JP2012171222A - Method of manufacturing sheet, manufacturing apparatus, thickness control method and thickness control apparatus - Google Patents

Method of manufacturing sheet, manufacturing apparatus, thickness control method and thickness control apparatus Download PDF

Info

Publication number
JP2012171222A
JP2012171222A JP2011035713A JP2011035713A JP2012171222A JP 2012171222 A JP2012171222 A JP 2012171222A JP 2011035713 A JP2011035713 A JP 2011035713A JP 2011035713 A JP2011035713 A JP 2011035713A JP 2012171222 A JP2012171222 A JP 2012171222A
Authority
JP
Japan
Prior art keywords
sheet
thickness
mark
completion
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011035713A
Other languages
Japanese (ja)
Inventor
Atsushi Sakuma
敦士 佐久間
Mitsuru Watanabe
充 渡辺
Yasuhiro Nakai
康博 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2011035713A priority Critical patent/JP2012171222A/en
Publication of JP2012171222A publication Critical patent/JP2012171222A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92114Dimensions
    • B29C2948/92152Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92438Conveying, transporting or storage of articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92609Dimensions
    • B29C2948/92647Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92933Conveying, transporting or storage of articles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a sheet by which the thickness is precisely controlled by precisely acquiring the correspondence after stretching by the thickness control means.SOLUTION: In the method of manufacturing the sheet in which a molten material is extruded using a die 4 provided with a thickness control means to obtain the sheet by a prescribed processing including the stretching and the thickness of the sheet is controlled by operating the thickness control means on the basis of the operation amount calculated by the thickness distribution after the completion of processing, a mark is imparted to a plurality of positions of the sheet in the width direction using light or heat by a mark imparting means 12 before the completion of the prescribed processing and after the completion of the processing, the trace of the mark is detected by a detector 8b to determine the corresponding relation in the width direction of the sheet before or after the prescribed processing and the thickness is controlled on the basis of the determined correspondence relation.

Description

本発明は、フィルムなどのシートの製造方法、製造装置、厚み制御方法および厚み制御装置に関する。   The present invention relates to a method for manufacturing a sheet such as a film, a manufacturing apparatus, a thickness control method, and a thickness control apparatus.

延伸フィルムの製造を例として、図9および図10を参照しながら本発明の背景を説明する。図9は一般的なシートの製造装置の全体概略構成図であり、図10は図9に示すダイ104の要部拡大斜視図である。   The background of the present invention will be described with reference to FIGS. 9 and 10 by taking the production of a stretched film as an example. FIG. 9 is an overall schematic configuration diagram of a general sheet manufacturing apparatus, and FIG. 10 is an enlarged perspective view of a main part of the die 104 shown in FIG.

図9のシートの製造装置は、押出機103により押し出された重合体などの溶融材料を、シートの厚み調整手段110を幅方向に多数配置したダイ104の間隙111から吐出してシート状に成形し、成形されたシート101を延伸機102でシート幅方向に延伸するなどの加工を更に施し、シート厚みを厚み測定器108にてシート幅方向の分布として測定し(以下、測定したシート幅方向の厚み分布値を厚みプロファイルという)、シート101を巻き取るものである。   The sheet manufacturing apparatus of FIG. 9 discharges molten material such as a polymer extruded by an extruder 103 from a gap 111 of a die 104 in which a large number of sheet thickness adjusting means 110 are arranged in the width direction, and forms into a sheet shape. The formed sheet 101 is further subjected to processing such as stretching in the sheet width direction with a stretching machine 102, and the sheet thickness is measured as a distribution in the sheet width direction with the thickness measuring instrument 108 (hereinafter, measured sheet width direction). The thickness distribution value is referred to as a thickness profile), and the sheet 101 is wound up.

このようなシートの製造装置では、測定した厚みプロファイルを予め設定した目標の厚みプロファイルに近付けるように、厚み制御を実施する。そのために、ダイ104のシート幅方向に多数配置したシートの各厚み調整手段110に対応するシート厚み測定位置での厚み測定値が、予め設定された目標値に近付くように、制御手段109を介して各厚み調整手段110を制御する。   In such a sheet manufacturing apparatus, the thickness control is performed so that the measured thickness profile approaches a preset target thickness profile. For this purpose, the thickness measurement values at the sheet thickness measurement positions corresponding to the respective thickness adjustment means 110 of the sheets arranged in the sheet width direction of the die 104 are controlled via the control means 109 so as to approach the preset target value. The thickness adjusting means 110 is controlled.

図11は、ダイ104の各厚み調整手段110と、厚み測定器108によるシート厚み測定位置との対応関係の説明図である。図11の上部横線123はダイ104の位置でのシートを表しており、下部横線124は厚み測定器108の位置でのシートを表している。また、矢印125は、シート幅方向を示している。ダイ104での各厚み調整手段110の位置121a〜121dを通過した重合体は、シート幅方向の延伸等の加工をうけ、厚み測定器108によるシート厚み測定位置122a〜122dを通過する。したがって、たとえば、122aでの厚み測定値が目標値に近付くように、121aにある厚み調整手段110を制御する必要がある。   FIG. 11 is an explanatory diagram of a correspondence relationship between each thickness adjusting unit 110 of the die 104 and a sheet thickness measurement position by the thickness measuring instrument 108. The upper horizontal line 123 in FIG. 11 represents the sheet at the position of the die 104, and the lower horizontal line 124 represents the sheet at the position of the thickness measuring device 108. An arrow 125 indicates the sheet width direction. The polymer that has passed through the positions 121a to 121d of the respective thickness adjusting means 110 in the die 104 is subjected to processing such as stretching in the sheet width direction and passes through the sheet thickness measurement positions 122a to 122d by the thickness measuring instrument 108. Therefore, for example, it is necessary to control the thickness adjusting means 110 at 121a so that the thickness measurement value at 122a approaches the target value.

このようなシートの製造方法においては、各厚み調整手段110と、シート厚み測定位置との対応関係を精度良く決定する必要がある。たとえば、図11で122aのシート厚みを調整するために121bの厚み調整手段を操作すると、122bのシート厚みが変わるなど、本来調整すべき位置とは異なった位置のシート厚みを変更することになり、シート厚みを精度良く制御することができず、シートの品質が低下する。   In such a sheet manufacturing method, it is necessary to accurately determine the correspondence between each thickness adjusting unit 110 and the sheet thickness measurement position. For example, if the thickness adjusting unit 121b is operated to adjust the sheet thickness 122a in FIG. 11, the sheet thickness at a position different from the position to be adjusted is changed, for example, the sheet thickness 122b is changed. The sheet thickness cannot be accurately controlled, and the sheet quality is deteriorated.

上記の問題は主に、延伸や発泡などのシートの寸法変化を伴う加工において、シート幅方向に均一性が実現できていないことに起因している。以下、この問題が顕著になる加工として、シート幅方向の延伸を行う場合を例にとって説明する。   The above-mentioned problem is mainly caused by the fact that uniformity in the sheet width direction cannot be realized in processing involving dimensional changes of the sheet such as stretching and foaming. Hereinafter, a case where stretching in the sheet width direction will be described as an example of processing in which this problem becomes significant.

ダイ104よりシート状に成形したのみの、未延伸のシートの製造においては、溶融材料の押し出し時にネッキングのあるシート幅方向の端部を除いて、各厚み調整手段110とシート厚み測定位置との対応関係は幾何学的な位置関係により、おおむね対応させることができる。これに対して、シート幅方向の延伸を行う場合には、延伸工程中の温度ムラ等に起因して、延伸倍率がシート幅方向の位置に関して均一でないため、幾何学的な位置関係だけでは対応させることが困難になる。   In the production of an unstretched sheet that is only formed into a sheet shape from the die 104, the thickness adjusting means 110 and the sheet thickness measuring position, except for the end portion in the sheet width direction with necking when the molten material is extruded, Corresponding relations can be generally matched by geometric positional relations. On the other hand, when performing stretching in the sheet width direction, the stretching ratio is not uniform with respect to the position in the sheet width direction due to temperature unevenness during the stretching process. It becomes difficult to make.

そのため、各厚み調整手段110とシート厚み測定位置との対応関係を決定する方法が、いくつか提案されている。   Therefore, several methods for determining the correspondence between each thickness adjusting means 110 and the sheet thickness measurement position have been proposed.

特許文献1に記載の方法は、特定の厚み調整手段110を大きく操作し、それに伴って厚みプロファイルが大きく変化した箇所を検出するものである。まず、厚み測定器108により、厚みプロファイルを測定する。次に、特定の厚み調整手段110に製品製造時とは大きく異なる操作量を与え、シート厚みを顕著に変化させる。そして、シート厚みの変化が完了して定常状態になったところで、再度厚み測定器108により厚みプロファイルを測定する。この特定の厚み調整手段110への操作量を与える前後の厚みプロファイルを比較し、特定の厚み調整手段110を操作することによって生じた厚みプロファイルの変化を求め、求めた厚みプロファイルの変化のピーク位置を検出する。このピーク位置に相当するシート厚み測定位置を、上記操作をした特定の厚み調整手段110のシート幅方向の対応位置として、厚み制御を行う。   In the method described in Patent Document 1, a specific thickness adjusting unit 110 is operated largely, and a portion where the thickness profile greatly changes accordingly is detected. First, the thickness profile is measured by the thickness measuring instrument 108. Next, an operation amount greatly different from that at the time of product manufacture is given to the specific thickness adjusting unit 110 to significantly change the sheet thickness. When the change of the sheet thickness is completed and a steady state is reached, the thickness profile is measured again by the thickness measuring instrument 108. The thickness profile before and after giving the operation amount to this specific thickness adjusting means 110 is compared, the change of the thickness profile caused by operating the specific thickness adjusting means 110 is obtained, and the peak position of the obtained thickness profile change is obtained. Is detected. The thickness control is performed with the sheet thickness measurement position corresponding to the peak position as the corresponding position in the sheet width direction of the specific thickness adjusting unit 110 that has been operated as described above.

また、特許文献2に記載の方法は、ダイ104の直後でけがきを実施し、そのけがき溝の延伸後の跡を検出するものである。まず、ダイ104の直後に、シート幅方向に特定の間隔を設けた複数のけがき用ブレードを設置し、そのブレードにより、シートにけがき溝を付与する。このとき、各けがき溝のシート幅方向の位置が、どの厚み調整手段110のシート幅方向の位置に相当するかを把握しておく。そして、厚み測定器108でけがき溝の延伸後の跡を検出し、その検出位置に相当するシート厚み測定位置を、上記けがき溝を付与したシート幅方向の対応位置とする。各けがき溝と厚み調整手段110とは対応がとれているため、これを用いて、各厚み調整手段110とシート厚み測定位置との対応関係を決定し、厚み制御を行う。   In addition, the method described in Patent Document 2 performs scribing immediately after the die 104 and detects a trace after stretching of the scribing groove. First, immediately after the die 104, a plurality of scribing blades having specific intervals in the sheet width direction are installed, and scribing grooves are given to the sheet by the blades. At this time, it is determined which thickness adjusting means 110 corresponds to the position in the sheet width direction of each scribing groove in the sheet width direction. Then, the thickness measuring instrument 108 detects the marks after stretching the scribing grooves, and the sheet thickness measurement position corresponding to the detected position is set as the corresponding position in the sheet width direction to which the scribing grooves are provided. Since each scribing groove and the thickness adjusting means 110 are associated with each other, the correspondence between each thickness adjusting means 110 and the sheet thickness measurement position is determined and thickness control is performed.

特開平9−323351号公報JP-A-9-323351 特開平9−57815号公報JP-A-9-57815

しかしながら、本発明者らの知見によると、特許文献1および特許文献2には、以下のような問題点がある。   However, according to the knowledge of the present inventors, Patent Literature 1 and Patent Literature 2 have the following problems.

特許文献1に記載の方法は、特定の厚み調整手段110を操作することにより生じる厚みプロファイルの変化を求め、求めた厚みプロファイルの変化のピーク位置を検出する。即ちピーク位置を精度良く検出することが求められるが、それには、特定の厚み調整手段110を操作する前の厚みプロファイルがほぼ一定の形状をしていることが必要になる。   The method described in Patent Document 1 obtains a change in thickness profile caused by operating a specific thickness adjusting unit 110, and detects a peak position of the obtained change in thickness profile. In other words, it is required to detect the peak position with high accuracy. To this end, it is necessary that the thickness profile before operating the specific thickness adjusting means 110 has a substantially constant shape.

しかし、シート101には、シート幅方向のみならず、シート流れ方向にも、厚み変動が存在する。これを図12、図13、図14を用いて説明する。図12は厚みプロファイルをシート流れ方向に並べた一例で、実際の厚みプロファイルから平均厚みを減算したものである。図13は、製造したシートを切り出し、特定のシート幅方向位置において、接触式厚み計で測定したシート流れ方向の厚み変動の一例である(平均厚みは減算している)。図14は、製造したシートを切り出し、特定のシート流れ方向位置において、接触式厚み計で測定したシート幅方向の厚み変動の一例である(平均厚みは減算している)。図12から、シート幅方向の厚み変動、シート流れ方向の厚み変動が存在していることが分かる。また、図13および図14を比較することで、シート幅方向よりも、シート流れ方向の方が、5倍程度の厚み変動の幅を持つことが分かる。   However, the sheet 101 has a thickness variation not only in the sheet width direction but also in the sheet flow direction. This will be described with reference to FIGS. 12, 13, and 14. FIG. FIG. 12 is an example in which the thickness profiles are arranged in the sheet flow direction, and the average thickness is subtracted from the actual thickness profile. FIG. 13 shows an example of thickness variation in the sheet flow direction measured by a contact-type thickness meter at a specific sheet width direction position after cutting out the manufactured sheet (average thickness is subtracted). FIG. 14 shows an example of the thickness variation in the sheet width direction measured with a contact-type thickness meter at a specific sheet flow direction position after cutting out the manufactured sheet (average thickness is subtracted). From FIG. 12, it can be seen that there are thickness variations in the sheet width direction and thickness variations in the sheet flow direction. Further, by comparing FIG. 13 and FIG. 14, it can be seen that the sheet flow direction has a thickness variation width of about five times that of the sheet width direction.

こうした厚み変動を持つシートにおいて、厚み測定器108は、シート幅方向にスキャンしながら厚みを測定している。したがって、得られる厚みプロファイルには、シート幅方向の厚み変動だけでなく、シート流れ方向の厚み変動の影響が加算される。特許文献1の方法はシート幅方向のみの厚みプロファイルの変化を想定したものであるため、シート流れ方向の厚み変動も含んでしまう厚みプロファイルから上記ピーク位置の検出を高精度に行うことは困難であり、厚み制御の精度に影響を及ぼしてしまう。   In a sheet having such a thickness variation, the thickness measuring instrument 108 measures the thickness while scanning in the sheet width direction. Therefore, not only the thickness fluctuation in the sheet width direction but also the influence of the thickness fluctuation in the sheet flow direction is added to the obtained thickness profile. Since the method of Patent Document 1 assumes changes in the thickness profile only in the sheet width direction, it is difficult to detect the peak position with high accuracy from a thickness profile that also includes thickness fluctuations in the sheet flow direction. Yes, it affects the accuracy of thickness control.

更に、特定の厚み調整手段110を操作して厚みプロファイルが変化するまで対応関係を決定できず、時間がかかる。また、製品製造時とは大きく異なる操作量を加えるため、対応関係を決定後、厚みプロファイルを元に戻すための時間が更にかかる。この時間帯は製品ロスとなるため、生産性が著しく低下する。   Furthermore, the correspondence cannot be determined until the thickness profile is changed by operating the specific thickness adjusting unit 110, which takes time. Further, since an operation amount that is greatly different from that at the time of product manufacture is added, it takes more time to restore the thickness profile after determining the correspondence. Since this time is a product loss, productivity is significantly reduced.

また、特許文献2に記載の方法は、シートにけがき溝を付与するため、薄いシートの製造時には、延伸時にフィルム破れが生じる可能性がある。また、フィルム破れを生じないように、けがき用ブレードのシートへの押し付け圧を小さくして浅いけがき溝にすると、特許文献1と同様に、けがき溝の延伸後の跡の検出精度が低下してしまい、厚み制御の精度に影響を及ぼす。   In addition, since the method described in Patent Document 2 gives a scribing groove to the sheet, there is a possibility that film breakage may occur during stretching when a thin sheet is produced. Moreover, if the pressure applied to the sheet of the scribing blade is reduced to make the shallow scribing groove so as not to break the film, the detection accuracy of the trace after the scribing groove has been stretched, as in Patent Document 1. It deteriorates and affects the accuracy of thickness control.

こうした状況を鑑み、本発明の目的は、上記の従来方法の欠点を解消した方法、すなわち、各厚み調整手段と、延伸後のシート厚み測定位置との対応関係を正確に決定し、厚みを精密に制御するシートの製造方法、製造装置、厚み制御方法および厚み制御装置を提供することにある。   In view of these circumstances, the object of the present invention is to accurately determine the correspondence between each thickness adjusting means and the sheet thickness measurement position after stretching by eliminating the drawbacks of the conventional methods described above. An object of the present invention is to provide a sheet manufacturing method, a manufacturing apparatus, a thickness control method, and a thickness control apparatus.

上記目的を達成するために、本発明は、複数個の厚み調整手段を備えたダイを用いて溶融材料をシート状に押出し、延伸を含む所定の加工を実施することで所望のシートとなすとともに、前記所定の加工の完了後の該シート幅方向の厚み分布を測定し、測定値に基づいて各シート厚み測定位置に対応する前記厚み調整手段に加える操作量を計算し、該操作量によって前記厚み調整手段を操作してシート厚みを制御するシートの製造方法であって、
前記所定の加工の完了前に、前記シートの複数の所定の幅方向位置に光を照射し、または熱を放射して印を付与し、
前記所定の加工の完了後に前記印の跡を検出し、前記印の跡を検出した前記シートの複数の幅方向位置に基づき、前記所定の加工の完了前の前記シートと完了後のシートとの幅方向位置の各部の対応関係を決定し、
決定した該対応関係に基づいて、前記厚み調整手段に対する前記所定の加工の完了後のシート幅方向の対応位置を決定し、決定した前記対応位置に基づいて厚み制御を行うことを特徴とするシートの製造方法を提供する。
In order to achieve the above object, the present invention provides a desired sheet by extruding a molten material into a sheet using a die provided with a plurality of thickness adjusting means and carrying out a predetermined process including stretching. , Measuring the thickness distribution in the sheet width direction after completion of the predetermined processing, calculating an operation amount to be applied to the thickness adjusting means corresponding to each sheet thickness measurement position based on the measured value, A method for manufacturing a sheet for controlling a sheet thickness by operating a thickness adjusting means,
Before completion of the predetermined processing, irradiate light to a plurality of predetermined positions in the width direction of the sheet, or radiate heat to give a mark,
The mark mark is detected after completion of the predetermined processing, and the sheet before completion of the predetermined processing and the sheet after completion based on a plurality of width direction positions of the sheet where the mark mark is detected. Determine the correspondence of each part in the width direction position,
Based on the determined correspondence relationship, a corresponding position in the sheet width direction after completion of the predetermined processing with respect to the thickness adjusting unit is determined, and thickness control is performed based on the determined corresponding position. A manufacturing method is provided.

また、本発明の好ましい様態によれば、前記所定の加工の完了後のシートに光を照射し、前記シートからの透過光または反射光を受光し、前記透過光または反射光に基づいて前記印の跡を検出することを特徴とするシートの製造方法を提供する。   According to a preferred aspect of the present invention, the sheet after completion of the predetermined processing is irradiated with light, transmitted light or reflected light from the sheet is received, and the mark is based on the transmitted light or reflected light. A method for producing a sheet, characterized by detecting traces of the above, is provided.

また、本発明の別の態様によれば、複数個の厚み調整手段を備えたダイを用いて溶融材料をシート状に押出す押出手段と、延伸を含む所定の加工を実施することで所望のシートとなす加工手段と、前記所定の加工の完了後の該シート幅方向の厚み分布を測定する測定手段と、測定値に基づいて各シート厚み測定位置に対応する前記厚み調整手段に加える操作量を計算し、該操作量によって前記厚み調整手段を操作してシート厚みを制御する制御手段とを有するシートの製造装置であって、
前記所定の加工の完了前に、前記シートの複数の所定の幅方向位置に光を照射し、または熱を放射して印を付与する印付与手段と、
前記所定の加工の完了後に前記印の跡を検出する検出手段と、
前記印の跡を検出した前記シートの複数の幅方向位置に基づき、前記所定の加工の完了前の前記シートと完了後のシートとの幅方向位置の各部の対応関係を決定し、
決定した該対応関係に基づいて、前記厚み調整手段に対する前記所定の加工の完了後のシート幅方向の対応位置を決定し、決定した前記対応位置に基づいて厚み制御を行う前記制御手段とを有することを特徴とするシートの製造装置を提供する。
Moreover, according to another aspect of the present invention, a desired process can be achieved by performing extrusion processing for extruding the molten material into a sheet using a die having a plurality of thickness adjusting means, and predetermined processing including stretching. A processing means for forming a sheet, a measuring means for measuring the thickness distribution in the sheet width direction after completion of the predetermined processing, and an operation amount applied to the thickness adjusting means corresponding to each sheet thickness measurement position based on the measured value And a control means for controlling the sheet thickness by operating the thickness adjusting means according to the operation amount,
Before the completion of the predetermined processing, a mark applying means for irradiating a plurality of predetermined positions in the width direction of the sheet or radiating heat to give a mark;
Detecting means for detecting a mark of the mark after completion of the predetermined processing;
Based on a plurality of width direction positions of the sheet that has detected the mark of the mark, to determine the correspondence of each part of the width direction position of the sheet before the completion of the predetermined processing and the sheet after completion,
And a control unit that determines a corresponding position in the sheet width direction after completion of the predetermined processing with respect to the thickness adjusting unit based on the determined correspondence relationship, and performs thickness control based on the determined corresponding position. A sheet manufacturing apparatus is provided.

また、本発明の好ましい態様によれば、前記検出手段が、前記所定の加工の完了後のシートに光を照射する光照射手段と、前記シートからの透過光または反射光を受光する受光手段と、前記透過光または反射光に基づいて前記印の跡を検出する跡検出手段とを有することを特徴とするシートの製造装置を提供する。   According to a preferred aspect of the present invention, the detecting means includes a light irradiating means for irradiating the sheet after completion of the predetermined processing, and a light receiving means for receiving transmitted light or reflected light from the sheet. And a sheet detecting device for detecting the mark mark based on the transmitted light or the reflected light.

また、本発明の別の態様によれば、複数個の厚み調整手段を備えたダイを用いて溶融材料をシート状に押出し、延伸を含む所定の加工を実施することで所望のシートとなすとともに、前記所定の加工の完了後の該シート幅方向の厚み分布を測定し、測定値に基づいて各シート厚み測定位置に対応する前記厚み調整手段に加える操作量を計算し、該操作量によって前記厚み調整手段を操作してシート厚みを制御するシートの厚み制御方法であって、
前記所定の加工の完了前に、前記シートの複数の所定の幅方向位置に光を照射し、または熱を放射して印を付与し、
前記所定の加工の完了後に前記印の跡を検出し、前記印の跡を検出した前記シートの複数の幅方向位置に基づき、前記所定の加工の完了前の前記シートと完了後のシートとの幅方向位置の各部の対応関係を決定し、
決定した該対応関係に基づいて、前記厚み調整手段に対する前記所定の加工の完了後のシート幅方向の対応位置を決定し、決定した前記対応位置に基づいて厚み制御を行うことを特徴とするシートの厚み制御方法を提供する。
Moreover, according to another aspect of the present invention, the molten material is extruded into a sheet shape using a die having a plurality of thickness adjusting means, and a desired sheet is formed by performing predetermined processing including stretching. , Measuring the thickness distribution in the sheet width direction after completion of the predetermined processing, calculating an operation amount to be applied to the thickness adjusting means corresponding to each sheet thickness measurement position based on the measured value, A sheet thickness control method for controlling the sheet thickness by operating the thickness adjusting means,
Before completion of the predetermined processing, irradiate light to a plurality of predetermined positions in the width direction of the sheet, or radiate heat to give a mark,
The mark mark is detected after completion of the predetermined processing, and the sheet before completion of the predetermined processing and the sheet after completion based on a plurality of width direction positions of the sheet where the mark mark is detected. Determine the correspondence of each part in the width direction position,
Based on the determined correspondence relationship, a corresponding position in the sheet width direction after completion of the predetermined processing with respect to the thickness adjusting unit is determined, and thickness control is performed based on the determined corresponding position. A thickness control method is provided.

また、本発明の好ましい態様によれば、前記所定の加工の完了後のシートに光を照射し、前記シートからの透過光または反射光を受光し、前記透過光または反射光に基づいて前記印の跡を検出することを特徴とするシートの厚み制御方法を提供する。   According to a preferred aspect of the present invention, the sheet after completion of the predetermined processing is irradiated with light, transmitted light or reflected light from the sheet is received, and the mark is based on the transmitted light or reflected light. A method for controlling the thickness of a sheet is provided.

また、本発明の別の態様によれば、複数個の厚み調整手段を備えたダイを用いて溶融材料をシート状に押出す押出手段と、延伸を含む所定の加工を実施することで所望のシートとなす加工手段と、前記所定の加工の完了後の該シート幅方向の厚み分布を測定する測定手段と、測定値に基づいて各シート厚み測定位置に対応する前記厚み調整手段に加える操作量を計算し、該操作量によって前記厚み調整手段を操作してシート厚みを制御する制御手段とを有するシートの厚み制御装置であって、
前記所定の加工の完了前に、前記シートの複数の所定の幅方向位置に光を照射し、または熱を放射して印を付与する印付与手段と、
前記所定の加工の完了後に前記印の跡を検出する検出手段と、
前記印の跡を検出した前記シートの複数の幅方向位置に基づき、前記所定の加工の完了前の前記シートと完了後のシートとの幅方向位置の各部の対応関係を決定し、
決定した該対応関係に基づいて、前記厚み調整手段に対する前記所定の加工の完了後のシート幅方向の対応位置を決定し、決定した前記対応位置に基づいて厚み制御を行う前記制御手段とを有することを特徴とするシートの厚み制御装置を提供する。
Moreover, according to another aspect of the present invention, a desired process can be achieved by performing extrusion processing for extruding the molten material into a sheet using a die having a plurality of thickness adjusting means, and predetermined processing including stretching. A processing means for forming a sheet, a measuring means for measuring the thickness distribution in the sheet width direction after completion of the predetermined processing, and an operation amount applied to the thickness adjusting means corresponding to each sheet thickness measurement position based on the measured value A sheet thickness control device having control means for controlling the sheet thickness by operating the thickness adjusting means according to the operation amount,
Before the completion of the predetermined processing, a mark applying means for irradiating a plurality of predetermined positions in the width direction of the sheet or radiating heat to give a mark;
Detecting means for detecting a mark of the mark after completion of the predetermined processing;
Based on a plurality of width direction positions of the sheet that has detected the mark of the mark, to determine the correspondence of each part of the width direction position of the sheet before the completion of the predetermined processing and the sheet after completion,
And a control unit that determines a corresponding position in the sheet width direction after completion of the predetermined processing with respect to the thickness adjusting unit based on the determined correspondence relationship, and performs thickness control based on the determined corresponding position. A sheet thickness control apparatus is provided.

また、本発明の好ましい態様によれば、前記検出手段が、前記所定の加工の完了後のシートに光を照射する光照射手段と、前記シートからの透過光または反射光を受光する受光手段と、前記透過光または反射光に基づいて前記印の跡を検出する跡検出手段とを有することを特徴とするシートの厚み制御装置を提供する。   According to a preferred aspect of the present invention, the detecting means includes a light irradiating means for irradiating the sheet after completion of the predetermined processing, and a light receiving means for receiving transmitted light or reflected light from the sheet. And a sheet thickness control unit for detecting the mark mark based on the transmitted light or the reflected light.

本発明において、厚み調整手段とは、機械的または熱的にダイの間隙を変えることにより溶融材料の吐出量を変える方式のダイに配置したボルトや、発生熱を変えることにより、その箇所の溶融材料の粘性を変えて流速を変えることにより吐出量を変えるヒータ方式のダイに配置したヒータをいう。たとえば、2軸延伸ポリエチレンテレフタレートフィルムの製造工程においては、調整可能な吐出の範囲が相対的に大きいことからボルト方式が好ましく用いられる。   In the present invention, the thickness adjusting means refers to a bolt arranged on a die of a type that changes the discharge amount of the molten material by changing the gap of the die mechanically or thermally, or by melting the generated part by changing the generated heat. A heater arranged on a heater-type die that changes the discharge rate by changing the flow rate by changing the viscosity of the material. For example, in the manufacturing process of a biaxially stretched polyethylene terephthalate film, the bolt method is preferably used because the adjustable discharge range is relatively large.

また、本発明において、溶融材料とは、シートを構成する原料であって、溶融状態にあるものをいう。たとえば、ポリプロピレン、ポリエチレンテレフタレートやポリエチレンナフタレート、あるいは製紙材料のパルプスラリー等、任意の材料が考えられる。   Moreover, in this invention, a molten material is a raw material which comprises a sheet | seat, Comprising: The thing in a molten state is said. For example, any material such as polypropylene, polyethylene terephthalate, polyethylene naphthalate, or pulp slurry of a papermaking material can be considered.

また、本発明において、所定の加工の完了前とは、シートの製造における加工工程がシート幅方向への延伸を含む際に、各厚み調整手段とシート幅方向位置との対応関係が幾何学的に推定できる段階をいう。たとえば、ダイから溶融材料が押し出された直後は、この段階に相当する。   In the present invention, before completion of the predetermined processing, when the processing step in manufacturing the sheet includes stretching in the sheet width direction, the correspondence between each thickness adjusting unit and the position in the sheet width direction is geometric. The stage that can be estimated. For example, immediately after the molten material is extruded from the die, it corresponds to this stage.

また、本発明において、所定の加工の完了後とは、シートの製造における、シート幅方向への延伸を含む加工工程が完了した後の段階をいう。たとえば、図9における厚み測定器108の位置は、この段階に相当する。   In the present invention, the term “after completion of predetermined processing” refers to a stage after completion of a processing step including stretching in the sheet width direction in the manufacture of a sheet. For example, the position of the thickness measuring instrument 108 in FIG. 9 corresponds to this stage.

また、本発明において、操作量とは、厚み調整手段において溶融材料の吐出量を変更するために、各厚み調整手段に印加されるエネルギー量や、これに対応する数値をいう。たとえば、ヒータ等を使う場合は、パワーユニットを介して入力される電力量や、これに対応する制御手段中の変数が相当する。たとえば、ボルトを熱的に伸縮させるヒートボルト方式では、ボルトに付設したヒータに電力が供給されてボルトが加熱され、それに応じてボルトが伸縮してダイの間隙を調整する。他の方式でも、電力が供給されて厚み調整手段が動作するのが普通である。   In the present invention, the operation amount refers to an amount of energy applied to each thickness adjusting unit or a numerical value corresponding to this in order to change the discharge amount of the molten material in the thickness adjusting unit. For example, when a heater or the like is used, the amount of electric power input via the power unit and the corresponding variable in the control means correspond to this. For example, in a heat bolt system in which a bolt is thermally expanded and contracted, electric power is supplied to a heater attached to the bolt to heat the bolt, and the bolt expands and contracts accordingly to adjust the gap between the dies. In other systems, it is common that the thickness adjusting means operates by supplying electric power.

また、本発明における、印とは、光学的特徴を有する局所的箇所をいう。波長400〜760nmに亘る光透過率または光反射率の平均が、印を付与していない箇所と比較して1%以上異なる箇所であり、シート幅方向の幅は25mm以下である。   In the present invention, the mark refers to a local portion having optical characteristics. The average of the light transmittance or light reflectance over the wavelength range of 400 to 760 nm is a place that differs by 1% or more compared to the place where no mark is given, and the width in the sheet width direction is 25 mm or less.

本発明によれば、以下に説明するとおり、厚み調整手段とシート厚み測定位置との対応関係を正確に得ることができる。したがって、シート厚みを精密に制御することが可能となり、歩留まりが改善し、生産性が向上する。   According to the present invention, as described below, it is possible to accurately obtain the correspondence between the thickness adjusting means and the sheet thickness measurement position. Accordingly, the sheet thickness can be precisely controlled, yield is improved, and productivity is improved.

本発明の一実施形態における、シートの製造装置の全体概略構成図の一例である。It is an example of the whole schematic block diagram of the manufacturing apparatus of the sheet | seat in one Embodiment of this invention. 図1に示すダイの要部拡大斜視図である。It is a principal part expansion perspective view of the die | dye shown in FIG. 図1に示す検査器の概略構成図である。It is a schematic block diagram of the inspection device shown in FIG. 線形補間の説明図の一例である。It is an example of explanatory drawing of linear interpolation. 本発明の一実施形態における、検査器により印の跡を検出した概略図の一例である。It is an example of the schematic which detected the mark of the mark by the test | inspection device in one Embodiment of this invention. 本発明の一実施形態における、厚み制御を開始してからの厚みプロファイルの最大値と最小値の差の推移図の一例である。It is an example of the transition diagram of the difference of the maximum value of thickness profile after starting thickness control in one Embodiment of this invention, and minimum value. 本発明の一実施形態における、検査器により印の跡を検出した概略図の一例である。It is an example of the schematic which detected the mark of the mark by the test | inspection device in one Embodiment of this invention. 本発明の一実施形態における、厚み制御を開始してからの厚みプロファイルの最大値と最小値の差の推移図の一例である。It is an example of the transition diagram of the difference of the maximum value of thickness profile after starting thickness control in one Embodiment of this invention, and minimum value. 一般的なシートの製造装置の全体概略構成図である。1 is an overall schematic configuration diagram of a general sheet manufacturing apparatus. 図9に示すダイの要部拡大斜視図である。It is a principal part expansion perspective view of the die | dye shown in FIG. ダイの厚み調整手段と厚み測定器によるシート厚み測定位置との対応関係の説明図である。It is explanatory drawing of the correspondence of the thickness adjustment means of die | dye, and the sheet | seat thickness measurement position by a thickness measuring device. 厚みプロファイルをシート流れ方向に並べた概略図の一例である。It is an example of the schematic which arranged the thickness profile in the sheet flow direction. シート流れ方向の厚み変動の概略図の一例である。It is an example of the schematic of the thickness fluctuation | variation of a sheet | seat flow direction. シート幅方向の厚み変動の概略図の一例である。It is an example of the schematic of the thickness fluctuation | variation of a sheet | seat width direction.

以下、本発明の第1の実施形態の例を、ポリエチレンテレフタレートを溶融材料とし、これをシートに成形して透明なプラスチックフィルムを製造する工程に適用した場合を例にとって、図面を参照しながら説明する。   Hereinafter, an example of the first embodiment of the present invention will be described with reference to the drawings, taking as an example a case where polyethylene terephthalate is used as a molten material and this is applied to a process of forming a transparent plastic film by forming it into a sheet. To do.

実施形態のシートの製造装置を、図1、図2、図3を用いて説明する。図1は実施形態の全体概略構成図で、図2はダイ4の要部拡大斜視図で、図3は検査器8bの概略構成図である。   The sheet manufacturing apparatus according to the embodiment will be described with reference to FIGS. 1, 2, and 3. FIG. 1 is an overall schematic configuration diagram of an embodiment, FIG. 2 is an enlarged perspective view of a main part of a die 4, and FIG. 3 is a schematic configuration diagram of an inspection device 8b.

1はシートであり、ここではポリエチレンテレフタレートを溶融材料としている。2は延伸機であり、シート幅方向への延伸を含んでいる。また、シート流れ方向への延伸を含んでも良いし、シート幅方向とシート流れ方向への延伸を同時に実施しても良いし、シート幅方向やシート流れ方向への延伸を複数回含んでも良い。3は押出機であり、ここでは溶融したポリエチレンテレフタレートを押し出している。4はダイであり、押出機3が押し出した溶融状態のポリエチレンテレフタレートを、間隙11からシート状に吐出する。また、複数個の厚み調整手段10を幅方向に有しており、各厚み調整手段10を操作することで間隙11を幅方向で調整する。厚み調整手段10は、ボルトでも良いし、ヒータでも良い。5は冷却ロールであり、ダイ4から吐出されたシート1を冷却するものである。6は巻き取り機であり、ここではシート1を延伸機2で延伸したプラスチックフィルムを巻き取る。7は搬送ロールであり、シート1の搬送に用いられる。   Reference numeral 1 denotes a sheet, and here, polyethylene terephthalate is used as a molten material. Reference numeral 2 denotes a stretching machine, which includes stretching in the sheet width direction. Further, stretching in the sheet flow direction may be included, stretching in the sheet width direction and the sheet flow direction may be performed simultaneously, or stretching in the sheet width direction and the sheet flow direction may be included a plurality of times. 3 is an extruder which extrudes molten polyethylene terephthalate. Reference numeral 4 denotes a die, which discharges molten polyethylene terephthalate extruded by the extruder 3 from the gap 11 into a sheet shape. Further, a plurality of thickness adjusting means 10 are provided in the width direction, and the gap 11 is adjusted in the width direction by operating each thickness adjusting means 10. The thickness adjusting means 10 may be a bolt or a heater. Reference numeral 5 denotes a cooling roll that cools the sheet 1 discharged from the die 4. Reference numeral 6 denotes a winder, which winds up a plastic film obtained by stretching the sheet 1 with the stretching machine 2. Reference numeral 7 denotes a transport roll, which is used to transport the sheet 1.

8aは厚み測定器であり、シート1の厚みプロファイルを得る。β線、X線、赤外線などの吸収を利用した厚み計、可視光、赤外光などの干渉を利用した厚み計、接触式の厚み計など、任意の厚み計で良い。また、シート幅方向に、機械的にスキャンしても良いし、光学的にスキャンしても良い。シート幅方向に、複数台設置されていても良い。   Reference numeral 8 a denotes a thickness measuring device, which obtains a thickness profile of the sheet 1. Any thickness gauge may be used such as a thickness gauge using absorption of β-rays, X-rays, infrared rays, etc., a thickness gauge using interference of visible light, infrared light, etc., a contact-type thickness gauge. Further, it may be scanned mechanically or optically in the sheet width direction. A plurality of units may be installed in the sheet width direction.

8bは光学方式の検査器であり、シート1の光学的特異点を検出する。具体的には、シート1に光を照射し、シート1を介した透過光または反射光を受光し、その受光量に基づいて光学的特異点を検出する。光を照射する装置としては、蛍光灯でも良いし、LED光源でも良いし、ハロゲン光源でも良いし、メタルハライド光源でも良いし、キセノン光源でも良い。光ファイバを介したスポット照射でも良いし、ロッド状の照射でも良いし、面状の照射でも良い。透過光または反射光を受光する装置としては、ラインセンサカメラでも良いし、エリアセンサカメラでも良い。一般的には光電変換素子を複数備えた装置を用いるが、受光量に応じた信号を出力可能な任意の装置で良い。また、光照射装置および受光装置は、シート幅方向にスキャンしても良いし、シート幅方向に複数並べても良い。シート幅方向に複数並べ、シート全長全幅に亘り光学的特異点を同時に検出できることが好ましい。また、光学的特異点は、シート1の正常箇所と比較して、光透過率が異なっている箇所、光反射率が異なっている箇所、光散乱現象が異なっている箇所、光屈折現象が異なっている箇所、光干渉現象が異なっている箇所のいずれでも良い。ここではラインセンサカメラとLED光源を、シート幅方向に複数並べ、シート1の全長全幅に亘り、光透過率の差を検出できるものとする。   8b is an optical type inspection device that detects the optical singularity of the sheet 1. Specifically, the sheet 1 is irradiated with light, transmitted light or reflected light passing through the sheet 1 is received, and an optical singular point is detected based on the amount of received light. As a device for irradiating light, a fluorescent lamp, an LED light source, a halogen light source, a metal halide light source, or a xenon light source may be used. Spot irradiation through an optical fiber, rod-shaped irradiation, or planar irradiation may be used. As a device for receiving transmitted light or reflected light, a line sensor camera or an area sensor camera may be used. In general, a device including a plurality of photoelectric conversion elements is used, but any device capable of outputting a signal corresponding to the amount of received light may be used. Further, the light irradiation device and the light receiving device may be scanned in the sheet width direction, or a plurality of light irradiation devices and light receiving devices may be arranged in the sheet width direction. It is preferable that a plurality of optical singularities can be detected at the same time over the entire length of the entire sheet by arranging a plurality in the sheet width direction. Further, the optical singularity is different from the normal part of the sheet 1 in a part having a different light transmittance, a part having a different light reflectance, a part having a different light scattering phenomenon, and a light refraction phenomenon. Or a portion where the optical interference phenomenon is different. Here, a plurality of line sensor cameras and LED light sources are arranged in the sheet width direction, and the difference in light transmittance can be detected over the entire length of the sheet 1.

光透過率の差を検出することを、図3を用いて説明する。13はラインセンサカメラであり、シート1の上方に配置している。14はLED光源であり、シート1の下方に配置している。このとき、ラインセンサカメラ13の光電変換素子の並び方向は、LED光源14の長手方向に略一致させる。15は比較器であり、ラインセンサカメラ13に接続している。16はシート流れ方向である。まずLED光源14から、シート1に対して光が照射される。そして、シート1において光を照射された箇所の光透過率に応じた光量が、シート1の上方に透過する。このシート1の上方に透過した光を、ラインセンサカメラ13で受光する。そして、ラインセンサカメラ13の受光量に基づいた信号値が比較器15に送信され、比較器15では信号値の変化を検出する。すなわち、まず初めにシート1の正常箇所における光透過率に基づいた信号値が存在し、これに対して、シート1の光を照射された箇所の光透過率が大きければ信号値は大きく、光透過率が小さければ信号値は小さくなる。この変化が、予め定めた設定値よりも大きくなれば、例えば欠点として検出する。図3においては、ラインセンサカメラ13をシート1の上方に、LED光源14をシート1の下方に設置したが、逆の配置になっても良い。また、シート流れ方向16に複数台並べても良い。また、LED光源14の長手方向をシート幅方向に対して傾けても良いし、LED光源14の光照射軸をシート上面法線方向から傾けても良い。いずれの場合にも、ラインセンサカメラによる検出位置と、シート幅方向の位置との対応関係は予め求めておく。   The detection of the difference in light transmittance will be described with reference to FIG. A line sensor camera 13 is disposed above the seat 1. Reference numeral 14 denotes an LED light source, which is disposed below the sheet 1. At this time, the alignment direction of the photoelectric conversion elements of the line sensor camera 13 is substantially matched with the longitudinal direction of the LED light source 14. A comparator 15 is connected to the line sensor camera 13. Reference numeral 16 denotes a sheet flow direction. First, light is emitted from the LED light source 14 to the sheet 1. And the light quantity according to the light transmittance of the location irradiated with light in the sheet 1 is transmitted above the sheet 1. The light transmitted above the sheet 1 is received by the line sensor camera 13. A signal value based on the amount of light received by the line sensor camera 13 is transmitted to the comparator 15, and the comparator 15 detects a change in the signal value. That is, first, there is a signal value based on the light transmittance at a normal portion of the sheet 1, whereas if the light transmittance at the portion irradiated with light on the sheet 1 is large, the signal value is large, If the transmittance is small, the signal value is small. If this change becomes larger than a predetermined set value, it is detected as a defect, for example. In FIG. 3, the line sensor camera 13 is installed above the sheet 1 and the LED light source 14 is installed below the sheet 1, but the arrangement may be reversed. A plurality of units may be arranged in the sheet flow direction 16. Further, the longitudinal direction of the LED light source 14 may be inclined with respect to the sheet width direction, and the light irradiation axis of the LED light source 14 may be inclined from the normal direction of the sheet upper surface. In any case, the correspondence between the detection position by the line sensor camera and the position in the sheet width direction is obtained in advance.

9は制御手段であり、厚み測定器8aが取得した厚みプロファイルと、予め設定した目標とする厚みプロファイルとの差異に基づいて操作量を演算し、厚み調整手段10に加える。   Reference numeral 9 denotes control means, which calculates an operation amount based on the difference between the thickness profile acquired by the thickness measuring instrument 8a and a preset target thickness profile, and adds it to the thickness adjusting means 10.

12は印付与手段であり、シート1に光(エネルギー)を照射、または熱(エネルギー)を放射して印を付与する。印付与手段12は、固体レーザでも良いし、半導体レーザでも良いし、液体レーザでも良いし、気体レーザでも良いし、ハロゲンなどの近赤外線ヒータでも良いし、遠赤外線ヒータでも良い。出力を調整でき、狭幅で放射できるものが、より好ましい。付与する印のシート幅方向の幅は5mm以下が好ましく、1mm以下がより好ましい。これは、細ければ細いほど、シート1への影響を局所的なものにできるからである。ただし、シート幅方向への延伸後の、印の跡の幅は、1mm以上となることが好ましい。また、幅方向に所定の間隔を持って複数台並んでいても良いし、幅方向に所定の距離をスキャンして決められた複数の幅方向位置で印付与を実施しても良い。複数台並べた際には、それぞれの印付与を逐次実施しても良いし、同時に実施しても良い。好ましくは、隣り合う印が区別できるように実施することである。また、印を付与する数は3つ以上が好ましく、5つ以上が更に好ましい。印を付与する箇所は、シート幅方向に該均一に指定することが好ましい。シート幅方向の端部は延伸倍率が変化しやすいため、シートの端部には、間隔を狭めて指定することが更に好ましい。また、印付与を実施するタイミングは、巻き取り機6での巻き取りが一旦終了し、再度、新たな巻き取りを開始するときが好ましい。一般的に、巻き取り機6の巻き始め直後、巻き終わり直前のシートは製品としないため、製品ロスを減じることができる。このタイミングに合わせて手動で実施しても良いし、自動で実施しても良い。また、延伸機2のシート幅方向への延伸前に設置すれば良く、好ましくは、ダイ4の直後への設置である。ここでは出力調整できる気体レーザであり、延伸機2の直前に設置しているとする。   Reference numeral 12 denotes mark applying means for applying a mark by irradiating the sheet 1 with light (energy) or radiating heat (energy). The mark applying means 12 may be a solid-state laser, a semiconductor laser, a liquid laser, a gas laser, a near infrared heater such as halogen, or a far infrared heater. What can adjust an output and can radiate | emit narrowly is more preferable. The width of the mark to be applied in the sheet width direction is preferably 5 mm or less, and more preferably 1 mm or less. This is because the thinner the film, the more local the influence on the sheet 1 can be. However, the width of the mark mark after stretching in the sheet width direction is preferably 1 mm or more. A plurality of units may be arranged with a predetermined interval in the width direction, or marking may be performed at a plurality of positions in the width direction determined by scanning a predetermined distance in the width direction. When a plurality of units are arranged, each mark may be applied sequentially or simultaneously. Preferably, it is carried out so that adjacent marks can be distinguished. Further, the number of marks is preferably 3 or more, more preferably 5 or more. It is preferable that the portions to be marked are specified uniformly in the sheet width direction. Since the draw ratio of the end portion in the sheet width direction is likely to change, it is more preferable to specify the end portion of the sheet with a narrow interval. Further, the timing for applying the mark is preferably when winding by the winder 6 is once completed and a new winding is started again. Generally, the sheet immediately after the start of winding of the winder 6 and immediately before the end of winding is not used as a product, so that product loss can be reduced. It may be performed manually or automatically according to this timing. Moreover, what is necessary is just to install before extending | stretching to the sheet | seat width direction of the extending | stretching machine 2, Preferably, it is installation immediately after the die | dye 4. FIG. Here, it is assumed that it is a gas laser whose output can be adjusted, and is installed immediately before the stretching machine 2.

ここで、印付与手段12を用いることで印を付与し、検査器8bで印の跡を検出することを説明する。   Here, a description will be given of applying a mark by using the mark applying means 12 and detecting a mark mark by the inspector 8b.

延伸機2前の状態でシート1にレーザを照射すると、これに伴う熱エネルギーにより、照射箇所における結晶破壊、配向変化、溶融状態への遷移などが生じる。この状態で延伸機2による所定の加工(延伸)を実施すると、照射箇所の延伸が他箇所と異なり、結果として光透過率や光反射率に変化が生じる。これは照射するレーザの強さによって変化量も変わるが、検査器8bで検出するのに必要十分な強さで照射すれば良い。これにより、延伸機2の後の、印の跡の、シート1の幅方向位置が分かる。これに基づいて、延伸機2の前後(所定の加工の完了前と所定の加工の完了後)における印と印の跡とのシート1の幅方向位置の対応関係を決定する。   When the sheet 1 is irradiated with laser in the state before the stretching machine 2, the thermal energy accompanying this causes crystal breakage, orientation change, transition to a molten state, and the like at the irradiated location. When predetermined processing (stretching) is performed by the stretching machine 2 in this state, the stretching of the irradiated portion is different from other portions, and as a result, the light transmittance and the light reflectance are changed. Although the amount of change varies depending on the intensity of the laser to be irradiated, it is sufficient to irradiate with an intensity sufficient for detection by the inspection device 8b. Thereby, the width direction position of the sheet | seat 1 of the mark after the drawing machine 2 is known. Based on this, the correspondence relationship between the position of the sheet 1 in the width direction between the mark and the mark mark before and after the completion of the predetermined processing (after completion of the predetermined processing and after completion of the predetermined processing) is determined.

また、延伸機2の前(所定の加工の完了前)では各厚み調整手段10とシート1の幅方向位置との対応関係が幾何学的に求まるため、これらの情報を統合することで、各厚み調整手段10とシート厚み測定位置との対応関係を決定することができ、厚みを精密に制御するシートを製造することができる。   Further, since the correspondence between each thickness adjusting means 10 and the position in the width direction of the sheet 1 is obtained geometrically before the stretching machine 2 (before completion of the predetermined processing), by integrating these information, The correspondence between the thickness adjusting means 10 and the sheet thickness measurement position can be determined, and a sheet for precisely controlling the thickness can be manufactured.

本発明は、特許文献1のように特定の厚み調整手段10を操作して、それに伴う厚み変化を待つという方法ではなく、検査器8bによる検出という時間のかからない方法であり、生産性の向上にも繋がる。
更に、本発明は、特許文献2に示すような接触式ではないため再現性も良く、シート1の厚みや溶融材料の種類に応じた一定条件で良い。また、厚み測定器8aによって検出できるほどの差異ある印の跡を形成するには、かなりのレーザの強さが必要であり、シート1が破れる可能性もある。しかし、厚み測定器8aよりも、検査器8bによって印の跡を検出する方が、弱いレーザ照射で済むため、延伸機2の後におけるシート1の厚みが10数μmになっても、破れは生じない。
The present invention is not a method of operating a specific thickness adjusting means 10 as in Patent Document 1 and waiting for a thickness change associated therewith, but a method that does not take time for detection by the inspection device 8b, and improves productivity. Is also connected.
Furthermore, since the present invention is not a contact type as shown in Patent Document 2, the reproducibility is good, and a certain condition according to the thickness of the sheet 1 and the type of the molten material is sufficient. Further, in order to form mark marks that are so different as to be detected by the thickness measuring device 8a, a considerable laser intensity is required, and the sheet 1 may be broken. However, since it is sufficient to detect the mark mark by the inspection device 8b rather than the thickness measuring device 8a, weaker laser irradiation suffices. Does not occur.

更に、本発明は、特許文献1、特許文献2にあるように厚み測定器を用いていないため、シートの厚み変動に依存することもない。したがって、延伸機2の後における印の跡を検出する精度が高く、より高精度な厚み制御を実施可能となる。   Furthermore, since the present invention does not use a thickness measuring device as in Patent Document 1 and Patent Document 2, the present invention does not depend on sheet thickness variation. Therefore, the accuracy of detecting the mark mark after the stretching machine 2 is high, and more accurate thickness control can be performed.

[実施例1]
以下に、上述の第1の実施形態をシートの製造方法に適用した実施例を示す。
[Example 1]
Below, the Example which applied the above-mentioned 1st Embodiment to the manufacturing method of a sheet | seat is shown.

図1、図2、図3に示すシートの製造装置を用いて、厚み20μmの2軸延伸ポリエチレンテレフタレートフィルムを製造した。厚み調整手段10としては、カートリッジヒータを内蔵したボルトを熱的に膨張収縮させてダイ4の間隙11を調整するヒートボルト方式を用いた。厚み測定器8aとしてはβ線の吸収現象を用いたβ線厚み測定器を用いて、シート1の幅方向にスキャンしながら厚みプロファイルを測定した。また、厚み測定器8aがシート1の幅方向に1回スキャンするごとに、PID制御を用いて厚み制御を行った。 厚み制御をするにあたり、当初必要となる各厚み調整手段10とシート1の厚み測定位置との対応関係は、5つの厚み調整手段10を大きく操作し、延伸後のシートで最も厚み変化が大きい位置を求め、操作したそれぞれの厚み調整手段10に対応させた。このとき、5つの厚み調整手段10は、シート幅方向に等間隔となるように指定した。そして、線形補間を実施することで、ダイ4にある全ての厚み調整手段10の対応関係を求めた。   A biaxially stretched polyethylene terephthalate film having a thickness of 20 μm was manufactured using the sheet manufacturing apparatus shown in FIGS. 1, 2, and 3. As the thickness adjusting means 10, a heat bolt system was used in which a bolt 11 containing a cartridge heater was thermally expanded and contracted to adjust the gap 11 of the die 4. A thickness profile was measured while scanning in the width direction of the sheet 1 using a β-ray thickness measuring device using a β-ray absorption phenomenon as the thickness measuring device 8a. Each time the thickness measuring device 8a scans once in the width direction of the sheet 1, the thickness control was performed using PID control. In controlling the thickness, the correspondence between the thickness adjusting means 10 and the thickness measurement position of the sheet 1 that are initially required is a position where the thickness adjustment means 10 is greatly operated and the thickness change is greatest in the stretched sheet. And corresponding to each operated thickness adjusting means 10. At this time, the five thickness adjusting means 10 are specified to be equally spaced in the sheet width direction. And the correspondence of all the thickness adjustment means 10 in the die | dye 4 was calculated | required by implementing linear interpolation.

ここで、線形補間の例を、図4を用いて説明する。図4は、線形補間の概略説明図である。17a〜17dは厚み調整手段10に対応する位置を、18a〜18dはシート厚み測定位置を示す。上部横線19はダイ4の位置でのシート1を、下部横線20は厚み測定器8aの位置でのシート1を示す。矢印21は、シート幅方向を示す。今、17a、17dに相当する厚み調整手段10をそれぞれ大きく操作したとき、シート厚み測定位置18a、18dでの厚みがそれぞれ変化したとする。このとき位置17a、17dの間に、位置17b、17cそれぞれに対応する厚み調整手段10があるならば、シート厚み測定位置18aから18dまでの距離を3等分し、それぞれの区切りを18b、18cとする。また、補間できないシート1の端部については、補間に用いた情報に基づいて補外する。ここでは、線形に補間および補外をするが、多項式による補間および補外を実施しても良い。   Here, an example of linear interpolation will be described with reference to FIG. FIG. 4 is a schematic explanatory diagram of linear interpolation. Reference numerals 17a to 17d denote positions corresponding to the thickness adjusting means 10, and 18a to 18d denote sheet thickness measurement positions. The upper horizontal line 19 indicates the sheet 1 at the position of the die 4, and the lower horizontal line 20 indicates the sheet 1 at the position of the thickness measuring device 8a. An arrow 21 indicates the sheet width direction. Now, assume that the thicknesses at the sheet thickness measurement positions 18a and 18d change when the thickness adjusting means 10 corresponding to 17a and 17d are operated largely. At this time, if there is a thickness adjusting means 10 corresponding to each of the positions 17b and 17c between the positions 17a and 17d, the distance from the sheet thickness measurement position 18a to 18d is divided into three equal parts, and the respective divisions are defined as 18b and 18c. And Further, the end of the sheet 1 that cannot be interpolated is extrapolated based on the information used for the interpolation. Here, linear interpolation and extrapolation are performed, but polynomial interpolation and extrapolation may be performed.

上記状態での制御後、印付与手段12としてCO2レーザを用いて、延伸機2の直前において、シート1の幅方向に間隔を空けながら5箇所の印を付与した。印付与手段12からのレーザは波長10.6μmで、シート1からレーザ照射部位までの距離は100mmである。付与した印は、シート1の幅方向に1mm、シート1の流れ方向に5mmの細線である。このとき、5つの印は、シート幅方向に等間隔となるように付与した。検査器8bとして、ラインセンサカメラとLED光源を用い、光透過率の変化を感知することで印の跡を検出した。このとき、シート1の正常箇所におけるラインセンサカメラ13の受光量に基づいた信号値に対し、5%の変化がある信号値となったシート1の箇所を欠点(印の跡)として検出した。これに基づき、各厚み調整手段10とシート厚み測定位置との対応関係を決定した(図4に記載の線形補間および補外を実施)。   After the control in the above state, a CO2 laser was used as the mark applying means 12, and 5 marks were given immediately before the stretching machine 2 with an interval in the width direction of the sheet 1. The laser from the mark applying means 12 has a wavelength of 10.6 μm, and the distance from the sheet 1 to the laser irradiation site is 100 mm. The given mark is a thin line of 1 mm in the width direction of the sheet 1 and 5 mm in the flow direction of the sheet 1. At this time, the five marks were provided at equal intervals in the sheet width direction. A line sensor camera and an LED light source were used as the inspection device 8b, and a mark mark was detected by sensing a change in light transmittance. At this time, the position of the sheet 1 where the signal value has a change of 5% with respect to the signal value based on the amount of light received by the line sensor camera 13 at the normal position of the sheet 1 was detected as a defect (marked mark). Based on this, the correspondence between each thickness adjusting means 10 and the sheet thickness measurement position was determined (linear interpolation and extrapolation described in FIG. 4 were performed).

図5に検査器8bにより印の跡を検出した概略図を、図6に厚み制御を開始してからの厚みプロファイルの最大値と最小値の差の推移図を示す。   FIG. 5 is a schematic diagram in which a mark mark is detected by the inspection device 8b, and FIG. 6 is a transition diagram of the difference between the maximum value and the minimum value of the thickness profile after the start of thickness control.

図5において、矢印23はシート流れ方向を、矢印24はシート幅方向を示す。図5において丸印が検査器8bによる検出欠点を示しており、22にある検出欠点群が印の跡に相当する。このとき、先にシート幅方向の異なる2箇所への印付与を実施し、時間経過してからシート幅方向の異なる3箇所への印付与を実施した。図5に示すように、印の跡22を検査器8bで検出できている。   In FIG. 5, an arrow 23 indicates the sheet flow direction, and an arrow 24 indicates the sheet width direction. In FIG. 5, a circle indicates a detection defect by the inspection device 8b, and a group of detection defects in 22 corresponds to the mark. At this time, marking was first applied to two places having different sheet width directions, and marking was performed to three places having different sheet width directions after a lapse of time. As shown in FIG. 5, the mark mark 22 can be detected by the inspection device 8b.

これらの各厚み調整手段10とシート厚み測定位置との対応位関係の決定方法に基づいた厚み調整手段の結果、図6に示すように、厚みプロファイルの最大値と最小値の差に変化が生じた。初めの特許文献1に記載と同様の方法では厚みプロファイルの最大値と最小値との差は0.78μm程度だったが、本発明の方法では0.65μmまで改善した。
[実施例2]
実施例1において、印付与手段12をハロゲンのスポット・ヒータに変更し、それ以外は同様に実施した。スポット・ヒータの熱放射部位はφ10mmで、シート1から熱放射部位までの距離は15mmである。また、シート1に付与した印は、約φ5mmの円形である。
As a result of the thickness adjusting means based on the method of determining the correspondence relationship between each thickness adjusting means 10 and the sheet thickness measurement position, as shown in FIG. 6, the difference between the maximum value and the minimum value of the thickness profile occurs. It was. Although the difference between the maximum value and the minimum value of the thickness profile was about 0.78 μm in the same method as described in the first patent document 1, it was improved to 0.65 μm in the method of the present invention.
[Example 2]
In Example 1, the marking applying means 12 was changed to a halogen spot heater, and the rest was carried out in the same manner. The heat radiation part of the spot heater is φ10 mm, and the distance from the sheet 1 to the heat radiation part is 15 mm. Further, the mark given to the sheet 1 is a circle of about φ5 mm.

図7に検査器8bにより印の跡を検出した概略図を、図8に厚み制御を開始してからの厚みプロファイルの最大値と最小値の差の推移図を示す。   FIG. 7 shows a schematic diagram in which a mark mark has been detected by the inspection device 8b, and FIG. 8 shows a transition diagram of the difference between the maximum value and the minimum value of the thickness profile after the start of the thickness control.

図7において、矢印26はシート流れ方向を、矢印27はシート幅方向を示す。図7において丸印が検査器8bによる検出欠点を示しており、25にある検出欠点群が印の跡に相当する。このとき、先にシート幅方向の異なる2箇所への印付与を実施し、時間経過してからシート幅方向の異なる3箇所への印付与を実施した。図7に示すように、印の跡25を検査器8bで検出できている。   In FIG. 7, an arrow 26 indicates the sheet flow direction, and an arrow 27 indicates the sheet width direction. In FIG. 7, a circle indicates a detection defect by the inspection device 8b, and a group of detection defects 25 corresponds to a mark mark. At this time, marking was first applied to two places having different sheet width directions, and marking was performed to three places having different sheet width directions after a lapse of time. As shown in FIG. 7, the mark mark 25 can be detected by the inspector 8b.

これらの各厚み調整手段10とシート厚み測定位置との対応位関係の決定方法に基づいた厚み調整手段の結果、図8に示すように、厚みプロファイルの最大値と最小値の差に変化が生じた。初めの特許文献1に記載と同様の方法では厚みプロファイルの最大値と最小値との差は0.77μm程度だったが、本発明の方法では0.55μmまで改善した。   As a result of the thickness adjusting means based on the method for determining the correspondence between each thickness adjusting means 10 and the sheet thickness measurement position, as shown in FIG. 8, the difference between the maximum value and the minimum value of the thickness profile occurs. It was. Although the difference between the maximum value and the minimum value of the thickness profile was about 0.77 μm in the same method as that described in the first patent document 1, it was improved to 0.55 μm in the method of the present invention.

本発明は、プラスチックフィルムの製造方法に限らず、紙の製造方法や金属箔の製造などにも応用することができるが、その応用範囲が、これらに限られるものではない。   The present invention can be applied not only to a plastic film manufacturing method but also to a paper manufacturing method and a metal foil manufacturing method, but the application range is not limited thereto.

1 シート
2 延伸機
3 押出機
4 ダイ
5 冷却ロール
6 巻き取り機
7 搬送ロール
8a 厚み測定器
8b 検査器
9 制御手段
10 厚み調整手段
11 間隙
12 印付与手段
13 ラインセンサカメラ(受光手段)
14 LED光源(光照射手段)
15 比較器(跡検出手段)
16 シート流れ方向
17a 厚み調整手段の位置
17b 厚み調整手段の位置
17c 厚み調整手段の位置
17d 厚み調整手段の位置
18a シート厚み測定位置
18b シート厚み測定位置
18c シート厚み測定位置
18d シート厚み測定位置
19 上部横線
20 下部横線
21 シート幅方向
22 印の跡
23 シート流れ方向
24 シート幅方向
25 印の跡
26 シート流れ方向
27 シート幅方向
101 シート
102 延伸機
103 押出機
104 ダイ
105 冷却ロール
106 巻き取り機
107 搬送ロール
108 厚み測定器
109 制御手段
110 厚み調整手段
111 間隙
121a 厚み調整手段の位置
121b 厚み調整手段の位置
121c 厚み調整手段の位置
121d 厚み調整手段の位置
122a シート厚み測定位置
122b シート厚み測定位置
122c シート厚み測定位置
122d シート厚み測定位置
123 上部横線
124 下部横線
125 シート幅方向
DESCRIPTION OF SYMBOLS 1 Sheet 2 Stretching machine 3 Extruder 4 Die 5 Cooling roll 6 Winding machine 7 Transport roll 8a Thickness measuring device 8b Inspection device 9 Control means 10 Thickness adjustment means 11 Gap 12 Mark giving means 13 Line sensor camera (light receiving means)
14 LED light source (light irradiation means)
15 Comparator (trace detection means)
16 Sheet flow direction 17a Position of thickness adjusting means 17b Position of thickness adjusting means 17c Position of thickness adjusting means 17d Position of thickness adjusting means 18a Sheet thickness measuring position 18b Sheet thickness measuring position 18c Sheet thickness measuring position 18d Sheet thickness measuring position 19 Upper part Horizontal line 20 Lower horizontal line 21 Sheet width direction 22 Mark 23 Sheet flow direction 24 Sheet width direction 25 Mark 26 Sheet flow direction 27 Sheet width direction 101 Sheet 102 Stretcher 103 Extruder 104 Die 105 Cooling roll 106 Winder 107 Conveying roll 108 Thickness measuring device 109 Control means 110 Thickness adjustment means 111 Gap 121a Position of thickness adjustment means 121b Position of thickness adjustment means 121c Position of thickness adjustment means 121d Position of thickness adjustment means 122a Sheet thickness measurement position 22b Sheet Thickness measuring position 122c sheet thickness measuring position 122d sheet thickness measuring position 123 upper horizontal line 124 below the horizontal line 125 sheet width direction

Claims (8)

複数個の厚み調整手段を備えたダイを用いて溶融材料をシート状に押出し、延伸を含む所定の加工を実施することで所望のシートとなすとともに、前記所定の加工の完了後の該シート幅方向の厚み分布を測定し、測定値に基づいて各シート厚み測定位置に対応する前記厚み調整手段に加える操作量を計算し、該操作量によって前記厚み調整手段を操作してシート厚みを制御するシートの製造方法であって、
前記所定の加工の完了前に、前記シートの複数の所定の幅方向位置に光を照射し、または熱を放射して印を付与し、
前記所定の加工の完了後に前記印の跡を検出し、前記印の跡を検出した前記シートの複数の幅方向位置に基づき、前記所定の加工の完了前の前記シートと完了後のシートとの幅方向位置の各部の対応関係を決定し、
決定した該対応関係に基づいて、前記厚み調整手段に対する前記所定の加工の完了後のシート幅方向の対応位置を決定し、決定した前記対応位置に基づいて厚み制御を行うことを特徴とするシートの製造方法。
The molten material is extruded into a sheet shape using a die having a plurality of thickness adjusting means, and a predetermined processing including stretching is performed to obtain a desired sheet, and the sheet width after completion of the predetermined processing The thickness distribution in the direction is measured, the operation amount applied to the thickness adjusting means corresponding to each sheet thickness measurement position is calculated based on the measurement value, and the sheet thickness is controlled by operating the thickness adjusting means according to the operation amount. A sheet manufacturing method comprising:
Before completion of the predetermined processing, irradiate light to a plurality of predetermined positions in the width direction of the sheet, or radiate heat to give a mark,
The mark mark is detected after completion of the predetermined processing, and the sheet before completion of the predetermined processing and the sheet after completion based on a plurality of width direction positions of the sheet where the mark mark is detected. Determine the correspondence of each part in the width direction position,
Based on the determined correspondence relationship, a corresponding position in the sheet width direction after completion of the predetermined processing with respect to the thickness adjusting unit is determined, and thickness control is performed based on the determined corresponding position. Manufacturing method.
前記所定の加工の完了後のシートに光を照射し、前記シートからの透過光または反射光を受光し、前記透過光または反射光に基づいて前記印の跡を検出することを特徴とする請求項1に記載のシートの製造方法。 The sheet after completion of the predetermined processing is irradiated with light, transmitted light or reflected light from the sheet is received, and the mark mark is detected based on the transmitted light or reflected light. Item 2. A method for producing a sheet according to Item 1. 複数個の厚み調整手段を備えたダイを用いて溶融材料をシート状に押出す押出手段と、延伸を含む所定の加工を実施することで所望のシートとなす加工手段と、前記所定の加工の完了後の該シート幅方向の厚み分布を測定する測定手段と、測定値に基づいて各シート厚み測定位置に対応する前記厚み調整手段に加える操作量を計算し、該操作量によって前記厚み調整手段を操作してシート厚みを制御する制御手段とを有するシートの製造装置であって、
前記所定の加工の完了前に、前記シートの複数の所定の幅方向位置に光を照射し、または熱を放射して印を付与する印付与手段と、
前記所定の加工の完了後に前記印の跡を検出する検出手段と、
前記印の跡を検出した前記シートの複数の幅方向位置に基づき、前記所定の加工の完了前の前記シートと完了後のシートとの幅方向位置の各部の対応関係を決定し、
決定した該対応関係に基づいて、前記厚み調整手段に対する前記所定の加工の完了後のシート幅方向の対応位置を決定し、決定した前記対応位置に基づいて厚み制御を行う前記制御手段とを有することを特徴とするシートの製造装置。
Extruding means for extruding the molten material into a sheet using a die having a plurality of thickness adjusting means, processing means for forming a desired sheet by performing predetermined processing including stretching, and the predetermined processing A measuring means for measuring the thickness distribution in the sheet width direction after completion, and an operation amount to be applied to the thickness adjusting means corresponding to each sheet thickness measurement position based on the measured value, and the thickness adjusting means based on the operation amount A sheet manufacturing apparatus having control means for controlling the sheet thickness by operating
Before the completion of the predetermined processing, a mark applying means for irradiating a plurality of predetermined positions in the width direction of the sheet or radiating heat to give a mark;
Detecting means for detecting a mark of the mark after completion of the predetermined processing;
Based on a plurality of width direction positions of the sheet that has detected the mark of the mark, to determine the correspondence of each part of the width direction position of the sheet before the completion of the predetermined processing and the sheet after completion,
And a control unit that determines a corresponding position in the sheet width direction after completion of the predetermined processing with respect to the thickness adjusting unit based on the determined correspondence relationship, and performs thickness control based on the determined corresponding position. A sheet manufacturing apparatus.
前記検出手段が、前記所定の加工の完了後のシートに光を照射する光照射手段と、前記シートからの透過光または反射光を受光する受光手段と、前記透過光または反射光に基づいて前記印の跡を検出する跡検出手段とを有することを特徴とする請求項3に記載のシートの製造装置。 The detection means is based on the light irradiation means for irradiating the sheet after completion of the predetermined processing, the light receiving means for receiving transmitted light or reflected light from the sheet, and the transmitted light or reflected light based on the transmitted light or reflected light. The sheet manufacturing apparatus according to claim 3, further comprising a mark detection unit that detects a mark mark. 複数個の厚み調整手段を備えたダイを用いて溶融材料をシート状に押出し、延伸を含む所定の加工を実施することで所望のシートとなすとともに、前記所定の加工の完了後の該シート幅方向の厚み分布を測定し、測定値に基づいて各シート厚み測定位置に対応する前記厚み調整手段に加える操作量を計算し、該操作量によって前記厚み調整手段を操作してシート厚みを制御するシートの厚み制御方法であって、
前記所定の加工の完了前に、前記シートの複数の所定の幅方向位置に光を照射し、または熱を放射して印を付与し、
前記所定の加工の完了後に前記印の跡を検出し、前記印の跡を検出した前記シートの複数の幅方向位置に基づき、前記所定の加工の完了前の前記シートと完了後のシートとの幅方向位置の各部の対応関係を決定し、
決定した該対応関係に基づいて、前記厚み調整手段に対する前記所定の加工の完了後のシート幅方向の対応位置を決定し、決定した前記対応位置に基づいて厚み制御を行うことを特徴とするシートの厚み制御方法。
The molten material is extruded into a sheet shape using a die having a plurality of thickness adjusting means, and a predetermined processing including stretching is performed to obtain a desired sheet, and the sheet width after completion of the predetermined processing The thickness distribution in the direction is measured, the operation amount applied to the thickness adjusting means corresponding to each sheet thickness measurement position is calculated based on the measurement value, and the sheet thickness is controlled by operating the thickness adjusting means according to the operation amount. A sheet thickness control method comprising:
Before completion of the predetermined processing, irradiate light to a plurality of predetermined positions in the width direction of the sheet, or radiate heat to give a mark,
The mark mark is detected after completion of the predetermined processing, and the sheet before completion of the predetermined processing and the sheet after completion based on a plurality of width direction positions of the sheet where the mark mark is detected. Determine the correspondence of each part in the width direction position,
Based on the determined correspondence relationship, a corresponding position in the sheet width direction after completion of the predetermined processing with respect to the thickness adjusting unit is determined, and thickness control is performed based on the determined corresponding position. Thickness control method.
前記所定の加工の完了後のシートに光を照射し、前記シートからの透過光または反射光を受光し、前記透過光または反射光に基づいて前記印の跡を検出することを特徴とする請求項5に記載のシートの厚み制御方法。 The sheet after completion of the predetermined processing is irradiated with light, transmitted light or reflected light from the sheet is received, and the mark mark is detected based on the transmitted light or reflected light. Item 6. The sheet thickness control method according to Item 5. 複数個の厚み調整手段を備えたダイを用いて溶融材料をシート状に押出す押出手段と、延伸を含む所定の加工を実施することで所望のシートとなす加工手段と、前記所定の加工の完了後の該シート幅方向の厚み分布を測定する測定手段と、測定値に基づいて各シート厚み測定位置に対応する前記厚み調整手段に加える操作量を計算し、該操作量によって前記厚み調整手段を操作してシート厚みを制御する制御手段とを有するシートの厚み制御装置であって、
前記所定の加工の完了前に、前記シートの複数の所定の幅方向位置に光を照射し、または熱を放射して印を付与する印付与手段と、
前記所定の加工の完了後に前記印の跡を検出する検出手段と、
前記印の跡を検出した前記シートの複数の幅方向位置に基づき、前記所定の加工の完了前の前記シートと完了後のシートとの幅方向位置の各部の対応関係を決定し、
決定した該対応関係に基づいて、前記厚み調整手段に対する前記所定の加工の完了後のシート幅方向の対応位置を決定し、決定した前記対応位置に基づいて厚み制御を行う前記制御手段とを有することを特徴とするシートの厚み制御装置。
Extruding means for extruding the molten material into a sheet using a die having a plurality of thickness adjusting means, processing means for forming a desired sheet by performing predetermined processing including stretching, and the predetermined processing A measuring means for measuring the thickness distribution in the sheet width direction after completion, and an operation amount to be applied to the thickness adjusting means corresponding to each sheet thickness measurement position based on the measured value, and the thickness adjusting means based on the operation amount A sheet thickness control apparatus having control means for controlling the sheet thickness by operating
Before the completion of the predetermined processing, a mark applying means for irradiating a plurality of predetermined positions in the width direction of the sheet or radiating heat to give a mark;
Detecting means for detecting a mark of the mark after completion of the predetermined processing;
Based on a plurality of width direction positions of the sheet that has detected the mark of the mark, to determine the correspondence of each part of the width direction position of the sheet before the completion of the predetermined processing and the sheet after completion,
And a control unit that determines a corresponding position in the sheet width direction after completion of the predetermined processing with respect to the thickness adjusting unit based on the determined correspondence relationship, and performs thickness control based on the determined corresponding position. A sheet thickness control apparatus.
前記検出手段が、前記所定の加工の完了後のシートに光を照射する光照射手段と、前記シートからの透過光または反射光を受光する受光手段と、前記透過光または反射光に基づいて前記印の跡を検出する跡検出手段とを有することを特徴とする請求項7に記載のシートの厚み制御装置。 The detection means is based on the light irradiation means for irradiating the sheet after completion of the predetermined processing, the light receiving means for receiving transmitted light or reflected light from the sheet, and the transmitted light or reflected light based on the transmitted light or reflected light. The sheet thickness control apparatus according to claim 7, further comprising a mark detection unit that detects a mark mark.
JP2011035713A 2011-02-22 2011-02-22 Method of manufacturing sheet, manufacturing apparatus, thickness control method and thickness control apparatus Withdrawn JP2012171222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011035713A JP2012171222A (en) 2011-02-22 2011-02-22 Method of manufacturing sheet, manufacturing apparatus, thickness control method and thickness control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011035713A JP2012171222A (en) 2011-02-22 2011-02-22 Method of manufacturing sheet, manufacturing apparatus, thickness control method and thickness control apparatus

Publications (1)

Publication Number Publication Date
JP2012171222A true JP2012171222A (en) 2012-09-10

Family

ID=46974567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011035713A Withdrawn JP2012171222A (en) 2011-02-22 2011-02-22 Method of manufacturing sheet, manufacturing apparatus, thickness control method and thickness control apparatus

Country Status (1)

Country Link
JP (1) JP2012171222A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015009519A1 (en) * 2013-07-15 2015-01-22 Eastman Kodak Company Media-tracking system using thermal fluoresence quenching
WO2015009552A1 (en) * 2013-07-15 2015-01-22 Eastman Kodak Company Media-tracking system using deformed reference marks
WO2016192954A1 (en) * 2015-05-29 2016-12-08 Schott Ag Method and apparatus for reducing the curvature of thin glasses
CN107415470A (en) * 2017-05-12 2017-12-01 广东顺昌印刷有限公司 A kind of printing by paper production system
KR102310573B1 (en) * 2020-07-21 2021-10-12 안예솔 Multi-layer PE bag manufacturing equipment
KR102310570B1 (en) * 2020-07-21 2021-10-12 안예솔 Manufacturing method of multi-layer PE bags
EP3954527A1 (en) * 2020-08-13 2022-02-16 SML Maschinengesellschaft m.b.H. Method for producing a plastic film
WO2022259668A1 (en) * 2021-06-09 2022-12-15 コニカミノルタ株式会社 Method for manufacturing film roll, and projection adjustment system used in method for manufacturing film roll
CN115855970A (en) * 2023-02-21 2023-03-28 攀枝花大宇包装印刷有限公司 Automatic detection equipment for printing steel mesh

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015009519A1 (en) * 2013-07-15 2015-01-22 Eastman Kodak Company Media-tracking system using thermal fluoresence quenching
WO2015009552A1 (en) * 2013-07-15 2015-01-22 Eastman Kodak Company Media-tracking system using deformed reference marks
US8960842B2 (en) 2013-07-15 2015-02-24 Eastman Kodak Company Media-tracking system using thermal fluoresence quenching
US9429419B2 (en) 2013-07-15 2016-08-30 Eastman Kodak Company Media-tracking system using deformed reference marks
CN107690421B (en) * 2015-05-29 2021-09-21 肖特股份有限公司 Method and apparatus for reducing side bending on thin glass
KR20180013867A (en) * 2015-05-29 2018-02-07 쇼오트 아게 Method and apparatus for reducing bending in thin glass
CN107690421A (en) * 2015-05-29 2018-02-13 肖特股份有限公司 Method and apparatus for reducing lateral bending on thin glass
WO2016192954A1 (en) * 2015-05-29 2016-12-08 Schott Ag Method and apparatus for reducing the curvature of thin glasses
KR102617596B1 (en) * 2015-05-29 2023-12-22 쇼오트 아게 Method and apparatus for reducing bending in thin glass
CN107415470A (en) * 2017-05-12 2017-12-01 广东顺昌印刷有限公司 A kind of printing by paper production system
KR102310573B1 (en) * 2020-07-21 2021-10-12 안예솔 Multi-layer PE bag manufacturing equipment
KR102310570B1 (en) * 2020-07-21 2021-10-12 안예솔 Manufacturing method of multi-layer PE bags
EP3954527A1 (en) * 2020-08-13 2022-02-16 SML Maschinengesellschaft m.b.H. Method for producing a plastic film
WO2022259668A1 (en) * 2021-06-09 2022-12-15 コニカミノルタ株式会社 Method for manufacturing film roll, and projection adjustment system used in method for manufacturing film roll
TWI822053B (en) * 2021-06-09 2023-11-11 日商柯尼卡美能達股份有限公司 Method for manufacturing film roll and convex portion adjustment system for manufacturing film roll
CN115855970A (en) * 2023-02-21 2023-03-28 攀枝花大宇包装印刷有限公司 Automatic detection equipment for printing steel mesh

Similar Documents

Publication Publication Date Title
JP2012171222A (en) Method of manufacturing sheet, manufacturing apparatus, thickness control method and thickness control apparatus
CN1033957C (en) Bank quantity monitoring method and apparatus, sheet forming method and apparatus, and sheet temperature measuring method and apparatus
CN203766002U (en) Online thickness detection control system of polyester optical films
WO2018000586A1 (en) Laser processing method and device for removing thin film or coating
EP2837484A1 (en) Apparatus and method for automatically analyzing extruded films
CN103909646A (en) Measurement of industrial products manufactured by extrusion techniques
US20190315037A1 (en) Method for indirectly deriving a systematic dependency between a setting parameter and an optical property of a film web, method for adapting the quality of a film web
US9733193B2 (en) Measurement of industrial products manufactured by extrusion techniques
JP6258993B2 (en) Measurement of industrial products produced by extrusion technology
CN106918597A (en) Film quality detection method and film quality detecting system
TWI565580B (en) System and method for controlling thickness of optical film
JP7460667B2 (en) Method and apparatus for measuring tubular strands
JP2688490B2 (en) Method and apparatus for measuring profile of plastic sheet
WO2014175175A1 (en) Excess piece protrusion amount measurement method and excess piece protrusion amount measurement device
IT202100023153A1 (en) SYSTEM FOR ADJUSTING THE THICKNESS OF A PLASTIC FILM PRODUCED BY FLAT DIE EXTRUSION PROCESS
US20230219274A1 (en) Methods and systems for measurement and control of circumferential layer distribution in blown films
CN106142514B (en) Measurement for the industrial product produced by extruding technology
JPWO2005097469A1 (en) Blown film production equipment
US11524438B2 (en) Apparatus and method for film production and/or film processing
JP2002277217A (en) Web thickness measuring device and web manufacturing method
WO2021186910A1 (en) Thickness measurement device and thickness measurement method
JP2021096218A (en) Colorimetry device and manufacturing method of sheet
JP4122236B2 (en) Thickness gauge accuracy verification device
JP2007185837A (en) Filament winding apparatus
JP2001227918A (en) Method for measuring thickness of film and method of manufacturing for film using it

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513