True stress-true strain relationship, Young's modulus, Poisson's ratio, average linear expansion coefficient) were used. The temperature of the water bath immersion area and the untreated area is 40 and 740 [° C.], respectively, and a temperature distribution is formed in the length direction of the adjustment area so that the temperature decreases from the untreated area toward the water tank immersion area. ing. A general-purpose structure is constrained to rotate in the X direction (length direction), the Y direction (plate width direction), and the Z direction (thickness direction), and only deformation in the Y direction is allowed. Analysis software (SIMULIA structural analysis software ABAQUS6.9) was used to analyze changes in the deformation state of the steel sheet S accompanying the difference in temperature distribution in the sheet width direction. Hereinafter, the analysis results of each simulation model will be described.

〔水面に対して平行に等温線を形成した場合〕
図2は、等温線が水焼入れ装置の水面に対し平行になるように温度分布を形成した場合(図1(a)に示すシミュレーションモデル)の鋼板形状のシミュレーション結果を示す図である。図2に示すように、等温線が水焼入れ装置の水面に対し平行になるように温度分布が形成されている場合、鋼板が板幅方向に筋状に変形し、また調整領域の中心部分R1で鋼板が大きく座屈することによって、鋼板の平坦性が大きく損なわれていることがわかる。これは、等温線が水焼入れ装置の水面に対し平行になるように温度分布が形成されている場合には、図5(a)及び図6(a)に示すように、板幅方向の複数箇所において熱収縮に伴う熱応力がランダムに発生するためであると考えられる。
[When an isotherm is formed parallel to the water surface]
FIG. 2 is a diagram showing a simulation result of the steel plate shape when the temperature distribution is formed so that the isotherm is parallel to the water surface of the water quenching apparatus (simulation model shown in FIG. 1A). As shown in FIG. 2, when the temperature distribution is formed so that the isotherm is parallel to the water surface of the water quenching apparatus, the steel plate is deformed in a streak shape in the plate width direction, and the center portion R1 of the adjustment region It can be seen that the flatness of the steel sheet is greatly impaired by the buckling of the steel sheet. In the case where the temperature distribution is formed so that the isotherm is parallel to the water surface of the water quenching apparatus, as shown in FIGS. This is considered to be because the thermal stress accompanying thermal contraction is randomly generated at the location.

〔水面に対して凹の円弧形状に等温線を形成した場合〕
図3は、等温線が水焼入れ装置の水面に対し凹の円弧形状になるように温度分布を形成した場合(図1(b)に示すシミュレーションモデル)の鋼板形状のシミュレーション結果を示す図である。図3に示すように、等温線が水焼入れ装置の水面に対し凹の円弧形状になるように温度分布が形成されている場合、鋼板が板幅方向に筋状に変形することはないが、調整領域の中心部分R2で鋼板が大きく座屈し、鋼板の平坦性が大きく損なわれていることがわかる。これは、等温線が水焼入れ装置の水面に対し凹の円弧形状になるように温度分布が形成されている場合には、板幅方向中心部の温度が板幅方向両端部の温度より低いために、図5(b)及び図6(b)に示すように、板幅方向両端部から板幅方向中心部に向かって熱収縮に伴う熱応力が発生し、この熱応力が板幅方向中心部に集中するためであると考えられる。
(When an isotherm is formed in a concave arc shape with respect to the water surface)
FIG. 3 is a diagram showing a simulation result of the steel plate shape when the temperature distribution is formed so that the isotherm has a concave arc shape with respect to the water surface of the water quenching apparatus (simulation model shown in FIG. 1B). . As shown in FIG. 3, when the temperature distribution is formed so that the isotherm has a concave arc shape with respect to the water surface of the water quenching device, the steel plate does not deform in a streak shape in the plate width direction, It can be seen that the steel plate is greatly buckled at the center portion R2 of the adjustment region, and the flatness of the steel plate is greatly impaired. This is because the temperature at the center in the plate width direction is lower than the temperatures at both ends in the plate width direction when the temperature distribution is formed so that the isotherm has a concave arc shape with respect to the water surface of the water quenching device. Further, as shown in FIGS. 5B and 6B, thermal stress accompanying thermal contraction is generated from both ends in the plate width direction toward the center portion in the plate width direction, and this thermal stress is centered in the plate width direction. This is considered to be concentrated in the department.

〔水面に対して凸の円弧形状に等温線を形成した場合〕
図4は、等温線が水焼入れ装置の水面に対し凸の円弧形状になるように温度分布を形成した場合(図1(c)に示すシミュレーションモデル)の鋼板形状のシミュレーション結果を示す図である。図4に示すように、等温線が水焼入れ装置の水面に対し凸の円弧形状になるように温度分布が形成されている場合には、鋼板は板幅方向に円弧状に変形するが、筋状の変形や座屈が発生していないことがわかる。これは、等温線が水焼入れ装置の水面に対し凸の円弧形状になるように温度分布が形成されている場合には、板幅方向両端部の温度が板幅方向中心部の温度より低いために、図5(c)に示すように、板幅方向中心部から板幅方向両端部に向かって熱収縮に伴う熱応力が発生し、熱応力が板幅方向の一方の端部側と他方の端部側とに分散されるためであると考えられる。そして、この場合には、図6(c)に示すように、鋼板が水焼入れ装置に浸漬されるまでの間は板幅方向両端部に円弧状の変形領域が発生し、2つの変形領域が水焼入れ装置内で結合し、結合した変形領域が全体として円弧状の形状を呈したと考えられる。
(When an isotherm is formed in an arc shape that is convex with respect to the water surface)
FIG. 4 is a diagram showing a simulation result of the steel plate shape when the temperature distribution is formed so that the isotherm has a convex arc shape with respect to the water surface of the water quenching apparatus (simulation model shown in FIG. 1C). . As shown in FIG. 4, when the temperature distribution is formed so that the isotherm has a convex arc shape with respect to the water surface of the water quenching apparatus, the steel plate is deformed in an arc shape in the plate width direction. It can be seen that no deformation or buckling occurred. This is because the temperature at both ends in the plate width direction is lower than the temperature at the center in the plate width direction when the temperature distribution is formed so that the isotherm has a convex arc shape with respect to the water surface of the water quenching device. Further, as shown in FIG. 5C, thermal stress accompanying thermal contraction is generated from the center in the plate width direction toward both ends in the plate width direction, and the thermal stress is applied to one end side and the other in the plate width direction. It is thought that this is because it is distributed to the end side of the. And in this case, as shown in FIG.6 (c), until a steel plate is immersed in a water-quenching apparatus, an arc-shaped deformation | transformation area | region generate | occur | produces in the board width direction both ends, and two deformation | transformation area | regions It is considered that the deformation region combined in the water quenching apparatus has an arc shape as a whole.

以上のように、本発明の発明者らは、板幅方向の温度分布の違いに伴う鋼板の変形状態の変化を解析した結果、等温線が水焼入れ装置の水面に対し凸の円弧形状になるように温度分布を形成する、換言すれば、鋼板の板幅方向には板幅方向両端部から板幅方向中心部に向かって温度が増加する温度分布を形成することによって、鋼板の板幅方向に筋状の変形が発生することを抑制できることを知見した。以下、この知見に基づき想到された、本発明の第1及び第2の実施形態である高強度冷延鋼板の製造方法及び製造装置について説明する。   As described above, the inventors of the present invention have analyzed the change in the deformation state of the steel sheet accompanying the difference in temperature distribution in the sheet width direction, and as a result, the isotherm has a convex arc shape with respect to the water surface of the water quenching apparatus. In other words, in the sheet width direction of the steel sheet, by forming a temperature distribution in which the temperature increases from both ends in the sheet width direction toward the center part in the sheet width direction, the sheet width direction of the steel sheet It was found that it is possible to suppress the occurrence of streak deformation. Hereinafter, the manufacturing method and manufacturing apparatus of the high-strength cold-rolled steel sheet, which are the first and second embodiments of the present invention, conceived based on this knowledge will be described.

〔連続焼鈍設備の構成〕
始めに、図7を参照して、本発明の第1及び第2の実施形態である高強度冷延鋼板の製造方法及び製造装置が適用される連続焼鈍設備の構成について説明する。
[Construction of continuous annealing equipment]
First, with reference to FIG. 7, the structure of the continuous annealing equipment to which the manufacturing method and manufacturing apparatus of the high intensity | strength cold-rolled steel plate which are the 1st and 2nd embodiment of this invention are applied is demonstrated.

図7は、本発明の第1及び第2の実施形態である高強度冷延鋼板の製造方法及び製造装置が適用される連続焼鈍設備の構成を示す模式図である。図7に示すように、本発明の第1及び第2の実施形態である高強度冷延鋼板の製造方法及び製造装置が適用される連続焼鈍設備100は、入側コイラー101,洗浄装置102,加熱・均熱帯103,ガスジェット冷却帯104,急速加熱装置105,再加熱帯106,酸洗装置107,スキンパス装置108,及び出側コイラー109を備えている。本発明の第1及び第2の実施形態である高強度冷延鋼板の製造装置1は、ガスジェット冷却帯104と急速加熱装置105との間に配設されている。   FIG. 7 is a schematic diagram showing the configuration of a continuous annealing facility to which the manufacturing method and manufacturing apparatus for high-strength cold-rolled steel sheets according to the first and second embodiments of the present invention are applied. As shown in FIG. 7, the continuous annealing equipment 100 to which the manufacturing method and manufacturing apparatus of the high-strength cold-rolled steel sheet according to the first and second embodiments of the present invention are applied includes an inlet coiler 101, a cleaning apparatus 102, A heating / soaking zone 103, a gas jet cooling zone 104, a rapid heating device 105, a reheating zone 106, a pickling device 107, a skin pass device 108, and an exit side coiler 109 are provided. The high-strength cold-rolled steel sheet manufacturing apparatus 1 according to the first and second embodiments of the present invention is disposed between a gas jet cooling zone 104 and a rapid heating apparatus 105.

このような連続焼鈍設備100では、入側コイラー101から巻き出された鋼板Sは、洗浄装置102において洗浄された後、加熱・均熱帯103に導入される。次に、鋼板Sは、加熱・均熱帯103において加熱・均熱された後、ガスジェット冷却帯104において冷却され、本発明の第1及び第2の実施形態である高強度冷延鋼板の製造装置1において鋼板Sに対する水焼入れ処理が行われる。次に、鋼板Sは、急速加熱装置105に導入されて所定の温度まで急速加熱された後、再加熱帯106において鋼板Sに対する焼戻し熱処理が行われる。そして、焼戻し熱処理が完了した後の鋼板Sは、酸洗装置107、スキンパス装置108を経て出側コイラー109へと送られる。   In such a continuous annealing facility 100, the steel sheet S unwound from the entry side coiler 101 is washed in the washing device 102 and then introduced into the heating / soaking zone 103. Next, the steel sheet S is heated and soaked in the heating and soaking zone 103 and then cooled in the gas jet cooling zone 104 to produce the high-strength cold-rolled steel sheets according to the first and second embodiments of the present invention. In the apparatus 1, a water quenching process for the steel sheet S is performed. Next, the steel sheet S is introduced into the rapid heating device 105 and rapidly heated to a predetermined temperature, and then a tempering heat treatment is performed on the steel sheet S in the reheating zone 106. Then, the steel sheet S after the tempering heat treatment is completed is sent to the exit side coiler 109 through the pickling device 107 and the skin pass device 108.

〔第1の実施形態〕
次に、図8及び図9を参照して、本発明の第1の実施形態である高強度冷延鋼板の製造装置1について説明する。
[First Embodiment]
Next, with reference to FIG.8 and FIG.9, the manufacturing apparatus 1 of the high intensity | strength cold-rolled steel plate which is the 1st Embodiment of this invention is demonstrated.

図8は、本発明の第1の実施形態である高強度冷延鋼板の製造装置の構成を示す模式図であり、図8(a)は側面図を示し、図8(b)は図8(a)に示す矢印A方向からみた図である。図8(a),(b)に示すように、本発明の第1の実施形態である高強度冷延鋼板の製造装置1は、鋼板Sに対して水焼入れ処理を施す水焼入れ装置によって構成され、水槽2,シンクロール3,及び冷却設備4a,4bを備えている。水槽2は、鋼板Sに対して水焼入れ処理を施すための冷却水5を貯留するものである。シンクロール3は、冷却水5内に配置されたロール状の部材によって構成され、図7に示すガスジェット冷却帯104側から搬送されてきた鋼板Sを方向転換して急速加熱装置105側に搬送するためのものである。   FIG. 8 is a schematic diagram showing a configuration of a high-strength cold-rolled steel sheet manufacturing apparatus according to the first embodiment of the present invention, FIG. 8 (a) shows a side view, and FIG. 8 (b) shows FIG. It is the figure seen from the arrow A direction shown to (a). As shown in FIGS. 8A and 8B, the high-strength cold-rolled steel sheet manufacturing apparatus 1 according to the first embodiment of the present invention is configured by a water quenching apparatus that performs a water quenching process on the steel sheet S. The water tank 2, the sink roll 3, and the cooling facilities 4a and 4b are provided. The water tank 2 stores cooling water 5 for subjecting the steel sheet S to water quenching. The sink roll 3 is composed of a roll-shaped member disposed in the cooling water 5, changes the direction of the steel sheet S conveyed from the gas jet cooling zone 104 side shown in FIG. 7 and conveys it to the rapid heating apparatus 105 side. Is to do.

冷却設備4a,4bはそれぞれ、水槽2内に貯留されている冷却水5の水面近くに配設され、水焼入れ処理前の鋼板Sに対向配置されている。冷却設備4a,4bの鋼板Sとの対向面の上端部には冷却水5の水面に対して凸の円弧形状になるように円弧状の曲面Rが形成されており、対向面内には複数のスプレーノズル6が形成されている。すなわち、スプレーノズル6は、板幅方向両端部から板幅方向中心部に向かって配置数が減少するように配置されている。スプレーノズル6は、鋼板Sが冷却設備4aと冷却設備4bとの間を通過する際に鋼板Sに対し冷却水7を噴射するものである。水槽2及び冷却設備4a,4bはそれぞれ、本発明に係る水焼入れ手段及び温度分布形成手段として機能する。   Each of the cooling facilities 4a and 4b is disposed near the surface of the cooling water 5 stored in the water tank 2, and is disposed opposite to the steel plate S before the water quenching process. An arcuate curved surface R is formed at the upper end of the surface of the cooling equipment 4a, 4b facing the steel sheet S so as to have a convex arc shape with respect to the water surface of the cooling water 5, and a plurality of surfaces are formed in the facing surface. The spray nozzle 6 is formed. In other words, the spray nozzles 6 are arranged so that the number of arrangements decreases from both ends in the plate width direction toward the center in the plate width direction. The spray nozzle 6 injects the cooling water 7 with respect to the steel plate S, when the steel plate S passes between the cooling equipment 4a and the cooling equipment 4b. The water tank 2 and the cooling facilities 4a and 4b function as water quenching means and temperature distribution forming means according to the present invention, respectively.

このような構成を有する製造装置1では、図7に示すガスジェット冷却帯104側から搬送されてきた鋼板Sは、水槽2内の冷却水5に浸漬される前に冷却設備4a,4bのスプレーノズル6から噴射される冷却水7によって冷却される。このとき、スプレーノズル6は、板幅方向両端部から板幅方向中心部に向かって配置数が減少するように配置されているので、図9に示すように、鋼板Sの等温線の分布状態は冷却水5の水面に対して凸の円弧形状になる。換言すれば、鋼板Sの板幅方向には両幅端部から板幅方向中心部に向かって温度が高くなる温度分布が形成される。これにより、鋼板Sの板幅方向に筋状の変形が発生することを抑制できる。また、冷却設備4a,4bの冷却能力を水量で調整することで、水槽中での冷却能力と同等し、等温線を搬送方向に等間隔にすることができる。鋼板は水温に至ると一定温度になるから、搬送方向の熱収縮の影響は板幅方向に同じとなる。また、冷却設備4a,4bの冷却能力を水槽中での冷却能力と異なるものにすれば、等温線の間隔を板幅中央部と板幅端部とで変化させることができ、円弧形状を安定化させるために冷却能力を微調整すればよい。   In the manufacturing apparatus 1 having such a configuration, the steel sheet S conveyed from the gas jet cooling zone 104 side shown in FIG. 7 is sprayed on the cooling facilities 4a and 4b before being immersed in the cooling water 5 in the water tank 2. Cooled by the cooling water 7 ejected from the nozzle 6. At this time, since the spray nozzles 6 are arranged so that the number of arrangements decreases from the both ends in the plate width direction toward the center in the plate width direction, as shown in FIG. Becomes a convex arc shape with respect to the water surface of the cooling water 5. In other words, in the plate width direction of the steel sheet S, a temperature distribution is formed in which the temperature increases from both width end portions toward the center portion in the plate width direction. Thereby, it can suppress that a linear deformation | transformation generate | occur | produces in the plate width direction of the steel plate S. Moreover, by adjusting the cooling capacity of the cooling facilities 4a and 4b with the amount of water, it is equivalent to the cooling capacity in the water tank, and the isotherms can be equally spaced in the transport direction. Since the steel plate reaches a constant temperature when it reaches the water temperature, the influence of the heat shrinkage in the transport direction is the same in the plate width direction. Also, if the cooling capacity of the cooling equipment 4a, 4b is different from the cooling capacity in the water tank, the interval of the isotherm can be changed between the center part of the plate width and the end part of the plate width, and the arc shape is stabilized. In order to achieve this, the cooling capacity may be finely adjusted.

〔第2の実施形態〕
次に、図10及び図11を参照して、本発明の第2の実施形態である高強度冷延鋼板の製造装置1について説明する。
[Second Embodiment]
Next, with reference to FIG.10 and FIG.11, the manufacturing apparatus 1 of the high intensity | strength cold-rolled steel plate which is the 2nd Embodiment of this invention is demonstrated.

図10は、本発明の第2の実施形態である高強度冷延鋼板の製造装置の構成を示す模式図であり、図10(a)は側面図を示し、図10(b)は図10(a)に示す矢印A方向からみた図である。図10(a),(b)に示すように、本発明の第2の実施形態である高強度冷延鋼板の製造装置1は、鋼板Sに対して水焼入れ処理を施す水焼入れ装置によって構成され、水槽2,シンクロール3,及び冷却設備4a,4bを備えている。なお、本発明の第2の実施形態である高強度冷延鋼板の製造装置の構成は、冷却設備4a,4bの構成が本発明の第1の実施形態である高強度冷延鋼板の製造装置の構成と異なるだけであるので、以下では冷却設備4a,4bの構成についてのみ説明する。   FIG. 10 is a schematic diagram showing a configuration of a high-strength cold-rolled steel plate manufacturing apparatus according to the second embodiment of the present invention, FIG. 10 (a) shows a side view, and FIG. 10 (b) shows FIG. It is the figure seen from the arrow A direction shown to (a). As shown in FIGS. 10 (a) and 10 (b), the high-strength cold-rolled steel sheet manufacturing apparatus 1 according to the second embodiment of the present invention is configured by a water quenching apparatus that performs a water quenching process on the steel sheet S. The water tank 2, the sink roll 3, and the cooling facilities 4a and 4b are provided. In addition, the structure of the manufacturing apparatus of the high intensity | strength cold-rolled steel sheet which is the 2nd Embodiment of this invention is the manufacturing apparatus of the high-strength cold-rolled steel sheet whose structure of the cooling equipment 4a, 4b is the 1st Embodiment of this invention. Therefore, only the configuration of the cooling facilities 4a and 4b will be described below.

冷却設備4a,4bはそれぞれ、水槽2内に貯留されている冷却水5の水面近くに配設され、鋼板Sの板幅方向両端部付近に対向配置されている。冷却設備4a,4bの鋼板Sとの対向面内には、複数のスプレーノズル6が形成されている。スプレーノズル6は、鋼板Sが冷却設備4aと冷却設備4bとの間を通過する際に鋼板Sに対し冷却水7を噴射するものである。水槽2及び冷却設備4a,4bはそれぞれ、本発明に係る水焼入れ手段及び温度分布形成手段として機能する。   Each of the cooling facilities 4a and 4b is disposed near the water surface of the cooling water 5 stored in the water tank 2, and is disposed opposite to both ends in the sheet width direction of the steel sheet S. A plurality of spray nozzles 6 are formed in the surface of the cooling equipment 4a, 4b facing the steel plate S. The spray nozzle 6 injects the cooling water 7 with respect to the steel plate S, when the steel plate S passes between the cooling equipment 4a and the cooling equipment 4b. The water tank 2 and the cooling facilities 4a and 4b function as water quenching means and temperature distribution forming means according to the present invention, respectively.

このような構成を有する製造装置1では、図7に示すガスジェット冷却帯104側から搬送されてきた鋼板Sは、水槽2内の冷却水5に浸漬される前に冷却設備4a,4bのスプレーノズル6から噴射される冷却水7によって冷却される。このとき、スプレーノズル6は、板幅方向両端部付近に配置されているので、板幅方向両端部が冷却される。また、板幅方向両端部に噴射された冷却水7は鋼板Sに接触した後、下方に流れるに従って板幅方向中心部に広がる。これにより、図11に示すように、鋼板Sの等温線の分布状態は冷却水5の水面に対して凸状になる。換言すれば、鋼板Sの板幅方向には板幅方向両端部から板幅方向中心部に向かって温度が高くなる温度分布が形成される。これにより、鋼板Sの板幅方向に筋状の変形が発生することを抑制できる。   In the manufacturing apparatus 1 having such a configuration, the steel sheet S conveyed from the gas jet cooling zone 104 side shown in FIG. 7 is sprayed on the cooling facilities 4a and 4b before being immersed in the cooling water 5 in the water tank 2. Cooled by the cooling water 7 ejected from the nozzle 6. At this time, since the spray nozzle 6 is disposed in the vicinity of both ends in the plate width direction, both ends in the plate width direction are cooled. Moreover, after the cooling water 7 sprayed to both ends of the plate width direction contacts the steel plate S, it spreads in the center portion of the plate width direction as it flows downward. Thereby, as shown in FIG. 11, the distribution state of the isotherm of the steel sheet S becomes convex with respect to the water surface of the cooling water 5. In other words, in the plate width direction of the steel sheet S, a temperature distribution is formed in which the temperature increases from both ends in the plate width direction toward the center in the plate width direction. Thereby, it can suppress that a linear deformation | transformation generate | occur | produces in the plate width direction of the steel plate S.

最後に、上記第1及び第2の実施形態の製造装置と従来の水焼入れ装置とについて、水焼入れ処理を施した後の鋼板の板反り量を評価した実験結果について説明する。なお、上記第1及び第2の実施形態の製造装置を用いた場合の板反り量δは、図12に示すように鋼板の板形状を示す曲線B1の最下点と最上点との高さの差として算出した。また、従来の水焼入れ装置を用いた場合の板反り量δは、図12に示すように、筋状の変形の示す曲線B2の最下点と最上点との高さの差として算出した。また、本実験では、鋼板として980MPa級の引張強度を有するマルテンサイト系の鋼板を用い、板厚を0.8,1.2,1.4,1.6[mm]、板幅を1100,1200,1400[mm]、通板速度を80,95,110,120[mpm]の間で変化させた。また、水焼入れ処理前の鋼板の温度は720[℃]、水槽内の冷却水の温度は46[℃]とした。   Finally, the experimental results of evaluating the amount of warpage of the steel sheet after performing the water quenching process on the manufacturing apparatus of the first and second embodiments and the conventional water quenching apparatus will be described. Note that the plate warpage amount δ when using the manufacturing apparatus of the first and second embodiments is the height between the lowest point and the highest point of the curve B1 indicating the plate shape of the steel plate as shown in FIG. The difference was calculated as Further, as shown in FIG. 12, the plate warpage amount δ when the conventional water quenching apparatus is used was calculated as a difference in height between the lowest point and the highest point of the curve B2 indicating the streak-like deformation. In this experiment, a martensitic steel plate having a tensile strength of 980 MPa was used as the steel plate, the plate thickness was 0.8, 1.2, 1.4, 1.6 [mm], the plate width was 1100, 1200,1400 [mm], and the plate passing speed was changed between 80,95,110,120 [mpm]. The temperature of the steel plate before water quenching was 720 [° C.], and the temperature of the cooling water in the water tank was 46 [° C.].

〔実施例1〜4〕
実施例1〜4では、上記第1の実施形態の製造装置を用いて水焼入れ処理を施した後の鋼板の板反り量δを評価した。なお、本実施例1〜4では、冷却設備4a,4bの上端面を直径2000[mm]の円弧状の曲面形状とし、スプレーノズル6からは4000[L/m・分]の流量の冷却水7を噴射した。また、鋼板Sの張力は9.8[N/mm]とし、鋼板Sに噴射された冷却水が冷却設備の対向面側に向かって吹き上がらないように、スプレーノズル6からの冷却水7の噴射方向は水平方向に対しやや下方に向けた。このときの鋼板Sの板反り量δを以下の表1に示す。
[Examples 1 to 4]
In Examples 1 to 4, the amount of warpage δ of the steel sheet after the water quenching process was performed using the manufacturing apparatus of the first embodiment. In the first to fourth embodiments, the upper end surfaces of the cooling facilities 4a and 4b are formed in an arcuate curved surface shape having a diameter of 2000 [mm], and the flow rate of 4000 [L / m 2 · min] is cooled from the spray nozzle 6. Water 7 was jetted. Further, the tension of the steel plate S is 9.8 [N / mm 2 ], and the cooling water 7 from the spray nozzle 6 is prevented so that the cooling water sprayed on the steel plate S does not blow up toward the opposite surface side of the cooling equipment. The injection direction of was directed slightly downward relative to the horizontal direction. The amount of warpage δ of the steel sheet S at this time is shown in Table 1 below.

〔実施例5〜8〕
実施例5〜8では、上記第2の実施形態の製造装置を用いて水焼入れ処理を施した後の鋼板の板反り量δを評価した。なお、本実施例5〜8では、冷却設備4a,4bは冷却水5の水面から300[mm]の高さから鋼板Sに対して100[mm]離間させて配置し、鋼板Sの両端部から50[mm]付近の領域を冷却するように配置し、スプレーノズル6からは2000[L/m・分]の流量の冷却水7を噴射した。また、鋼板Sの張力は4.9[N/mm]とし、鋼板Sに噴射された冷却水が冷却設備の対向面側に向かって吹き上がらないように、スプレーノズル6からの冷却水7の噴射方向は水平方向に対しやや下方に向けた。このときの鋼板Sの板反り量δを以下の表1に示す。
[Examples 5 to 8]
In Examples 5 to 8, the amount of warpage δ of the steel sheet after the water quenching process was performed using the manufacturing apparatus of the second embodiment. In Examples 5 to 8, the cooling facilities 4a and 4b are disposed at a distance of 100 [mm] from the steel sheet S from a height of 300 [mm] from the water surface of the cooling water 5, and both ends of the steel sheet S are disposed. The cooling water 7 was sprayed from the spray nozzle 6 at a flow rate of 2000 [L / m 2 · min]. Further, the tension of the steel sheet S is 4.9 [N / mm 2 ], and the cooling water 7 from the spray nozzle 6 is prevented so that the cooling water sprayed onto the steel sheet S does not blow up toward the opposite surface side of the cooling facility. The injection direction of was directed slightly downward relative to the horizontal direction. The amount of warpage δ of the steel sheet S at this time is shown in Table 1 below.

〔比較例1〜4〕
比較例1〜4では、冷却設備4a,4bを用いずに水焼入れ処理を施した後の鋼板の板反り量δを評価した。なお、比較例1〜4では、鋼板Sの張力は4.9[N/mm]とした。このときの鋼板Sの板反り量δを以下の表1に示す。
[Comparative Examples 1-4]
In Comparative Examples 1 to 4, the amount of warpage δ of the steel sheet after the water quenching process was performed without using the cooling facilities 4a and 4b. In Comparative Examples 1 to 4, the tension of the steel sheet S was 4.9 [N / mm 2 ]. The amount of warpage δ of the steel sheet S at this time is shown in Table 1 below.

〔評価〕
表1に示すように、実施例1〜8の水焼入れ処理によれば、比較例1〜4の水焼入れ処理と比較して板反り量δを大幅に小さくできることが明らかになった。このことから、冷却設備4a,4bを設けて鋼板Sの板幅方向に板幅方向両端部から板幅方向中心部に向かって温度が高くなる温度分布を形成することにより、鋼板の板幅方向に筋状の変形が発生することを抑制しつつ、鋼板全体の板反り量δを低減できることが確認できた。また、実施例1〜4の水焼入れ処理と実施例5〜8の水焼入れ処理とを比較した場合には、僅かな差ではあるが実施例1〜4の水焼入れ処理の方が実施例5〜8の水焼入れ処理より板反り量δを低減できることがわかる。このことから、鋼板Sの等温線の分布状態が冷却水5の水面に対して凸の円弧形状になるように温度分布を形成することにより、鋼板全体の板反り量δをより低減できることが確認できた。
[Evaluation]
As shown in Table 1, according to the water quenching process of Examples 1-8, it became clear that plate warpage amount (delta) can be made small compared with the water quenching process of Comparative Examples 1-4. From this, by providing the cooling equipment 4a, 4b and forming a temperature distribution in the plate width direction of the steel plate S so that the temperature increases from both ends in the plate width direction toward the center in the plate width direction, the plate width direction of the steel plate It was confirmed that the amount of warpage δ of the entire steel sheet can be reduced while suppressing the occurrence of streak-like deformation. In addition, when the water quenching process of Examples 1 to 4 and the water quenching process of Examples 5 to 8 are compared, the water quenching process of Examples 1 to 4 is slightly different from Example 5. It can be seen that the plate warpage amount δ can be reduced by the water quenching treatment of ˜8. From this, it is confirmed that the plate warp amount δ of the entire steel plate can be further reduced by forming the temperature distribution so that the distribution state of the isotherm of the steel plate S becomes a convex arc shape with respect to the water surface of the cooling water 5. did it.

以上、本発明者によってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。例えば、本実施形態では、等温線が水焼入れ装置の水面に対し凸状になるように鋼板の板幅方向に温度分布を形成したが、本発明は本実施形態に限定されることはなく、板幅方向両端部から板幅方向中心部に向かって温度が高くなる温度分布が鋼板の板幅方向に形成されれば、等温線の形状は三角形状や階段状等の曲線形状以外の形状であってもよい。このように、本実施形態に基づいて当業者などによりなされる他の実施の形態、実施例及び運用技術などは全て本発明の範疇に含まれる。   Although the embodiment to which the invention made by the present inventor is applied has been described above, the present invention is not limited by the description and the drawings that form a part of the disclosure of the present invention according to this embodiment. For example, in the present embodiment, the temperature distribution is formed in the sheet width direction of the steel plate so that the isotherm is convex with respect to the water surface of the water quenching apparatus, but the present invention is not limited to this embodiment. If a temperature distribution is formed in the plate width direction of the steel sheet in which the temperature increases from both ends in the plate width direction toward the center in the plate width direction, the shape of the isotherm is a shape other than a curved shape such as a triangular shape or a staircase shape. There may be. As described above, other embodiments, examples, operation techniques, and the like made by those skilled in the art based on the present embodiment are all included in the scope of the present invention.

1 焼入れ装置
2 水槽
3 シンクロール
4a,4b 冷却設備
5,7 冷却水
6 スプレーノズル
S 鋼板
DESCRIPTION OF SYMBOLS 1 Quenching device 2 Water tank 3 Sink roll 4a, 4b Cooling equipment 5,7 Cooling water 6 Spray nozzle S Steel plate

Claims (4)

鋼板の板幅方向端部から板幅方向中心部に向かって鋼板の温度が高くなるように鋼板の板幅方向に温度分布を形成する温度分布形成ステップと、
板幅方向に温度分布が形成された鋼板を冷却水に浸漬させることによって該鋼板に対して水焼入れ処理を施す水焼入れステップと、
を含むことを特徴とする高強度冷延鋼板の製造方法。
A temperature distribution forming step of forming a temperature distribution in the sheet width direction of the steel sheet so that the temperature of the steel sheet increases from the sheet width direction end of the steel sheet toward the center of the sheet width direction;
A water quenching step of performing a water quenching process on the steel sheet by immersing the steel sheet in which the temperature distribution is formed in the sheet width direction in cooling water;
A method for producing a high-strength cold-rolled steel sheet, comprising:
前記温度分布形成ステップは、前記鋼板の等温線の分布状態が前記冷却水の水面に対して凸の円弧形状になるよう鋼板の板幅方向に温度分布を形成するステップを含むことを特徴とする請求項1に記載の高強度冷延鋼板の製造方法。   The temperature distribution forming step includes a step of forming a temperature distribution in a plate width direction of the steel plate so that a distribution state of an isotherm of the steel plate becomes a convex arc shape with respect to a water surface of the cooling water. The manufacturing method of the high intensity | strength cold-rolled steel plate of Claim 1. 前記温度分布形成ステップは、前記鋼板の板幅方向両端部を冷却するステップを含むことを特徴とする請求項1に記載の高強度冷延鋼板の製造方法。   The method for producing a high-strength cold-rolled steel sheet according to claim 1, wherein the temperature distribution forming step includes a step of cooling both end portions in the sheet width direction of the steel sheet. 鋼板の板幅方向端部から板幅方向中心部に向かって鋼板の温度が高くなるように鋼板の板幅方向に温度分布を形成する温度分布形成手段と、
前記温度分布形成手段によって板幅方向に温度分布が形成された鋼板を冷却水に浸漬させることによって該鋼板に対して水焼入れ処理を施す水焼入れ手段と、
を備えることを特徴とする高強度冷延鋼板の製造装置。
A temperature distribution forming means for forming a temperature distribution in the plate width direction of the steel plate so that the temperature of the steel plate increases from the plate width direction end of the steel plate toward the plate width direction center portion;
Water quenching means for subjecting the steel sheet to water quenching by immersing the steel sheet in which the temperature distribution is formed in the sheet width direction by the temperature distribution forming means in cooling water;
An apparatus for producing a high-strength cold-rolled steel sheet, comprising:
JP2011039564A 2011-02-25 2011-02-25 Manufacturing method and manufacturing apparatus for high strength cold-rolled steel sheet Expired - Fee Related JP5573728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011039564A JP5573728B2 (en) 2011-02-25 2011-02-25 Manufacturing method and manufacturing apparatus for high strength cold-rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011039564A JP5573728B2 (en) 2011-02-25 2011-02-25 Manufacturing method and manufacturing apparatus for high strength cold-rolled steel sheet

Publications (2)

Publication Number Publication Date
JP2012177145A true JP2012177145A (en) 2012-09-13
JP5573728B2 JP5573728B2 (en) 2014-08-20

Family

ID=46979179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011039564A Expired - Fee Related JP5573728B2 (en) 2011-02-25 2011-02-25 Manufacturing method and manufacturing apparatus for high strength cold-rolled steel sheet

Country Status (1)

Country Link
JP (1) JP5573728B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017066481A (en) * 2015-09-30 2017-04-06 Jfeスチール株式会社 Cooling method of metallic strip
CN108676972A (en) * 2018-05-10 2018-10-19 舞阳钢铁有限责任公司 A kind of special heavy plate quenching line carries out heat-treating methods to slab
EP3774100B1 (en) 2018-04-13 2022-06-29 SMS Group GmbH Cooling apparatus for cooling a metal material and method for the production and use thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55110739A (en) * 1979-02-19 1980-08-26 Nippon Kokan Kk <Nkk> Method for cooling strip steel in continuous annealing process
JPS6293317A (en) * 1985-10-21 1987-04-28 Mitsubishi Heavy Ind Ltd Cooling method for steel strip
JPS62142727A (en) * 1985-12-18 1987-06-26 Mitsubishi Heavy Ind Ltd Cooling apparatus for steel strip
JPS62175063U (en) * 1986-04-28 1987-11-06
JP2000334514A (en) * 1999-03-23 2000-12-05 Nippon Steel Corp Method and device for cooling steel sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55110739A (en) * 1979-02-19 1980-08-26 Nippon Kokan Kk <Nkk> Method for cooling strip steel in continuous annealing process
JPS6293317A (en) * 1985-10-21 1987-04-28 Mitsubishi Heavy Ind Ltd Cooling method for steel strip
JPS62142727A (en) * 1985-12-18 1987-06-26 Mitsubishi Heavy Ind Ltd Cooling apparatus for steel strip
JPS62175063U (en) * 1986-04-28 1987-11-06
JP2000334514A (en) * 1999-03-23 2000-12-05 Nippon Steel Corp Method and device for cooling steel sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017066481A (en) * 2015-09-30 2017-04-06 Jfeスチール株式会社 Cooling method of metallic strip
EP3774100B1 (en) 2018-04-13 2022-06-29 SMS Group GmbH Cooling apparatus for cooling a metal material and method for the production and use thereof
CN108676972A (en) * 2018-05-10 2018-10-19 舞阳钢铁有限责任公司 A kind of special heavy plate quenching line carries out heat-treating methods to slab

Also Published As

Publication number Publication date
JP5573728B2 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
JP6094722B2 (en) Metal plate manufacturing method and quench quenching apparatus
KR101128316B1 (en) Continuous annealing equipment
JP2017119912A (en) Quick-cooling quenching apparatus, and quick-cooling quenching method
JP2018135552A (en) Quenching apparatus
JP5573728B2 (en) Manufacturing method and manufacturing apparatus for high strength cold-rolled steel sheet
JP6687084B2 (en) Quenching and quenching apparatus, quenching and quenching method, and method for manufacturing metal plate product
JP2014531319A (en) Method of forming parts from steel plate
WO2013140495A1 (en) Method and apparatus for manufacturing high-strength cold-rolled steel sheet
JP5515483B2 (en) Thick steel plate cooling equipment and cooling method
JP6870701B2 (en) Steel sheet cooling method, steel sheet cooling device and steel sheet manufacturing method
JP7314989B2 (en) Quenching device and method for manufacturing metal plate
JP6687090B2 (en) Quenching and quenching apparatus, quenching and quenching method, and method for manufacturing metal plate product
JP6702386B2 (en) Steel material manufacturing method and manufacturing equipment
JP6394913B2 (en) Metal strip cooling method
JP7306590B1 (en) Quenching equipment, continuous annealing equipment, quenching method, steel sheet manufacturing method, and plated steel sheet manufacturing method
WO2023002741A1 (en) Metal sheet-quenching apparatus, continuous annealing facility, metal sheet-quenching method, cold-rolled steel sheet production method, and plated steel sheet production method
JP7338783B2 (en) Quenching apparatus and method for metal plate, and method for manufacturing steel plate
JP5991283B2 (en) Steel strip manufacturing method and manufacturing equipment
JP2012152760A (en) Equipment and method for descaling thick steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140616

R150 Certificate of patent or registration of utility model

Ref document number: 5573728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees