JP2012172914A - Dissolving apparatus and water heater equipped with the same - Google Patents

Dissolving apparatus and water heater equipped with the same Download PDF

Info

Publication number
JP2012172914A
JP2012172914A JP2011035657A JP2011035657A JP2012172914A JP 2012172914 A JP2012172914 A JP 2012172914A JP 2011035657 A JP2011035657 A JP 2011035657A JP 2011035657 A JP2011035657 A JP 2011035657A JP 2012172914 A JP2012172914 A JP 2012172914A
Authority
JP
Japan
Prior art keywords
hot water
water
inorganic compound
pouring
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011035657A
Other languages
Japanese (ja)
Inventor
Tomoaki Ando
智朗 安藤
Masanori Hirota
正宣 広田
Katsuhiro Wada
克広 和田
Yasusuke Horiki
泰佑 堀木
Yoshio Nishiyama
吉継 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011035657A priority Critical patent/JP2012172914A/en
Publication of JP2012172914A publication Critical patent/JP2012172914A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Fluid Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dissolving apparatus which has a simple structure, is reduced in size and electric power consumption, and can supply inorganic compounds of a stable dissolution concentration to hot water.SOLUTION: The dissolving apparatus 14 includes a water passage 13 and an inorganic compound storage container 12 for storing an inorganic compound 11 that is a powdery compound, a granular compound or a mixture of a powdery compound and a granular compound, and flows hot water from the water passage 13, the hot water containing the dissolved inorganic compound 11 and having an amount of 0.5-3 L/min. Since the amount range of passing hot water is small, a special means for suppressing a dissolution concentration is not required and a stable concentration can be obtained by suppressing variations of the dissolution concentration of the inorganic compounds.

Description

本発明は、無機化合物等を水へ供給する機能を具備した溶解装置及びそれを備えた給湯装置に関するものである。   The present invention relates to a melting apparatus having a function of supplying an inorganic compound or the like to water and a hot water supply apparatus having the same.

従来この種の溶解装置は、目的の成分を含む材料を電気分解にて水中に溶解させ、この溶解した水を目的とする回路へ供給している(例えば、特許文献1参照)。   Conventionally, this type of dissolution apparatus dissolves a material containing a target component in water by electrolysis, and supplies the dissolved water to a target circuit (for example, see Patent Document 1).

図12は、特許文献1に記載された技術を示すものである。図12に示すように、亜鉛陽極51と、陰極52と、ケーシング55と、直流電源59から構成されている。   FIG. 12 shows the technique described in Patent Document 1. As shown in FIG. 12, it is composed of a zinc anode 51, a cathode 52, a casing 55, and a DC power source 59.

特開2004−190882号公報JP 2004-190882 A

しかしながら、前記従来の構成では、目的とする成分(亜鉛陽極1)の水への溶解方法は、電気分解の原理によるため、直流電源59と、回路を流れる水への漏電を防止するための絶縁回路(図示せず)が必要となる。従って、装置のサイズアップ、コストアップとともに、直流電源59においては電力を必要とするため消費電力量も増加する。   However, in the above-described conventional configuration, the method of dissolving the target component (zinc anode 1) in water is based on the principle of electrolysis, and therefore, the DC power supply 59 and insulation for preventing leakage to water flowing in the circuit. A circuit (not shown) is required. Therefore, along with the increase in size and cost of the apparatus, the DC power supply 59 requires electric power, so that the amount of power consumption also increases.

本発明は、前記従来の課題を解決するもので、電気回路を必要とせず、小型化かつ低ランニングコストで、所定濃度の無機化合物等の供給を可能とする溶解装置を提供することを目的とする。   An object of the present invention is to solve the above-described conventional problems, and to provide a dissolution apparatus that can supply an inorganic compound or the like having a predetermined concentration at a small size and low running cost without requiring an electric circuit. To do.

前記従来の課題を解決するために、本発明の溶解装置は、水経路と、粉末状または顆粒状、あるいは、粉末状と顆粒状との混合物である無機化合物を収納する無機化合物収納容器とを備え、前記無機化合物を溶解させた湯水を前記水経路から流出させるとともに、前記湯水の量を0.5〜3L/minとしたことを特徴とするものである。   In order to solve the above-mentioned conventional problems, the dissolution apparatus of the present invention includes a water path and an inorganic compound storage container for storing an inorganic compound that is a powder or granule, or a mixture of a powder and a granule. The hot water in which the inorganic compound is dissolved is allowed to flow out of the water path, and the amount of the hot water is set to 0.5 to 3 L / min.

これによって、水と無機化合物の間の溶解濃度差で物質が移動する、物質拡散(フィックの法則)の原理で、水に無機化合物を溶解させることが可能となる。従って、これまで必要としていた電源回路と絶縁回路が削減でき、コンパクト化と低コスト化を容易に実現することができる。電力不要の原理であるため、消費電力量を抑えることができる。また、溶解装置を通過する湯水量範囲が小さいので、特別な溶解濃度抑制手段を必要とせず、無機化合物の溶解濃度の変動を抑え安定した濃度を得ることができる。   This makes it possible to dissolve the inorganic compound in water based on the principle of substance diffusion (Fick's law) in which the substance moves due to the difference in the dissolved concentration between water and the inorganic compound. Therefore, it is possible to reduce the power supply circuit and the insulation circuit that have been required so far, and it is possible to easily realize compactness and cost reduction. Since it is a principle that does not require power, the amount of power consumption can be suppressed. Further, since the range of the amount of hot water passing through the dissolving apparatus is small, no special dissolution concentration suppressing means is required, and a stable concentration can be obtained while suppressing fluctuations in the dissolution concentration of the inorganic compound.

本発明によれば、電気回路を必要とせず、小型化かつ低ランニングコストで、所定濃度の無機化合物等の供給を可能とする溶解装置を提供できる。   According to the present invention, it is possible to provide a dissolution apparatus that can supply an inorganic compound or the like having a predetermined concentration without downsizing and low running cost without requiring an electric circuit.

本発明の実施の形態1における溶解装置の構造図Structure diagram of dissolution apparatus in Embodiment 1 of the present invention 同無機化合物の速度境界層の状態図Phase diagram of the velocity boundary layer of the same inorganic compound 同無機化合物(酸化亜鉛)の流量と溶解度特性の関係図Relationship between flow rate and solubility characteristics of the same inorganic compound (zinc oxide) 本発明の実施の形態2における給湯装置の構成図The block diagram of the hot-water supply apparatus in Embodiment 2 of this invention 同溶解装置の回路図Circuit diagram of the dissolution apparatus 同分岐部間の注湯経路と、溶解装置を含む並列分岐経路の圧力損失比を1:9とした場合の、流量Qと圧力損失Pの関係を示すグラフThe graph which shows the relationship between the flow volume Q and the pressure loss P when the pressure loss ratio of the pouring path between the branch parts and the parallel branch path including the melting device is 1: 9. 同他の溶解装置の回路図Circuit diagram of other melting equipment 本発明の実施の形態3における溶解装置の回路図Circuit diagram of dissolution apparatus in Embodiment 3 of the present invention 同異なる分配比ごとの、注湯経路と並列分岐経路の流量Qと圧力損失Pの関係を示すグラフA graph showing the relationship between the flow rate Q and the pressure loss P of the pouring path and the parallel branch path for each different distribution ratio 同無機化合物(酸化亜鉛)の流量と溶解度の関係図Relationship diagram of flow rate and solubility of the same inorganic compound (zinc oxide) 同他の溶解装置の回路図Circuit diagram of other melting equipment 従来の溶解装置の回路図Circuit diagram of conventional melting equipment

第1の発明は、水経路と、粉末状または顆粒状、あるいは、粉末状と顆粒状との混合物である無機化合物を収納する無機化合物収納容器とを備え、前記無機化合物を溶解させた湯水を前記水経路から流出させるとともに、前記湯水の量を0.5〜3L/minとしたことを特徴とする溶解装置である。   1st invention is equipped with the water pathway and the inorganic compound storage container which accommodates the inorganic compound which is a powder form or a granular form, or a mixture of a powder form and a granular form, The hot water which dissolved the said inorganic compound is contained. The dissolution apparatus is characterized in that it is caused to flow out of the water path and the amount of the hot water is set to 0.5 to 3 L / min.

これにより、水と無機化合物の間の溶解濃度差で物質が移動する、物質拡散(フィックの法則)の原理で、水に無機化合物を溶解させることが可能となる。従って、これまで必要としていた電源回路と絶縁回路が削減でき、コンパクト化と低コスト化を容易に実現することができる。また、電力不要の原理であるため、消費電力量を抑えることができる。さらに、溶解装置を通過する湯水量範囲が狭いので、特別な溶解濃度抑制手段を必要とせず、無機化合物の溶解濃度の変動を抑え安定した濃度を得ることができる。   This makes it possible to dissolve the inorganic compound in water based on the principle of substance diffusion (Fick's law) in which the substance moves due to the difference in dissolution concentration between water and the inorganic compound. Therefore, it is possible to reduce the power supply circuit and the insulation circuit that have been required so far, and it is possible to easily realize compactness and cost reduction. In addition, since it is a principle that does not require power, the power consumption can be suppressed. Further, since the range of the amount of hot water passing through the dissolution apparatus is narrow, no special dissolution concentration suppression means is required, and a stable concentration can be obtained while suppressing fluctuations in the dissolution concentration of the inorganic compound.

第2の発明は、前記湯水を注湯する注湯経路と、前記注湯経路からの湯水を分流させるように形成した並列分岐経路とを備え、前記並列分岐経路に第1の発明の溶解装置を配設したことを特徴とする給湯装置である。   2nd invention is equipped with the pouring path | route which pours the said hot water, and the parallel branch path formed so that the hot water from the said pouring path may be shunted, The melting apparatus of 1st invention is provided in the said parallel branch path | route. Is a hot water supply device.

これにより、浴槽への湯張り時に、従来と変わらない湯張り時間で所定濃度の無機化合物等を溶解させた湯水を注湯することが可能となる。   This makes it possible to pour hot water in which an inorganic compound or the like having a predetermined concentration is dissolved in a hot water filling time that is not different from that in the prior art.

第3の発明は、第2の発明の給湯装置において、前記注湯経路と前記並列分岐経路とを流れる湯水流量の分配比を調整する湯水流量分配比調整手段を設けたことを特徴とするものである。   According to a third aspect of the present invention, there is provided the hot water supply apparatus according to the second aspect, further comprising a hot water flow rate distribution ratio adjusting means for adjusting a distribution ratio of the hot water flow rate flowing through the pouring path and the parallel branch path. It is.

これにより、湯水流量分配比調整手段によって一部の湯水のみが溶解装置を通過するため、無機化合物等の溶解濃度の変動を抑え安定した供給を可能とするとともに、溶解装置を通過しない湯水と合流し、従来と変わらない湯張り時間で所定濃度の無機化合物等を有した湯水を注湯することが可能となる。さらに、湯水流量分配比調整手段により、並列分岐経路への湯水流量の任意の増減および分配停止が可能となり、浴槽への注湯時の無機化合物等の供給の有無を、任意に使い分けることができる。   As a result, only a portion of the hot water flows through the dissolving device by the hot water flow rate distribution ratio adjusting means, so that a stable supply can be suppressed while suppressing fluctuations in the dissolved concentration of inorganic compounds, etc. In addition, it becomes possible to pour hot water having an inorganic compound or the like having a predetermined concentration in a hot water filling time that is not different from the conventional one. Furthermore, the hot water flow rate distribution ratio adjusting means can arbitrarily increase / decrease the hot water flow rate to the parallel branch path and stop the distribution, and can optionally use the presence or absence of the supply of inorganic compounds or the like when pouring water into the bathtub. .

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における溶解装置の構造図を示すものである。
(Embodiment 1)
FIG. 1 is a structural diagram of a melting apparatus according to the first embodiment of the present invention.

図1において、無機化合物11は、粉末状または顆粒状、あるいは、粉末状と顆粒状と
の混合物であり、無機化合物収納容器12に収納される。無機化合物11は、水に対して溶解性を持つ。
In FIG. 1, the inorganic compound 11 is in the form of powder or granules, or a mixture of powder and granules, and is stored in the inorganic compound storage container 12. The inorganic compound 11 is soluble in water.

図1中の無機化合物11は径が異なる顆粒状のものであり、これを多層状となるように構成すると、無機化合物収納容器12内には多孔質の空間が形成される。濾過手段16は、無機化合物収納容器12内の水勢によって無機化合物11の顆粒が無機化合物収納容器12から流出しようとした場合、これを防止するものである。無機化合物収納容器12は、水経路13によって連通され、溶解装置14を構成する。   The inorganic compound 11 in FIG. 1 is in the form of granules having different diameters. When this is configured to be a multilayer, a porous space is formed in the inorganic compound storage container 12. The filtering means 16 prevents the granules of the inorganic compound 11 from flowing out of the inorganic compound storage container 12 due to the water in the inorganic compound storage container 12. The inorganic compound storage container 12 is communicated by a water path 13 and constitutes a dissolving device 14.

以上のように構成された給湯装置について、以下その動作、作用を説明する。   About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

水経路13から溶解装置14に流入する水は、無機化合物収納容器12に形成される多孔質の空間を通過する。水には粘性があるため、多孔質の空間を通過する際に無機化合物11の表面から表面近傍の領域には速度境界層が生成される。   Water flowing into the dissolving device 14 from the water path 13 passes through a porous space formed in the inorganic compound storage container 12. Since water has viscosity, a velocity boundary layer is generated from the surface of the inorganic compound 11 to the region near the surface when passing through the porous space.

図2はその速度境界層の状態を示す図である。無機化合物11の表面近傍の速度境界層の流速は小さく、多孔質空間の中心部を通過する流速は大きい分布となる。無機化合物11は水に対して溶解性を持つため、無機化合物11の表面近傍の11の表面分子は、表面近傍の水に溶解し、水の溶解濃度が上昇する。表面近傍の水は流速が小さいため、溶解濃度は高い値となる。   FIG. 2 is a diagram showing the state of the velocity boundary layer. The flow velocity in the velocity boundary layer near the surface of the inorganic compound 11 is small, and the flow velocity passing through the center of the porous space has a large distribution. Since the inorganic compound 11 is soluble in water, 11 surface molecules near the surface of the inorganic compound 11 are dissolved in water near the surface, and the dissolution concentration of water increases. Since the water near the surface has a low flow rate, the dissolved concentration has a high value.

これに対して流速の大きい多孔質空間の中心部の流れる水の溶解濃度は低い。このとき、水中に溶解する無機化合物の濃度差が生じた場合は、濃度差に応じて高い方から低い物質が移動する(フィックの法則)ため、表面近傍の水に溶解した無機化合物は濃度の低い中心の水に移動する。この物質拡散の原理を利用することで、無機化合物11を多孔質空間内の水に溶解させることができる。   On the other hand, the dissolved concentration of water flowing in the center of the porous space having a high flow rate is low. At this time, if there is a difference in the concentration of the inorganic compound dissolved in water, the lower substance moves from the higher one according to the concentration difference (Fick's law), so the inorganic compound dissolved in the water near the surface Move to low center water. By utilizing this principle of substance diffusion, the inorganic compound 11 can be dissolved in water in the porous space.

図3は、無機化合物11として、酸化亜鉛を使用した場合の、前記フィックの法則による、溶解装置14内の水流量に対する、溶解装置14出口の水に含まれる亜鉛濃度を示した溶解度特性グラフである。このグラフにおいて、流量1L/minまでは、流量増加とともに物質伝達が促進され濃度は上昇する。   FIG. 3 is a solubility characteristic graph showing the concentration of zinc contained in the water at the outlet of the dissolving device 14 with respect to the flow rate of water in the dissolving device 14 according to Fick's law when zinc oxide is used as the inorganic compound 11. is there. In this graph, up to a flow rate of 1 L / min, substance transfer is promoted and the concentration increases with an increase in the flow rate.

流量が1〜2L/minの間で濃度のピークが存在し、2L/min以上では、濃度低下傾向となっている。これは、2L/min以上では、前記のフィックの法則による亜鉛化合物の溶解絶対量が飽和してくるため、亜鉛濃度が流量の増加に伴い低下していると見なせる。従って、0.5L/minから3L/minの範囲であれば、有意性のある濃度を確保することができる。   A concentration peak exists when the flow rate is 1 to 2 L / min, and the concentration tends to decrease at 2 L / min or more. This is because at 2 L / min or more, the absolute amount of zinc compound dissolved by Fick's law is saturated, and thus it can be considered that the zinc concentration decreases as the flow rate increases. Therefore, a significant concentration can be secured in the range of 0.5 L / min to 3 L / min.

溶解装置を通過する湯水量を0.5L/minから3L/minの範囲としたことで、有意性のある濃度を確保できるので、別途溶解抑制手段等を必要とせず、コンパクトかつ簡単な構成で無機化合物を所定濃度で湯水に溶解させることが可能となり、低コスト化を実現することができる。   Since the amount of hot water passing through the melting apparatus is in the range of 0.5 L / min to 3 L / min, a significant concentration can be secured, so there is no need for separate dissolution inhibiting means, etc., and a compact and simple configuration. An inorganic compound can be dissolved in hot water at a predetermined concentration, and cost reduction can be realized.

なお、無機化合物11として用いることが出来る材料は酸化亜鉛以外に、亜鉛化合物として、酸化亜鉛(ZnO)、塩基性炭酸亜鉛(mZnCO・nZn(OH))、水酸化亜鉛(Zn(OH))、亜鉛置換型ゼオライト、亜鉛置換型キレート、亜鉛シリカゲル担持物、であり、これらを単一または組み合わせて用いることができる。また、硫酸カルシウム、水酸化マグネシウム、鉄化合物(酸化鉄、水酸化鉄)、酸化銅、酸化ケイ素、二酸化マンガン、水酸化コバルト、酸化チタン、塩化銀、硫酸バリウムを用いることができる。 In addition to zinc oxide, materials that can be used as the inorganic compound 11 include zinc oxide (ZnO), basic zinc carbonate (mZnCO 3 .nZn (OH) 2 ), and zinc hydroxide (Zn (OH)). 2 ), zinc-substituted zeolite, zinc-substituted chelate, and zinc silica gel-supported material, which can be used singly or in combination. Further, calcium sulfate, magnesium hydroxide, iron compound (iron oxide, iron hydroxide), copper oxide, silicon oxide, manganese dioxide, cobalt hydroxide, titanium oxide, silver chloride, and barium sulfate can be used.

以上のように、本実施の形態においては、無機化合物と、無機化合物収納容器とを有し、無機化合物収納容器を水回路で接続した溶解装置を備えた給湯装置とした。   As mentioned above, in this Embodiment, it was set as the hot-water supply apparatus provided with the melt | dissolution apparatus which has an inorganic compound and the inorganic compound storage container, and connected the inorganic compound storage container with the water circuit.

尚、無機化合物を、亜鉛を含む亜鉛化合物(酸化亜鉛、炭酸亜鉛など)とした場合、以下の効果を得ることができる。亜鉛は比較的要求量の多いヒトの必須元素の一つであり、通常の食事からの供給では欠乏しやすく、栄養強化目的で、食品に添加される元素である。これに対しては、浴槽に亜鉛を溶解させた水を供給することで、入浴中に経皮吸収による栄養強化を行うことができる。   In addition, when the inorganic compound is a zinc compound containing zinc (such as zinc oxide or zinc carbonate), the following effects can be obtained. Zinc is one of the essential elements of humans with relatively large demands, and is easily deficient when supplied from a normal diet. It is an element added to foods for the purpose of enhancing nutrition. On the other hand, the nutrition enhancement by percutaneous absorption can be performed during bathing by supplying water in which zinc is dissolved in the bathtub.

また、亜鉛化合物の酸化亜鉛は、日本薬局方や化粧品原料基準に定められた規格に準拠することで、医薬品や化粧品として使用することができる材料であり、主にヒトの肌の角質層に対して収斂作用、消炎作用などの作用を与え、肌の角質層の状態を良好に保つことができる。   In addition, zinc oxide, a zinc compound, is a material that can be used as pharmaceuticals and cosmetics by complying with the standards defined in the Japanese Pharmacopoeia and Cosmetic Raw Material Standards. It is mainly used for the stratum corneum of human skin. It can provide astringent action, anti-inflammatory action, etc., and keep the skin stratum corneum in good condition.

(実施の形態2)
図4は、本発明の第2の実施の形態における給湯装置の構成図を示すものである。図5は、同実施の形態における溶解装置の回路図を示すものである。尚、第1の実施の形態と同じ構成については、同一符号を付して、説明を省略する。
(Embodiment 2)
FIG. 4 shows a block diagram of a hot water supply apparatus according to the second embodiment of the present invention. FIG. 5 shows a circuit diagram of the melting apparatus in the same embodiment. In addition, about the same structure as 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.

図4おいて、圧縮機22、給湯熱交換器23、減圧手段24、蒸発器25を冷媒回路26で順に環状に接続してヒートポンプユニット21を構成している。貯湯ユニット27の貯湯タンク28には水が貯留されており、出湯回路30は貯湯タンク28、給湯水ポンプ29、給湯熱交換器23、貯湯タンク28を順に接続する回路である。   In FIG. 4, a heat pump unit 21 is configured by connecting a compressor 22, a hot water supply heat exchanger 23, a decompression unit 24, and an evaporator 25 in an annular manner in order by a refrigerant circuit 26. Water is stored in a hot water storage tank 28 of the hot water storage unit 27, and a hot water discharge circuit 30 is a circuit that connects the hot water storage tank 28, a hot water supply pump 29, a hot water supply heat exchanger 23, and a hot water storage tank 28 in this order.

浴槽水加熱回路35は、貯湯タンク28、風呂熱交換器33、浴槽水加熱ポンプ34、貯湯タンク28を順に接続する回路であり、風呂熱交換器33の他方の回路には浴槽42が接続されている。   The bathtub water heating circuit 35 is a circuit that connects the hot water storage tank 28, the bath heat exchanger 33, the bathtub water heating pump 34, and the hot water storage tank 28 in order, and the bathtub 42 is connected to the other circuit of the bath heat exchanger 33. ing.

浴槽水循環回路41は、浴槽42、浴槽水を搬送する浴槽水ポンプ40、風呂熱交換器33を順に接続する回路である。   The bathtub water circulation circuit 41 is a circuit which connects the bathtub 42, the bathtub water pump 40 which conveys bathtub water, and the bath heat exchanger 33 in order.

浴槽水注湯回路39は、貯湯タンク28の湯水を、浴槽水循環回路41を経由して浴槽42へ注湯する回路である。この回路には貯湯タンク28の高温の湯と水道水を混合する浴槽水混合弁36、注湯する水温を検知する温度検知手段37、浴槽水注湯回路39の回路の開閉を行う浴槽水注湯弁38を順に備える。   The bathtub water pouring circuit 39 is a circuit for pouring hot water in the hot water storage tank 28 to the bathtub 42 via the bathtub water circulation circuit 41. This circuit includes a bathtub water mixing valve 36 for mixing hot water and tap water in the hot water storage tank 28, temperature detecting means 37 for detecting the temperature of the water to be poured, and bathtub water pouring for opening and closing the bathtub water pouring circuit 39. The hot water valve 38 is provided in order.

図5に示すように、浴槽水注湯回路39内の注湯経路1の途中に2ヶ所の分岐部2を設け、両分岐部2を並列分岐経路3で接続し、並列分岐経路3上に溶解装置14を貯湯ユニット27の本体筺体内に収納するように配設したものである。   As shown in FIG. 5, two branch portions 2 are provided in the middle of the pouring route 1 in the bathtub water pouring circuit 39, and both branch portions 2 are connected by the parallel branch route 3. The melting device 14 is disposed so as to be housed in the main body housing of the hot water storage unit 27.

また、注湯経路1の管径aに対して、並列分岐経路3の管径bをa<bとすることで、注湯経路1と、並列分岐経路3の間で圧力損失差を作り、注湯経路1を流れる湯水の一部を並列分岐経路3側に分流し、溶解装置14にて酸化亜鉛が溶解され、再び下流側の分岐部2を経て、注湯経路1の湯水と合流し、浴槽42に注湯される。   Moreover, by making the pipe diameter b of the parallel branch path 3 a <b with respect to the pipe diameter a of the pouring path 1, a pressure loss difference is created between the pouring path 1 and the parallel branch path 3, A part of the hot water flowing through the pouring path 1 is diverted to the parallel branch path 3 side, the zinc oxide is melted by the melting device 14, and again merges with the hot water in the pouring path 1 via the branch section 2 on the downstream side. The hot water is poured into the bathtub 42.

ヒートポンプユニット21で貯湯タンク28に貯留された水を加熱する運転は、以下のような動作となる。貯湯タンク28の水は、給湯水ポンプ29によって給湯熱交換器23へ搬送され、ヒートポンプサイクル動作によって加熱される。給湯水ポンプ29は給湯熱交換器23で加熱された給湯水の温度が予め決定した温度になる様に、出湯回路30の流
量を制御する。
The operation of heating the water stored in the hot water storage tank 28 by the heat pump unit 21 is as follows. The water in the hot water storage tank 28 is conveyed to the hot water supply heat exchanger 23 by the hot water supply water pump 29 and heated by the heat pump cycle operation. The hot water supply pump 29 controls the flow rate of the hot water supply circuit 30 so that the temperature of the hot water heated by the hot water supply heat exchanger 23 becomes a predetermined temperature.

浴槽42への湯張り、並びに、浴槽水の加熱は以下のような動作となる。浴槽水注湯回路39の浴槽水混合弁36は、温度検知手段37で検知する注湯温度がリモコン等(図示せず)で予め設定された温度となるように、貯湯タンク28の高温の湯と水道水の混合割合を調整する。   The filling of the bathtub 42 and the heating of the bathtub water are as follows. The bathtub water mixing valve 36 of the bathtub water pouring circuit 39 has hot water in the hot water storage tank 28 so that the pouring temperature detected by the temperature detecting means 37 becomes a temperature preset by a remote controller or the like (not shown). And adjust the mixing ratio of tap water.

所定温度となった湯水は、浴槽水注湯回路39、浴槽水循環回路41を順に経由して浴槽42へ流出する。一方、浴槽42の浴槽水を加熱する場合は、貯湯タンク28の高温の湯を、浴槽水加熱ポンプ34によって風呂熱交換器33へ搬送し、浴槽水ポンプ40より搬送された浴槽水を加熱する。風呂熱交換器33で浴槽水を加熱して温度が下がった給湯水は、貯湯タンク28の下部より内部へ流入する。   The hot water having the predetermined temperature flows out into the bathtub 42 through the bathtub water pouring circuit 39 and the bathtub water circulation circuit 41 in this order. On the other hand, when heating the bathtub water of the bathtub 42, the hot water of the hot water storage tank 28 is conveyed to the bath heat exchanger 33 by the bathtub water heating pump 34, and the bathtub water conveyed from the bathtub water pump 40 is heated. . Hot-water supply water whose temperature has been lowered by heating the bath water in the bath heat exchanger 33 flows into the interior from the lower part of the hot water storage tank 28.

以上のように構成された給湯装置について、以下その動作、作用を説明する。利用者が浴槽42へ湯はりを行う場合は、リモコン等で湯はり動作の指示操作を行う。リモコン操作後、予め設定された温度に浴槽水混合弁36で調整された湯水が、浴槽水注湯弁38を閉から開に制御した場合に、浴槽水注湯弁38から、浴槽水注湯回路39内の注湯経路1に流入する。   About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. When the user hot waters the bathtub 42, the remote controller or the like performs a hot water operation instruction operation. After the remote control operation, when the hot water adjusted by the bathtub water mixing valve 36 to a preset temperature controls the bathtub water pouring valve 38 from closed to open, the bath water pouring valve 38 is used to make the bath water pouring hot water. It flows into the pouring route 1 in the circuit 39.

注湯経路1の管径aに対して、並列分岐経路3の管径bをa<bとしたことで、注湯経路1と並列分岐経路3間に圧力損失差を作り、注湯経路1を流れる湯水の一部を並列分岐経路3側に分流し、溶解装置14にて酸化亜鉛が溶解され、下流側の分岐部2を経て注湯経路1の湯水と合流し、浴槽42に注湯される。   By setting the pipe diameter b of the parallel branch path 3 to a <b with respect to the pipe diameter a of the pouring path 1, a pressure loss difference is created between the pouring path 1 and the parallel branch path 3. A portion of the hot water flowing through the water is split to the parallel branch path 3 side, the zinc oxide is dissolved by the melting device 14, merges with the hot water in the pouring path 1 via the downstream branch section 2, and poured into the bathtub 42. Is done.

前記溶解装置14内においては、流入した湯水が無機化合物収納容器12に充填された酸化亜鉛の粒子で形成された多孔質の空間を通過する。この際、前述したフィックの法則により、酸化亜鉛は多孔質空間内の湯水に溶解する。   In the melting device 14, the flowing hot water passes through a porous space formed of zinc oxide particles filled in the inorganic compound storage container 12. At this time, zinc oxide is dissolved in hot water in the porous space according to Fick's law described above.

ここで、給湯装置は、設置される家庭毎に、給水源として使用される水道の水圧や、浴室が2階以上に設置される等の配置に起因して、浴槽水注湯回路39を流れる湯水量は、概ね10から20L/minの範囲で変動する。そのため、溶解装置14を注湯経路1に直接配設した場合、最大で△10L/minの流量変化が生じ、図3の溶解度特性において、図示していないが、10L/min以上における酸化亜鉛の湯水への溶解濃度は、殆ど0ppmに近いレベルとなることが明らかである。   Here, the hot water supply apparatus flows through the bathtub water pouring circuit 39 due to the water pressure used as a water supply source or the arrangement such that the bathroom is installed on the second floor or more, for each installed home. The amount of hot water varies in the range of approximately 10 to 20 L / min. Therefore, when the melting device 14 is directly disposed in the pouring route 1, a maximum flow rate change of Δ10 L / min occurs, and although not shown in the solubility characteristics of FIG. 3, the zinc oxide at 10 L / min or more is shown. It is clear that the dissolved concentration in hot water is almost at a level close to 0 ppm.

本発明の給湯装置は、並列分岐経路3に溶解装置14を配設し、注湯経路1に流れる湯水の一部を並列分岐経路3側に分流して、溶解装置14を通過することにより、酸化亜鉛の安定した濃度を確保することができる。この構成のメリットを図6を用いて説明する。   In the hot water supply apparatus of the present invention, the melting device 14 is disposed in the parallel branch path 3, a part of the hot water flowing in the pouring path 1 is diverted to the parallel branch path 3 side, and passes through the melting apparatus 14. A stable concentration of zinc oxide can be ensured. The merit of this configuration will be described with reference to FIG.

図6は、分岐部2間の注湯経路1と、溶解装置14を含む並列分岐経路3の圧力損失比を1:9とした場合の、流量Qと圧力損失Pの関係を示すグラフである。圧力損失比が1:9であることから、それぞれの流量分配比は、9:1となり、並列分岐経路3側に全湯水流量の1/10が分流されることとなる。   FIG. 6 is a graph showing the relationship between the flow rate Q and the pressure loss P when the pressure loss ratio of the pouring path 1 between the branch portions 2 and the parallel branch path 3 including the melting device 14 is 1: 9. . Since the pressure loss ratio is 1: 9, the flow rate distribution ratio is 9: 1, and 1/10 of the total hot water flow rate is diverted to the parallel branch path 3 side.

この図6のグラフからわかるように、圧力損失比(流量分配比)は、流量Qの変動に対しても一定であり、全湯水流量が半分になると、同様に並列分岐経路3を流れる湯水流量も半分となる。   As can be seen from the graph of FIG. 6, the pressure loss ratio (flow rate distribution ratio) is constant with respect to the fluctuation of the flow rate Q, and when the total hot water flow rate is halved, the hot water flow rate flowing in the parallel branch path 3 is also the same. Is also halved.

このことから、給湯装置の設置環境に起因する溶解装置14への流量変化を容易に予想できるだけでなく、全湯水流量が最大△10L/min変化しても溶解装置14を通過す
る湯水変化量を△1L/minに抑えることができ、図3の溶解度特性を有する溶解装置14を用いた場合には、溶解装置14出口部での酸化亜鉛濃度を0.5ppm以上確保することができ、この酸化亜鉛溶解水を注湯経路1の湯水と合流することで希釈され、0.05ppm以上の安定した濃度を有する湯水を浴槽へ注湯することが可能となる。
From this, not only can the flow rate change to the melting device 14 due to the installation environment of the hot water supply device be predicted easily, but also the amount of change in hot water passing through the melting device 14 even if the total hot water flow rate changes by a maximum Δ10 L / min. When the dissolution apparatus 14 having the solubility characteristics shown in FIG. 3 is used, the zinc oxide concentration at the outlet of the dissolution apparatus 14 can be secured at 0.5 ppm or more. It is possible to pour hot water having a stable concentration of 0.05 ppm or more into the bathtub by diluting the zinc-dissolved water with the hot water of the pouring route 1.

以上のように、本実施の形態においては、湯水を浴槽42へ注湯する浴槽水注湯回路39と、前記浴槽水注湯回路39を開閉する浴槽水注湯弁38と、浴槽水注湯弁38の下流側の注湯経路1上に2ヶ所以上の分岐部2を設け、分岐部2間を接続した並列分岐経路3を設けるとともに、前記並列分岐経路3上に溶解装置14を配設したものであり、浴槽水注湯回路39内の注湯経路1を湯水が流れる際、一部の湯水は、上流側の分岐部2を経て並列分岐経路3側に分流し、溶解装置14を通過した際に、無機化合物が溶解され、下流側の分岐部2を経て注湯経路1を流れる残りの湯水に合流される構成とした。   As described above, in the present embodiment, the bathtub water pouring circuit 39 for pouring hot water into the bathtub 42, the bathtub water pouring valve 38 for opening and closing the bathtub water pouring circuit 39, and the bath water pouring hot water. Two or more branch portions 2 are provided on the pouring route 1 on the downstream side of the valve 38, a parallel branch route 3 that connects the branch portions 2 is provided, and a melting device 14 is provided on the parallel branch route 3. When hot water flows through the pouring path 1 in the bathtub water pouring circuit 39, a part of the hot water is diverted to the parallel branch path 3 side via the upstream branching section 2, and the melting device 14 is When passing, the inorganic compound was dissolved and joined to the remaining hot water flowing through the pouring channel 1 via the branch portion 2 on the downstream side.

これにより、溶解装置14に全湯水流量が通過する構成に対して、本発明は、一部の湯水だけが溶解装置14内を通過するため、元の湯水流量が変動した場合でも、溶解装置14内を流れる湯水流量の変動幅は小さくて済み、無機化合物の溶解濃度の変動を抑制できる。   Thus, in contrast to the configuration in which the total hot water flow rate passes through the melting device 14, the present invention allows only a part of the hot water to pass through the melting device 14, so that even if the original hot water flow rate fluctuates, the melting device 14 The fluctuation range of the flow rate of hot water flowing through the inside is small, and the fluctuation of the dissolved concentration of the inorganic compound can be suppressed.

尚、注湯経路1の湯水流量と、溶解装置14を含む並列分岐経路3の湯水流量との流量比を作る手段としては、図7に示すように、浴槽水注湯弁38側の注湯経路1の管径より小さい管径の圧損手段18を、分岐部2間に組み込んでも、並列分岐経路3側への分流を作ることができる。   Incidentally, as means for creating a flow rate ratio between the hot water flow rate in the pouring channel 1 and the hot water flow rate in the parallel branch path 3 including the melting device 14, as shown in FIG. Even if the pressure loss means 18 having a pipe diameter smaller than the pipe diameter of the path 1 is incorporated between the branch portions 2, a shunt to the parallel branch path 3 side can be created.

尚、溶解装置14は浴槽水注湯弁38の下流側とした。これにより、溶解装置14は浴槽への湯はり停止時などに生じるウォーターハンマー現象(浴槽水注湯回路等の水圧上昇)の影響を受けないため、溶解装置14の耐圧構造を簡素化することができる。   The melting device 14 is on the downstream side of the bathtub water pouring valve 38. Thereby, since the melting apparatus 14 is not influenced by the water hammer phenomenon (water pressure rise of the bathtub water pouring circuit or the like) that occurs when the hot water supply to the bathtub is stopped, the pressure resistance structure of the melting apparatus 14 can be simplified. it can.

本発明において、溶解装置14は給湯機の本体筐体に収納し、浴槽水注湯回路39を構成しているが、浴槽水循環回路41に設けても、浴槽42へ無機化合物11が溶解された湯水を供給することが出来る。   In the present invention, the melting device 14 is housed in the main body housing of the water heater and constitutes the bathtub water pouring circuit 39, but the inorganic compound 11 is dissolved in the bathtub 42 even if provided in the bathtub water circulation circuit 41. Hot water can be supplied.

また、本体筐体外部の浴槽水循環回路41に設けることも可能であるが、本体筐体内部の雰囲気温度は、低外気温時であっても貯湯タンク28からの放熱により、筐体内部の雰囲気は適度に加温されるため、溶解装置14の凍結防止などの断熱が不要、または構成の簡素化が可能となる。   Although it is possible to provide in the bathtub water circulation circuit 41 outside the main body casing, the atmospheric temperature inside the main body casing is reduced by heat radiation from the hot water storage tank 28 even at a low outside temperature. Is heated moderately, so that heat insulation such as prevention of freezing of the melting device 14 is not required, or the configuration can be simplified.

また、給湯機を貯湯式給湯機とした場合、貯湯タンクには高温の湯を貯湯するので、この高温の湯を溶解装置へ供給することによって機器の殺菌、滅菌を行うことができる。また、水中に溶け込んでいる残留塩素が貯留中に少なくなるので、本体の材質は耐腐食性材料ではなく、安価な汎用部品を使うことができる。   Further, when the hot water heater is a hot water storage type hot water heater, high temperature hot water is stored in the hot water storage tank, so that the equipment can be sterilized and sterilized by supplying the hot water to the melting device. Further, since the residual chlorine dissolved in the water is reduced during storage, the main body is not a corrosion-resistant material, and inexpensive general-purpose parts can be used.

(実施の形態3)
図8は、本発明の実施の形態3における溶解装置の回路図である。尚、第1の実施の形態と同じ構成については、同一符号を付して、説明を省略する。
(Embodiment 3)
FIG. 8 is a circuit diagram of a melting apparatus according to Embodiment 3 of the present invention. In addition, about the same structure as 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.

図8において、19は、湯水流量分配比調整手段であり、上流側の分岐部2に配設されている。湯水流量分配比調整手段19としては、分岐部2から下流の注湯経路1と、溶解装置14を含む並列分岐経路3に流す湯水流量の分配比率を調整する目的として設置しており、分配比を段階的ないし無段階に調整できる点で、流量調整弁を用いるのが好ましく、さらに予めマイコンにプログラムされた分配比率に自動調整できる点で、モーター等電
気動力手段で分配比を調整できる電動式の流量調整弁を用いるのが、さらに好ましい。
In FIG. 8, 19 is a hot / cold water flow distribution ratio adjusting means, which is disposed in the upstream branch 2. The hot water flow rate distribution ratio adjusting means 19 is installed for the purpose of adjusting the distribution ratio of the hot water flow rate flowing to the pouring path 1 downstream from the branching section 2 and the parallel branch path 3 including the melting device 14. It is preferable to use a flow rate adjustment valve in that it can be adjusted stepwise or steplessly, and in addition, it can be automatically adjusted to a distribution ratio programmed in advance in a microcomputer. It is more preferable to use the flow rate adjusting valve.

以上のように構成された給湯装置について、以下その動作、作用を説明する。浴槽水注湯弁38の下流で、かつ分岐部2に設置された湯水流量分配比調整手段19は、例えば使用者が浴室のリモコンを用いて、酸化亜鉛の溶解濃度を増減したい場合に、湯水流量分配比調整手段19は、分岐部2間の注湯経路1と、溶解装置14を含む並列分岐経路3に流れる湯水の流量比をリモコンの所定の濃度レベルに合わせて調整する。   About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. The hot water flow distribution ratio adjusting means 19 installed downstream of the bathtub water pouring valve 38 and in the branch part 2 is used when the user wants to increase or decrease the dissolved concentration of zinc oxide using a bathroom remote controller, for example. The flow rate distribution ratio adjusting means 19 adjusts the flow rate ratio of the hot water flowing through the pouring path 1 between the branch portions 2 and the parallel branch path 3 including the melting device 14 according to a predetermined concentration level of the remote controller.

図9は、2つの異なる流量分配比ごとの、注湯経路1と並列分岐経路3の流量Qと圧力損失Pの関係を示すグラフである。また、図10の溶解装置14の溶解度特性によると、溶解装置14への湯水流量を増加させることで、溶解装置14の出口の酸化亜鉛の溶解濃度が低下することが分かる。この溶解度特性を用いた場合、初期設定の流量分配比(注湯経路:並列分岐経路)が、(ア)9:1となっている場合、湯水流量分配比調整手段19を作動させて、分配比を図中(イ)の7:3とすることで、溶解装置14出口の湯水の酸化亜鉛濃度は、およそ0.25ppmとなり、注湯経路1の湯水と合流後は、およそ0.08ppmと濃い溶解濃度の湯水を浴槽42に注湯可能となる。   FIG. 9 is a graph showing the relationship between the flow rate Q and the pressure loss P of the pouring path 1 and the parallel branch path 3 for two different flow rate distribution ratios. Moreover, according to the solubility characteristic of the dissolving apparatus 14 of FIG. 10, it turns out that the dissolved concentration of the zinc oxide at the exit of the dissolving apparatus 14 falls by increasing the hot water flow rate to the dissolving apparatus 14. When this solubility characteristic is used, when the initial flow rate distribution ratio (pouring path: parallel branch path) is (a) 9: 1, the hot water flow rate distribution ratio adjusting means 19 is operated to perform distribution. By setting the ratio to 7: 3 in (a) in the figure, the zinc oxide concentration of the hot water at the outlet of the melting device 14 is about 0.25 ppm, and after joining with the hot water in the pouring path 1 is about 0.08 ppm. Hot water having a high dissolution concentration can be poured into the bathtub 42.

以上のように本実施の形態の給湯装置は、上流側の分岐部2、または並列分岐経路3、または上流側分岐部2と下流側分岐部2の間に位置する注湯経路1の少なくとも1カ所以上に、注湯経路1と並列分岐経路3に流れる湯水流量の分配比を調整する湯水流量分配比調整手段19を配設したものであり、湯水流量分配比調整手段19により、並列分岐経路3への湯水流量の変化範囲が小さくても、無機化合物濃度を増減、および分配停止を使い分けることができる。   As described above, the hot water supply apparatus according to the present embodiment has at least one of the upstream branch portion 2, the parallel branch route 3, or the pouring route 1 positioned between the upstream branch portion 2 and the downstream branch portion 2. The hot water flow rate distribution ratio adjusting means 19 for adjusting the distribution ratio of the hot water flow rate flowing through the pouring path 1 and the parallel branch path 3 is disposed at more than the above locations. Even if the change range of the hot water flow rate to 3 is small, the concentration of the inorganic compound can be increased and decreased and the distribution stop can be used properly.

尚、本発明における溶解装置14に流れる水流方向については、前記実施の形態では、上から下方向、つまり天から地への流れで示しているが、図11に示すように溶解装置14に対して、地から天への流れで構成してもよく、この場合、無機化合物11の粒子が水流で持ち上げられて水の流路を確保するため、無機化合物11の粒子に起因する圧力損失を大幅に低減することが可能となる。   In addition, about the direction of the water flow which flows into the melt | dissolution apparatus 14 in this invention, although it has shown by the flow from the top to the bottom, ie, the heaven to the ground, in the said embodiment, as shown in FIG. In this case, since the particles of the inorganic compound 11 are lifted by the water flow to secure the flow path of the water, the pressure loss caused by the particles of the inorganic compound 11 is greatly increased. It becomes possible to reduce it.

以上のように、本発明に係る給湯装置は、コンパクト化、低コスト化、構成の簡素化、信頼性向上、運転効率向上に繋がり、貯湯式給湯機の他、ガス熱源の給湯機にも利用できる。   As described above, the hot water supply apparatus according to the present invention leads to compactness, low cost, simplified configuration, improved reliability, and improved operation efficiency, and can be used for hot water storage hot water heaters as well as hot water heaters for gas heat sources. it can.

1 注湯経路
2 分岐部
3 並列分岐経路
11 無機化合物
12 無機化合物収納容器
13 水経路
14 溶解装置
16 濾過手段
18 圧損手段
19 湯水流量分配比調整手段
21 ヒートポンプユニット
27 貯湯ユニット
28 貯湯タンク
36 浴槽水混合弁
37 温度検知手段
38 浴槽水注湯弁
39 浴槽水注湯回路
42 浴槽
DESCRIPTION OF SYMBOLS 1 Hot water supply path 2 Branch part 3 Parallel branch path 11 Inorganic compound 12 Inorganic compound storage container 13 Water path 14 Dissolution apparatus 16 Filtration means 18 Pressure loss means 19 Hot water flow rate distribution ratio adjustment means 21 Heat pump unit 27 Hot water storage unit 28 Hot water storage tank 36 Bath water Mixing valve 37 Temperature detecting means 38 Bathtub water pouring valve 39 Bathtub water pouring circuit 42 Bathtub

Claims (3)

水経路と、粉末状または顆粒状、あるいは、粉末状と顆粒状との混合物である無機化合物を収納する無機化合物収納容器とを備え、前記無機化合物を溶解させた湯水を前記水経路から流出させるとともに、前記湯水の量を0.5〜3L/minとしたことを特徴とする溶解装置。 A water path and an inorganic compound storage container for storing an inorganic compound that is a powder or granule, or a mixture of a powder and a granule, and causing hot water in which the inorganic compound is dissolved to flow out of the water path And the amount of the said hot water was 0.5-3 L / min, and the melting apparatus characterized by the above-mentioned. 前記湯水を注湯する注湯経路と、前記注湯経路からの湯水を分流させるように形成した並列分岐経路とを備え、前記並列分岐経路に前記請求項1に記載の溶解装置を配設したことを特徴とする給湯装置。 A pouring path for pouring the hot water and a parallel branch path formed so as to divert hot water from the pouring path are provided, and the melting device according to claim 1 is disposed in the parallel branch path. A water heater characterized by that. 前記注湯経路と前記並列分岐経路とを流れる湯水流量の分配比を調整する湯水流量分配比調整手段を設けたことを特徴とする請求項2に記載の給湯装置。 The hot water supply apparatus according to claim 2, further comprising a hot water flow rate distribution ratio adjusting means for adjusting a distribution ratio of the hot water flow rate flowing through the pouring path and the parallel branch path.
JP2011035657A 2011-02-22 2011-02-22 Dissolving apparatus and water heater equipped with the same Pending JP2012172914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011035657A JP2012172914A (en) 2011-02-22 2011-02-22 Dissolving apparatus and water heater equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011035657A JP2012172914A (en) 2011-02-22 2011-02-22 Dissolving apparatus and water heater equipped with the same

Publications (1)

Publication Number Publication Date
JP2012172914A true JP2012172914A (en) 2012-09-10

Family

ID=46975985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011035657A Pending JP2012172914A (en) 2011-02-22 2011-02-22 Dissolving apparatus and water heater equipped with the same

Country Status (1)

Country Link
JP (1) JP2012172914A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06126285A (en) * 1992-10-20 1994-05-10 Ishizuka Glass Co Ltd Bathwater purifier
JPH09182684A (en) * 1995-11-02 1997-07-15 Toto Ltd Water tank provided with chemical sustained release device
JPH10298057A (en) * 1997-05-01 1998-11-10 Tsumura & Co Bathing agent composition
JPH11246391A (en) * 1998-03-04 1999-09-14 Earth Chem Corp Ltd Bath preparation
JP2003071450A (en) * 2001-09-06 2003-03-11 Toto Ltd Functional water making apparatus
JP2010025423A (en) * 2008-07-18 2010-02-04 Rinnai Corp Bath hot water supply system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06126285A (en) * 1992-10-20 1994-05-10 Ishizuka Glass Co Ltd Bathwater purifier
JPH09182684A (en) * 1995-11-02 1997-07-15 Toto Ltd Water tank provided with chemical sustained release device
JPH10298057A (en) * 1997-05-01 1998-11-10 Tsumura & Co Bathing agent composition
JPH11246391A (en) * 1998-03-04 1999-09-14 Earth Chem Corp Ltd Bath preparation
JP2003071450A (en) * 2001-09-06 2003-03-11 Toto Ltd Functional water making apparatus
JP2010025423A (en) * 2008-07-18 2010-02-04 Rinnai Corp Bath hot water supply system

Similar Documents

Publication Publication Date Title
JP6155524B2 (en) Mixer tap
JP2013002669A (en) Water heater
JP5793650B2 (en) Water heater
JP2012172914A (en) Dissolving apparatus and water heater equipped with the same
JP4883213B1 (en) Water heater
JP5177241B2 (en) Water heater
JP5527257B2 (en) Melting apparatus and hot water supply apparatus including the same
JP5870241B2 (en) Water heater
JP5375769B2 (en) Water heater
JP4883230B1 (en) Water heater
JP5467364B2 (en) Water heater
JP5640808B2 (en) Water heater
JP2014076435A (en) Dissolution device and hot-water supply device equipped with dissolution device
JP4858632B1 (en) Water heater
JP5824606B2 (en) Water heater
JP2012081438A (en) Dissolving device and device for supplying hot water including the same
JP2012042147A (en) Dissolving apparatus, and water heater with the same
JP2012236173A (en) Water modifying means, and water heater with the same
JP5857209B2 (en) Melting apparatus and hot water supply apparatus including the same
JP5824638B2 (en) Water heater
JP5671703B2 (en) Water heater
JP5861028B2 (en) Water heater
JP2012021715A (en) Dissolving device, and water heater with the same
JP2012184888A (en) Dissolving apparatus
JP2007205593A (en) Hot water supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121211

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131203

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140624