JP2012174403A - Normal temperature insulating type superconducting cable and method for manufacturing the same - Google Patents

Normal temperature insulating type superconducting cable and method for manufacturing the same Download PDF

Info

Publication number
JP2012174403A
JP2012174403A JP2011033150A JP2011033150A JP2012174403A JP 2012174403 A JP2012174403 A JP 2012174403A JP 2011033150 A JP2011033150 A JP 2011033150A JP 2011033150 A JP2011033150 A JP 2011033150A JP 2012174403 A JP2012174403 A JP 2012174403A
Authority
JP
Japan
Prior art keywords
conductor
room temperature
superconducting cable
heat insulating
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011033150A
Other languages
Japanese (ja)
Other versions
JP5252323B2 (en
Inventor
Yoshihiro Inagaki
芳宏 稲垣
Masayuki Hirose
正幸 廣瀬
Hiroshi Hirota
博史 広田
Hiroyasu Yumura
洋康 湯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011033150A priority Critical patent/JP5252323B2/en
Publication of JP2012174403A publication Critical patent/JP2012174403A/en
Application granted granted Critical
Publication of JP5252323B2 publication Critical patent/JP5252323B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PROBLEM TO BE SOLVED: To provide a normal temperature insulating type superconducting cable that is less prone to degradation during excessively abnormal current conditions.SOLUTION: A normal temperature insulating type superconducting cable 100 includes a low temperature conductive portion 1 and a normal temperature coating portion 2. The low temperature conductive portion 1 has: a conductor portion 10 that has a superconducting conductor layer 12 formed on an outer circumference of a former 11; and a heat insulating pipe 13 that houses the conductor portion 10 therein. The normal temperature coating portion 2 has a normal temperature side electric insulating layer 23 that surrounds an outer circumference of the heat insulating pipe 13. The normal temperature coating portion 2 also has a normal-conducting shunt conductor 22 that is arranged on an inner side of the normal temperature side electric insulating layer 23 and on an outer side of the heat insulating pipe 13 and that shares abnormal current.

Description

本発明は、導体部を断熱管内に収納してなる低温導電部と、その低温導電部の外周を取り囲む常温側電気絶縁層を有する常温被覆部と、を備える常温絶縁型超電導ケーブル、およびその製造方法に関するものである。   The present invention relates to a room temperature insulation type superconducting cable comprising a low temperature conductive part in which a conductor part is housed in a heat insulating tube, and a room temperature coated part having a room temperature side electric insulation layer surrounding the outer periphery of the low temperature conductive part, and its manufacture It is about the method.

超電導ケーブルでは、一般にフォーマの外周上に超電導導体層を有する導体部を二重の金属管で構成される断熱管内に収納してなる構成を備える。このような超電導ケーブルにおいて、超電導ケーブルを外部から電気的に絶縁する構成には以下の二つが挙げられる。一つ目の構成は、超電導導体層の上に電気絶縁層を備えた導体部が上記断熱管に収納され、導体部に備わる当該電気絶縁層も冷媒により冷却される低温絶縁型の構成である。二つ目の構成は、フォーマと超電導導体層を備える低温導電部が上記断熱管に収納され、かつその断熱管の上に電気絶縁層が形成されており、当該電気絶縁層が冷媒により冷却されない常温絶縁型の構成である(例えば、非特許文献1を参照)。特に、後者の常温絶縁型超電導ケーブルは、既存の常電導ケーブルの絶縁材料および構造が適用できるという利点がある。   In general, a superconducting cable has a configuration in which a conductor portion having a superconducting conductor layer on the outer periphery of a former is housed in a heat insulating tube made of a double metal tube. In such a superconducting cable, there are the following two configurations for electrically insulating the superconducting cable from the outside. The first configuration is a low-temperature insulation type configuration in which a conductor portion provided with an electric insulation layer on a superconducting conductor layer is accommodated in the heat insulating tube, and the electric insulation layer provided in the conductor portion is also cooled by a refrigerant. . In the second configuration, a low-temperature conductive portion including a former and a superconducting conductor layer is accommodated in the heat insulating tube, and an electric insulating layer is formed on the heat insulating tube, and the electric insulating layer is not cooled by the refrigerant. It is a room temperature insulation type structure (see, for example, Non-Patent Document 1). In particular, the latter room-temperature insulated superconducting cable has an advantage that the insulation material and structure of an existing normal conducting cable can be applied.

『Experimental 35kV/121MVA Superconducting Cable System Installed at Puji Substation in Southern China Power Grid』 Transactions on Electrical and Electronic Engineering 1巻1号8−13ページ"Experimental 35kV / 121MVA Superconducting Cable System Installed at Pujy Substituting in Southern China Power Grid 1 Transactions on Electric 13"

しかし、上述した低温絶縁型、および常温絶縁型超電導ケーブルでは、短絡電流に代表される過大な異常時電流が発生した際、超電導導体層の劣化の可能性や冷媒の温度管理の面で課題があった。   However, in the above-described low-temperature insulation type and room temperature insulation type superconducting cables, there are problems in terms of the possibility of deterioration of the superconducting conductor layer and the temperature management of the refrigerant when an excessive abnormal current typified by a short circuit current occurs. there were.

異常時電流が発生し、その異常時電流が超電導導体層の臨界電流値を超えると、超電導導体層が常電導状態に転移する。その場合、異常時電流は超電導導体層とフォーマに流れる。そのとき、超電導導体層に流れる電流が大きい場合、フォーマの温度上昇が大きい場合に、超電導導体層の温度が上昇し劣化する恐れがある。仮に超電導導体層が劣化を免れたとしても、フォーマと超電導導体の金属部分に流れる膨大な電流により、これらフォーマと金属部分が急激に発熱して、冷媒の温度を上昇させる。冷媒の温度が上昇するほど、冷媒を再度、運用温度以下に冷却するまでの時間が長くなるので、異常時電流の発生から通常の送電に復帰する時間が長くなる。この復帰時間を所定の時間内にするためには、フォーマの断面積を大きくする(抵抗を小さくする)ことで温度上昇を低減させる必要があり、これがケーブルサイズを大きくさせる問題点でもあった。加えて、液体冷媒の一部がガス化してガス溜りが形成されると冷媒循環面への影響も懸念される。   When an abnormal current is generated and the abnormal current exceeds the critical current value of the superconducting conductor layer, the superconducting conductor layer transitions to a normal conducting state. In that case, an abnormal current flows through the superconducting conductor layer and the former. At that time, when the current flowing through the superconducting conductor layer is large, or when the temperature rise of the former is large, the temperature of the superconducting conductor layer may rise and deteriorate. Even if the superconducting conductor layer is free from deterioration, the enormous current flowing in the former and the metal part of the superconducting conductor causes the former and the metal part to generate heat suddenly and raise the temperature of the refrigerant. As the temperature of the refrigerant rises, the time until the refrigerant is cooled again below the operating temperature becomes longer, so the time for returning from normal current generation to normal power transmission becomes longer. In order to make the return time within a predetermined time, it is necessary to reduce the temperature rise by increasing the cross-sectional area of the former (decreasing the resistance), which is a problem of increasing the cable size. In addition, when a part of the liquid refrigerant is gasified to form a gas pool, there is a concern about the influence on the refrigerant circulation surface.

本発明は上記事情に鑑みてなされたものであり、その目的の一つは、過大な異常時電流に対して超電導導体層の温度上昇を抑制することで、劣化し難い常温絶縁型超電導ケーブルとその製造方法、並びに超電導ケーブル線路を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to suppress a temperature rise of the superconducting conductor layer against an excessive abnormal current, and to prevent the room temperature insulation type superconducting cable from being easily deteriorated. An object of the present invention is to provide a manufacturing method thereof and a superconducting cable line.

また、本発明の別の目的は、冷媒の温度上昇を抑制し、異常時電流の発生から通常の送電に復帰する時間を短縮することができる常温絶縁型超電導ケーブルとその製造方法、並びに超電導ケーブル線路を提供することにある。   Another object of the present invention is to provide a room temperature insulated superconducting cable capable of suppressing the temperature rise of the refrigerant and reducing the time required for returning from normal current generation to normal power transmission, a method for manufacturing the same, and a superconducting cable. To provide a track.

本発明常温絶縁型超電導ケーブルは、フォーマの外周に超電導導体層を形成してなる導体部、およびその導体部を内部に収納して、導体部を極低温に維持する断熱管を有する低温導電部と、断熱管の外周を取り囲む常温側電気絶縁層を有する常温被覆部と、を備える。そして、本発明常温絶縁型超電導ケーブルは、当該超電導ケーブルに備わる常温被覆部が、常温側電気絶縁層の内側で、かつ断熱管の外側に配置され、異常時電流を分担する常電導の分流導体を備えることを特徴とする。   The room temperature insulation type superconducting cable of the present invention is a low temperature conductive part having a conductor part formed by forming a superconducting conductor layer on the outer periphery of the former, and a heat insulating tube which houses the conductor part and keeps the conductor part at a very low temperature. And a room temperature coating portion having a room temperature side electric insulation layer surrounding the outer periphery of the heat insulating tube. The room temperature insulation type superconducting cable of the present invention is a normal conducting shunt conductor in which the room temperature coating portion provided in the superconducting cable is arranged inside the room temperature side electric insulation layer and outside the heat insulating tube, and shares the current at the time of abnormality. It is characterized by providing.

また、本発明超電導ケーブル線路は、上述した本発明常温絶縁型超電導ケーブルを用いたことを特徴とする。超電導ケーブル線路は、少なくとも本発明常温絶縁型超電導ケーブルと、冷媒を所定温度に冷却し、その冷却した冷媒を当該ケーブルに送り出す冷却機構と、当該ケーブルに流通された冷媒を、冷却機構に戻すリターン管と、を備える。   The superconducting cable line of the present invention is characterized by using the above-described room temperature insulation type superconducting cable of the present invention. The superconducting cable line includes at least the room temperature insulated superconducting cable of the present invention, a cooling mechanism that cools the refrigerant to a predetermined temperature, sends the cooled refrigerant to the cable, and a return that returns the refrigerant circulated through the cable to the cooling mechanism. A tube.

上記本発明常温絶縁型超電導ケーブル、および超電導ケーブル線路の構成によれば、常温被覆部に異常時電流を分担する分流導体を備えることにより、低温導電部における異常時電流の量を低減することができる。その結果、低温導電部における冷媒温度の上昇を抑制できるし、過大な電流による超電導導体層の劣化を抑制できる。特に、冷媒温度の上昇を抑制することで、超電導送電に適した温度に冷媒温度を復旧させることが容易になるし、冷媒を液体冷媒としたときの冷媒温度の上昇による液体冷媒のガス化を抑制できる。   According to the configuration of the present invention room temperature insulated superconducting cable and the superconducting cable line, the amount of abnormal current in the low temperature conductive portion can be reduced by providing the normal temperature covering portion with the shunt conductor for sharing the abnormal current. it can. As a result, it is possible to suppress an increase in the refrigerant temperature in the low temperature conductive part, and it is possible to suppress deterioration of the superconducting conductor layer due to an excessive current. In particular, by suppressing the rise in the refrigerant temperature, it becomes easy to restore the refrigerant temperature to a temperature suitable for superconducting power transmission, and the liquid refrigerant is gasified by the rise in the refrigerant temperature when the refrigerant is a liquid refrigerant. Can be suppressed.

本発明常温絶縁型超電導ケーブルには、低温導電部と常温被覆部とが独立した『分離型』の構成と、低温導電部の一部と常温被覆部とが一体化された『一部一体型』の構成とに分けることができる。『分離型』の構成はさらに、分流導体を低温導電部の側に設けた構成Xと、分流導体を常温被覆部の側に設けた構成Yと、に分けることができる。構成Xの場合、断熱管の外周に分流導体を形成し、構成Yの場合、常温側電気絶縁層の直下に分流導体を形成する。   The room-temperature insulated superconducting cable of the present invention has a “separated type” configuration in which the low-temperature conductive part and the room-temperature coated part are independent, and a partly integrated type in which a part of the low-temperature conductive part and the room-temperature coated part are integrated. It can be divided into the configuration. The “separated type” configuration can be further divided into a configuration X in which the shunt conductor is provided on the low temperature conductive portion side and a configuration Y in which the shunt conductor is provided on the normal temperature coating portion side. In the case of the configuration X, the shunt conductor is formed on the outer periphery of the heat insulating tube, and in the case of the configuration Y, the shunt conductor is formed immediately below the normal temperature side electric insulating layer.

分離型の本発明常温絶縁型超電導ケーブルとして、さらに常温側電気絶縁層を内周側から支持するパイプ状構造物を有することが好ましい。その場合、パイプ状構造物の内部に前記低温導電部が収納される。ここで、上記構成Xの場合、低温導電部の断熱管の外周に分流導体を形成し、常温被覆部の側にパイプ状構造物を設けて、パイプ状構造物で常温側電気絶縁層を支持する。また、上記構成Yの場合、パイプ状構造物の外周に分流導体を形成し、その分流導体の外周に常温側電気絶縁層を形成する。   It is preferable that the separation type room temperature insulated superconducting cable of the present invention further has a pipe-like structure that supports the room temperature side electric insulation layer from the inner peripheral side. In that case, the low-temperature conductive portion is accommodated inside the pipe-like structure. Here, in the case of the above configuration X, a shunt conductor is formed on the outer periphery of the heat insulating tube of the low temperature conductive portion, a pipe-like structure is provided on the side of the room temperature coating portion, and the room temperature side electric insulation layer is supported by the pipe structure. To do. Moreover, in the case of the said structure Y, a shunt conductor is formed in the outer periphery of a pipe-shaped structure, and a normal temperature side electric insulation layer is formed in the outer periphery of the shunt conductor.

分離型の超電導ケーブルによれば、布設後の使用に伴い低温導電部が損傷した場合、低温導電部のみを交換することができる。また、分離型の超電導ケーブルによれば、低温導電部における導体部のみを交換することも可能である。   According to the separated superconducting cable, when the low temperature conductive part is damaged due to use after laying, only the low temperature conductive part can be replaced. In addition, according to the separated superconducting cable, it is possible to replace only the conductor portion in the low temperature conductive portion.

一方、一部一体型の本発明常温絶縁型超電導ケーブルでは、断熱管の直上に前記分流導体が形成されている構成が挙げられる。   On the other hand, in the partially integrated type room temperature insulated superconducting cable of the present invention, there is a configuration in which the shunt conductor is formed immediately above the heat insulating tube.

上記一部一体型の超電導ケーブルによれば、布設後の使用に伴って、超電導導体層を備える導体部が損傷した場合、導体部のみを交換することができる。さらに一部一体型の超電導ケーブルによれば、断熱管の上に直接常温被覆部が形成され、両者の間に隙間を設けないため、超電導ケーブルの外径寸法を小さくすることができる。   According to the partially integrated superconducting cable, when the conductor part including the superconducting conductor layer is damaged with use after installation, only the conductor part can be replaced. Furthermore, according to the partially integrated superconducting cable, the room temperature coating is formed directly on the heat insulating tube, and no gap is provided between them, so that the outer diameter of the superconducting cable can be reduced.

本発明常温絶縁型超電導ケーブルの一形態として、分流導体は銅で構成されていることが好ましい。   As one form of the room temperature insulated superconducting cable of the present invention, the shunt conductor is preferably made of copper.

銅の電気抵抗値は、種々の金属・合金の中でも低いため、分流導体として好適である。異常時電流の発生時、超電導導体層とフォーマと分流導体に異常時電流は分流するが、フォーマに流れる電流を小さくし、分流導体に流れる電流を大きくすることが望まれる。そのためには常電導導体である分流導体の抵抗値を小さくすることが有効であり、当該抵抗値を小さくするためには銅が好ましい。分流導体に流れる電流を大きくすると、その分だけフォーマの断面積を小さくすることができ、その結果として超電導ケーブルの寸法を小さくすることもできる。   Since the electrical resistance value of copper is low among various metals and alloys, it is suitable as a shunt conductor. When an abnormal current is generated, the abnormal current is diverted to the superconducting conductor layer, the former, and the shunt conductor. However, it is desirable to reduce the current flowing through the former and increase the current flowing through the shunt conductor. For this purpose, it is effective to reduce the resistance value of the shunt conductor, which is a normal conducting conductor, and copper is preferable for reducing the resistance value. When the current flowing through the shunt conductor is increased, the cross-sectional area of the former can be reduced correspondingly, and as a result, the size of the superconducting cable can be reduced.

次に、上述した本発明常温絶縁型超電導ケーブルの構成に応じた本発明常温絶縁型超電導ケーブルの製造方法を説明する。   Next, a method for manufacturing the room temperature insulated superconducting cable according to the present invention according to the configuration of the room temperature insulated superconducting cable will be described.

まず、低温導電部と常温被覆部とが別体で、かつ分流導体が常温被覆部の側にある分離型の常温絶縁型超電導ケーブルを作製する場合、その常温絶縁型超電導ケーブルの製造方法は、次の工程A〜Cを備える構成とすると良い。
(工程A)低温導電部を作製する。
(工程B)異常時電流を分担する分流導体と、分流導体の外周に形成される常温側電気絶縁層と、を有する常温被覆部を作製する。この常温被覆部の内径は、低温導電部の外径よりも大きくする。
(工程C)工程Aで作製した低温導電部を、工程Bで作製した常温被覆部の内部に挿入する。
First, when producing a separate room temperature insulated superconducting cable in which the low temperature conductive part and the room temperature coated part are separate and the shunt conductor is on the side of the room temperature coated part, the method for producing the room temperature insulated superconducting cable is: A configuration including the following steps A to C is preferable.
(Step A) A low temperature conductive part is produced.
(Step B) A room temperature coating portion having a shunt conductor for sharing an abnormal current and a room temperature side electrical insulating layer formed on the outer periphery of the shunt conductor is produced. The inside diameter of the room temperature coating portion is made larger than the outside diameter of the low temperature conductive portion.
(Step C) The low-temperature conductive part produced in Step A is inserted into the room temperature coating part produced in Step B.

なお、低温導電部を作製する工程Aは、さらに、導体部を作製する工程と、断熱管を作製する工程と、断熱管の内部に導体部を挿入し、これらを一体化して低温導電部を作製する工程と、に分けても良い。この場合、順番に矛盾が生じない範囲で工程の順番を任意に入れ替えても良い。例えば、導体部の作製→断熱管の作製→工程Bの常温被覆部の作製→常温被覆部の内部に断熱管を挿入→断熱管の内部に導体部を挿入→完成、としても良い。   In addition, the process A for producing the low temperature conductive part further includes a process for producing the conductor part, a process for producing the heat insulation pipe, a conductor part inserted into the inside of the heat insulation pipe, and integrating these to form the low temperature conductive part. You may divide into the process to produce. In this case, the order of the steps may be arbitrarily changed within a range where no contradiction occurs in the order. For example, preparation of conductor part → preparation of heat insulation tube → production of room temperature coating part in step B → insertion of heat insulation pipe inside room temperature coating part → insertion of conductor part inside heat insulation pipe → complete.

低温導電部と常温被覆部とを個別に作製し、その後、常温被覆部の内部に低温導電部を挿入して超電導ケーブルを作製する場合、超電導ケーブルの歩留りを向上させることができる。これは、低温導電部と常温被覆部とをそれぞれ検品し、不具合のない低温導電部と常温被覆部とを組み合わせて超電導ケーブルを作製できるからである。これに対して、上記本発明の製造方法と異なり、超電導ケーブルの中心側から順次超電導ケーブルを作製していく従来の製造方法の場合、超電導ケーブルが出来上がった段階で低温導電部と常温被覆部のいずれかに不具合があれば、超電導ケーブル全体を作り直さなければならないし、低温導電部の外周に常温被覆部を形成する過程で低温導電部に損傷を与えてしまう可能性もある。   When the low-temperature conductive portion and the normal-temperature coating portion are separately manufactured and then the low-temperature conductive portion is inserted into the normal-temperature coating portion to manufacture a superconducting cable, the yield of the superconducting cable can be improved. This is because the superconducting cable can be manufactured by inspecting the low-temperature conductive portion and the normal-temperature coating portion, respectively, and combining the low-temperature conductive portion and the normal-temperature coating portion without any defects. On the other hand, unlike the manufacturing method of the present invention, in the case of the conventional manufacturing method in which the superconducting cable is sequentially manufactured from the center side of the superconducting cable, the low-temperature conductive portion and the room-temperature covering portion are formed at the stage where the superconducting cable is completed. If any of the defects is present, the entire superconducting cable must be recreated, and the low temperature conductive part may be damaged in the process of forming the room temperature coating on the outer periphery of the low temperature conductive part.

次に、低温導電部と常温被覆部とが別体で、かつ分流導体が低温導電部の側にある分離型の常温絶縁型超電導ケーブルを作製する場合、その常温絶縁型超電導ケーブルの製造方法は、次の工程A´〜C´を備える構成とすると良い。
(工程A´)導体部と、その導体部の外周を覆う断熱管と、その断熱管の上に形成され、異常時電流を分担する分流導体と、を備える低温導電部を作製する。
(工程B´)低温導電部の外径よりも大きな内径を有するパイプ状構造物と、その外周に形成される常温側電気絶縁層を有する常温被覆部を作製する。
(工程C´)工程A´で作製した低温導電部を、工程B´で作製した常温被覆部の内部に挿入する。
Next, when producing a separate room-temperature insulated superconducting cable in which the low-temperature conducting part and the room-temperature coated part are separate and the shunt conductor is on the low-temperature conducting part side, the method for producing the room-temperature insulated superconducting cable is The following steps A ′ to C ′ are preferable.
(Step A ′) A low-temperature conductive portion is prepared that includes a conductor portion, a heat insulating tube that covers the outer periphery of the conductor portion, and a shunt conductor that is formed on the heat insulating tube and shares a current at the time of abnormality.
(Step B ′) A room-temperature coated portion having a pipe-like structure having an inner diameter larger than the outer diameter of the low-temperature conductive portion and a room-temperature-side electrical insulating layer formed on the outer periphery thereof is prepared.
(Step C ′) The low-temperature conductive part produced in step A ′ is inserted into the room temperature coating part produced in step B ′.

なお、低温導電部を作製する工程A´は、さらに、導体部を作製する工程と、分流導体付き断熱管を作製する工程と、分流導体付き断熱管の内部に導体部を挿入し、これらを一体化して低温導電部を作製する工程と、に分けても良い。この場合も、順番に矛盾が生じない範囲で工程の順番を任意に入れ替えても良い。例えば、導体部の作製→分流導体付き断熱管の作製→工程B´の常温被覆部の作製→常温被覆部の内部に分流導体付き断熱管を挿入→分流導体付き断熱管の内部に導体部を挿入→完成、としても良い。   In addition, the process A ′ for producing the low temperature conductive part further includes the process for producing the conductor part, the process for producing the heat insulating pipe with the shunt conductor, and inserting the conductor part into the heat insulating pipe with the shunt conductor, You may divide into the process of integrating and producing a low-temperature conductive part. Also in this case, the order of the steps may be arbitrarily changed within a range where no contradiction occurs in the order. For example, production of a conductor part → production of a heat insulation pipe with a shunt conductor → production of a room temperature coated part in step B ′ → insert a heat insulation pipe with a shunt conductor inside the room temperature coating part → a conductor part inside a heat insulation pipe with a shunt conductor Insert → complete.

低温導電部と常温被覆部とを個別に作製し、その後、これらを一体化させる分離型の超電導ケーブルを作製する場合も、超電導ケーブルの歩留りを向上させることができる。その理由は、前述の工程A〜Cを備える分離型の超電導ケーブルの製造方法で歩留りが向上する理由と同様である。   The yield of the superconducting cable can also be improved in the case where the low-temperature conductive portion and the normal-temperature covering portion are separately manufactured, and then a separate superconducting cable in which these are integrated is manufactured. The reason is the same as the reason why the yield is improved by the method of manufacturing the separated superconducting cable including the steps A to C described above.

最後に、低温導電部の断熱管が常温被覆部と一体に形成された一部一体型の常温絶縁型超電導ケーブルを作製する場合、その常温絶縁型超電導ケーブルは、次の工程α〜γを備える構成とすると良い。
(工程α)導体部を作製する。
(工程β)断熱管と、この断熱管の上に形成され、異常時電流を分担する常電導の分流導体と、この分流導体の外周に形成される常温被覆部と、を備える被覆部付き断熱管を作製する。
(工程γ)工程αで作製した導体部を、工程βで作製した被覆部付き断熱管の内部に挿入する。
Finally, when producing a partially integrated type room temperature insulated superconducting cable in which the heat insulating tube of the low temperature conductive part is formed integrally with the room temperature coated part, the room temperature insulated superconducting cable includes the following steps α to γ. A configuration is good.
(Step α) A conductor portion is produced.
(Step β) Insulation with a covering portion comprising a heat insulating tube, a normal conducting shunt conductor that is formed on the heat insulating tube and shares an abnormal current, and a room temperature covering portion formed on the outer periphery of the shunt conductor Make a tube.
(Step γ) The conductor portion produced in step α is inserted into the insulated pipe with covering portion produced in step β.

導体部と被覆部付き断熱管とを個別に作製し、その後、被覆部付き断熱管の内部に導体部を挿入して一部一体型の超電導ケーブルを作製する場合も、超電導ケーブルの歩留りを向上させることができる。その理由は、前述の工程A〜Cを備える分離型の超電導ケーブルの製造方法で歩留りが向上する理由と同様である。   Even when a conductor part and a heat insulating tube with a covering part are manufactured separately, and then a conductor part is inserted into the heat insulating pipe with a covering part to manufacture a partially integrated superconducting cable, the yield of the superconducting cable is improved. Can be made. The reason is the same as the reason why the yield is improved by the method of manufacturing the separated superconducting cable including the steps A to C described above.

本発明常温絶縁型超電導ケーブルは異常時電流により劣化し難いため、本発明常温絶縁型超電導ケーブルを使用すれば、安定して運用することができる超電導ケーブル線路を構築できる。また、本発明常温絶縁型超電導ケーブルによれば、異常時電流による冷媒の温度上昇を抑制できるため、超電導ケーブル線路の運用の際に異常時電流が発生しても、早期に復旧させることができる超電導ケーブル線路を構築できる。   Since the room temperature insulated superconducting cable of the present invention is unlikely to deteriorate due to an abnormal current, the use of the room temperature insulated superconducting cable of the present invention makes it possible to construct a superconducting cable line that can be operated stably. Further, according to the room temperature insulation type superconducting cable of the present invention, since the temperature rise of the refrigerant due to the abnormal current can be suppressed, even if the abnormal current occurs during the operation of the superconducting cable line, it can be recovered early. A superconducting cable line can be constructed.

(A)は実施形態1に記載される常温絶縁型超電導ケーブルの概略横断面図、(B)はその組立前の状態を示す横断面図である。(A) is a schematic cross-sectional view of the room-temperature insulated superconducting cable described in Embodiment 1, and (B) is a cross-sectional view showing a state before the assembly. (A)は実施形態2に記載される常温絶縁型超電導ケーブルの概略横断面図、(B)はその組立前の状態を示す横断面図である。(A) is a schematic cross-sectional view of the room-temperature insulated superconducting cable described in Embodiment 2, and (B) is a cross-sectional view showing a state before the assembly. (A)は実施形態3に記載される常温絶縁型超電導ケーブルの概略横断面図、(B)はその組立前の状態を示す横断面図である。(A) is a schematic cross-sectional view of the room-temperature insulated superconducting cable described in Embodiment 3, and (B) is a cross-sectional view showing a state before the assembly.

以下、図面に基づいて、本発明常温絶縁型超電導ケーブルの実施形態を説明する。図において同一符号は、同一名称物を示す。   Hereinafter, an embodiment of the room temperature insulated superconducting cable of the present invention will be described based on the drawings. In the figure, the same reference numeral indicates the same name object.

<実施形態1>
≪全体構成≫
図1(A)に示す分離型の常温絶縁型超電導ケーブル100は、個別に作製された低温導電部1と、その低温導電部1を内部に収納するパイプ状の常温被覆部2と、を組み合わせることで形成される。この常温絶縁型超電導ケーブル100の最も特徴とするところは、常温被覆部2に分流導体22が形成されていることである。以下、各構成を順次詳細に説明する。
<Embodiment 1>
≪Overall structure≫
A separate room-temperature insulated superconducting cable 100 shown in FIG. 1A combines a separately manufactured low-temperature conductive part 1 and a pipe-shaped normal-temperature covering part 2 that houses the low-temperature conductive part 1 therein. Is formed. The most characteristic feature of this room-temperature insulated superconducting cable 100 is that a shunt conductor 22 is formed in the room-temperature covering 2. Hereinafter, each configuration will be sequentially described in detail.

≪低温導電部≫
低温導電部1は、断熱管13の内部に、導体部10が収納されてなる長尺体である。
≪Low temperature conductive part≫
The low temperature conductive part 1 is a long body in which the conductor part 10 is accommodated inside the heat insulating tube 13.

[導体部]
導体部10は、代表的には、中心から順にフォーマ11、超電導導体層12、保護層(図示せず)を備える。フォーマ11は、超電導導体層12の支持体に利用される部材であり、例えば、図1に示すようなパイプ状の中空体をフォーマ11として利用できる。中空体のフォーマ11は、その内部を冷媒131の流路として利用することができる。フォーマ11の形状としては、中空体の他、中実体を利用することもできる。一方、フォーマ11の材質も特に限定されない。単に超電導導体層12の支持体としてフォーマ11を利用するのであれば、フォーマ11は樹脂などの非導電性材料から構成しても良いし、フォーマ11に異常時電流の分流路としての機能も持たせるのであれば、銅やアルミニウムなどの常電導の金属材料から構成しても良い。これらのことを考慮してフォーマ11の具体的な構成を例示すると、中空体のフォーマ11としては例えば、金属材料からなるパイプを挙げることができるし、中実体のフォーマ11としては例えば、エナメルなどの絶縁被覆を備える複数の金属線を撚り合わせたものを挙げることができる。
[Conductor]
The conductor 10 typically includes a former 11, a superconducting conductor layer 12, and a protective layer (not shown) in order from the center. The former 11 is a member used as a support for the superconducting conductor layer 12. For example, a pipe-shaped hollow body as shown in FIG. 1 can be used as the former 11. The hollow former 11 can use the inside as a flow path of the refrigerant 131. As the shape of the former 11, a solid body can be used in addition to the hollow body. On the other hand, the material of the former 11 is not particularly limited. If the former 11 is simply used as a support for the superconducting conductor layer 12, the former 11 may be made of a non-conductive material such as a resin, and the former 11 also has a function as a current shunt path for abnormal current. If it can be used, it may be made of a normal conducting metal material such as copper or aluminum. Taking the above into consideration, the concrete configuration of the former 11 is exemplified. For example, the hollow body former 11 may be a pipe made of a metal material, and the solid former 11 may be enamel, for example. The thing which twisted together the some metal wire provided with this insulation coating can be mentioned.

次に、超電導導体層12としては、例えば、酸化物超電導体を備えるテープ状線材が好適に利用できる。テープ状線材は、例えば、Bi2223系超電導テープ線(Ag−MnやAgなどの安定化金属中に酸化物超電導体からなるフィラメントが配されたシース線)、RE123系薄膜線材(RE:希土類元素、例えばY、Ho、Nd、Sm、Gdなど。金属基板に酸化物超電導相が成膜された積層線材)が挙げられる。超電導導体層12は、上記テープ状線材を螺旋状に巻回して形成した単層構造又は多層構造が挙げられる。   Next, as the superconducting conductor layer 12, for example, a tape-like wire material including an oxide superconductor can be suitably used. Examples of the tape-shaped wire include Bi2223 superconducting tape wire (sheath wire in which a filament made of an oxide superconductor is arranged in a stabilizing metal such as Ag-Mn and Ag), RE123 thin film wire (RE: rare earth element, For example, Y, Ho, Nd, Sm, Gd, etc. (Laminated wire material in which an oxide superconducting phase is formed on a metal substrate). The superconducting conductor layer 12 includes a single layer structure or a multilayer structure formed by spirally winding the tape-shaped wire.

図示しない保護層は、上記超電導導体層12を保護し、断熱管13との絶縁を確保するためのものであり、クラフト紙などを巻回することで形成できる。   The protective layer (not shown) is for protecting the superconducting conductor layer 12 and ensuring insulation from the heat insulating tube 13, and can be formed by winding kraft paper or the like.

[断熱管]
上記導体部10を収納する断熱管13は、導体部10を内部に収納する内管14と、内管14を内部に収納する外管15と、を備える。内管14は、その内部に、超電導導体層12を超電導状態に維持するための冷媒131(代表的には、液体窒素や液体ヘリウム、ヘリウムガスなど)が充填され、冷媒流路として機能する。この内管14と、内管14の外周に設けられる外管15とで断熱管13を構成することで、外部からの侵入熱などにより冷媒131の温度が上昇することを抑制する。内管14と外管15との間は真空引きされ、それによって真空断熱層が形成されている。その他、内管14と外管15との間にスーパーインシュレーションといった断熱材や、内管14と外管14とを離隔させるスペーサを配置すると、断熱管13の断熱性を高められる。なお、本実施形態では、断熱管として二重管構造の断熱管を利用しているが、三重管以上の断熱管を利用しても良い。
[Insulated pipe]
The heat insulating tube 13 that houses the conductor portion 10 includes an inner tube 14 that houses the conductor portion 10 therein, and an outer tube 15 that houses the inner tube 14 inside. The inner tube 14 is filled with a refrigerant 131 (typically liquid nitrogen, liquid helium, helium gas, etc.) for maintaining the superconducting conductor layer 12 in a superconducting state, and functions as a refrigerant flow path. By forming the heat insulating tube 13 with the inner tube 14 and the outer tube 15 provided on the outer periphery of the inner tube 14, it is possible to suppress the temperature of the refrigerant 131 from rising due to heat entering from the outside. A vacuum is drawn between the inner tube 14 and the outer tube 15 to form a vacuum heat insulating layer. In addition, if a heat insulating material such as super insulation or a spacer that separates the inner tube 14 and the outer tube 14 is disposed between the inner tube 14 and the outer tube 15, the heat insulating property of the heat insulating tube 13 can be improved. In addition, in this embodiment, although the heat insulation pipe | tube of a double pipe structure is utilized as a heat insulation pipe | tube, you may utilize the heat insulation pipe | tube more than a triple pipe.

内管14及び外管15の構成材料は、ステンレス鋼、アルミニウムやその合金などの金属が挙げられる。上記金属は、耐食性に優れることから、種々の流体の保持や輸送を行う断熱管13の構成材料に適する。両管14,15の材質を異ならせてもよい。また、両管14,15はいずれも、その全長に亘ってコルゲート加工が施されたコルゲート管としたり、アルミニウムやその合金などの比較的柔らかく可撓性を有する材質からなるストレート管としたりすることで屈曲可能となる。このように可撓性を有する断熱管13を採用することで、搬送時や布設時に超電導ケーブル100を曲げ易くすることができる。さらに、コルゲート管で断熱管13を形成することで、断熱管13が冷媒131に冷却されて熱収縮する際に変形することで熱応力を緩和できる。   Examples of the constituent material of the inner tube 14 and the outer tube 15 include metals such as stainless steel, aluminum, and alloys thereof. Since the metal is excellent in corrosion resistance, it is suitable as a constituent material of the heat insulating tube 13 for holding and transporting various fluids. The materials of both pipes 14 and 15 may be different. Both pipes 14 and 15 should be corrugated pipes that have been corrugated over their entire length, or straight pipes made of a relatively soft and flexible material such as aluminum or its alloys. Can be bent. By adopting the heat insulating tube 13 having flexibility in this way, the superconducting cable 100 can be easily bent at the time of transportation or laying. Furthermore, by forming the heat insulating tube 13 with a corrugated tube, the heat stress can be relieved by deformation when the heat insulating tube 13 is cooled by the refrigerant 131 and thermally contracts.

≪常温被覆部≫
常温被覆部2は、パイプ状構造物21と、パイプ状構造物21の外周に形成される分流導体22と、分流導体22のさらに外周に形成される常温側電気絶縁層23と、を備える。
≪Normal temperature coating part≫
The room temperature coating portion 2 includes a pipe-like structure 21, a shunt conductor 22 formed on the outer periphery of the pipe-like structure 21, and a normal temperature side electric insulating layer 23 formed on the outer circumference of the shunt conductor 22.

[パイプ状構造物]
パイプ状構造物21は、その外周面に形成される分流導体22や常温側電気絶縁層23を保形する部材であって、最も重要な特性は高強度であることである。また、超電導ケーブル100に所定の可撓性を持たせるために、パイプ状構造物21も所定の可撓性を有することが求められる。これらの点を考慮して、パイプ状構造物21としては、アルミニウムのストレートパイプや、SUSのコルゲートパイプなどを利用することができる。その他、パイプ状構造物21は、樹脂などの非導電材料でできていても良い。ここで、このパイプ状構造物21が導電材料であれば、それ自身も分流導体22の機能の一部を分担できる。
[Pipe-like structure]
The pipe-like structure 21 is a member that retains the shunt conductor 22 and the room-temperature-side electrical insulating layer 23 formed on the outer peripheral surface thereof, and the most important characteristic is high strength. In order to give the superconducting cable 100 a predetermined flexibility, the pipe-like structure 21 is also required to have a predetermined flexibility. In consideration of these points, as the pipe-like structure 21, an aluminum straight pipe, a SUS corrugated pipe, or the like can be used. In addition, the pipe-like structure 21 may be made of a non-conductive material such as resin. Here, if the pipe-like structure 21 is a conductive material, it can also share a part of the function of the shunt conductor 22 itself.

[分流導体]
分流導体22は、異常時電流が生じたときに、その異常時電流を分担する常電導導体である。この分流導体22は、超電導ケーブル線路の長手方向の接続部(超電導ケーブル100の中間接続部や終端接続部など)で超電導導体層12、およびフォーマ11に接続されている。そのため、分流導体22と、超電導導体層12およびフォーマ11と、で異常時電流を分担できるようになっている。
[Branch conductor]
The shunt conductor 22 is a normal conducting conductor that shares an abnormal current when an abnormal current is generated. The shunt conductor 22 is connected to the superconducting conductor layer 12 and the former 11 at a connecting portion in the longitudinal direction of the superconducting cable line (such as an intermediate connecting portion or a terminal connecting portion of the superconducting cable 100). Therefore, the current at the time of abnormality can be shared by the shunt conductor 22, the superconducting conductor layer 12, and the former 11.

分流導体22は、異常時電流を分担する役割を担う観点から、パイプ状構造物21よりも高導電性の金属材料、つまり電気抵抗値が低い銅やアルミニウム、銀などの金属材料から構成される。特に、銅は、銀に次ぐ高い導電率を有し、銀よりも格段に安価である点で、分流導体22として好適である。   The shunt conductor 22 is composed of a metal material having a higher conductivity than that of the pipe-like structure 21, that is, a metal material such as copper, aluminum, or silver having a lower electric resistance value, from the viewpoint of sharing the current during an abnormality. . In particular, copper is suitable as the shunt conductor 22 in that it has the second highest conductivity after silver and is much cheaper than silver.

上記分流導体22は、銅撚り線で構成されるセグメント導体など既存常電導ケーブルの導体に準じた部材をパイプ状構造物21上に巻回することで形成することができる。   The said shunt conductor 22 can be formed by winding the member according to the conductor of the existing normal conducting cable, such as a segment conductor comprised with a copper strand wire, on the pipe-shaped structure 21. As shown in FIG.

上記分流導体22の断面積は、超電導ケーブル線路の運用上、どの程度の異常時電流が発生し得るか、その発生した異常時電流を分流導体22にどの程度負担させるかによって適宜選択すれば良い。例えば、上述した低温導電部1のフォーマ11を非導電性材料で構成する場合、異常時電流の大部分を分流導体22に流せるように分流導体22の断面積を決定し、分流導体22と超電導導体層12の金属成分とで異常時電流を分担させることで、超電導導体層12を保護する。また、当該フォーマ11を導電性材料とし、異常時電流を分流導体22と超電導導体層12の金属成分に分担させるだけでなく、フォーマ11にも分担させる構成であれば、分流導体22に十分な異常時電流を流せるように分流導体22の断面積を決定すれば良い。また、銅素線を素線絶縁線とすることで交流抵抗を低減した分流導体とすることも有効である。   The cross-sectional area of the shunt conductor 22 may be appropriately selected depending on how much abnormal current can be generated in the operation of the superconducting cable line and how much the generated abnormal current is borne by the shunt conductor 22. . For example, when the former 11 of the low-temperature conductive portion 1 described above is made of a non-conductive material, the cross-sectional area of the shunt conductor 22 is determined so that most of the abnormal current can flow through the shunt conductor 22, and the shunt conductor 22 and the superconductor The superconducting conductor layer 12 is protected by sharing an abnormal current with the metal component of the conductor layer 12. Further, if the former 11 is made of a conductive material and the abnormal current is not only shared by the metal components of the shunt conductor 22 and the superconducting conductor layer 12 but is also shared by the former 11, the shunt conductor 22 is sufficient. What is necessary is just to determine the cross-sectional area of the shunt conductor 22 so that the electric current at the time of abnormality can be sent. Moreover, it is also effective to make a shunt conductor with reduced AC resistance by using a copper insulated wire as the insulated wire.

[常温側電気絶縁層]
常温側電気絶縁層23は、超電導ケーブル100を外部環境から電気的に絶縁する層である。この常温側電気絶縁層23には、常電導ケーブルで実績がある電気絶縁強度に優れる材料、代表的にはCVケーブルに利用される架橋ポリエチレン(XLPE)などを利用できる。架橋ポリエチレンなどの絶縁性樹脂であれば、パイプ状構造物21に分流導体22を形成した筒状部材の外周に絶縁性樹脂を押し出すだけで常温側電気絶縁層23を容易に形成できる。その他、常温側電気絶縁層23には、OFケーブルにおける絶縁層と同様の構成を採用することができる。例えば、分流導体22の外周にテープ状のクラフト紙や半合成紙を多層に巻回し、その絶縁層に合成油などの絶縁油を含浸させることで常温側電気絶縁層23を形成することができる。
[Room-temperature electrical insulation layer]
The room temperature side electrical insulation layer 23 is a layer that electrically insulates the superconducting cable 100 from the external environment. The room-temperature side electrical insulation layer 23 can be made of a material having an excellent electrical insulation strength that has been proven in ordinary conductive cables, typically, crosslinked polyethylene (XLPE) used for CV cables. If the insulating resin such as cross-linked polyethylene is used, the room-temperature-side electrical insulating layer 23 can be easily formed simply by extruding the insulating resin on the outer periphery of the tubular member in which the shunt conductor 22 is formed on the pipe-like structure 21. In addition, the room temperature side electrical insulation layer 23 can employ the same configuration as the insulation layer in the OF cable. For example, the room temperature side electrical insulation layer 23 can be formed by winding tape-like kraft paper or semi-synthetic paper around the outer periphery of the shunt conductor 22 in multiple layers and impregnating the insulation layer with insulation oil such as synthetic oil. .

[その他の構成]
常温側電気絶縁層23の外周には、代表的には、銅やアルミニウムなどの常電導材料から構成された外側遮蔽層(図示せず)が設けられる。外側遮蔽層は、絶縁層23の外側の電位を与えるもので、従来の電力ケーブルと同様に常電導材料を利用できる。そのため、常温絶縁型超電導ケーブル100は製造性に優れる。また、外側遮蔽層の外周には、所定の絶縁特性を有し、外側遮蔽層を保護する防食層(図示せず)が設けられている。
[Other configurations]
An outer shielding layer (not shown) made of a normal conducting material such as copper or aluminum is typically provided on the outer periphery of the room temperature side electrical insulating layer 23. The outer shielding layer provides a potential outside the insulating layer 23, and a normal conductive material can be used as in the case of a conventional power cable. Therefore, the room temperature insulated superconducting cable 100 is excellent in manufacturability. Further, an anticorrosion layer (not shown) having predetermined insulating properties and protecting the outer shielding layer is provided on the outer periphery of the outer shielding layer.

≪常温絶縁型超電導ケーブルの効果≫
実施形態1の超電導ケーブル100の構成であれば、異常時電流が発生したときに、その異常時電流を分流導体22に分担させることができる。そのため、超電導導体層12に過剰な電流が流れることによる温度上昇により超電導導体層12が劣化することを回避できる。また、異常時電流を分担する分流導体22が、常温被覆部2に設けられていることから、分流導体22で生じるジュール熱により低温導電部1の冷媒131が熱せられることがない。そのため、冷媒131が熱せられてガス化することを抑制できるし、冷媒131を運用可能な温度まで冷却するための時間を短くすることもできるので、異常時電流の発生から短時間で超電導ケーブル線路を通常運転に復帰させることができる。
≪Effect of room temperature insulated superconducting cable≫
With the configuration of the superconducting cable 100 according to the first embodiment, when an abnormal current is generated, the abnormal current can be shared by the shunt conductor 22. Therefore, it is possible to avoid deterioration of the superconducting conductor layer 12 due to a temperature rise caused by excessive current flowing through the superconducting conductor layer 12. In addition, since the shunt conductor 22 that shares the abnormal current is provided in the room temperature coating portion 2, the refrigerant 131 of the low temperature conductive portion 1 is not heated by the Joule heat generated in the shunt conductor 22. Therefore, the refrigerant 131 can be prevented from being heated and gasified, and the time for cooling the refrigerant 131 to an operable temperature can be shortened. Can be returned to normal operation.

≪常温絶縁型超電導ケーブルの製造方法≫
以上説明した超電導ケーブル100は、図1(B)に示すように、次の工程A〜Cにより作製することができる。なお、工程Aと工程Bの順序は入れ替え可能である。
≪Method of manufacturing room temperature insulated superconducting cable≫
The superconducting cable 100 described above can be manufactured by the following steps A to C as shown in FIG. In addition, the order of the process A and the process B is interchangeable.

[工程A]
工程Aでは、低温導電部1を作製する。低温導電部1は、導体部10を作製し、その導体部10の外周に、順次内管14、外管15を形成することで作製することができる。その他、導体部10と断熱管13とを別個に作製し、断熱管13の内管14内に導体部10を挿入することで、低温導電部1を作製しても良い。
[Step A]
In step A, the low temperature conductive portion 1 is produced. The low-temperature conductive portion 1 can be manufactured by forming the conductor portion 10 and sequentially forming the inner tube 14 and the outer tube 15 on the outer periphery of the conductor portion 10. In addition, the low-temperature conductive portion 1 may be manufactured by separately manufacturing the conductor portion 10 and the heat insulating tube 13 and inserting the conductor portion 10 into the inner tube 14 of the heat insulating tube 13.

[工程B]
工程Bでは、上記低温導電部1とは別に、常温被覆部2を作製する。まずパイプ状構造物21を用意し、その外周に、例えば銅線で構成されるセグメント導体を巻回して分流導体22を形成する。次いで、分流導体22の外周に、例えば押出などにより絶縁性樹脂を被覆し、常温側電気絶縁層23を形成する。常温側電気絶縁層23は、クラフト紙やPPLP(住友電気工業の登録商標)を巻回することで形成しても良い。
[Step B]
In step B, a room temperature coating portion 2 is produced separately from the low temperature conductive portion 1. First, a pipe-like structure 21 is prepared, and a segment conductor made of, for example, a copper wire is wound around the outer periphery thereof to form a shunt conductor 22. Next, an insulating resin is coated on the outer periphery of the shunt conductor 22 by, for example, extrusion to form the room temperature side electric insulation layer 23. The room temperature side electrical insulation layer 23 may be formed by winding kraft paper or PPLP (registered trademark of Sumitomo Electric Industries).

ここで、低温導電部1の長さと、常温被覆部2の長さとは、同じである必要はない。例えば、低温導電部1を常温被覆部2よりも長くしてもかまわない。その場合、低温導電部1の両端部が常温被覆部2から露出するので、複数の超電導ケーブル100を接続して超電導ケーブル線路を構築する際、隣接する低温導電部1同士の接続を容易に行える。   Here, the length of the low temperature conductive portion 1 and the length of the room temperature coating portion 2 do not have to be the same. For example, the low temperature conductive part 1 may be longer than the room temperature coating part 2. In that case, since both ends of the low temperature conductive part 1 are exposed from the room temperature covering part 2, when connecting a plurality of superconducting cables 100 to construct a superconducting cable line, adjacent low temperature conductive parts 1 can be easily connected. .

[工程C]
工程Aで作製した低温導電部1を、工程Bで作製した常温被覆部2の内部に挿入する。低温導電部1を常温被覆部2に挿入する際は、低温導電部1のフォーマ11や断熱管13の部分を引っ張ると良い。その際、低温導電部1にテンションメンバを取り付けておき、そのテンションメンバに張力を分担させても良い。そうすることで、張力による低温導電部1(特に、超電導導体層12)の損傷や、断熱管13の伸縮による断熱性能への影響を防止できる。
[Step C]
The low temperature conductive part 1 produced in the process A is inserted into the room temperature coating part 2 produced in the process B. When inserting the low temperature conductive part 1 into the room temperature covering part 2, it is preferable to pull the former 11 and the heat insulating tube 13 of the low temperature conductive part 1. At that time, a tension member may be attached to the low-temperature conductive part 1 and the tension member may be assigned a tension. By doing so, it is possible to prevent the low-temperature conductive portion 1 (particularly the superconducting conductor layer 12) from being damaged by the tension and the influence on the heat insulation performance due to the expansion and contraction of the heat insulating tube 13.

<変形例>
実施形態1の構成において、パイプ状構造物21を省略することもできる。その場合、分流導体22を銅などの金属材料からなるパイプで構成し、そのパイプ状の分流導体22の外周に常温側電気絶縁層23を形成すると良い。但し、パイプ状構造物21を省略する場合、パイプ状の分流導体22に十分な厚みを持たせて、当該分流導体22の強度を十分に確保する必要がある。
<Modification>
In the configuration of the first embodiment, the pipe-like structure 21 can be omitted. In that case, it is preferable that the shunt conductor 22 is constituted by a pipe made of a metal material such as copper, and the room temperature side electric insulating layer 23 is formed on the outer periphery of the pipe-like shunt conductor 22. However, when the pipe-like structure 21 is omitted, it is necessary to provide the pipe-shaped shunt conductor 22 with a sufficient thickness so that the strength of the shunt conductor 22 is sufficiently secured.

<実施形態2>
実施形態2では、低温導電部1の一部(具体的には、断熱管13)と、常温被覆部2とを一体化した被覆部付き断熱管3を作製し、その被覆部付き断熱管3に後から導体部10を挿入することで作製した一部一体型の超電導ケーブル200を、図2に基づいて説明する。以下、製造方法の点から本実施形態の超電導ケーブル200を説明する。
<Embodiment 2>
In the second embodiment, a heat insulating tube 3 with a covering portion in which a part of the low-temperature conductive portion 1 (specifically, the heat insulating tube 13) and the room temperature covering portion 2 are integrated is manufactured, and the heat insulating tube 3 with the covering portion is produced. A partially integrated superconducting cable 200 produced by inserting the conductor portion 10 later will be described with reference to FIG. Hereinafter, the superconducting cable 200 of the present embodiment will be described from the viewpoint of the manufacturing method.

≪常温絶縁型超電導ケーブルの作製方法≫
超電導ケーブル200は、図2(B)に示すように、次の工程α〜γにより作製することができる。なお、工程αと工程βの順序は入れ替え可能である。
≪Method for manufacturing room temperature insulated superconducting cable≫
As shown in FIG. 2B, the superconducting cable 200 can be manufactured by the following steps α to γ. The order of the process α and the process β can be interchanged.

[工程α]
工程αでは、導体部10を作製する。導体部10は、フォーマ11の外周に超電導線材を巻回するなどして作製することができる。超電導線材を巻回して形成した超電導導体層12の外周には、所定の絶縁特性を有し、超電導導体層12を保護する保護層を形成することが好ましい。
[Step α]
In step α, the conductor portion 10 is produced. The conductor 10 can be produced by winding a superconducting wire around the outer periphery of the former 11. It is preferable to form a protective layer having predetermined insulating characteristics and protecting the superconducting conductor layer 12 on the outer periphery of the superconducting conductor layer 12 formed by winding the superconducting wire.

[工程β]
工程βでは、導体部10とは別に、断熱管13の外周に常温被覆部2を一体化した被覆部付き断熱管3を作製する。まず断熱管13を用意し、その外周に分流導体22を形成する。次いで、分流導体22の外周に、例えば押出などにより絶縁性樹脂を被覆し、常温側電気絶縁層23を形成する。なお、常温側電気絶縁層23は、クラフト紙やPPLP(住友電気工業の登録商標)を巻回することで形成することもできる。
[Step β]
In step β, separately from the conductor portion 10, a heat insulating tube 3 with a covering portion in which the room temperature covering portion 2 is integrated with the outer periphery of the heat insulating tube 13 is produced. First, the heat insulating tube 13 is prepared, and the shunt conductor 22 is formed on the outer periphery thereof. Next, an insulating resin is coated on the outer periphery of the shunt conductor 22 by, for example, extrusion to form the room temperature side electric insulation layer 23. The room temperature side electrical insulation layer 23 can also be formed by winding kraft paper or PPLP (registered trademark of Sumitomo Electric Industries).

ここで、本実施形態においても、導体部10の長さは、被覆部付き断熱管3の長さと同じである必要はない。例えば、導体部10を被覆部付き断熱管3よりも長くしてもかまわない。その場合、導体部10の両端部が被覆部付き断熱管3から露出するので、複数の超電導ケーブル200を接続して超電導ケーブル線路を構築する際、隣接する導体部10同士の接続を容易に行える。   Here, also in this embodiment, the length of the conductor part 10 does not need to be the same as the length of the heat insulation pipe | tube 3 with a coating | coated part. For example, you may make the conductor part 10 longer than the heat insulation pipe | tube 3 with a coating | coated part. In that case, since both ends of the conductor portion 10 are exposed from the heat insulating tube 3 with the covering portion, when the superconducting cable line is constructed by connecting the plurality of superconducting cables 200, the adjacent conductor portions 10 can be easily connected. .

[工程γ]
工程αで作製した導体部10を、工程βで作製した被覆部付き断熱管3の内部に挿入する。導体部10を被覆部付き断熱管3に挿入する際は、導体部10のフォーマ11の部分を引っ張ると良い。もちろん、導体部10にテンションメンバを取り付けておき、そのテンションメンバに張力を分担させ、導体部10(特に、超電導導体層12)の損傷を防止しても良い。
[Process γ]
The conductor part 10 produced in the process α is inserted into the insulated pipe 3 with a covering part produced in the process β. When inserting the conductor portion 10 into the heat insulating tube 3 with the covering portion, the former 11 portion of the conductor portion 10 may be pulled. Of course, a tension member may be attached to the conductor portion 10, and the tension member may share the tension to prevent the conductor portion 10 (particularly, the superconducting conductor layer 12) from being damaged.

≪常温絶縁型超電導ケーブル≫
図2(A)に示すように、以上説明した製造方法により作製された超電導ケーブル200でも、実施形態1と同様に、常温側電気絶縁層23の内側で、かつ断熱管13の外側に分流導体22が形成されている。そのため、本実施形態の超電導ケーブル200も、実施形態1の超電導ケーブル100と同様の理由により、実施形態1と同様の効果を奏する。
≪Room-temperature insulated superconducting cable≫
As shown in FIG. 2 (A), the superconducting cable 200 manufactured by the manufacturing method described above also has a shunt conductor inside the room-temperature-side electrical insulating layer 23 and outside the heat insulating tube 13 as in the first embodiment. 22 is formed. Therefore, the superconducting cable 200 of this embodiment also has the same effect as that of the first embodiment for the same reason as the superconducting cable 100 of the first embodiment.

また、実施形態2の超電導ケーブル200では、断熱管13の外周に直接常温被覆部2が形成されているため、当該超電導ケーブル200の外径を、実施形態1の超電導ケーブル100よりも小さくすることができる。   Further, in the superconducting cable 200 of the second embodiment, the room temperature coating portion 2 is formed directly on the outer periphery of the heat insulating tube 13, so that the outer diameter of the superconducting cable 200 is made smaller than that of the superconducting cable 100 of the first embodiment. Can do.

<実施形態3>
実施形態3では、実施形態1で説明した低温導電部1と常温絶縁部2とを別個に作製する分離型の超電導ケーブルの別形態を説明する。具体的には、低温導電部1をさらに導体部10と断熱管13とに分け、かつ分流導体22を断熱管13の外管15の外周に形成した。以下、図3に基づいて、製造方法の点から本実施形態の超電導ケーブル300を説明する。
<Embodiment 3>
In the third embodiment, another embodiment of the separated superconducting cable in which the low-temperature conductive portion 1 and the normal-temperature insulating portion 2 described in the first embodiment are separately manufactured will be described. Specifically, the low-temperature conductive portion 1 is further divided into the conductor portion 10 and the heat insulating tube 13, and the shunt conductor 22 is formed on the outer periphery of the outer tube 15 of the heat insulating tube 13. Hereinafter, based on FIG. 3, the superconducting cable 300 of this embodiment is demonstrated from the point of a manufacturing method.

≪常温絶縁型超電導ケーブルの作製方法≫
超電導ケーブル300は、図3(B)に示すように、次の工程A´〜C´により作製することができる。
≪Method for manufacturing room temperature insulated superconducting cable≫
As shown in FIG. 3B, the superconducting cable 300 can be manufactured by the following steps A ′ to C ′.

[工程A´]
工程A´では、導体部10を作製すると共に、この導体部10とは別に、断熱管13の外周に分流導体22を一体化した分流導体付き断熱管13´を作製する。この分流導体付き断熱管13´は、まず断熱管13を用意し、その外周に分流導体22を形成することで作製する。そして、分流導体付き断熱管13´の内部に、導体部10を挿入して、低温導電部1を作製する。
[Step A ']
In step A ′, the conductor portion 10 is manufactured, and separately from the conductor portion 10, a heat insulating tube 13 ′ with a shunt conductor in which the shunt conductor 22 is integrated on the outer periphery of the heat insulating tube 13 is manufactured. The heat insulating tube 13 ′ with the shunt conductor is prepared by first preparing the heat insulating tube 13 and forming the shunt conductor 22 on the outer periphery thereof. And the conductor part 10 is inserted in the heat insulation pipe | tube 13 'with a shunt conductor, and the low temperature conductive part 1 is produced.

[工程B´]
工程B´では、低温導電部1の外径よりも大きな内径を有するパイプ状構造物21を用意し、その外周に常温側電気絶縁層23を形成することで常温被覆部2を作製する。
[Process B ']
In step B ′, a pipe-like structure 21 having an inner diameter larger than the outer diameter of the low-temperature conductive part 1 is prepared, and the room-temperature-side coated part 2 is produced by forming a room-temperature-side electrical insulating layer 23 on the outer periphery thereof.

[工程C´]
工程C´では、工程B´で作製した常温被覆部2の内部に、工程A´で作製した低温導電部1を挿入する。
[Process C ']
In step C ′, the low-temperature conductive portion 1 produced in step A ′ is inserted into the room temperature coating portion 2 produced in step B ′.

なお、工程A´において、導体部10と分流導体付き断熱管13´を作製した際、それらを一体化させずに置いておき、常温被覆部2の内部に分流導体付き断熱管13´を挿入した後、その断熱管13´の内部に導体部10を挿入しても良い。   In Step A ′, when the conductor portion 10 and the heat insulating tube 13 ′ with the diverting conductor are produced, they are left without being integrated, and the heat insulating tube 13 ′ with the diverting conductor is inserted inside the room temperature covering portion 2. After that, the conductor portion 10 may be inserted into the heat insulating tube 13 '.

ここで、本実施形態においても、導体部10と分流導体付き断熱管13´と常温被覆部2の長さは、同じである必要はない。例えば、導体部10の長さ>分流導体付き断熱管13´の長さ>常温被覆部2の長さ、としてもかまわない。そうすることで、複数の超電導ケーブル300を接続し易くなる。   Here, also in this embodiment, the length of the conductor part 10, the heat insulation pipe | tube 13 'with a shunting conductor, and the normal temperature coating | coated part 2 does not need to be the same. For example, the length of the conductor portion 10> the length of the heat insulating tube 13 ′ with the shunt conductor> the length of the room temperature coating portion 2 may be used. By doing so, it becomes easy to connect a plurality of superconducting cables 300.

≪常温絶縁型超電導ケーブル≫
図3(A)に示すように、以上説明した製造方法により作製された超電導ケーブル300でも、実施形態1と同様に、常温側電気絶縁層23の内側で、かつ断熱管13の外側に分流導体22が形成されている。そのため、本実施形態の超電導ケーブル300も、実施形態1の超電導ケーブル100と同様の理由により、実施形態1と同様の効果を奏する。
≪Room-temperature insulated superconducting cable≫
As shown in FIG. 3A, even in the superconducting cable 300 manufactured by the manufacturing method described above, as in the first embodiment, the shunt conductor is provided inside the room-temperature-side electrical insulating layer 23 and outside the heat insulating tube 13. 22 is formed. Therefore, the superconducting cable 300 of this embodiment also has the same effect as that of the first embodiment for the same reason as the superconducting cable 100 of the first embodiment.

なお、本発明の実施形態は、上述した実施形態に限定されるわけではなく、本発明の要旨を逸脱しない範囲において適宜変更することが可能である。例えば、実施形態では説明を省略したが、常温側電気絶縁層23の内周部と外周部の各々に内部半導電層と外部半導電層を形成するのが一般的である。   The embodiment of the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention. For example, although the description is omitted in the embodiment, it is general to form an internal semiconductive layer and an external semiconductive layer on each of the inner peripheral portion and the outer peripheral portion of the room temperature side electric insulating layer 23.

本発明常温絶縁型超電導ケーブルは、大電流送電網の形成に好適に利用することができる。また、本発明常温絶縁型超電導ケーブルの製造方法は、本発明常温絶縁型超電導ケーブルの製造に好適に利用することができる。   The room temperature insulated superconducting cable of the present invention can be suitably used for forming a large current transmission network. Moreover, the manufacturing method of the room temperature insulation type superconducting cable of the present invention can be suitably used for the production of the room temperature insulation type superconducting cable of the present invention.

100,200,300 常温絶縁型超電導ケーブル
1 低温導電部
10 導体部 11 フォーマ 12 超電導導体層
13 断熱管 14 内管 15 外管 131 冷媒
2 常温被覆部
21 パイプ状構造物
22 分流導体
23 常温側電気絶縁層
3 被覆部付き断熱管
13´ 分流導体付き断熱管
100, 200, 300 Room temperature insulated superconducting cable 1 Low temperature conductive part 10 Conductor part 11 Former 12 Superconducting conductor layer 13 Heat insulation pipe 14 Inner pipe 15 Outer pipe 131 Refrigerant 2 Room temperature covering part 21 Pipe-shaped structure 22 Shunt conductor 23 Room temperature side electricity Insulating layer 3 Insulated tube with coating 13 'Insulated tube with shunt conductor

Claims (8)

フォーマの外周に超電導導体層を形成してなる導体部、およびその導体部を内部に収納して、導体部を極低温に維持する断熱管を有する低温導電部と、
前記断熱管の外周を取り囲む常温側電気絶縁層を有する常温被覆部と、
を備える常温絶縁型超電導ケーブルであって、
前記常温被覆部は、前記常温側電気絶縁層の内側で、かつ前記断熱管の外側に配置され、異常時電流を分担する常電導の分流導体を備えることを特徴とする常温絶縁型超電導ケーブル。
A conductor part formed by forming a superconducting conductor layer on the outer periphery of the former, and a low-temperature conductive part having a heat insulating tube for storing the conductor part therein and maintaining the conductor part at a cryogenic temperature;
A room temperature coating portion having a room temperature side electric insulation layer surrounding the outer periphery of the heat insulating tube;
A room temperature insulated superconducting cable comprising:
The room temperature insulation type superconducting cable is characterized in that the room temperature covering section is provided inside the room temperature side electric insulation layer and outside the heat insulating tube, and includes a normal conducting shunt conductor that shares an abnormal current.
さらに、常温側電気絶縁層を内周側から支持するパイプ状構造物を有し、
前記パイプ状構造物の内部に前記低温導電部が収納されていることを特徴とする請求項1に記載の常温絶縁型超電導ケーブル。
Furthermore, it has a pipe-like structure that supports the room temperature side electrical insulation layer from the inner peripheral side,
The room-temperature insulated superconducting cable according to claim 1, wherein the low-temperature conductive portion is housed inside the pipe-like structure.
前記断熱管の直上に前記分流導体が形成されていることを特徴とする請求項1または2に記載の常温絶縁型超電導ケーブル。   The room-temperature insulated superconducting cable according to claim 1 or 2, wherein the shunt conductor is formed immediately above the heat insulating tube. 前記分流導体は銅で構成されていることを特徴とする請求項1〜3のいずれか一項に記載の常温絶縁型超電導ケーブル。   The room temperature insulated superconducting cable according to claim 1, wherein the shunt conductor is made of copper. 請求項1〜4のいずれか一項に記載の常温絶縁型超電導ケーブルを用いた超電導ケーブル線路。   A superconducting cable line using the room temperature insulated superconducting cable according to any one of claims 1 to 4. フォーマの外周に超電導導体層を形成してなる導体部、およびその導体部を内部に収納して、導体部を極低温に維持する断熱管を有する低温導電部と、
前記断熱管の外周を取り囲む常温側電気絶縁層を有する常温被覆部と、
を備える常温絶縁型超電導ケーブルを製造するための常温絶縁型超電導ケーブルの製造方法であって、
前記低温導電部を作製する工程Aと、
異常時電流を分担する分流導体と、分流導体の外周に形成される常温側電気絶縁層と、を有し、前記低温導電部の外径よりも大きな内径を有する筒状の常温被覆部を作製する工程Bと、
前記工程Aで作製した低温導電部を、前記工程Bで作製した常温被覆部の内部に挿入する工程Cと、
を備えることを特徴とする常温絶縁型超電導ケーブルの製造方法。
A conductor part formed by forming a superconducting conductor layer on the outer periphery of the former, and a low-temperature conductive part having a heat insulating tube for storing the conductor part therein and maintaining the conductor part at a cryogenic temperature;
A room temperature coating portion having a room temperature side electric insulation layer surrounding the outer periphery of the heat insulating tube;
A method for producing a room temperature insulation type superconducting cable for producing a room temperature insulation type superconducting cable comprising:
Step A for producing the low temperature conductive portion;
A cylindrical room temperature coated portion having a shunt conductor for sharing an abnormal current and a room temperature side electric insulation layer formed on the outer periphery of the shunt conductor and having an inner diameter larger than the outer diameter of the low temperature conductive portion is manufactured. Step B to be performed
Inserting the low-temperature conductive part produced in the process A into the room temperature coating part produced in the process B; and
A method for manufacturing a room temperature insulated superconducting cable, comprising:
フォーマの外周に超電導導体層を形成してなる導体部、およびその導体部を内部に収納して、導体部を極低温に維持する断熱管を有する低温導電部と、
前記断熱管の外周を取り囲む常温側電気絶縁層を有する常温被覆部と、
を備える常温絶縁型超電導ケーブルを製造するための常温絶縁型超電導ケーブルの製造方法であって、
前記導体部と、その導体部の外周を覆う前記断熱管と、その断熱管の上に形成され、異常時電流を分担する分流導体と、を備える低温導電部を作製する工程A´と、
前記低温導電部の外径よりも大きな内径を有するパイプ状構造物と、その外周に形成される前記常温側電気絶縁層を有する常温被覆部を作製する工程B´と、
工程A´で作製した低温導電部を、工程B´で作製した常温被覆部の内部に挿入する工程C´と、
を備えることを特徴とする常温絶縁型超電導ケーブルの製造方法。
A conductor part formed by forming a superconducting conductor layer on the outer periphery of the former, and a low-temperature conductive part having a heat insulating tube for storing the conductor part therein and maintaining the conductor part at a cryogenic temperature;
A room temperature coating portion having a room temperature side electric insulation layer surrounding the outer periphery of the heat insulating tube;
A method for producing a room temperature insulation type superconducting cable for producing a room temperature insulation type superconducting cable comprising:
Step A ′ for producing a low-temperature conductive portion comprising the conductor portion, the heat insulating tube covering the outer periphery of the conductor portion, and a shunt conductor formed on the heat insulating tube and sharing an abnormal current,
Step B ′ for producing a room temperature coating portion having a pipe-like structure having an inner diameter larger than the outer diameter of the low temperature conductive portion, and the room temperature side electric insulation layer formed on the outer periphery thereof;
A step C ′ for inserting the low-temperature conductive portion produced in the step A ′ into the room temperature coating portion produced in the step B ′;
A method for manufacturing a room temperature insulated superconducting cable, comprising:
フォーマの外周に超電導導体層を形成してなる導体部、およびその導体部を内部に収納して、導体部を極低温に維持する断熱管を有する低温導電部と、
前記断熱管の外周を取り囲む常温側電気絶縁層を有する常温被覆部と、
を備える常温絶縁型超電導ケーブルを製造するための常温絶縁型超電導ケーブルの製造方法であって、
前記導体部を作製する工程αと、
前記断熱管と、この断熱管の上に形成され、異常時電流を分担する常電導の分流導体と、この分流導体の外周に形成される前記常温被覆部と、を備える被覆部付き断熱管を作製する工程βと、
前記工程αで作製した導体部を、前記工程βで作製した被覆部付き断熱管の内部に挿入する工程γと、
を備えることを特徴とする常温絶縁型超電導ケーブルの製造方法。
A conductor part formed by forming a superconducting conductor layer on the outer periphery of the former, and a low-temperature conductive part having a heat insulating tube for storing the conductor part therein and maintaining the conductor part at a cryogenic temperature;
A room temperature coating portion having a room temperature side electric insulation layer surrounding the outer periphery of the heat insulating tube;
A method for producing a room temperature insulation type superconducting cable for producing a room temperature insulation type superconducting cable comprising:
A step α for producing the conductor portion;
A heat insulating tube with a covering portion, comprising: the heat insulating tube; a normal conducting shunt conductor formed on the heat insulating tube and sharing an abnormal current; and the room temperature covering portion formed on an outer periphery of the shunt conductor. Producing step β;
A step γ of inserting the conductor portion produced in the step α into the heat insulating pipe with a covering portion produced in the step β;
A method for manufacturing a room temperature insulated superconducting cable, comprising:
JP2011033150A 2011-02-18 2011-02-18 Room-temperature insulated superconducting cable and manufacturing method thereof Expired - Fee Related JP5252323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011033150A JP5252323B2 (en) 2011-02-18 2011-02-18 Room-temperature insulated superconducting cable and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011033150A JP5252323B2 (en) 2011-02-18 2011-02-18 Room-temperature insulated superconducting cable and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012174403A true JP2012174403A (en) 2012-09-10
JP5252323B2 JP5252323B2 (en) 2013-07-31

Family

ID=46977160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011033150A Expired - Fee Related JP5252323B2 (en) 2011-02-18 2011-02-18 Room-temperature insulated superconducting cable and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5252323B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012190654A (en) * 2011-03-10 2012-10-04 Sumitomo Electric Ind Ltd Intermediate connection structure of superconducting cable
JP7231778B1 (en) 2022-05-13 2023-03-01 日鉄エンジニアリング株式会社 Superconducting power transmission heat insulation multiple pipe and superconducting cable construction method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4996465U (en) * 1972-12-13 1974-08-20
JPS51115679A (en) * 1975-04-03 1976-10-12 Furukawa Electric Co Ltd:The Electric cable for low temperature
JPH0432108A (en) * 1990-05-24 1992-02-04 Sumitomo Electric Ind Ltd Superconductive cable
JPH0864041A (en) * 1994-08-23 1996-03-08 Sumitomo Electric Ind Ltd Superconducting cable
JP2001525647A (en) * 1997-11-28 2001-12-11 エービービー エービー Magnetic energy storage device
JP2002352645A (en) * 2001-05-29 2002-12-06 Furukawa Electric Co Ltd:The Superconducting cable
JP2006059695A (en) * 2004-08-20 2006-03-02 Sumitomo Electric Ind Ltd Superconductive cable

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4996465U (en) * 1972-12-13 1974-08-20
JPS51115679A (en) * 1975-04-03 1976-10-12 Furukawa Electric Co Ltd:The Electric cable for low temperature
JPH0432108A (en) * 1990-05-24 1992-02-04 Sumitomo Electric Ind Ltd Superconductive cable
JPH0864041A (en) * 1994-08-23 1996-03-08 Sumitomo Electric Ind Ltd Superconducting cable
JP2001525647A (en) * 1997-11-28 2001-12-11 エービービー エービー Magnetic energy storage device
JP2002352645A (en) * 2001-05-29 2002-12-06 Furukawa Electric Co Ltd:The Superconducting cable
JP2006059695A (en) * 2004-08-20 2006-03-02 Sumitomo Electric Ind Ltd Superconductive cable

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012190654A (en) * 2011-03-10 2012-10-04 Sumitomo Electric Ind Ltd Intermediate connection structure of superconducting cable
JP7231778B1 (en) 2022-05-13 2023-03-01 日鉄エンジニアリング株式会社 Superconducting power transmission heat insulation multiple pipe and superconducting cable construction method
JP2023168063A (en) * 2022-05-13 2023-11-24 日鉄エンジニアリング株式会社 Heat insulating multiple tube for superconducting power transmission and construction method for superconducting cable

Also Published As

Publication number Publication date
JP5252323B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP2018530853A (en) Superconducting wire
JP4928565B2 (en) Superconducting cable
KR100995767B1 (en) Terminal structure of direct electric current superconducting cable and DC superconducting cable line
JP6399674B2 (en) Superconducting cable
JPWO2013157513A1 (en) Superconducting cable connection structure
JP5053466B2 (en) Terminal structure of superconducting cable conductor
JP2005251570A (en) Intermediate connection part of superconducting cable
US8923940B2 (en) System with a three phase superconductive electrical transmission element
JP4843937B2 (en) Superconducting cable
KR101148574B1 (en) Superconducting cable
JP5443835B2 (en) Superconducting cable line
MX2007011073A (en) Superconductive cable and dc power transmission using the superconductive cable.
JP4671111B2 (en) Superconducting cable
JP5252323B2 (en) Room-temperature insulated superconducting cable and manufacturing method thereof
JP4720976B2 (en) Superconducting cable
JP5252324B2 (en) Superconducting power transmission system
JP2013069585A (en) Superconducting cable manufacturing method
JP5273572B2 (en) Laying the superconducting cable
JP2014146585A (en) Superconductive cable and superconductive cable rail track
JP5910996B2 (en) Superconducting cable and method of manufacturing superconducting cable
JP5305180B2 (en) Room-temperature insulated superconducting cable and manufacturing method thereof
KR100777182B1 (en) High temperature superconducting power cable
JP5742006B2 (en) End structure of room temperature insulated superconducting cable
JP2013073831A (en) Superconducting cable line
JP7072162B2 (en) Superconducting power transmission pipe

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130404

R150 Certificate of patent or registration of utility model

Ref document number: 5252323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees