JP2012169138A - Additive for nonaqueous electrolyte and electrolyte for nonaqueous secondary battery - Google Patents

Additive for nonaqueous electrolyte and electrolyte for nonaqueous secondary battery Download PDF

Info

Publication number
JP2012169138A
JP2012169138A JP2011028840A JP2011028840A JP2012169138A JP 2012169138 A JP2012169138 A JP 2012169138A JP 2011028840 A JP2011028840 A JP 2011028840A JP 2011028840 A JP2011028840 A JP 2011028840A JP 2012169138 A JP2012169138 A JP 2012169138A
Authority
JP
Japan
Prior art keywords
group
borate
fluorine
electrolyte
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011028840A
Other languages
Japanese (ja)
Inventor
Masahiro Aoki
雅裕 青木
Hideyuki Mimura
英之 三村
Kentaro Kono
憲太郎 河野
Hisao Eguchi
久雄 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Finechem Corp
Original Assignee
Tosoh Finechem Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Finechem Corp filed Critical Tosoh Finechem Corp
Priority to JP2011028840A priority Critical patent/JP2012169138A/en
Publication of JP2012169138A publication Critical patent/JP2012169138A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an additive improving charge/discharge cycle characteristics of a nonaqueous electrolyte secondary battery, and further to provide an electrolyte having excellent charge/discharge cycle characteristics.SOLUTION: In a nonaqueous secondary battery, an additive for a nonaqueous electrolyte and an electrolyte for a nonaqueous secondary battery, including the additive for a nonaqueous electrolyte are used. The additive for a nonaqueous electrolyte comprises a fluorine-containing boric ester represented by general formula (1) (in the formula, each of R1, R2 and R3 independently represents an alkyl group having 2-4 carbon atoms and at least one of R1, R2 and R3 represents a fluorine-containing alkyl group) and an amount of water contained in the fluorine-containing boric ester is 150 ppm or less relative to the fluorine-containing boric ester.

Description

本発明は充放電サイクル特性を改善する非水系電解液用添加剤およびサイクル特性の改善された非水系二次電池用電解液に関するものであり、詳しくは非水系電解液用の高純度含フッ素ホウ酸エステルおよび高純度含フッ素ホウ酸エステルを含む非水系二次電池用電解液に関する。 The present invention relates to an additive for a non-aqueous electrolyte that improves charge / discharge cycle characteristics, and an electrolyte for a non-aqueous secondary battery with improved cycle characteristics, and more specifically, a high-purity fluorine-containing boron for a non-aqueous electrolyte. The present invention relates to an electrolyte for a non-aqueous secondary battery containing an acid ester and a high-purity fluorinated boric acid ester.

非水系二次電池は、高出力密度、高エネルギー密度を有し、携帯電話、パーソナルコンピューター等の電源として汎用されている。また、近年は、二酸化炭素排出量の少ないクリーンなエネルギーとして、電力貯蔵用電源、電気自動車用電源として、盛んに研究されている。   Non-aqueous secondary batteries have high output density and high energy density, and are widely used as power sources for mobile phones, personal computers, and the like. In recent years, as a clean energy with low carbon dioxide emission, it has been actively researched as a power storage power source and a power source for electric vehicles.

非水系二次電池としては、リチウム二次電池、リチウムイオン二次電池、マグネシウム二次電池、マグネシウムイオン二次電池等が知られている。例えば、リチウム二次電池、リチウムイオン二次電池の場合は、正極にリチウム含有遷移金属酸化物を主要構成成分とする材料が用いられ、負極には金属リチウムまたはリチウム合金が用いられる場合、あるいは、グラファイトに代表される炭素質材料を主要構成成分とする材料が用いられる場合等がある。これらは、それぞれリチウム二次電池、リチウムイオン二次電池と称される。 Known non-aqueous secondary batteries include lithium secondary batteries, lithium ion secondary batteries, magnesium secondary batteries, and magnesium ion secondary batteries. For example, in the case of a lithium secondary battery or a lithium ion secondary battery, a material containing a lithium-containing transition metal oxide as a main constituent is used for the positive electrode, and metallic lithium or a lithium alloy is used for the negative electrode, or In some cases, a material mainly composed of a carbonaceous material typified by graphite is used. These are referred to as a lithium secondary battery and a lithium ion secondary battery, respectively.

正極、負極は、セパレータを介して設けられ、正極、負極間は、Liイオンが移動する媒体として、非水電解液が満たされる。この非水電解液としては、六フッ化リン酸リチウム(LiPF)等の電解質が、エチレンカーボネートやジメチルカーボネート等の高誘電率の有機溶媒に溶解されたものが広く用いられている。このような非水電解液は、高電圧で充放電を繰り返すことにより、電極表面において電解液の分解が徐々に進行し、サイクル特性が低下することが知られている(非特許文献1)。 The positive electrode and the negative electrode are provided via a separator, and a non-aqueous electrolyte is filled between the positive electrode and the negative electrode as a medium in which Li ions move. As this non-aqueous electrolyte, an electrolyte such as lithium hexafluorophosphate (LiPF 6 ) dissolved in a high dielectric constant organic solvent such as ethylene carbonate or dimethyl carbonate is widely used. It is known that such a non-aqueous electrolyte solution is repeatedly charged and discharged at a high voltage, whereby decomposition of the electrolyte solution gradually proceeds on the electrode surface and cycle characteristics deteriorate (Non-Patent Document 1).

このサイクル特性を向上する目的で様々な添加剤が提案されている。例えば、特許文献1、特許文献2にはホウ酸トリメチル等のホウ酸エステルによりサイクル特性を向上する技術が提案されている。しかしながら、上記特許文献においても、100回を超える充放電の繰返しにおいて、放電容量が徐々に低下し、実用的な電池性能を満足できるレベルには至っていない。
さらに、特許文献3には側鎖にフッ素原子を有するホウ酸エステル(以下、含フッ素ホウ酸エステルと記載)を電解液に添加することで非水電解液二次電池の安全性を向上することが提案されているがサイクル特性については満足な性能を有しているとは言えない。
Various additives have been proposed for the purpose of improving the cycle characteristics. For example, Patent Documents 1 and 2 propose techniques for improving cycle characteristics using a boric acid ester such as trimethyl borate. However, even in the above-mentioned patent document, the discharge capacity gradually decreases after repeated charging and discharging over 100 times, and the practical battery performance cannot be satisfied.
Furthermore, Patent Document 3 discloses that a boric acid ester having a fluorine atom in a side chain (hereinafter referred to as a fluorinated boric acid ester) is added to the electrolytic solution to improve the safety of the non-aqueous electrolyte secondary battery. However, the cycle characteristics cannot be said to have satisfactory performance.

特開昭59-3874号公報JP 59-3874 A 特開2000−100469号公報Japanese Patent Laid-Open No. 2000-100409 特開2008−300125号公報JP 2008-300125 A

株式会社エヌティーエス、電子とイオンの機能化学シリーズvol.3、次世代型リチウム二次電池NTS Co., Ltd., Electron and ion functional chemistry series vol. 3. Next-generation lithium secondary battery

この様に、これまで提案されてきたホウ酸エステルによるサイクル特性を向上する試みは実用的な非水系二次電池を得るという点では満足できるものではなかった。本発明者等はこの非水系二次電池のサイクル特性の課題を解決するために鋭意検討を行った結果、驚くべきことにある特定の含フッ素ホウ酸エステルを用いて、この含フッ素ホウ酸エステルに含まれる水分量を特定量とすることによりサイクル特性が大きく向上することを見出し、本発明を完成するに至った。
即ち、本発明の目的は、非水電解液二次電池の充放電サイクル特性を改善する添加剤を提供することであり、さらには優れた充放電サイクル特性を有する電解液を提供することである。
As described above, attempts to improve cycle characteristics with borate esters that have been proposed so far have not been satisfactory in terms of obtaining a practical non-aqueous secondary battery. As a result of intensive studies to solve the problem of the cycle characteristics of the non-aqueous secondary battery, the present inventors have surprisingly used a specific fluorinated boric acid ester and used this fluorinated boric acid ester. The present inventors have found that the cycle characteristics are greatly improved by setting the amount of water contained in the water to a specific amount, thereby completing the present invention.
That is, an object of the present invention is to provide an additive for improving charge / discharge cycle characteristics of a nonaqueous electrolyte secondary battery, and further to provide an electrolyte having excellent charge / discharge cycle characteristics. .

上記の課題を解決するために、本発明では、少なくとも一つが含フッ素アルキル基である)で表される含フッ素ホウ酸エステルであって、且つ、含フッ素ホウ酸エステルに含まれる水分量が該含フッ素ホウ酸エステルに対して150ppm以下である非水系電解液用添加剤及びそれを含む非水系二次電池用電解液を用いるようにした。   In order to solve the above problems, in the present invention, at least one is a fluorine-containing alkyl group), and the amount of water contained in the fluorine-containing borate ester is The additive for non-aqueous electrolyte solution which is 150 ppm or less with respect to the fluorine-containing boric acid ester and the electrolyte solution for non-aqueous secondary batteries containing the same were used.

本発明の方法によれば、非水系二次電池の電解液において、サイクル特性を向上させる添加剤およびサイクル特性に優れた非水系電解液を提供することが出来る。   According to the method of the present invention, an additive for improving cycle characteristics and a non-aqueous electrolyte excellent in cycle characteristics can be provided in the electrolyte of a non-aqueous secondary battery.

以下に本発明を詳細に説明する。
本発明において、非水系二次電池電解液に含有する添加剤は、下記一般式(1)

Figure 2012169138

(式中、R1、R2、R3は各々独立して、炭素数2〜4のアルキル基であり、少なくとも一つが含フッ素アルキル基である)で表される、非水系二次電池電解液用の含フッ素ホウ酸エステルであって、且つ、当該含フッ素ホウ酸エステルに含まれる水分量が150ppm以下のものである。 The present invention is described in detail below.
In the present invention, the additive contained in the nonaqueous secondary battery electrolyte is represented by the following general formula (1):
Figure 2012169138

(Wherein R1, R2, and R3 are each independently an alkyl group having 2 to 4 carbon atoms, and at least one is a fluorine-containing alkyl group), for a non-aqueous secondary battery electrolyte solution The fluorine-containing boric acid ester has a water content of 150 ppm or less.

含フッ素ホウ酸エステル中のフッ素原子の含有率については、重量比で8%以上であれば、フッ素を含まないホウ酸エステルに対してサイクル特性が有意に向上していることを本発明者らは確認している。   Regarding the content of fluorine atoms in the fluorinated boric acid ester, the present inventors have shown that the cycle characteristics are significantly improved with respect to boric acid esters not containing fluorine if the weight ratio is 8% or more. Has confirmed.

含フッ素ホウ酸エステルに含まれる含フッ素アルキル基を例示すると、モノフルオロエチル基、ジフルオロエチル基、トリフルオロエチル基、モノフルオロプロピル基、ジフルオロプロピル基、トリフルオロプロピル基、テトラフルオロプロピル基、ペンタフルオロプロピル基、ヘキサフルオロプロピル基、モノフルオロブチル基、ジフルオロブチル基、トリフルオロブチル基、テトラフルオロブチル基、ペンタフルオロブチル基、ヘキサフルオロブチル基、ヘプタフルオロブチル基、ノナフルオロブチル基、デカフルオロブチル基を挙げることができる。   Examples of fluorine-containing alkyl groups contained in fluorine-containing borate esters include monofluoroethyl group, difluoroethyl group, trifluoroethyl group, monofluoropropyl group, difluoropropyl group, trifluoropropyl group, tetrafluoropropyl group, penta Fluoropropyl group, hexafluoropropyl group, monofluorobutyl group, difluorobutyl group, trifluorobutyl group, tetrafluorobutyl group, pentafluorobutyl group, hexafluorobutyl group, heptafluorobutyl group, nonafluorobutyl group, decafluoro A butyl group can be mentioned.

また、含フッ素ホウ酸エステルに含まれるアルキル基としては、メチル基、エチル基、分枝、および直鎖状のプロピル基、ブチル基等の炭素数1〜4のアルキル基を挙げることができる。 Examples of the alkyl group contained in the fluorinated boric acid ester include alkyl groups having 1 to 4 carbon atoms such as methyl, ethyl, branched, and linear propyl and butyl groups.

含フッ素ホウ酸エステルとして、具体的に例示すると、ホウ酸トリス(2,2,2−トリフオロエチル)、ホウ酸トリス(2,2−ジフオロエチル)、ホウ酸トリス(2−モノフルオロエチル)、ホウ酸トリス(2−モノフルオロプロピル)、ホウ酸トリス(3−モノフルオロプロピル)、ホウ酸トリス(2,2−ジフルオロプロピル)、ホウ酸トリス(2,3−ジフルオロプロピル)、ホウ酸トリス(3,3−ジフルオロプロピル)、ホウ酸トリス(2,2,3−トリフルオロプロピル)、ホウ酸トリス(2,3,3−トリフルオロプロピル)、ホウ酸トリス(2,2,3,3−テトラフルオロプロピル)、ホウ酸トリス(2,2,3,3,3−ペンタフルオロプロピル)、ホウ酸トリス(2,2,2,3,3,3−ヘキサフルオロイソプロピル)を例示することが出来る。 Specific examples of the fluorine-containing borate ester include tris (2,2,2-trifluoroethyl) borate, tris (2,2-difluoroethyl) borate, tris (2-monofluoroethyl) borate, Tris borate (2-monofluoropropyl), tris borate (3-monofluoropropyl), tris borate (2,2-difluoropropyl), tris borate (2,3-difluoropropyl), tris borate ( 3,3-difluoropropyl), tris borate (2,2,3-trifluoropropyl), tris borate (2,3,3-trifluoropropyl), tris borate (2,2,3,3- Tetrafluoropropyl), tris borate (2,2,3,3,3-pentafluoropropyl), tris borate (2,2,2,3,3,3-hexafluoroisopropyl) It is possible to illustrate the pill).

また、ホウ酸エステルは2種以上のホウ酸エステル間で自発的な置換基交換反応が進行することが報告されており、構造の異なるホウ酸エステルを混合物にした場合、3つの置換基が全て同じ対称型ホウ酸エステルと置換基が交換した非対称型のホウ酸エステルが生成する。そのため、含フッ素ホウ酸エステルは、上記に示した置換基のうち、1つまたは2つ以上の置換基から選ばれる対称型と非対称型が含まれる。 In addition, borate esters have been reported to undergo a spontaneous substituent exchange reaction between two or more types of borate esters. When borate esters having different structures are mixed, all three substituents are present. The same symmetric borate ester and asymmetric borate ester in which substituents are exchanged are formed. Therefore, the fluorinated boric acid ester includes a symmetric type and an asymmetric type selected from one or more substituents among the above-described substituents.

非対称の含フッ素ホウ酸エステルを例示すると、ホウ酸ビス(2,2,2−トリフルオロエチル)(2,2,3,3−テトラフルオロプロピル)、ホウ酸ビス(2,2,2−トリフルオロエチル)(2,2,2,3,3,3−ヘキサフルオロイソプロピル)、(ホウ酸(2,2,2−トリフルオロエチル)ビス(2,2,3,3−テトラフルオロプロピル)、(ホウ酸(2,2,2−トリフルオロエチル)ビス(2,2,2,3,3,3−ヘキサフルオロイソプロピル)、ホウ酸ビス(2,2,2−トリフルオロエチル)メチル、ホウ酸(2,2,2−トリフルオロエチル)ジメチル、ホウ酸ビス(2,2,2−トリフルオロエチル)エチル、ホウ酸(2,2,2−トリフルオロエチル)ジエチル、ホウ酸ビス(2,2,2−トリフルオロエチル)プロピル、ホウ酸(2,2,2−トリフルオロエチル)ジプロピル、ホウ酸ビス(2,2,2−トリフルオロエチル)ブチル、ホウ酸(2,2,2−トリフルオロエチル)ジブチル、ホウ酸(2,2,2−トリフルオロエチル)(2,2,3,3−テトラフルオロプロピル)メチル等を挙げることができる。 Examples of asymmetric fluorine-containing borate esters include bis (2,2,2-trifluoroethyl borate) (2,2,3,3-tetrafluoropropyl), bis (2,2,2-triborate) Fluoroethyl) (2,2,2,3,3,3-hexafluoroisopropyl), (boric acid (2,2,2-trifluoroethyl) bis (2,2,3,3-tetrafluoropropyl), (Boric acid (2,2,2-trifluoroethyl) bis (2,2,2,3,3,3-hexafluoroisopropyl), bis (2,2,2-trifluoroethyl) methyl borate, boron Acid (2,2,2-trifluoroethyl) dimethyl, bis (2,2,2-trifluoroethyl) ethyl borate, (2,2,2-trifluoroethyl) diethyl borate, bis (2 , 2,2-Trifluoroe ) Propyl, borate (2,2,2-trifluoroethyl) dipropyl, bis (2,2,2-trifluoroethyl) butyl borate, (2,2,2-trifluoroethyl) dibutyl borate, And boric acid (2,2,2-trifluoroethyl) (2,2,3,3-tetrafluoropropyl) methyl.

本発明の課題となるサイクル特性向上のメカニズムについては明らかではないが、サイクル特性は含フッ素ホウ酸エステルのルイス酸性に影響されるものと考えられ、ルイス酸性の高い含フッ素ホウ酸エステルとして、β位に電子求引性のフッ素原子を有するホウ酸エステルが好ましく、これらのうち特に、ホウ酸トリス(2,2,2−トリフオロエチル)、ホウ酸トリス(2,2−ジフオロエチル)、ホウ酸トリス(2−モノフルオロエチル)、ホウ酸トリス(2,2,3,3−テトラフルオロプロピル)、ホウ酸トリス(2,2,2,3,3,3−ヘキサフルオロイソプロピル)が好ましい。 Although it is not clear about the cycle characteristic improvement mechanism which is the subject of the present invention, it is considered that the cycle characteristic is influenced by the Lewis acidity of the fluorinated boric acid ester. Boric acid esters having an electron-attracting fluorine atom at the position are preferred. Among these, tris (2,2,2-trifluoroethyl) borate, tris (2,2-difluoroethyl) borate, boric acid Tris (2-monofluoroethyl), tris borate (2,2,3,3-tetrafluoropropyl), and tris borate (2,2,2,3,3,3-hexafluoroisopropyl) are preferred.

本発明の含フッ素ホウ酸エステルは、含有水分の量が150ppm以下であることを特徴とする。
含フッ素ホウ酸エステル中の水分が150ppmを超える場合、非添加の場合と較べてサイクル特性が低下する。
通常、含フッ素ホウ酸エステルはボランとアルコールとの脱水素反応により合成されるが、脱水素反応により合成された含フッ素ホウ酸エステルにおいても、数百ppmの水分を含んでいる。この水は含フッ素ホウ酸エステルと強く相互作用し、窒素バブリングや蒸留等の操作で取り除くことは難しい。そのため、150ppm以下の含フッ素ホウ酸エステルを得るためには合成ゼオライトのような乾燥剤を用い、引き続き蒸留等の操作を行うか、Li金属のような水と強く反応し、非水電解液二次電池の性能に影響しない脱水剤を浸漬する方法などが必要である。
The fluorinated boric acid ester of the present invention is characterized in that the amount of water contained is 150 ppm or less.
When the water content in the fluorine-containing boric acid ester exceeds 150 ppm, the cycle characteristics are deteriorated as compared with the case of no addition.
Usually, the fluorine-containing borate ester is synthesized by a dehydrogenation reaction between borane and alcohol, but the fluorine-containing borate ester synthesized by the dehydrogenation reaction also contains several hundred ppm of water. This water interacts strongly with the fluorinated boric acid ester and is difficult to remove by operations such as nitrogen bubbling and distillation. Therefore, in order to obtain a fluorine-containing boric acid ester of 150 ppm or less, a desiccant such as a synthetic zeolite is used, followed by an operation such as distillation, or a strong reaction with water such as Li metal. A method of immersing a dehydrating agent that does not affect the performance of the secondary battery is required.

次に上記の含フッ素ホウ酸エステルを電解液に含有する非水系二次電池について説明する。
含フッ素ホウ酸エステルは、通常、他の非水溶媒と混合して電解液溶媒として用いられる。この際の非水溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、フルオロエチレンカーボネート、クロロエチレンカーボネート等の環状カーボネート、 γ − ブチロラクトン、γ − バレロラクトン、プロピオラクトン等の環状エステル、 ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジフェニルカーボネート等の鎖状カーボネート、酢酸メチル、酪酸メチル等の鎖状エステル、テトラヒドロフラン、1,3 − ジオキサン、ジメトキシエタン、ジエトキシエタン、メトキシエトキシエタン、メチルジグライム等のエーテル類、アセトニトリル、ベンゾニトリル等のニトリル類、ジオキソラン又はその誘導体等の単独又は2種以上の混合物等を挙げることができる。
Next, a non-aqueous secondary battery containing the above-described fluorinated boric acid ester in the electrolytic solution will be described.
The fluorinated boric acid ester is usually used as an electrolyte solution by mixing with other non-aqueous solvents. Examples of the non-aqueous solvent include cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, fluoroethylene carbonate, and chloroethylene carbonate, cyclic esters such as γ-butyrolactone, γ-valerolactone, and propiolactone, dimethyl Chain carbonates such as carbonate, diethyl carbonate, ethyl methyl carbonate, diphenyl carbonate, chain esters such as methyl acetate, methyl butyrate, tetrahydrofuran, 1,3-dioxane, dimethoxyethane, diethoxyethane, methoxyethoxyethane, methyldiglyme And ethers such as acetonitrile, nitriles such as acetonitrile and benzonitrile, dioxolane or a derivative thereof, or a mixture of two or more thereof.

これらの非水溶媒に対する含フッ素ホウ酸エステルの添加量は、体積比で0.5〜7%、好ましくは1〜4%である。添加量が体積比で0.5%未満の場合は、サイクル向上の効果が十分でなく、7%を超える場合は、サイクル特性が低下するため、むしろ好ましくない。 The addition amount of the fluorinated boric acid ester to these non-aqueous solvents is 0.5 to 7%, preferably 1 to 4% by volume. When the addition amount is less than 0.5% by volume, the effect of improving the cycle is not sufficient, and when it exceeds 7%, the cycle characteristics deteriorate, which is rather not preferable.

非水系電解液を構成する電解質塩としては、非水系電解液二次電池に使用される広電位領域において安定であるリチウム塩が使用できる。このような電解質塩として、例えば、LiBF、LiPF、LiClO、MgClO、LiCFSO、LiN(CFSO、LiN(CSO、LiC(CFSO等が挙げられる。これらは単独で用いてもよく、2種以上混合して用いてもよい。なお、電池の高率充放電特性を良好なものとするため、非水電解液における電解質塩の濃度は0.5〜2.5mol/Lの範囲とすることが望ましい。 As an electrolyte salt constituting the non-aqueous electrolyte solution, a lithium salt that is stable in a wide potential region used in a non-aqueous electrolyte secondary battery can be used. Examples of the electrolyte salt include LiBF 4 , LiPF 6 , LiClO 4 , MgClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 and the like. These may be used alone or in combination of two or more. In order to improve the high rate charge / discharge characteristics of the battery, it is desirable that the concentration of the electrolyte salt in the non-aqueous electrolyte is in the range of 0.5 to 2.5 mol / L.

本発明の非水電解液電池は、上記組成の電解液を使用するものであり、少なくとも正極、負極、セパレータから成る電池である。
負極材料としては金属リチウム、金属マグネシウム、リチウムイオンをドープ・脱ドープが可能な炭素材料、リチウムと合金を形成することが可能なケイ素およびスズのうちの少なくとも1種を構成元素として有するリチウム合金を用いることができ、特にリチウム金属およびリチウムイオンをドープ・脱ドープが可能な炭素材料を用いることが好ましい。炭素材料としてはグラファイトでも非晶質炭素でもよく、活性炭、炭素繊維、カーボンブラック、メソカーボンマイクロビーズなどあらゆる炭素材料を用いることができる。
The non-aqueous electrolyte battery of the present invention uses an electrolyte solution having the above composition, and is a battery comprising at least a positive electrode, a negative electrode, and a separator.
As a negative electrode material, metallic lithium, metallic magnesium, a carbon material that can be doped / undoped with lithium ions, and a lithium alloy that has at least one of silicon and tin capable of forming an alloy with lithium as a constituent element In particular, it is preferable to use a carbon material that can be doped / undoped with lithium metal and lithium ions. The carbon material may be graphite or amorphous carbon, and any carbon material such as activated carbon, carbon fiber, carbon black, and mesocarbon microbeads can be used.

正極材料としては、MoS2、TiS2、MnO2、V25等の遷移金属酸化物、遷移金属硫化物、ポリアニリン、ポリピロールなどの導電性高分子、ジスルフィド化合物のように可逆的に電解重合、解重合する化合物あるいはLiCoO2、LiMnO2、LiMn24、LiNiO2、LiNi1/3Co1/3Mn1/3などのリチウムと遷移金属からなる複合酸化物を用いることができ、好ましくはリチウムと遷移金属からなる複合酸化物が用いられる。 Positive electrode materials include reversible electrolytic polymerization such as transition metal oxides such as MoS 2 , TiS 2 , MnO 2 and V 2 O 5 , conductive polymers such as transition metal sulfides, polyaniline and polypyrrole, and disulfide compounds. , A compound to be depolymerized or a complex oxide composed of lithium and a transition metal such as LiCoO 2 , LiMnO 2 , LiMn 2 O 4 , LiNiO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 can be used. A composite oxide composed of lithium and a transition metal is preferably used.

また、セパレータとしては、微多孔性膜等が用いられ、厚さ10μm〜20μm、空孔率35%〜50%の範囲内であることが好ましい。材料としては、例えばポリエチレン, ポリプロピレン等のポリオレフィン系樹脂、ポリエチレンテレフタレート, ポリブチレンテレフタレート等のポリエステル系樹脂、ポリフッ化ビニリデン、フッ化ビニリデン− テトラフルオロエチレン共重合体、フッ化ビニリデン− トリフルオロエチレン共重合体、フッ化ビニリデン− エチレン共重合体等のフッ素系樹脂を挙げることができる。   Moreover, as a separator, a microporous film | membrane etc. are used, and it is preferable that it is in the range of 10 micrometers-20 micrometers in thickness, and the porosity of 35%-50%. Examples of the material include polyolefin resins such as polyethylene and polypropylene, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, and vinylidene fluoride-trifluoroethylene copolymer. Examples thereof include fluorine resins such as coalesced vinylidene fluoride-ethylene copolymer.

なお、本発明の非水電解液電池の形状、形態等は特に限定されるものではなく、円筒型、角型、コイン型、カード型、大型など本発明の範囲内で任意に選択することができる。 The shape, form, etc. of the nonaqueous electrolyte battery of the present invention are not particularly limited, and can be arbitrarily selected within the scope of the present invention, such as a cylindrical shape, a square shape, a coin shape, a card shape, and a large size. it can.

実施例、比較例で使用したコイン型セルの電池を示す図である。It is a figure which shows the battery of the coin-type cell used by the Example and the comparative example.

以下、本発明を実施例にて説明するが、本発明はこれらに限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these.

1.電解液の調製
電解液溶媒としてエチレンカーボネート(以下ECと略す)、ジメチルカーボネート(以下DMCと略す)を体積比1:1の割合で混合した溶媒を用い、これに含フッ素ホウ酸エステルを所定量混合したものに、電解質として六フッ化リン酸リチウム(LiPF6)を1.0mol/L溶解させたものを電解液として用いた。
1. Preparation of electrolyte solution As a solvent for an electrolyte solution, a solvent in which ethylene carbonate (hereinafter abbreviated as EC) and dimethyl carbonate (hereinafter abbreviated as DMC) are mixed at a volume ratio of 1: 1 is used. A solution obtained by dissolving 1.0 mol / L of lithium hexafluorophosphate (LiPF6) as an electrolyte was used as an electrolyte.

2.非水系二次電池の作成
正極活物質としてコバルト酸リチウム(LiCoO)を用い、これに導電助剤としてカーボンブラック、バインダーとしてポリフッ化ビニリデン(PVDF)をLiCoO:カーボンブラック:PVDF=85:7:8となるように配合し、1−メチル−2−ピロリドンを用いてスラリー化したものをアルミ製集電体上に一定の膜厚で塗布し、乾燥させて正極を得た。
負極活物質としてはリチウム金属箔を用い、ステンレス製集電体に圧着して負極を得た。
セパレータは無機フィラー含浸ポリオレフィン多孔質膜を用いた。
2. Preparation of non-aqueous secondary battery Lithium cobaltate (LiCoO 2 ) is used as a positive electrode active material, and carbon black is used as a conductive auxiliary agent, and polyvinylidene fluoride (PVDF) is used as a binder. LiCoO 2 : carbon black: PVDF = 85: 7 : 8 was blended and slurried with 1-methyl-2-pyrrolidone was applied on an aluminum current collector with a certain film thickness and dried to obtain a positive electrode.
A lithium metal foil was used as the negative electrode active material, and a negative electrode was obtained by pressure bonding to a stainless steel current collector.
As the separator, an inorganic filler-impregnated polyolefin porous membrane was used.

以上の構成要素を用いて、図1に示した構造のコイン型セルを用いたリチウム二次電池を作成した。リチウム二次電池はセパレータ6を挟んで正極1、負極4を対向配置し、これら正極1、セパレータ6および負極4からなる積層体をガスケット7に嵌め込む。このガスケット7には正極ステンレスキャップ2と負極ステンレスキャップ3が取り付けられ、負極ステンレスキャップ3の内側に設けたステンレスバネ5によって前記積層体を構成する正極1を正極ステンレスキャップ2の内側に押し付けている。なお、セパレータ6には非水系二次電池の電解液が含浸或いは保持されている。 Using the above components, a lithium secondary battery using a coin-type cell having the structure shown in FIG. 1 was produced. In the lithium secondary battery, the positive electrode 1 and the negative electrode 4 are disposed opposite to each other with the separator 6 interposed therebetween, and a laminate including the positive electrode 1, the separator 6, and the negative electrode 4 is fitted into the gasket 7. A positive electrode stainless cap 2 and a negative electrode stainless cap 3 are attached to the gasket 7, and the positive electrode 1 constituting the laminate is pressed against the inside of the positive electrode stainless cap 2 by a stainless spring 5 provided inside the negative electrode stainless steel cap 3. . The separator 6 is impregnated or held with an electrolyte solution of a non-aqueous secondary battery.

3.充放電試験
この様に作成したリチウム二次電池を25℃の恒温条件下、0.1Cの充電電流で上限電圧を4.2Vとして充電し、続いて0.1Cの放電電流で3.0Vとなるまで放電した。この操作を行った後に55℃の恒温条件下、1Cの充電電流で4.2Vの定電流-定電圧充電を行い、1Cの放電電流で終止電圧3.0Vまで定電流放電を行った。このときの放電容量を初期放電容量とし、この操作を100回繰り返した際の放電容量を測定し、100サイクル後の放電容量/初期放電容量比を劣化率として比較を行った。
3. Charge / Discharge Test The lithium secondary battery thus prepared was charged at a constant current of 25 ° C. with a charging current of 0.1 C and an upper limit voltage of 4.2 V, and subsequently with a discharging current of 0.1 C and 3.0 V. Discharged until After this operation, a constant current-constant voltage charge of 4.2 V was performed at a charging current of 1 C under a constant temperature of 55 ° C., and a constant current discharge was performed to a final voltage of 3.0 V with a discharging current of 1 C. The discharge capacity at this time was defined as the initial discharge capacity, the discharge capacity when this operation was repeated 100 times was measured, and the comparison was performed using the discharge capacity / initial discharge capacity ratio after 100 cycles as the deterioration rate.

[合成例1]
ホウ酸トリス(2,2,2−トリフルオロエチル)の合成
1L四つ口フラスコにボラン−ジメチルスルフィド錯体(103.8g)を投入し、−20℃まで冷却した。次に、2,2,2-トリフルオロエタノール(416.5g)を内温が−20℃を超えないように注意しながら滴下した。滴下終了後、同温度で1時間熟成を行った後、反応液をゆっくりと40℃まで昇温し、40℃で反応を継続した。反応の進行についてはガスクロマトグラフィーおよび19F−NMRで確認を行い、2,2,2-トリフルオロエタノールが消費されなくなった時点を終点とした。反応終了後、反応温度を徐々に室温に戻し、エバポレーターで減圧下、ジメチルスルフィドを除去した。カールフィッシャー測定装置によりこの反応液中の水分を測定した結果、470ppmであった。
続いて、この粗反応液に乾燥したモレキュラーシーブ4Aを粗反応液に対して0.15の重量比になるように加え、48時間攪拌を行った。その結果、水分値は45ppmであった。さらにこの粗反応液からモレキュラーシーブをろ過し、脱水した粗反応液を還流装置の付加した理論段数10段のマクマホンパッキン蒸留装置で蒸留することでホウ酸トリス(2,2,2−トリフルオロエチル)342.7g、を収率81.5%で得た。得られたホウ酸トリス(2,2,2−トリフルオロエチル)は19F−NMR純度100%で水分量は40ppmであった。
[Synthesis Example 1]
Synthesis of tris (2,2,2-trifluoroethyl) borate A 1 L four-necked flask was charged with borane-dimethyl sulfide complex (103.8 g) and cooled to -20 ° C. Next, 2,2,2-trifluoroethanol (416.5 g) was added dropwise with care so that the internal temperature did not exceed -20 ° C. After completion of dropping, the mixture was aged at the same temperature for 1 hour, and then the temperature of the reaction solution was slowly raised to 40 ° C. and the reaction was continued at 40 ° C. The progress of the reaction was confirmed by gas chromatography and 19 F-NMR, and the end point was reached when 2,2,2-trifluoroethanol was no longer consumed. After completion of the reaction, the reaction temperature was gradually returned to room temperature, and dimethyl sulfide was removed under reduced pressure with an evaporator. It was 470 ppm as a result of measuring the water | moisture content in this reaction liquid with the Karl Fischer measuring apparatus.
Subsequently, the dried molecular sieve 4A was added to the crude reaction solution so as to have a weight ratio of 0.15 to the crude reaction solution, followed by stirring for 48 hours. As a result, the moisture value was 45 ppm. Further, the molecular sieve was filtered from the crude reaction liquid, and the dehydrated crude reaction liquid was distilled with a McMahon packing distillation apparatus having 10 theoretical plates to which a reflux apparatus was added, thereby tris (2,2,2-trifluoroethyl borate). ) 342.7 g was obtained with a yield of 81.5%. The obtained tris (2,2,2-trifluoroethyl) borate had a 19F-NMR purity of 100% and a water content of 40 ppm.

[合成例2]
合成例と同様の反応を行い、得られた粗反応液の水分量を測定した結果、360ppmであった。この反応液をモレキュラーシーブによる脱水を行わずに、合成例1と同様の操作で蒸留を行った。その結果、得られたホウ酸トリス(2,2,2−トリフルオロエチル)は純度99.9%、含まれる水分量は320ppmであった。
[Synthesis Example 2]
It was 360 ppm as a result of performing the reaction similar to a synthesis example, and measuring the moisture content of the obtained crude reaction liquid. This reaction solution was distilled by the same operation as in Synthesis Example 1 without performing dehydration by molecular sieve. As a result, the obtained tris (2,2,2-trifluoroethyl) borate had a purity of 99.9% and a water content of 320 ppm.

[実施例1]
上記1の電解液調製方法に従って、水分含量40ppmのホウ酸トリス(2,2,2−トリフルオロエチル)(以下、TFEBと略記)を3体積%混合した電解液を調製した。この電解液を用いて、上記2の非水系リチウム二次電池を作成し、電池の理論容量にしたがって0.1Cの充放電を行った後に、1Cの充放電を行った。その際の電池の放電容量は149mAh/gであった。
[Example 1]
According to the electrolytic solution preparation method described in 1 above, an electrolytic solution in which 3% by volume of tris (2,2,2-trifluoroethyl) borate (hereinafter abbreviated as TFEB) having a water content of 40 ppm was prepared. Using this electrolytic solution, the above-mentioned non-aqueous lithium secondary battery 2 was prepared, charged and discharged at 0.1 C according to the theoretical capacity of the battery, and then charged and discharged at 1 C. The discharge capacity of the battery at that time was 149 mAh / g.

さらに、この電池を用いて、55℃の温度条件下、1Cにおいて100回の充放電試験を実施した。その結果、電池の放電容量は135mAh/gで、100サイクル後のサイクル劣化率は90%であった。   Furthermore, 100 times of charging / discharging tests were implemented in 1C on 55 degreeC temperature conditions using this battery. As a result, the discharge capacity of the battery was 135 mAh / g, and the cycle deterioration rate after 100 cycles was 90%.

上記の実施例1及び後述する実施例2〜7及び比較例1〜4の結果を表1に記す。   The results of Example 1 and Examples 2 to 7 and Comparative Examples 1 to 4 described later are shown in Table 1.

[実施例2]
水分含量149ppmのTFEBを3体積%混合した以外は実施例1と同様に電解液を調製した。この電解液を用いて、上記2の非水系リチウム二次電池を作成し、電池の理論容量にしたがって0.1Cの充放電を行った後に、1Cの充放電を行った。その際の電池の放電容量は147mAh/gであった。
さらに、この電池を用いて、55℃の温度条件下、1Cにおいて100回の充放電試験を実施した。その結果、電池の放電容量は117mAh/gで、100サイクル後のサイクル劣化率は80%であった。
[Example 2]
An electrolyte solution was prepared in the same manner as in Example 1 except that 3% by volume of TFEB having a water content of 149 ppm was mixed. Using this electrolytic solution, the above-mentioned non-aqueous lithium secondary battery 2 was prepared, charged and discharged at 0.1 C according to the theoretical capacity of the battery, and then charged and discharged at 1 C. The discharge capacity of the battery at that time was 147 mAh / g.
Furthermore, 100 times of charging / discharging tests were implemented in 1C on 55 degreeC temperature conditions using this battery. As a result, the discharge capacity of the battery was 117 mAh / g, and the cycle deterioration rate after 100 cycles was 80%.

[実施例3]
水分含量40ppmのTFEBを1体積%混合した以外は実施例1と同様に電解液を調製した。この電解液を用いて、上記2の非水系リチウム二次電池を作成し、電池の理論容量にしたがって0.1Cの充放電を行った後に、1Cの充放電を行った。その際の電池の放電容量は132mAh/gであった。
さらに、この電池を用いて、55℃の温度条件下、1Cにおいて100回の充放電試験を実施した。その結果、電池の放電容量は104mAh/gで、100サイクル後のサイクル劣化率は79%であった。
[Example 3]
An electrolyte solution was prepared in the same manner as in Example 1 except that 1% by volume of TFEB having a water content of 40 ppm was mixed. Using this electrolytic solution, the above-mentioned non-aqueous lithium secondary battery 2 was prepared, charged and discharged at 0.1 C according to the theoretical capacity of the battery, and then charged and discharged at 1 C. At that time, the discharge capacity of the battery was 132 mAh / g.
Furthermore, 100 times of charging / discharging tests were implemented in 1C on 55 degreeC temperature conditions using this battery. As a result, the discharge capacity of the battery was 104 mAh / g, and the cycle deterioration rate after 100 cycles was 79%.

[実施例4]
水分含量40ppmのTFEBを5体積%混合した以外は実施例1と同様に電解液を調製した。この電解液を用いて、上記2の非水系リチウム二次電池を作成し、電池の理論容量にしたがって0.1Cの充放電を行った後に、1Cの充放電を行った。その際の電池の放電容量は146mAh/gであった。
さらに、この電池を用いて、55℃の温度条件下、1Cにおいて100回の充放電試験を実施した。その結果、電池の放電容量は121mAh/gで、100サイクル後のサイクル劣化率は83%であった。
[実施例5]
水分含量89ppmのホウ酸トリス(2,2,2,3,3,3−ヘキサフルオロイソプロピル)(以下HFPBと略す)を3体積%混合した以外は実施例1と同様に電解液を調製した。この電解液を用いて、実施例1と同様に電池を作成し、充放電試験を実施した。その結果、初期の放電容量は146mAh/gを示し、55℃、100サイクル後の放電容量は120mAh/gであった。この電池の劣化率は82%であった。
[Example 4]
An electrolyte solution was prepared in the same manner as in Example 1 except that 5% by volume of TFEB having a water content of 40 ppm was mixed. Using this electrolytic solution, the above-mentioned non-aqueous lithium secondary battery 2 was prepared, charged and discharged at 0.1 C according to the theoretical capacity of the battery, and then charged and discharged at 1 C. The discharge capacity of the battery at that time was 146 mAh / g.
Furthermore, 100 times of charging / discharging tests were implemented in 1C on 55 degreeC temperature conditions using this battery. As a result, the discharge capacity of the battery was 121 mAh / g, and the cycle deterioration rate after 100 cycles was 83%.
[Example 5]
An electrolyte solution was prepared in the same manner as in Example 1 except that 3% by volume of tris borate (2,2,2,3,3,3-hexafluoroisopropyl) (hereinafter abbreviated as HFPB) having a water content of 89 ppm was mixed. Using this electrolytic solution, a battery was prepared in the same manner as in Example 1, and a charge / discharge test was performed. As a result, the initial discharge capacity was 146 mAh / g, and the discharge capacity after 100 cycles at 55 ° C. was 120 mAh / g. The deterioration rate of this battery was 82%.

[実施例6]
水分含量144ppmのホウ酸トリス(2,2,3,3−テトラフルオロプロピル)(以下TFPBと略す)を3体積%混合した以外は実施例1と同様に電解液を調製した。この電解液を用いて、実施例1と同様に電池を作成し、充放電試験を実施した。その結果、初期の放電容量は142mAh/gを示し、55℃、100サイクル後の放電容量は121mAh/gであった。この電池の劣化率は85%であった。
[Example 6]
An electrolytic solution was prepared in the same manner as in Example 1 except that 3% by volume of tris (2,2,3,3-tetrafluoropropyl) borate (hereinafter abbreviated as TFPB) having a moisture content of 144 ppm was mixed. Using this electrolytic solution, a battery was prepared in the same manner as in Example 1, and a charge / discharge test was performed. As a result, the initial discharge capacity was 142 mAh / g, and the discharge capacity after 100 cycles at 55 ° C. was 121 mAh / g. The deterioration rate of this battery was 85%.

[実施例7]
水分含量59ppmのホウ酸トリス(2,2−ジフオロエチル)(以下DFEBと略す)を3体積%混合した以外は実施例1と同様に電解液を調製した。この電解液を用いて、実施例1と同様に電池を作成し、充放電試験を実施した。その結果、初期の放電容量は149mAh/gを示し、55℃、100サイクル後の放電容量は133mAh/gであった。この電池の劣化率は89%であった。
[Example 7]
An electrolytic solution was prepared in the same manner as in Example 1 except that 3% by volume of tris (2,2-difluoroethyl) borate (hereinafter abbreviated as DFEB) having a moisture content of 59 ppm was mixed. Using this electrolytic solution, a battery was prepared in the same manner as in Example 1, and a charge / discharge test was performed. As a result, the initial discharge capacity was 149 mAh / g, and the discharge capacity after 100 cycles at 55 ° C. was 133 mAh / g. The deterioration rate of this battery was 89%.

[比較例1]
含フッ素ホウ酸エステルを添加せず、EC/DMCのみを溶媒とした電解液を調製した。この電解液を用いて、実施例1と同様に電池を作成し、充放電試験を実施した。その結果、初期の放電容量は142mAh/gを示し、55℃、100サイクル後の放電容量は111mAh/gであった。この電池の劣化率は77%であった。
[Comparative Example 1]
An electrolyte solution containing only EC / DMC as a solvent was prepared without adding the fluorine-containing borate ester. Using this electrolytic solution, a battery was prepared in the same manner as in Example 1, and a charge / discharge test was performed. As a result, the initial discharge capacity was 142 mAh / g, and the discharge capacity after 100 cycles at 55 ° C. was 111 mAh / g. The deterioration rate of this battery was 77%.

[比較例2]
水分含量302ppmのTFEBを3体積%混合した以外は実施例1と同様の試験を行った。その結果、1Cでの初回放電容量は149mAh/gを示し、55℃、100サイクル後の放電容量は109mAh/gであった。この電池のサイクル劣化率は73%であった。
[Comparative Example 2]
The same test as in Example 1 was performed except that 3% by volume of TFEB having a moisture content of 302 ppm was mixed. As a result, the initial discharge capacity at 1C was 149 mAh / g, and the discharge capacity after 100 cycles at 55 ° C. was 109 mAh / g. The cycle deterioration rate of this battery was 73%.

[比較例3]
水分含量302ppmのTFEBを3体積%混合した以外は実施例1と同様の試験を行った。その結果、1Cでの初回放電容量は147mAh/gを示し、55℃、100サイクル後の放電容量は98mAh/gであった。この電池のサイクル劣化率は67%であった。
[Comparative Example 3]
The same test as in Example 1 was performed except that 3% by volume of TFEB having a moisture content of 302 ppm was mixed. As a result, the initial discharge capacity at 1C was 147 mAh / g, and the discharge capacity after 100 cycles at 55 ° C. was 98 mAh / g. The cycle deterioration rate of this battery was 67%.

[比較例4]
水分含量302ppmのTFEBを10体積%混合した以外は実施例1と同様の試験を行った。その結果、1Cでの初回放電容量は139mAh/gを示し、55℃、100サイクル後の放電容量は83mAh/gであった。この電池のサイクル劣化率は60%であった。
[Comparative Example 4]
The same test as in Example 1 was performed except that 10% by volume of TFEB having a water content of 302 ppm was mixed. As a result, the initial discharge capacity at 1C was 139 mAh / g, and the discharge capacity after 100 cycles at 55 ° C. was 83 mAh / g. The cycle deterioration rate of this battery was 60%.

Figure 2012169138
Figure 2012169138

[実施例8]
電解液溶媒としてECとジエチルカーボネート(以下DECと略す)を体積比1:1の割合で混合した溶媒を用い、これに水分含量40ppmのTFEBを3体積%混合した。この混合溶媒に、電解質としてLiPF6を1.0mol/L溶解させたものを電解液として用いた。
この電解液を用いて、実施例1と同様にして非水系リチウム二次電池を作成し、充放電試験を行った。その結果、初期の放電容量は148mAh/gを示し、55℃、100サイクル後の放電容量は135mAh/gで、サイクル劣化率は91%であった。
[Example 8]
A solvent in which EC and diethyl carbonate (hereinafter abbreviated as DEC) were mixed at a volume ratio of 1: 1 was used as an electrolyte solvent, and 3% by volume of TFEB having a water content of 40 ppm was mixed therewith. A solution obtained by dissolving 1.0 mol / L of LiPF6 as an electrolyte in this mixed solvent was used as an electrolytic solution.
Using this electrolytic solution, a non-aqueous lithium secondary battery was prepared in the same manner as in Example 1, and a charge / discharge test was performed. As a result, the initial discharge capacity was 148 mAh / g, the discharge capacity after 100 cycles at 55 ° C. was 135 mAh / g, and the cycle deterioration rate was 91%.

上記の実施例8及び後述する比較例5の結果を表2に記す。 The results of Example 8 and Comparative Example 5 described later are shown in Table 2.

[比較例5]
含フッ素ホウ酸エステルを添加せず、EC/DEC(体積比1/1)のみを溶媒とし、LiPF6を1.0mol/L溶解させた電解液を調製した。この電解液を用いて、実施例1と同様に非水系リチウム二次電池を作成し、充放電試験を行った。その結果、初期の放電容量は146mAh/gを示し、55℃、100サイクル後の放電容量は110mAh/gであった。この電池の劣化率は75%で、EC/DMCを溶媒として用いた場合と同程度の放電容量を示した。
[Comparative Example 5]
An electrolytic solution in which LiPF6 was dissolved at 1.0 mol / L was prepared using only EC / DEC (volume ratio 1/1) as a solvent without adding a fluorine-containing borate ester. Using this electrolytic solution, a non-aqueous lithium secondary battery was prepared in the same manner as in Example 1, and a charge / discharge test was performed. As a result, the initial discharge capacity was 146 mAh / g, and the discharge capacity after 100 cycles at 55 ° C. was 110 mAh / g. The deterioration rate of this battery was 75%, and the discharge capacity was similar to that obtained when EC / DMC was used as a solvent.

Figure 2012169138
Figure 2012169138

[実施例9]
電解液溶媒としてECとDMCを体積比1:1の割合で混合した溶媒を用い、これに水分含量40ppmのTFEBを2体積%、水分含量65ppmのホウ酸トリ−n−ブチル(TBB)を4体積%混合した。この混合溶媒に、電解質としてLiPF6を1.0mol/L溶解させたものを電解液として用いた。
[Example 9]
A solvent in which EC and DMC were mixed at a volume ratio of 1: 1 as an electrolyte solvent was used, and 2% by volume of TFEB having a water content of 40 ppm and 4% tri-n-butyl borate (TBB) having a water content of 65 ppm were used. Mixed by volume. A solution obtained by dissolving 1.0 mol / L of LiPF6 as an electrolyte in this mixed solvent was used as an electrolytic solution.

この電解液を用いて、実施例1と同様にして非水系リチウム二次電池を作成し、充放電試験を行った。その結果、初期の放電容量は146mAh/gを示し、55℃、100サイクル後の放電容量は131mAh/gで、サイクル劣化率は90%であった。 Using this electrolytic solution, a non-aqueous lithium secondary battery was prepared in the same manner as in Example 1, and a charge / discharge test was performed. As a result, the initial discharge capacity was 146 mAh / g, the discharge capacity after 100 cycles at 55 ° C. was 131 mAh / g, and the cycle deterioration rate was 90%.

上記の実施例9及び後述する比較例6の結果を表2に記す。 The results of Example 9 and Comparative Example 6 described later are shown in Table 2.

[比較例6]
電解液溶媒としてECとDMCを体積比1:1の割合で混合した溶媒を用い、これに水分含量65ppmのホウ酸トリ−n−ブチルを4体積%混合した。この混合溶媒に、電解質としてLiPF6を1.0mol/L溶解させたものを電解液として調製した。この電解液を用いて、実施例1と同様に非水系リチウム二次電池を作成し、充放電試験を行った。その結果、初期の放電容量は144mAh/gを示し、55℃、100サイクル後の放電容量は104mAh/gであった。この電池の劣化率は72%で、EC/DMCを溶媒として用いた場合と同程度の放電容量を示した。
[Comparative Example 6]
A solvent in which EC and DMC were mixed at a volume ratio of 1: 1 was used as an electrolyte solution solvent, and 4% by volume of tri-n-butyl borate having a water content of 65 ppm was mixed therewith. A solution obtained by dissolving 1.0 mol / L of LiPF6 as an electrolyte in this mixed solvent was prepared as an electrolytic solution. Using this electrolytic solution, a non-aqueous lithium secondary battery was prepared in the same manner as in Example 1, and a charge / discharge test was performed. As a result, the initial discharge capacity was 144 mAh / g, and the discharge capacity after 100 cycles at 55 ° C. was 104 mAh / g. The deterioration rate of this battery was 72%, showing a discharge capacity comparable to that obtained when EC / DMC was used as a solvent.

Figure 2012169138
Figure 2012169138

本発明の高純度含フッ素ホウ酸エステルを電解液添加剤として用いることにより、サイクル特性が改善されたリチウム二次電池が得られ、極めて有用である。   By using the high purity fluorine-containing boric acid ester of the present invention as an electrolytic solution additive, a lithium secondary battery with improved cycle characteristics can be obtained, which is extremely useful.

1:正極
2:正極ステンレス製キャップ
3:負極ステンレス製キャップ
4:負極
5:ステンレス製板バネ
6:無機フィラー含浸ポリオレフィン多孔質セパレータ
7:ガスケット
1: Positive electrode 2: Positive electrode stainless steel cap 3: Negative electrode stainless steel cap 4: Negative electrode 5: Stainless steel leaf spring 6: Polyolefin porous separator impregnated with inorganic filler 7: Gasket

Claims (6)

一般式(1)
Figure 2012169138

(式中、R1、R2、R3は各々独立して、炭素数2〜4のアルキル基であり、少なくとも一つが含フッ素アルキル基である)で表される含フッ素ホウ酸エステルであって、且つ、当該含フッ素ホウ酸エステルに含まれる水分量が150ppm以下であることを特徴とする非水系電解液用添加剤。
General formula (1)
Figure 2012169138

(Wherein R1, R2, and R3 are each independently an alkyl group having 2 to 4 carbon atoms, and at least one is a fluorinated alkyl group), and An additive for non-aqueous electrolyte solution, wherein the amount of water contained in the fluorinated boric acid ester is 150 ppm or less.
請求項1に記載した非水系電解液用添加剤であって、前記含フッ素ホウ酸エステル中のフッ素原子の含有率が重量比で8%以上であることを特徴とする非水系電解液用添加剤。 The additive for nonaqueous electrolyte solution according to claim 1, wherein the fluorine atom content in the fluorine-containing borate ester is 8% or more by weight. Agent. 請求項1に記載した非水系電解液用添加剤であって、添加するホウ酸エステルに含まれる含フッ素アルキル基がモノフルオロエチル基、ジフルオロエチル基、トリフルオロエチル基、モノフルオロプロピル基、ジフルオロプロピル基、トリフルオロプロピル基、テトラフルオロプロピル基、ペンタフルオロプロピル基、ヘキサフルオロプロピル基、モノフルオロブチル基、ジフルオロブチル基、トリフルオロブチル基、テトラフルオロブチル基、ペンタフルオロブチル基、ヘキサフルオロブチル基、ヘプタフルオロブチル基、ノナフルオロブチル基、デカフルオロブチル基の1つまたは2つ以上の置換基から選ばれることを特徴とする非水系電解液用添加剤。 The additive for a non-aqueous electrolyte solution according to claim 1, wherein the fluorine-containing alkyl group contained in the added boric acid ester is a monofluoroethyl group, a difluoroethyl group, a trifluoroethyl group, a monofluoropropyl group, a difluoro Propyl group, trifluoropropyl group, tetrafluoropropyl group, pentafluoropropyl group, hexafluoropropyl group, monofluorobutyl group, difluorobutyl group, trifluorobutyl group, tetrafluorobutyl group, pentafluorobutyl group, hexafluorobutyl An additive for a non-aqueous electrolyte, which is selected from one or more substituents of a group, a heptafluorobutyl group, a nonafluorobutyl group, and a decafluorobutyl group. 請求項1に記載した非水系電解液用添加剤が、ホウ酸トリス(2,2,2−トリフオロエチル)、ホウ酸トリス(2,2−ジフオロエチル)、ホウ酸トリス(2,2,3,3−テトラフルオロプロピル)、ホウ酸トリス(2,2,2,3,3,3−ヘキサフルオロイソプロピル)のうちから選ばれる1または2以上の含フッ素ホウ酸エステルであることを特徴とする非水系電解液用添加剤。 The additive for non-aqueous electrolyte solution according to claim 1 is tris borate (2,2,2-trifluoroethyl), tris borate (2,2-difluoroethyl), tris borate (2,2,3). , 3-tetrafluoropropyl) and tris (2,2,2,3,3,3-hexafluoroisopropyl) borate, one or more fluorine-containing boric acid esters Additive for non-aqueous electrolyte. 請求項1に記載した含フッ素ホウ酸エステルが非水系電解液に対して0.5〜7体積%の範囲で含まれることを特徴とする非水系二次電池用電解液。 An electrolyte for a non-aqueous secondary battery, wherein the fluorine-containing borate ester according to claim 1 is contained in a range of 0.5 to 7% by volume with respect to the non-aqueous electrolyte. 請求項1に記載した含フッ素ホウ酸エステルが非水系電解液に対して1〜4体積%の範囲で含まれることを特徴とする非水系二次電池用電解液。 An electrolyte for a non-aqueous secondary battery, wherein the fluorine-containing borate ester according to claim 1 is contained in an amount of 1 to 4% by volume with respect to the non-aqueous electrolyte.
JP2011028840A 2011-02-14 2011-02-14 Additive for nonaqueous electrolyte and electrolyte for nonaqueous secondary battery Pending JP2012169138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011028840A JP2012169138A (en) 2011-02-14 2011-02-14 Additive for nonaqueous electrolyte and electrolyte for nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011028840A JP2012169138A (en) 2011-02-14 2011-02-14 Additive for nonaqueous electrolyte and electrolyte for nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2012169138A true JP2012169138A (en) 2012-09-06

Family

ID=46973114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011028840A Pending JP2012169138A (en) 2011-02-14 2011-02-14 Additive for nonaqueous electrolyte and electrolyte for nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2012169138A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015221757A (en) * 2014-05-22 2015-12-10 双葉電子工業株式会社 Compound, desiccant, sealed structure and organic el element
WO2016060253A1 (en) * 2014-10-17 2016-04-21 日立化成株式会社 Lithium ion cell
WO2016171276A1 (en) * 2015-04-24 2016-10-27 日立化成株式会社 Lithium ion cell
US20170104237A1 (en) * 2015-10-13 2017-04-13 Panasonic Corporation Electrolytic solution for electrochemical devices and electrochemical device in which the electrolytic solution is used
CN107293781A (en) * 2016-04-11 2017-10-24 宁德新能源科技有限公司 Electrolyte and lithium ion battery
WO2020106762A1 (en) * 2018-11-21 2020-05-28 Battelle Memorial Institute Electrolyte for stable cycling of rechargeable alkali metal and alkali ion batteries
US10784537B2 (en) 2016-12-27 2020-09-22 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery
WO2020235314A1 (en) * 2019-05-22 2020-11-26 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte solution for magnesium secondary battery, and magnesium secondary battery using same
US10854923B2 (en) 2017-10-19 2020-12-01 Battelle Memorial Institute Low flammability electrolytes for stable operation of lithium and sodium ion batteries
US11094966B2 (en) 2017-03-02 2021-08-17 Battelle Memorial Institute High efficiency electrolytes for high voltage battery systems
US11127980B2 (en) 2017-10-19 2021-09-21 Battelle Memorial Institute Localized superconcentrated electrolytes for silicon anodes
US11664536B2 (en) 2020-01-09 2023-05-30 Battelle Memorial Institute Electrolytes for lithium batteries with carbon and/or silicon anodes
US11705580B2 (en) 2020-01-09 2023-07-18 Battelle Memorial Institute Electrolytes for lithium-ion batteries operating at extreme conditions

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003132946A (en) * 2001-10-24 2003-05-09 Mitsui Chemicals Inc Nonaqueous electrolytic solution and secondary battery using the same
JP2004002342A (en) * 2002-03-29 2004-01-08 Nof Corp Method for producing high-pure ester compound of boric acid for electrolyte
JP2006282567A (en) * 2005-03-31 2006-10-19 Nof Corp Method for producing boric ester compound
JP2007194209A (en) * 2005-12-22 2007-08-02 Mitsubishi Chemicals Corp Lithium secondary cell, and battery pack formed by connecting the plurality of it
JP2008300125A (en) * 2007-05-30 2008-12-11 Bridgestone Corp Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with the same
JP2011003364A (en) * 2009-06-17 2011-01-06 Mitsubishi Chemicals Corp Nonaqueous electrolyte solution for secondary battery, and secondary battery using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003132946A (en) * 2001-10-24 2003-05-09 Mitsui Chemicals Inc Nonaqueous electrolytic solution and secondary battery using the same
JP2004002342A (en) * 2002-03-29 2004-01-08 Nof Corp Method for producing high-pure ester compound of boric acid for electrolyte
JP2006282567A (en) * 2005-03-31 2006-10-19 Nof Corp Method for producing boric ester compound
JP2007194209A (en) * 2005-12-22 2007-08-02 Mitsubishi Chemicals Corp Lithium secondary cell, and battery pack formed by connecting the plurality of it
JP2008300125A (en) * 2007-05-30 2008-12-11 Bridgestone Corp Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with the same
JP2011003364A (en) * 2009-06-17 2011-01-06 Mitsubishi Chemicals Corp Nonaqueous electrolyte solution for secondary battery, and secondary battery using the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015221757A (en) * 2014-05-22 2015-12-10 双葉電子工業株式会社 Compound, desiccant, sealed structure and organic el element
US10283810B2 (en) 2014-10-17 2019-05-07 Hitachi Chemical Company, Ltd. Lithium-ion battery
JPWO2016060253A1 (en) * 2014-10-17 2017-07-06 日立化成株式会社 Lithium ion battery
WO2016060253A1 (en) * 2014-10-17 2016-04-21 日立化成株式会社 Lithium ion cell
JPWO2016171276A1 (en) * 2015-04-24 2017-11-24 日立化成株式会社 Lithium ion battery
WO2016171276A1 (en) * 2015-04-24 2016-10-27 日立化成株式会社 Lithium ion cell
US20170104237A1 (en) * 2015-10-13 2017-04-13 Panasonic Corporation Electrolytic solution for electrochemical devices and electrochemical device in which the electrolytic solution is used
US10147969B2 (en) * 2015-10-13 2018-12-04 Panasonic Corporation Electrolytic solution for electrochemical devices and electrochemical device in which the electrolytic solution is used
CN107293781A (en) * 2016-04-11 2017-10-24 宁德新能源科技有限公司 Electrolyte and lithium ion battery
US10784537B2 (en) 2016-12-27 2020-09-22 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery
US11094966B2 (en) 2017-03-02 2021-08-17 Battelle Memorial Institute High efficiency electrolytes for high voltage battery systems
US10854923B2 (en) 2017-10-19 2020-12-01 Battelle Memorial Institute Low flammability electrolytes for stable operation of lithium and sodium ion batteries
US11127980B2 (en) 2017-10-19 2021-09-21 Battelle Memorial Institute Localized superconcentrated electrolytes for silicon anodes
US11600859B2 (en) 2018-11-21 2023-03-07 Battelle Memorial Institute Electrolyte for stable cycling of rechargeable alkali metal and alkali ion batteries
WO2020106762A1 (en) * 2018-11-21 2020-05-28 Battelle Memorial Institute Electrolyte for stable cycling of rechargeable alkali metal and alkali ion batteries
WO2020235314A1 (en) * 2019-05-22 2020-11-26 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte solution for magnesium secondary battery, and magnesium secondary battery using same
JPWO2020235314A1 (en) * 2019-05-22 2021-06-10 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte solution for magnesium secondary battery and magnesium secondary battery using it
US11705580B2 (en) 2020-01-09 2023-07-18 Battelle Memorial Institute Electrolytes for lithium-ion batteries operating at extreme conditions
US11664536B2 (en) 2020-01-09 2023-05-30 Battelle Memorial Institute Electrolytes for lithium batteries with carbon and/or silicon anodes

Similar Documents

Publication Publication Date Title
JP2012169138A (en) Additive for nonaqueous electrolyte and electrolyte for nonaqueous secondary battery
JP5429631B2 (en) Non-aqueous electrolyte battery
EP2408051B1 (en) Electrolyte for electrochemical device, electrolyte solution using same, and nonaqueous electrolyte battery
JP6542209B2 (en) Use of reactive lithium alkoxy borate as electrolyte additive in electrolytes for lithium ion batteries
US9583788B2 (en) Nonaqueous electrolytic solution and energy storage device using same
JP5802556B2 (en) Asymmetric and / or low symmetric fluorine-containing phosphates for non-aqueous electrolytes
JP5392259B2 (en) Nonaqueous electrolyte and lithium battery using the same
US11764402B2 (en) Electrolytic solution for lithium secondary battery, and lithium secondary battery comprising same
JP6216715B2 (en) LiPF6 stabilization method, electrolyte solution for non-aqueous secondary battery excellent in thermal stability, and non-aqueous secondary battery excellent in thermal stability
CN110291676B (en) Electrolyte additive for lithium ion battery systems
WO2010007889A1 (en) Nonaqueous electrolyte solution for lithium battery, lithium battery using same, and formyloxy group-containing compound used therein
JP2007141760A (en) Nonaqueous electrolyte battery
JP7115724B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
WO2015025915A1 (en) Secondary cell
JP2001307770A (en) Electrolytic solution for lithium storage battery and secondary battery using the same
WO2020121850A1 (en) Non-aqueous electrolyte for battery and lithium secondary battery
CN110915052B (en) Heterocyclic sulfonyl fluoride additives for electrolyte compositions of lithium batteries
JP7417790B2 (en) Novel compound, secondary battery electrolyte containing the same, and secondary battery containing the same
JP6957179B2 (en) Non-aqueous electrolyte for batteries and lithium secondary battery
JP7098276B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP7351442B2 (en) Non-aqueous electrolytes for batteries and lithium secondary batteries
JP6980502B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP6894751B2 (en) Non-aqueous electrolyte for batteries, additives for batteries, and lithium secondary batteries
KR20200068309A (en) Electrolyte for Secondary Battery and Lithium Secondary Battery Containing the Same
WO2013069791A1 (en) Non-aqueous electrolyte secondary cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141014