JP2012172131A - Air separator and gasification furnace plant provided with the same - Google Patents

Air separator and gasification furnace plant provided with the same Download PDF

Info

Publication number
JP2012172131A
JP2012172131A JP2011038325A JP2011038325A JP2012172131A JP 2012172131 A JP2012172131 A JP 2012172131A JP 2011038325 A JP2011038325 A JP 2011038325A JP 2011038325 A JP2011038325 A JP 2011038325A JP 2012172131 A JP2012172131 A JP 2012172131A
Authority
JP
Japan
Prior art keywords
air
gasification furnace
air separation
coal
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011038325A
Other languages
Japanese (ja)
Inventor
Kentaro Nakamura
中村  健太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2011038325A priority Critical patent/JP2012172131A/en
Publication of JP2012172131A publication Critical patent/JP2012172131A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04181Regenerating the adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04533Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the direct combustion of fuels in a power plant, so-called "oxyfuel combustion"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04539Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels
    • F25J3/04545Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels for the gasification of solid or heavy liquid fuels, e.g. integrated gasification combined cycle [IGCC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/66Regenerating the adsorption vessel, e.g. kind of reactivation gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/50Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air separator capable of reducing equipment cost and required power by reduction in volume, and a gasification furnace plant provided with the same.SOLUTION: The air separator includes a separation unit for separating, from air, oxygen supplied to an air-blown gasification furnace 3 and nitrogen that carries coal to the air-blown gasification furnace 3, and an adsorption unit for adsorbing and removing impurities in air supplied to the separation unit, wherein at least a part of oxygen led out from the separation unit is supplied to the adsorption unit.

Description

本発明は、空気分離手段およびこれを備えたガス化炉プラントに関し、特に、空気吹きのガス化炉に酸素と窒素とを供給する空気分離手段に関するものである。   The present invention relates to an air separation means and a gasification furnace plant equipped with the same, and more particularly to an air separation means for supplying oxygen and nitrogen to an air-blown gasification furnace.

一般に、図3に示すように空気吹きの石炭ガス炉3を備えている石炭ガス化複合発電プラント100は、原炭バンカー(図示せず)から微粉炭機(図示せず)へと石炭が供給され、微粉炭機において石炭が微粉砕される。粉砕された石炭(以下「微粉炭」という。)は、空気分離装置40によって空気から発生させた不活性ガスである純窒素を用いて乾燥および石炭ガス化炉3への搬送が行われる。   In general, as shown in FIG. 3, a coal gasification combined power plant 100 having an air-blown coal gas furnace 3 supplies coal from a raw coal bunker (not shown) to a pulverized coal machine (not shown). The coal is pulverized in a pulverized coal machine. The pulverized coal (hereinafter referred to as “pulverized coal”) is dried and transported to the coal gasification furnace 3 using pure nitrogen which is an inert gas generated from the air by the air separation device 40.

空気分離装置40において空気から純窒素を分離する際に副生品として発生する酸素は、ガス化剤として石炭ガス化炉3へと供給される(例えば、特許文献1)。副生品として発生する酸素は、空気吹きの石炭ガス化炉3が主として空気をガス化剤として利用できるように設計されていることから、いわば廃棄物利用として用いられている。   Oxygen generated as a by-product when the pure nitrogen is separated from air in the air separation device 40 is supplied to the coal gasifier 3 as a gasifying agent (for example, Patent Document 1). Oxygen generated as a by-product is used as waste because it is designed so that the air-blown coal gasifier 3 can mainly use air as a gasifying agent.

特開2001−159317号公報JP 2001-159317 A

しかし、特許文献1や図3に開示されている空気分離装置40は、空気分離装置40内に導入された空気中の水分や二酸化炭素といった不純物を吸着除去する必要がある。そのため、空気分離装置内には、吸着剤(モレキュラーシーブス:MS)が設けられており、この吸着材(図示せず)に空気を通過させることによって不純物を吸着除去している。吸着材は、乾燥した純窒素の一部を導いて不純物の除去運転(再生運転)をすることによって、繰り返し使用されている。   However, the air separation device 40 disclosed in Patent Document 1 and FIG. 3 needs to adsorb and remove impurities such as moisture and carbon dioxide in the air introduced into the air separation device 40. Therefore, an adsorbent (molecular sieve: MS) is provided in the air separation device, and impurities are adsorbed and removed by passing air through the adsorbent (not shown). The adsorbent is repeatedly used by introducing part of the dried pure nitrogen and performing an impurity removal operation (regeneration operation).

このような空気分離装置40には、空気分離装置40に空気を導入する大型の圧縮機41が必要である。そのため、設備費が高く、かつ、大電力を要することからプラント効率を低下させる要因となっている。   Such an air separation device 40 requires a large compressor 41 that introduces air into the air separation device 40. For this reason, the equipment cost is high and a large amount of electric power is required.

本発明は、このような事情に鑑みてなされたものであって、容量を低減して設備費および所要動力の低減を図ることが可能な空気分離手段およびこれを備えたガス化炉プラントを提供することを目的とする。   The present invention has been made in view of such circumstances, and provides an air separation means capable of reducing capacity and reducing equipment cost and required power, and a gasifier plant equipped with the same. The purpose is to do.

上記課題を解決するために、本発明の空気分離手段およびこれを備えたガス化炉プラントは、以下の手段を採用する。
すなわち、本発明に係る空気分離手段によれば、空気吹きのガス化炉に供給される酸素と、石炭を前記空気吹きのガス化炉に搬送する窒素とを空気から分離する分離部と、該分離部に供給される前記空気中の不純物を吸着除去する吸着部と、を備え、前記分離部から導出された前記酸素の少なくとも一部を前記吸着部へと供給することを特徴とする。
In order to solve the above problems, the air separation means of the present invention and the gasifier plant equipped with the same employ the following means.
That is, according to the air separation means according to the present invention, a separation unit that separates oxygen supplied to an air-blown gasifier and nitrogen that transports coal to the air-blown gasifier from the air, and An adsorption unit that adsorbs and removes impurities in the air supplied to the separation unit, and supplies at least a part of the oxygen derived from the separation unit to the adsorption unit.

空気分離手段に設けられる吸着部は、空気中の不純物を吸着後に乾燥したガスを通過させることによって再生可能とされている。   The adsorbing portion provided in the air separating means can be regenerated by passing a gas that has been dried after adsorbing impurities in the air.

そこで、吸着部には、分離部から導出されて空気吹きのガス化炉に供給される酸素の少なくとも一部を供給することとした。そのため、酸素により吸着部の再生を行うことができ、従来製造されていた再生用の窒素が不要となる。また、空気吹きのガス化炉には、空気によって希釈された酸素が供給される。そのため、吸着部を再生した後の水分や二酸化炭素といった不純物が含まれた酸素をガス化剤として再利用して、空気分離手段から大気に放出するガスを低減することができる。これらにより、空気分離手段に導入する空気量を削減して空気分離手段の容量を小さくすることができる。したがって、空気分離手段の設置費の削減および空気分離手段の所要動力の低減を図ることができる。   In view of this, the adsorption unit is supplied with at least a part of oxygen that is led out from the separation unit and supplied to the air-blown gasification furnace. Therefore, the adsorbing part can be regenerated with oxygen, and the conventionally produced nitrogen for regeneration becomes unnecessary. Further, oxygen diluted with air is supplied to an air-blown gasification furnace. Therefore, the oxygen released from the air separation unit can be reduced by reusing oxygen containing impurities such as moisture and carbon dioxide after regenerating the adsorption section as a gasifying agent. As a result, the amount of air introduced into the air separation means can be reduced and the capacity of the air separation means can be reduced. Therefore, it is possible to reduce the installation cost of the air separation means and the required power of the air separation means.

また、本発明に係る空気分離手段によれば、前記空気吹きのガス化炉に供給される前記酸素は、その純度が80vol%以下であることを特徴とする。   Further, according to the air separation means of the present invention, the oxygen supplied to the air-blown gasification furnace has a purity of 80 vol% or less.

空気吹きのガス化炉は、低濃度のガス化剤を用いることが可能なように設計されている。   The air-blown gasifier is designed so that a low concentration gasifying agent can be used.

そこで、空気分離手段から空気吹きのガス化炉に導かれる酸素の純度を80vol%以下にすることとした。これにより、空気分離手段に設けられる分離部を小型化して、空気分離手段の容量を小さくすることができる。したがって、空気分離手段の設置費の削減および空気分離手段の所要動力の低減を図ることができる。   Therefore, the purity of oxygen led from the air separation means to the air-blown gasifier is set to 80 vol% or less. Thereby, the isolation | separation part provided in an air separation means can be reduced in size, and the capacity | capacitance of an air separation means can be made small. Therefore, it is possible to reduce the installation cost of the air separation means and the required power of the air separation means.

さらに、本発明に係るガス化炉プラントによれば、空気吹きのガス化炉と、上記のいずれかに記載の空気分離手段と、を備えたことを特徴とする。   Furthermore, according to the gasification furnace plant according to the present invention, it is characterized by including an air-blown gasification furnace and the air separation means described above.

設置費の低減および所要動力の低減を図ることが可能な空気分離手段を用いることとした。したがって、プラント効率およびプラントの経済性の向上を図ることができる。   The air separation means capable of reducing the installation cost and the required power was used. Therefore, it is possible to improve the plant efficiency and the economic efficiency of the plant.

上述した発明によれば、吸着部には、分離部から導出されて空気吹きのガス化炉に供給される酸素の少なくとも一部を供給することとした。そのため、酸素により吸着部の再生を行うことができ、従来製造されていた再生用の窒素が不要となる。また、空気吹きのガス化炉には、空気によって希釈された酸素が供給される。そのため、吸着部を再生した後の水分や二酸化炭素といった不純物が含まれた酸素をガス化剤として再利用して、空気分離手段から大気に放出するガスを低減することができる。これらにより、空気分離手段に導入する空気量を削減して空気分離手段の容量を小さくすることができる。したがって、空気分離手段の設置費の削減および空気分離手段の所要動力の低減を図ることができる。   According to the above-described invention, the adsorption unit is supplied with at least a part of oxygen that is led out from the separation unit and supplied to the air-blown gasification furnace. Therefore, the adsorbing part can be regenerated with oxygen, and the conventionally produced nitrogen for regeneration becomes unnecessary. Further, oxygen diluted with air is supplied to an air-blown gasification furnace. Therefore, the oxygen released from the air separation unit can be reduced by reusing oxygen containing impurities such as moisture and carbon dioxide after regenerating the adsorption section as a gasifying agent. As a result, the amount of air introduced into the air separation means can be reduced and the capacity of the air separation means can be reduced. Therefore, it is possible to reduce the installation cost of the air separation means and the required power of the air separation means.

本発明の第1実施形態に係る空気分離装置を備えている石炭ガス化複合発電プラントの概略構成図である。It is a schematic block diagram of the coal gasification combined power plant provided with the air separation device concerning a 1st embodiment of the present invention. 本発明の第2実施形態に係る空気分離装置を備えている石炭ガス化複合発電プラントの概略構成図である。It is a schematic block diagram of the coal gasification combined power plant provided with the air separation apparatus which concerns on 2nd Embodiment of this invention. 従来の空気分離装置を備えている石炭ガス化複合発電プラントの概略構成図である。It is a schematic block diagram of the coal gasification combined power plant provided with the conventional air separation apparatus.

[第1実施形態]
図1には、本発明の第1実施形態に係る空気分離装置を備えている石炭ガス化複合発電プラントの概略構成図が示されている。
図1に示されているように、石炭を燃料とする石炭ガス化複合発電プラント(ガス化複合発電プラント)1は、主として、微粉炭(石炭)をガス化して燃料ガスにする空気吹きの石炭ガス化炉(ガス化炉)3と、石炭ガス化炉3によってガス化された燃料ガスを燃焼して駆動されるガスタービン4と、ガスタービン4と同軸8上に設けられて、蒸気により回転駆動される蒸気タービン9と、ガスタービン4および蒸気タービン9によって駆動される発電機10と、微粉炭を石炭ガス化炉3に搬送する搬送ガスを空気から分離する空気分離装置(空気分離手段)20とを備えている。
[First Embodiment]
The schematic block diagram of the coal gasification combined cycle power plant provided with the air separation apparatus which concerns on 1st Embodiment of this invention is shown by FIG.
As shown in FIG. 1, a coal gasification combined cycle plant (gasification combined cycle plant) 1 using coal as fuel is mainly air-blown coal that gasifies pulverized coal (coal) into fuel gas. A gasification furnace (gasification furnace) 3, a gas turbine 4 driven by burning fuel gas gasified by the coal gasification furnace 3, and provided on the same axis 8 as the gas turbine 4 and rotated by steam A steam turbine 9 that is driven, a generator 10 that is driven by the gas turbine 4 and the steam turbine 9, and an air separation device (air separation means) that separates the carrier gas that conveys pulverized coal to the coal gasification furnace 3 from the air. 20.

石炭ガス化炉3の上流側には、石炭供給設備11が設けられており、石炭ガス化炉3へと微粉炭を供給する。石炭供給設備11は、原料炭を微粉砕する微粉炭機(図示せず)と、微粉炭機によって粉砕された微粉炭を貯留する微粉炭ホッパ(図示せず)とを備えている。   A coal supply facility 11 is provided on the upstream side of the coal gasification furnace 3, and pulverized coal is supplied to the coal gasification furnace 3. The coal supply facility 11 includes a pulverized coal machine (not shown) that finely pulverizes the raw coal, and a pulverized coal hopper (not shown) that stores the pulverized coal pulverized by the pulverized coal machine.

微粉炭機へと導かれた原料炭は、微粉炭機によって数μm〜数百μmの微粉炭に粉砕される。微粉炭機が粉砕した微粉炭は、微粉炭を一時的に蓄えるじょうご形状の微粉炭ホッパと導かれる。   The raw coal introduced to the pulverized coal machine is pulverized into pulverized coal of several μm to several hundred μm by the pulverized coal machine. The pulverized coal pulverized by the pulverized coal machine is guided to a funnel-shaped pulverized coal hopper that temporarily stores the pulverized coal.

微粉炭ホッパ内の微粉炭は、空気分離装置20によって分離された窒素によって一定流量ずつ石炭ガス化炉3へと搬送される。ここで、窒素は、微粉炭を石炭ガス化炉3へと搬送する搬送ガスとして用いられる。   The pulverized coal in the pulverized coal hopper is conveyed to the coal gasification furnace 3 at a constant flow rate by nitrogen separated by the air separation device 20. Here, nitrogen is used as a carrier gas for conveying pulverized coal to the coal gasification furnace 3.

空気分離装置20は、吸着器(吸着部)と、分離器(分離部)とを備えている。吸着器(図示せず)には、吸着剤(モレキュラーシーブス:MS)が設けられており、空気分離装置20に取り込まれて分離部(図示せず)に供給される空気中の水分や二酸化炭素等の不純物を吸着除去するものである。分離器は、石炭ガス化炉3に供給される酸素と、石炭ガス化炉3に微粉炭を搬送する窒素とを空気から分離するものである。空気分離装置20には、空気分離装置用圧縮機21によって圧縮された空気が導かれる。   The air separation device 20 includes an adsorber (adsorption unit) and a separator (separation unit). The adsorber (not shown) is provided with an adsorbent (molecular sieve: MS), which is taken into the air separation device 20 and supplied to the separation unit (not shown), such as moisture in the air and carbon dioxide. And the like to adsorb and remove impurities. The separator separates oxygen supplied to the coal gasification furnace 3 and nitrogen that conveys pulverized coal into the coal gasification furnace 3 from the air. The air separated by the air separation device compressor 21 is guided to the air separation device 20.

例えば、石炭ガス化炉3は、空気吹きの石炭ガス化炉であって、下方から上方へとガスが流されるように形成された石炭ガス化部(図示せず)と、石炭ガス化部の下流側に接続されて上方から下方へとガスが流されるように形成された熱交換部(図示せず)とを備えていてもよい。   For example, the coal gasification furnace 3 is an air-blown coal gasification furnace, and a coal gasification section (not shown) formed so that gas flows from below to above, and a coal gasification section You may provide the heat exchange part (not shown) connected so that the gas might flow from the upper part to the lower part by connecting to the downstream.

石炭ガス化炉3内には、コンバスタ(図示せず)及びリダクタ(図示せず)が設けられている。コンバスタは、微粉炭及びチャーの一部分を燃焼させ、残りは熱分解により揮発分(一酸化炭素、水素、低級炭化水素)として放出させる部分である。コンバスタには、噴流床が採用されている。しかし、流動床式や固定床式であっても構わない。   In the coal gasification furnace 3, a combustor (not shown) and a reductor (not shown) are provided. The combustor is a part that burns a part of the pulverized coal and char and releases the rest as volatile components (carbon monoxide, hydrogen, lower hydrocarbons) by thermal decomposition. The combustor has a spouted bed. However, it may be a fluidized bed type or a fixed bed type.

コンバスタ及びリダクタには、それぞれ、コンバスタバーナー(図示せず)及びリダクタバーナー(図示せず)が設けられている。これらのバーナーに対して微粉炭ホッパから微粉炭が供給される。   The combustor and the reductor are provided with a combustor burner (not shown) and a reductor burner (not shown), respectively. Pulverized coal is supplied to the burners from a pulverized coal hopper.

コンバスタバーナーには、後述する昇圧機18によって昇圧された空気および空気分離装置20から導出された酸素が供給されるようになっている。ここで、昇圧機18によって昇圧された空気および空気分離装置20から導出された酸素は、ガス化剤として用いられる。   The combustor burner is supplied with air pressurized by a booster 18 described later and oxygen derived from the air separation device 20. Here, the air boosted by the booster 18 and the oxygen derived from the air separation device 20 are used as a gasifying agent.

リダクタでは、コンバスタからの高温ガスによって微粉炭がガス化される。これにより、微粉炭から一酸化炭素や水素等の可燃性の生成ガスが生成される。石炭ガス化反応は、微粉炭及びチャー中の炭素が高温ガス中の二酸化炭素及び水分と反応して一酸化炭素や水素を生成する吸熱反応である。   In the reductor, pulverized coal is gasified by the high-temperature gas from the combustor. Thereby, combustible product gas, such as carbon monoxide and hydrogen, is generated from pulverized coal. The coal gasification reaction is an endothermic reaction in which carbon in pulverized coal and char reacts with carbon dioxide and moisture in high-temperature gas to generate carbon monoxide and hydrogen.

石炭ガス化炉3のリダクタにおいて生成された生成ガスは、例えばポーラスフィルタ(図示せず)へと導かれる。ポーラスフィルタは、生成ガスが通過することによって生成ガス中に混在するチャーを捕捉する。ポーラスフィルタによって捕捉されたチャーは、空気分離装置20によって分離された窒素と共に石炭ガス化炉3のコンバスタバーナーへと返送されてリサイクルされる。   The product gas produced | generated in the reductor of the coal gasification furnace 3 is guide | induced to a porous filter (not shown), for example. The porous filter captures char mixed in the product gas as the product gas passes through. The char captured by the porous filter is returned to the combustor burner of the coal gasification furnace 3 together with nitrogen separated by the air separation device 20 and recycled.

ポーラスフィルタを通過した生成ガスには、硫化水素や硫化カルボニルといった硫黄化合物が含まれている。そのため、ポーラスフィルタからガス精製装置16へと生成ガスを導く。ガス精製装置16は、生成ガス中の硫黄化合物を除去するものである。ガス精製装置16から導出された硫黄化合物が除去された生成ガス(以下、「燃料ガス」という。)は、ガスタービン4へと導かれて、ガスタービン4の燃焼器5へと送られる。   The product gas that has passed through the porous filter contains sulfur compounds such as hydrogen sulfide and carbonyl sulfide. Therefore, the product gas is guided from the porous filter to the gas purification device 16. The gas purification device 16 removes sulfur compounds in the product gas. The product gas (hereinafter referred to as “fuel gas”) from which the sulfur compound derived from the gas purification device 16 has been removed is guided to the gas turbine 4 and sent to the combustor 5 of the gas turbine 4.

ガスタービン4は、燃焼器5と、燃焼器5から排出された燃焼ガスによって駆動されるタービン7と、燃焼器5へと高圧の圧縮空気を送り出す圧縮機6とを備えている。
燃焼器5では、導かれた燃料ガスと、後述する圧縮空気とが燃焼されて燃焼ガスが排出される。燃焼器5から排出された燃焼ガスは、タービン7へと導かれる。タービン7に導かれた燃焼ガスは、タービン7を回転駆動する。タービン7が燃焼ガスによって駆動されることによって、タービン7に接続されている回転軸8が回転駆動される。
The gas turbine 4 includes a combustor 5, a turbine 7 driven by the combustion gas discharged from the combustor 5, and a compressor 6 that sends high-pressure compressed air to the combustor 5.
In the combustor 5, the introduced fuel gas and compressed air described later are burned and the combustion gas is discharged. The combustion gas discharged from the combustor 5 is guided to the turbine 7. The combustion gas guided to the turbine 7 drives the turbine 7 to rotate. When the turbine 7 is driven by the combustion gas, the rotating shaft 8 connected to the turbine 7 is rotationally driven.

回転軸8が回転駆動されることによって、回転軸8上に設けられている圧縮機6が回転駆動されて空気を吸引する。圧縮機6に吸引された空気は、圧縮機6によって圧縮される。圧縮機6によって圧縮された空気(以下「圧縮空気」という。)の一部は、圧縮機6から燃焼器5へと導かれる。燃焼器5に導かれた圧縮空気は、燃料ガスと共に燃焼される。なお、残りの圧縮空気は、後述する昇圧機用熱交換器17へと導かれる。   When the rotating shaft 8 is rotationally driven, the compressor 6 provided on the rotating shaft 8 is rotationally driven to suck air. The air sucked into the compressor 6 is compressed by the compressor 6. Part of the air compressed by the compressor 6 (hereinafter referred to as “compressed air”) is guided from the compressor 6 to the combustor 5. The compressed air led to the combustor 5 is burned together with the fuel gas. The remaining compressed air is guided to a booster heat exchanger 17 described later.

圧縮機6およびタービン7が設けられている回転軸8には、発電機10が接続されている。そのため、タービン7の回転駆動に伴い回転軸8が回転駆動することによって、発電機10が駆動される。発電機10が駆動されることによって発電機10は、電気を発生する。   A generator 10 is connected to the rotary shaft 8 on which the compressor 6 and the turbine 7 are provided. Therefore, the generator 10 is driven by the rotational shaft 8 being rotationally driven as the turbine 7 is rotationally driven. When the generator 10 is driven, the generator 10 generates electricity.

タービン7を回転駆動させた燃焼ガスは、排熱回収ボイラ15へと導かれる。排熱回収ボイラ15は、タービン7から導かれた燃焼ガスの熱によって蒸気を発生するものである。排熱回収ボイラ15に導かれた水に熱を与えて蒸気を発生させた燃焼ガスは、図示しない煙突から石炭ガス化複合発電プラント1外へと排出される。   The combustion gas that rotationally drives the turbine 7 is guided to the exhaust heat recovery boiler 15. The exhaust heat recovery boiler 15 generates steam by the heat of the combustion gas guided from the turbine 7. Combustion gas that generates heat by applying heat to the water led to the exhaust heat recovery boiler 15 is discharged out of the coal gasification combined power plant 1 from a chimney (not shown).

排熱回収ボイラ15においてタービン7から導かれた高温の燃焼ガスによって発生した蒸気は、蒸気タービン9へと供給される。蒸気タービン9は、ガスタービン4と同じ回転軸8に接続されており、いわゆる一軸式のコンバインドシステムとなっている。なお、一軸式のコンバインドシステムに限らず、別軸式のコンバインドシステムであっても構わない。タービン7によって回転駆動されている回転軸8は、蒸気タービン9によって駆動力が増加する。そのため、回転軸8に接続されている発電機10の発電量が増加する。   The steam generated by the high-temperature combustion gas introduced from the turbine 7 in the exhaust heat recovery boiler 15 is supplied to the steam turbine 9. The steam turbine 9 is connected to the same rotating shaft 8 as the gas turbine 4, and is a so-called single-shaft combined system. In addition, it is not limited to a single-shaft combined system, and may be a separate-shaft combined system. The rotating shaft 8 that is rotationally driven by the turbine 7 is increased in driving force by the steam turbine 9. Therefore, the power generation amount of the generator 10 connected to the rotating shaft 8 increases.

蒸気タービン9を回転駆動した蒸気は、図示しない復水器へと導かれて冷却されて水に戻される。復水器により戻された水は、排熱回収ボイラ15へと導かれる。   The steam that rotationally drives the steam turbine 9 is guided to a condenser (not shown), cooled, and returned to water. The water returned by the condenser is guided to the exhaust heat recovery boiler 15.

昇圧機用熱交換器17に導かれて後述する再加圧空気と熱交換して温度の低下した圧縮空気は、昇圧機18へと導かれる。昇圧機18に導かれた圧縮空気は、昇圧機18によって昇圧されて再加圧空気とされる。再加圧空気は、前述した昇圧機用熱交換器17へと導かれる。昇圧機用熱交換器17に導かれた再加圧空気は、圧縮機6から導出された圧縮空気と熱交換して温度が上昇する。昇圧機用熱交換器17を通過して温度が上昇した再加圧空気は、石炭ガス化炉3へと供給される。   The compressed air, which is guided to the heat exchanger 17 for the booster and heat-exchanged with re-pressurized air described later to lower the temperature, is guided to the booster 18. The compressed air guided to the booster 18 is pressurized by the booster 18 to be repressurized air. The repressurized air is guided to the above-described booster heat exchanger 17. The re-pressurized air led to the booster heat exchanger 17 exchanges heat with the compressed air led from the compressor 6, and the temperature rises. The re-pressurized air whose temperature has risen after passing through the heat exchanger 17 for booster is supplied to the coal gasification furnace 3.

次に、本実施形態に係る石炭ガス化複合発電プラント1に設けられている空気分離装置20において分離される空気の流れについて説明する。
空気分離装置20には、空気分離装置用圧縮機21によって圧縮された空気が導かれる。空気分離装置20に導かれた空気は、吸着器において空気中の湿分(水分)や二酸化炭素といった不純物が吸着除去される。
Next, the flow of air separated in the air separation device 20 provided in the coal gasification combined power plant 1 according to the present embodiment will be described.
The air separated by the air separation device compressor 21 is guided to the air separation device 20. The air guided to the air separation device 20 adsorbs and removes impurities such as moisture (water) and carbon dioxide in the air in the adsorber.

空気中の不純物が吸着除去された乾燥空気は、低温の酸素と窒素との熱交換により温度を低減した後、分離器に導かれて沸点差を利用して純度の高い窒素と酸素とに分離される。分離器によって空気から分離された純度の高い窒素は、窒素用昇圧機22によって昇圧されて石炭ガス化炉3へと微粉炭を搬送する搬送ガスとされる。   Dry air from which impurities in the air have been adsorbed and removed is reduced in temperature by heat exchange between low-temperature oxygen and nitrogen, and then led to a separator to separate high-purity nitrogen and oxygen using the difference in boiling points. Is done. The high purity nitrogen separated from the air by the separator is boosted by the nitrogen booster 22 and used as a carrier gas for transporting the pulverized coal to the coal gasification furnace 3.

一方、分離器によって空気から分離された純度の高い酸素は、空気から純度の高い窒素を分離する際に発生する副生物である。そこで、この純度の高い酸素を吸着器へと導いて、吸着剤を乾燥させて吸着器を再生させることとした。吸着剤を再生したあとの酸素には、二酸化炭素や水分などの不純物が混在して、例えば、90vol%の純度となって吸着器から導出される。   On the other hand, high-purity oxygen separated from air by the separator is a by-product generated when high-purity nitrogen is separated from air. Therefore, this high-purity oxygen was introduced to the adsorber, and the adsorbent was regenerated by drying the adsorbent. Oxygen after regenerating the adsorbent contains impurities such as carbon dioxide and moisture, and is derived from the adsorber with a purity of, for example, 90 vol%.

この90vol%純度の酸素は、酸素用昇圧機23に導かれて昇圧される。昇圧された酸素は、前述した昇圧機18によって加圧された再加圧空気とともに石炭ガス化炉3へと導かれてガス化剤として用いられることとなる。   The oxygen of 90 vol% purity is introduced into the oxygen booster 23 and boosted. The pressurized oxygen is guided to the coal gasification furnace 3 together with the repressurized air pressurized by the above-described booster 18 and used as a gasifying agent.

本実施形態の石炭ガス化複合発電プラント1では、このような空気分離装置20を用いることによって、従来の石炭ガス化複合発電プラントよりも石炭ガス化炉3へ導かれる酸素量が減少する。しかし、昇圧機18から供給される再加圧空気の空気量を増加させることによって、石炭ガス化炉3に必要な酸素量を確保することが可能となっている。   In the coal gasification combined power plant 1 of this embodiment, by using such an air separation device 20, the amount of oxygen guided to the coal gasification furnace 3 is reduced as compared with the conventional coal gasification combined power plant. However, the amount of oxygen necessary for the coal gasification furnace 3 can be secured by increasing the amount of repressurized air supplied from the booster 18.

以上の通り、本実施形態に係る空気分離装置20およびこれを備えている石炭ガス化複合発電プラント1によれば、以下の作用効果を奏する。
吸着器(吸着部)には、分離器(分離部)から導出されて空気吹きの石炭ガス化炉(ガス化炉)3に供給される酸素(少なくとも一部)を供給することとした。そのため、酸素により吸着器(図示せず)に設けられている吸着剤(図示せず)の再生を行うことができ、従来製造されていた再生用の窒素が不要となる。また、空気吹きの石炭ガス化炉3には、空気によって希釈された酸素が供給されている。そのため、吸着剤を再生した後の湿分(水分)や二酸化炭素といった不純物が含まれている酸素をガス化剤として再利用して、空気分離装置(空気分離手段)20から大気に放出するガスを低減することができる。これらにより、空気分離装置20に導入する空気量を削減して空気分離装置20の容量を小さくすることができる。したがって、空気分離装置20の設置費の削減および空気分離装置20の所要動力の低減を図ることができる。
As described above, according to the air separation device 20 according to the present embodiment and the coal gasification combined power plant 1 including the same, the following operational effects are achieved.
The adsorber (adsorption part) is supplied with oxygen (at least a part) that is led out from the separator (separation part) and supplied to the air-blown coal gasification furnace (gasification furnace) 3. Therefore, the adsorbent (not shown) provided in the adsorber (not shown) can be regenerated with oxygen, and the conventionally produced nitrogen for regeneration becomes unnecessary. The air-blown coal gasifier 3 is supplied with oxygen diluted with air. Therefore, the gas released from the air separation device (air separation means) 20 to the atmosphere by reusing oxygen containing impurities such as moisture (moisture) and carbon dioxide after regenerating the adsorbent as a gasifying agent. Can be reduced. As a result, the amount of air introduced into the air separation device 20 can be reduced and the capacity of the air separation device 20 can be reduced. Therefore, the installation cost of the air separation device 20 can be reduced and the required power of the air separation device 20 can be reduced.

設置費の低減および所要動力の低減を図ることが可能な空気分離装置20を用いることとした。したがって、石炭ガス化複合発電プラント(ガス化炉プラント)1のプラント効率および経済性の向上を図ることができる。   The air separation device 20 capable of reducing the installation cost and the required power is used. Therefore, the plant efficiency and economic efficiency of the coal gasification combined power plant (gasification furnace plant) 1 can be improved.

[第2実施形態]
本実施形態の空気分離装置およびこれを備えた石炭ガス化複合発電プラントは、空気分離装置から導出される酸素の純度を80vol%以下にする点で、第1実施形態と相違しその他は同様である。したがって、同一の構成および空気分離装置において分離される空気の流れについては、同一の符号を付してその説明を省略する。
図2には、本発明の第2実施形態に係る空気分離装置を備えている石炭ガス化複合発電プラントの概略構成図が示されている。
[Second Embodiment]
The air separation device of this embodiment and the coal gasification combined cycle plant equipped with the same are different from the first embodiment in that the purity of oxygen derived from the air separation device is 80 vol% or less, and the others are the same. is there. Therefore, about the flow of the air isolate | separated in the same structure and air separation apparatus, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
The schematic block diagram of the coal gasification combined cycle power plant provided with the air separator which concerns on 2nd Embodiment of this invention is shown by FIG.

空気分離装置(空気分離手段)30から導出される酸素の純度を80vol%以下とすることとした。そのため、空気分離装置30が取り込む空気量を第1実施形態と同じ量とした場合には、空気分離装置30に設けられている分離器(分離部)を小型化することができる。   The purity of oxygen derived from the air separation device (air separation means) 30 was set to 80 vol% or less. Therefore, when the amount of air taken in by the air separation device 30 is the same as that in the first embodiment, the separator (separation unit) provided in the air separation device 30 can be reduced in size.

本実施形態の石炭ガス化複合発電プラント(ガス化炉プラント)50に設けられている空気分離装置30から導出される酸素の純度は、第1実施形態に比べて一層低下する。しかし、空気吹きの石炭ガス化炉(ガス化炉)3は、ガス化剤の酸素濃度が低濃度を前提に設計されている。そのため、空気分離装置30から空気吹きの石炭ガス化炉3に供給される酸素に高い純度が要求されていないため、低純度の酸素をガス化剤に利用することができる。   The purity of oxygen derived from the air separation device 30 provided in the coal gasification combined power plant (gasification furnace plant) 50 of the present embodiment is further reduced as compared with the first embodiment. However, the air-blown coal gasifier (gasifier) 3 is designed on the assumption that the oxygen concentration of the gasifying agent is low. Therefore, since high purity is not requested | required of the oxygen supplied to the air-blown coal gasification furnace 3 from the air separation apparatus 30, low purity oxygen can be utilized for a gasifying agent.

以上の通り、本実施形態に係る空気分離装置30およびこれを備えている石炭ガス化複合発電プラント50によれば、以下の作用効果を奏する。
空気分離装置(空気分離手段)30から空気吹きの石炭ガス化炉(ガス化炉)3に導かれる酸素の純度を80vol%以下にすることとした。これにより、空気分離装置30に設けられている分離器(分離部)を小型化して、空気分離装置30の容量を小さくすることができる。したがって、空気分離装置30の設置費の削減および空気分離装置30の所要動力の低減を図ることができる。
As described above, according to the air separation device 30 according to the present embodiment and the coal gasification combined power plant 50 including the same, the following operational effects can be obtained.
The purity of oxygen led from the air separation device (air separation means) 30 to the air-blown coal gasification furnace (gasification furnace) 3 is set to 80 vol% or less. Thereby, the separator (separation part) provided in the air separation apparatus 30 can be reduced in size, and the capacity | capacitance of the air separation apparatus 30 can be made small. Therefore, the installation cost of the air separation device 30 can be reduced and the required power of the air separation device 30 can be reduced.

1、50 石炭ガス化複合発電プラント(ガス化複合発電プラント)
3 石炭ガス化炉(ガス化炉)
20、30 空気分離装置(空気分離手段)

1, 50 Coal gasification combined power plant (gasification combined power plant)
3 Coal gasifier (gasifier)
20, 30 Air separation device (air separation means)

Claims (3)

空気吹きのガス化炉に供給される酸素と、石炭を前記空気吹きのガス化炉に搬送する窒素とを空気から分離する分離部と、該分離部に供給される前記空気中の不純物を吸着除去する吸着部と、を備え、
前記分離部から導出された前記酸素の少なくとも一部を前記吸着部へと供給することを特徴とする空気分離手段。
Separating unit for separating oxygen supplied to an air-blown gasifier and nitrogen for transporting coal to the air-blown gasifier from air, and adsorbing impurities in the air supplied to the separating unit An adsorption part to be removed,
An air separation means for supplying at least a part of the oxygen derived from the separation section to the adsorption section.
前記空気吹きのガス化炉に供給される前記酸素は、その純度が80vol%以下であることを特徴とする請求項1に記載の空気分離手段。   The air separation means according to claim 1, wherein the oxygen supplied to the air-blown gasification furnace has a purity of 80 vol% or less. 空気吹きのガス化炉と、
請求項1または請求項2に記載の空気分離手段と、を備えたことを特徴とするガス化炉プラント。
An air-blown gasifier,
A gasifier plant comprising: the air separation means according to claim 1.
JP2011038325A 2011-02-24 2011-02-24 Air separator and gasification furnace plant provided with the same Withdrawn JP2012172131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011038325A JP2012172131A (en) 2011-02-24 2011-02-24 Air separator and gasification furnace plant provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011038325A JP2012172131A (en) 2011-02-24 2011-02-24 Air separator and gasification furnace plant provided with the same

Publications (1)

Publication Number Publication Date
JP2012172131A true JP2012172131A (en) 2012-09-10

Family

ID=46975333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011038325A Withdrawn JP2012172131A (en) 2011-02-24 2011-02-24 Air separator and gasification furnace plant provided with the same

Country Status (1)

Country Link
JP (1) JP2012172131A (en)

Similar Documents

Publication Publication Date Title
JP5578907B2 (en) Coal gasification combined power plant
US7805923B2 (en) Integrated coal gasification combined cycle plant
JP2010534310A (en) Method and plant for burning carbonaceous fuel by using solid oxygen carrier
US20090095155A1 (en) Systems and methods for carbon dioxide capture
JP2010059940A (en) Integrated coal gasification combined cycle power-generating facility
JP6573137B2 (en) Industrial production plant that minimizes greenhouse gas emissions, especially carbon dioxide emissions, and method of operation thereof
JP2013504413A (en) Method for removing CO2 from exhaust gas such as exhaust gas from pig iron production facilities or synthesis gas facilities
KR20110114546A (en) Process for utilizing the synthesis gas originating from a gasifier
JPH04244504A (en) Carbon dioxide recovery type coal thermal power system
AU2010300123B2 (en) Method for operating an IGCC power plant process having integrated CO2 separation
JP2013006990A (en) Coal gasification-combined electric power plant and coal gasification plant
EP2530278A1 (en) Flue gas recirculation system and method
CA2726406A1 (en) Method and apparatus to transport solids
JP2012172131A (en) Air separator and gasification furnace plant provided with the same
KR20120037556A (en) Igcc for co2 removal system
KR101529823B1 (en) Integrated gasification combined cycle system
JP2006010226A (en) Coal gasification combined power generating installation
JP2011174454A (en) Gasification power generation plant
JP2015055403A (en) Mercury removal system, gasification complex power generating system, and mercury removal method
JP6008514B2 (en) Gas purification equipment for gasification gas
JP2012167615A (en) Gasification combined power generation plant and starting method thereof
JP5675297B2 (en) Gasification facilities and coal gasification combined power generation facilities
KR20150138498A (en) Integrated gasification combined cycle system
JP2011185240A (en) Gas turbine, and gasification combined power generation plant having the same
WO2018026516A1 (en) High purity nitrogen/hydrogen production from an exhaust stream

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513