JP2012166213A - Laser arc hybrid welding method for high tensile-strength steel plate, and high tensile-strength steel plate-welded metal produced by the same - Google Patents

Laser arc hybrid welding method for high tensile-strength steel plate, and high tensile-strength steel plate-welded metal produced by the same Download PDF

Info

Publication number
JP2012166213A
JP2012166213A JP2011027881A JP2011027881A JP2012166213A JP 2012166213 A JP2012166213 A JP 2012166213A JP 2011027881 A JP2011027881 A JP 2011027881A JP 2011027881 A JP2011027881 A JP 2011027881A JP 2012166213 A JP2012166213 A JP 2012166213A
Authority
JP
Japan
Prior art keywords
welding
steel plate
laser
arc
strength steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011027881A
Other languages
Japanese (ja)
Other versions
JP5693279B2 (en
Inventor
Tetsuo Suga
哲男 菅
Yasuo Murai
康生 村井
Yasuzo Kobashi
泰三 小橋
Tomoyuki Kamiyama
智之 上山
Tetsuo Era
哲生 恵良
Yuji Ueda
裕司 上田
Munenori Sato
統宣 佐藤
Noriyuki Hara
則行 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKO YOSETSU SERVICE KK
Daihen Corp
Kobe Steel Ltd
Original Assignee
SHINKO YOSETSU SERVICE KK
Daihen Corp
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKO YOSETSU SERVICE KK, Daihen Corp, Kobe Steel Ltd filed Critical SHINKO YOSETSU SERVICE KK
Priority to JP2011027881A priority Critical patent/JP5693279B2/en
Publication of JP2012166213A publication Critical patent/JP2012166213A/en
Application granted granted Critical
Publication of JP5693279B2 publication Critical patent/JP5693279B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Laser Beam Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laser arc hybrid welding method for a high tensile-strength steel plate by which a welded metal having high tensile strength and toughness can be manufactured by selecting a welding material suitable for the composition of a steel plate when working a high tensile-strength steel plate with a tensile strength of 780 to 980 MPa class by laser arc hybrid welding and welding it, and to provide a high tensile-strength steel plate-welded metal produced by the same.SOLUTION: When applying laser arc hybrid welding to a high tensile-strength steel plate, a high tensile-strength steel plate having 0.03 mass% or less in Ti content is subjected to laser arc hybrid welding by employing a welding material having 0.06 mass% or less in Ti content. The welding material is selected in which carbon equivalent Ceqcalculated from its composition satisfies a predetermined range of carbon equivalent Ceqof the high tensile-strength steel plate, thereby producing a welded metal having both high tensile strength and high toughness.

Description

本発明は船舶及び自動車等の輸送機械、並びにクレーン及びショベル等の建設機械に使用される中厚の高張力鋼板をレーザ・アークハイブリッド溶接する高張力鋼板のレーザ・アークハイブリッド溶接方法及びこれにより得られる高張力鋼板溶接金属に関し、特に、高い引張強度及び高い靱性を有する溶接金属が得られる高張力鋼板のレーザ・アークハイブリッド溶接方法及びこれにより得られる高張力鋼板溶接金属に関する。   The present invention relates to a laser-arc hybrid welding method for a high-strength steel plate, which is obtained by laser-arc hybrid welding of a medium-thick high-strength steel plate used in a transport machine such as a ship and an automobile, and a construction machine such as a crane and an excavator. More particularly, the present invention relates to a laser-arc hybrid welding method for a high-tensile steel plate from which a weld metal having high tensile strength and high toughness can be obtained, and a high-tensile steel plate weld metal obtained thereby.

近時、レーザ溶接装置の高出力化に伴い、レーザ溶接とアーク溶接とを併用するレーザ・アークハイブリッド溶接技術の開発がますます進められており、特に比較的厚板の構造物の溶接にレーザ・アークハイブリッド溶接を適用する技術の検討が急速に進められている。   Recently, along with the increase in output of laser welding equipment, laser-arc hybrid welding technology that uses both laser welding and arc welding has been developed more and more, especially for welding relatively thick plate structures.・ Technology for applying arc hybrid welding is rapidly being studied.

例えば船舶及び自動車等の輸送機械、クレーン及びショベル等の建設機械、並びに天然ガス及び原油の輸送配管等には、板厚が3.2mm以上、引張強度が780MPa級乃至980MPa級の高張力鋼板が使用されており、溶接金属の機械的性能等を向上させるための技術が提案されている。   For example, high-tensile steel plates with a thickness of 3.2 mm or more and a tensile strength of 780 MPa to 980 MPa are used for transportation equipment such as ships and automobiles, construction equipment such as cranes and excavators, and natural gas and crude oil transportation pipes. A technique for improving the mechanical performance and the like of the weld metal has been proposed.

例えば特許文献1乃至4には、800MPa級以上の高張力鋼板を管状に成形して、突き合わせ部をレーザ・アークハイブリッド溶接で溶接する技術が開示されている。そして、特許文献1においては、溶接鋼管の脆性亀裂の伝播停止特性を向上させるために、鋼板及び溶接金属の組成を規定しており、管状に成形した鋼管の突き合わせ部を両面溶接している。即ち、特許文献1には、管状に成形した鋼管の内面側の突き合わせ部はレーザ・アークハイブリッド溶接により溶接し、鋼管の外面側の突き合わせ部はレーザ・アークハイブリッド溶接又はサブマージアーク溶接で溶接することが開示されている。   For example, Patent Documents 1 to 4 disclose a technique in which a high-tensile steel plate of 800 MPa class or higher is formed into a tubular shape, and a butt portion is welded by laser-arc hybrid welding. And in patent document 1, in order to improve the propagation stop characteristic of the brittle crack of a welded steel pipe, the composition of a steel plate and a weld metal is prescribed | regulated, and the butt | matching part of the steel pipe shape | molded in the tubular shape is welded on both sides. That is, in Patent Document 1, the butt portion on the inner surface side of a steel pipe formed into a tubular shape is welded by laser / arc hybrid welding, and the butt portion on the outer surface side of the steel pipe is welded by laser / arc hybrid welding or submerged arc welding. Is disclosed.

また、特許文献2においては、溶接鋼管の変形能を高めるために、鋼板の降伏比及び組成並びに溶接金属の組成に加えて、鋼板のミクロ組織(ベイナイト中の島状マルテンサイト(MA))の面積比率を規定している。   Moreover, in patent document 2, in order to improve the deformability of a welded steel pipe, in addition to the yield ratio and composition of a steel plate and the composition of a weld metal, the area ratio of the microstructure of the steel plate (island martensite (MA) in bainite). Is stipulated.

特許文献3においては、鋼板のミクロ組織及び微量添加元素量を規定し、所定の降伏比及び一様伸びを有する鋼板を冷間加工で管状に成形している。そして、鋼板の組成及び圧延条件等を規定することにより、母材、溶接熱影響部及び溶接金属の靱性、耐切断割れ性及び低温割れ感受性を高めることが開示されている。   In patent document 3, the microstructure of a steel plate and the amount of trace added elements are defined, and a steel plate having a predetermined yield ratio and uniform elongation is formed into a tubular shape by cold working. And it is disclosed that the toughness, cut cracking resistance and low temperature cracking susceptibility of the base metal, the weld heat-affected zone and the weld metal are improved by defining the composition of the steel sheet and rolling conditions.

特許文献4には、鋼板のミクロ組織、添加元素量、組成及び降伏比等を規定することにより、母材、溶接熱影響部及び溶接金属の靱性を向上させ、継手部の引張強度を母材強度よりも高めることが開示されている。これらの特許文献1乃至4以外にも、レーザ・アークハイブリッド溶接において、例えば継手開先形状と溶接金属の形成状態との関連を規定した技術も提案されている。   In Patent Document 4, the microstructure of the steel sheet, the amount of additive elements, the composition, the yield ratio, and the like are defined to improve the toughness of the base metal, the weld heat affected zone and the weld metal, and the tensile strength of the joint is set to the base metal. It is disclosed that it is higher than strength. In addition to these Patent Documents 1 to 4, in laser / arc hybrid welding, for example, a technique that defines the relationship between the joint groove shape and the formation state of the weld metal has been proposed.

上記特許文献1乃至4においては、溶接材料としては、溶接対象の母材と同程度の引張強度を有するものが使用されている。このように、従来、レーザ・アークハイブリッド溶接を行う際には、鋼板と同程度の引張強度を有する溶接材料が使用されており、例えば鋼板の引張強度が780MPa級の場合は、溶接材料も780MPa級の引張強度を有するものが使用され、鋼板の引張強度が490MPa級の場合は、溶接材料も490MPa級の引張強度を有するものが使用されている。   In Patent Documents 1 to 4, a welding material having a tensile strength comparable to that of a base material to be welded is used. Thus, conventionally, when performing laser-arc hybrid welding, a welding material having a tensile strength comparable to that of a steel plate is used. For example, when the tensile strength of the steel plate is 780 MPa class, the welding material is also 780 MPa. When the steel sheet has a tensile strength of 490 MPa, a welding material having a tensile strength of 490 MPa is used.

特開2007−260715号公報JP 2007-260715 A 特開2007−260716号公報JP 2007-260716 A 特開2008−23569号公報JP 2008-23569 A 特開2008−248315号公報JP 2008-248315 A

しかしながら、上述の従来技術には、以下のような問題点がある。即ち、特許文献1乃至4の発明は、引張強度が780MPa級以上の高張力鋼板のレーザ・アークハイブリッド溶接方法において、鋼板及び溶接金属の組成を規定しているが、溶接材料の組成は実施例に開示されているのみである。よって、例えば輸送機械及び建設機械等に使用される板厚が3.2乃至12mmの中厚の高張力鋼板をレーザ・アークハイブリッド溶接により溶接し、溶接部に高い引張強度及び高い靱性を得るためには、どのような組成を有する溶接材料を使用して溶接すればよいのかが不明である。   However, the above-described conventional technology has the following problems. That is, the inventions of Patent Documents 1 to 4 specify the composition of the steel plate and the weld metal in the laser-arc hybrid welding method for high-tensile steel plate having a tensile strength of 780 MPa class or higher. It is only disclosed. Therefore, in order to obtain a high tensile strength and a high toughness at the welded part, for example, by welding a high-tensile steel plate with a thickness of 3.2 to 12 mm, which is used for transportation machinery and construction machinery, by laser-arc hybrid welding. However, it is unclear what kind of composition should be used for welding.

レーザ・アークハイブリッド溶接は、ガスメタルアーク溶接及びサブマージアーク溶接等のアーク溶接を単独で行う場合とは異なり、溶接部における母材の希釈率が溶接金属の機械的性能に大きな影響を及ぼす。即ち、アーク溶接を単独で行う場合においては、溶接部における母材の希釈率は20乃至30%程度であるのに対して、レーザ・アークハイブリッド溶接においては、母材の希釈率が60乃至80%程度と極めて大きい。また、レーザ・アークハイブリッド溶接は、溶接速度が大きい条件下で施工される場合が多く、アーク溶接を単独で施工する場合に比して溶接部の冷却速度が大きく、溶接金属の焼入れ性が過大となり、特に高い靱性を確保することが難しい。よって、特許文献1乃至4に開示されているように、単に、溶接材料の引張強度を鋼板の引張強度に合わせて選択するだけでは、所定の機械的性能を得られない場合が多い。   In the laser / arc hybrid welding, unlike the case of performing arc welding such as gas metal arc welding and submerged arc welding alone, the dilution rate of the base material in the welded portion has a great influence on the mechanical performance of the weld metal. That is, when performing arc welding alone, the dilution rate of the base material in the welded portion is about 20 to 30%, whereas in laser / arc hybrid welding, the dilution rate of the base material is 60 to 80%. % Is extremely large. Laser-arc hybrid welding is often performed under conditions where the welding speed is high, and the cooling rate of the weld is greater than when arc welding is performed alone, and the hardenability of the weld metal is excessive. Thus, it is difficult to ensure particularly high toughness. Therefore, as disclosed in Patent Documents 1 to 4, a predetermined mechanical performance is often not obtained simply by selecting the tensile strength of the welding material in accordance with the tensile strength of the steel plate.

また、レーザ・アークハイブリッド溶接においては、片側溶接における開先への溶湯の完全溶け込みを安定して行う施工技術が重要である。しかし、上記特許文献1乃至4においては、溶接トーチとレーザとの最適な配置等、具体的な溶接施工条件については、ほとんど言及されていない。   In laser / arc hybrid welding, it is important to have a construction technique for stably performing complete melting of the molten metal into the groove in one-side welding. However, in the above Patent Documents 1 to 4, there is almost no mention of specific welding conditions such as the optimal arrangement of the welding torch and the laser.

本発明はかかる問題点に鑑みてなされたものであって、引張強度が780乃至980MPa級の中厚の高張力鋼板をレーザ・アークハイブリッド溶接する際に、鋼板の組成により最適な溶接材料を選択して溶接し、高い引張強度及び高い靱性を有する溶接金属が得られる高張力鋼板のレーザ・アークハイブリッド溶接方法及びこれにより得られる高張力鋼板溶接金属を提供することを目的とする。   The present invention has been made in view of such problems, and when laser-arc hybrid welding is performed on a medium-thick high-tensile steel sheet having a tensile strength of 780 to 980 MPa, an optimum welding material is selected depending on the composition of the steel sheet. It is an object of the present invention to provide a laser-arc hybrid welding method for a high-strength steel plate that can be welded to obtain a weld metal having high tensile strength and high toughness, and a high-strength steel plate weld metal obtained thereby.

本発明に係る高張力鋼板のレーザ・アークハイブリッド溶接方法は、板厚が3.2乃至12mmの780乃至980MPa級高張力鋼板をレーザ・アークハイブリッド溶接で突き合わせ溶接する高張力鋼板のレーザ・アークハイブリッド溶接方法において、前記高張力鋼板のTiの含有量が0.03質量%以下であり、前記レーザ・アークハイブリッド溶接で使用する溶接材料のTiの含有量が0.06質量%以下であり、C、Si、Mn、Ni、Cr、Mo及びVの含有量を、[C]、[Si]、[Mn]、[Ni]、[Cr]、[Mo]及び[V]として、下記数式により与えられる炭素当量を、高張力鋼板がCeq、アーク溶接材料がCeqであるとしたとき、前記アーク溶接材料の炭素当量Ceqは、0.28乃至0.55質量%であり、このCeqと、前記高張力鋼板の炭素当量Ceqとが、−2.15×Ceq+1.4≦Ceq≦−2.15×Ceq+1.6の関係式を満足するように、高張力鋼板とアーク溶接材料とを組み合わせて溶接することを特徴とする。 The laser-arc hybrid welding method for a high-strength steel plate according to the present invention is a laser-arc hybrid for a high-strength steel plate in which a 780-980 MPa class high-strength steel plate having a thickness of 3.2-12 mm is butt welded by laser-arc hybrid welding. In the welding method, the Ti content of the high-strength steel sheet is 0.03% by mass or less, the Ti content of the welding material used in the laser-arc hybrid welding is 0.06% by mass or less, and C , Si, Mn, Ni, Cr, Mo and V are given as [C], [Si], [Mn], [Ni], [Cr], [Mo] and [V] according to the following formula. The carbon equivalent Ceq Y of the arc welding material is 0.28 to 0.55 when the high carbon steel is Ceq X and the arc welding material is Ceq Y. The Ceq Y and the carbon equivalent Ceq X of the high-strength steel sheet have a relational expression of −2.15 × Ceq X + 1.4 ≦ Ceq Y ≦ −2.15 × Ceq X +1.6. It is characterized by welding in combination with a high-tensile steel plate and an arc welding material so as to satisfy.

Figure 2012166213
Figure 2012166213

上述の高張力鋼板のレーザ・アークハイブリッド溶接方法は、例えば溶接方向に対する傾斜角度が前進角5°乃至後退角10°の範囲となるように溶接トーチを配置し、溶接方向に対する傾斜角度が前進角15乃至30°の範囲となるようにレーザ光を照射し、レーザ光の照射位置よりも溶接方向前方に0乃至7mm離隔した位置に前記溶接トーチから溶接ワイヤを供給してアーク溶接をレーザ溶接に先行させて溶接することが好ましい。   In the laser-arc hybrid welding method of the above-described high-tensile steel plate, for example, the welding torch is arranged so that the inclination angle with respect to the welding direction is in the range of the advance angle 5 ° to the recession angle 10 °, and the inclination angle with respect to the welding direction is the advance angle. Laser welding is performed so as to be in the range of 15 to 30 °, and a welding wire is supplied from the welding torch at a position 0 to 7 mm away from the laser beam irradiation position in front of the welding direction, thereby performing arc welding for laser welding. It is preferable to perform welding in advance.

本発明に係る高張力鋼板溶接金属は、上述の高張力鋼板のレーザ・アークハイブリッド溶接方法によって得られる高張力鋼板溶接金属であって、上記数式1により算出される溶接金属の炭素当量Ceqが0.44乃至0.51質量%であり、Tiの含有量が溶接金属の全質量あたり0.03質量%以下であることを特徴とする。 The high-strength steel plate weld metal according to the present invention is a high-strength steel plate weld metal obtained by the above-described laser-arc hybrid welding method for high-strength steel plates, and the carbon equivalent Ceq Z of the weld metal calculated by Equation 1 is 0.44 to 0.51% by mass, and the Ti content is 0.03% by mass or less based on the total mass of the weld metal.

本発明によれば、板厚が3.2乃至12mmの780乃至980MPa級高張力鋼板をレーザ・アークハイブリッド溶接で突き合わせ溶接する溶接方法において、アーク溶接に使用する溶接材料を選択する基準値として、溶接材料の組成から算出される炭素当量を規定し、高張力鋼板の炭素当量の間で、選択すべき溶接材料の炭素当量の範囲を最適化している。これにより、鋼板の組成から最適な溶接材料を選択することができ、高い引張強度及び高い靱性を有する溶接金属を得ることができる。   According to the present invention, in a welding method for butt welding a 780 to 980 MPa class high strength steel plate having a thickness of 3.2 to 12 mm by laser-arc hybrid welding, as a reference value for selecting a welding material used for arc welding, The carbon equivalent calculated from the composition of the welding material is defined, and the carbon equivalent range of the welding material to be selected is optimized among the carbon equivalents of the high-tensile steel plate. Thereby, the optimal welding material can be selected from the composition of the steel sheet, and a weld metal having high tensile strength and high toughness can be obtained.

よって、本発明に係る高張力鋼板溶接金属は、引張強度及び靱性が高い。   Therefore, the high strength steel plate weld metal according to the present invention has high tensile strength and toughness.

本発明に係る高張力鋼板のレーザ・アークハイブリッド溶接において、鋼板及び溶接ワイヤの炭素当量の適正範囲を示すグラフ図である。It is a graph which shows the appropriate range of the carbon equivalent of a steel plate and a welding wire in the laser-arc hybrid welding of the high-tensile steel plate according to the present invention. 第1乃至第3実施例における高張力鋼板の配置を示す図である。It is a figure which shows arrangement | positioning of the high strength steel plate in the 1st thru | or 3rd Example. 第1乃至第3実施例における溶接トーチ及び溶接ワイヤとレーザ光との位置関係を示す図である。It is a figure which shows the positional relationship of the welding torch in the 1st thru | or 3rd Example, a welding wire, and a laser beam. 第1実施例において、実施例及び比較例の溶接ワイヤ及び鋼板の炭素当量の関係を示す図である。In 1st Example, it is a figure which shows the relationship of the carbon equivalent of the welding wire and steel plate of an Example and a comparative example. 第2実施例において、実施例及び比較例の溶接ワイヤ及び鋼板の炭素当量の関係を示す図である。In 2nd Example, it is a figure which shows the relationship of the carbon equivalent of the welding wire and steel plate of an Example and a comparative example. 第3実施例において、実施例及び比較例の溶接ワイヤ及び鋼板の炭素当量の関係を示す図である。In 3rd Example, it is a figure which shows the relationship of the carbon equivalent of the welding wire and steel plate of an Example and a comparative example. 第4及び第5実施例における高張力鋼板の形状及び配置を示す図である。It is a figure which shows the shape and arrangement | positioning of the high-tensile steel plate in the 4th and 5th Example. (a)乃至(d)は、第4実施例における溶接トーチ及びレーザ光の配置を示す図である。(A) thru | or (d) is a figure which shows arrangement | positioning of the welding torch and laser beam in 4th Example. 第4実施例の各配列において、良好な裏波ビードが形成されたギャップ範囲を示すグラフ図である。It is a graph which shows the gap range in which the favorable back bead was formed in each arrangement | sequence of 4th Example.

以下、本発明の実施の形態について詳細に説明する。上記の如く、従来の高張力鋼板のレーザ・アークハイブリッド溶接技術においては、母材の組成及び成果物としての溶接金属の組成を規定したものはあるものの、溶接材料の組成を規定したものはなく、溶接材料としては、母材となる鋼板の引張強度に合わせて選択されたものが使用されていることから、母材の希釈率が大きいレーザ・アークハイブリッド溶接において、溶接部の引張強度及び靱性等の機械的性能が高く得られない場合が多いという問題点がある。   Hereinafter, embodiments of the present invention will be described in detail. As described above, in the conventional laser-arc hybrid welding technology for high-strength steel sheets, there are those that specify the composition of the base metal and the composition of the weld metal as a product, but there are no specifications that specify the composition of the welding material. As the welding material, a material selected according to the tensile strength of the steel sheet used as the base material is used. Therefore, in laser-arc hybrid welding where the base material has a high dilution rate, the tensile strength and toughness of the welded part are used. There is a problem that mechanical performance such as the above cannot often be obtained.

本願発明者等はこの問題点を解決するために、特に、板厚が3.2乃至12mmの中厚の高張力鋼板について、種々実験検討を行った。そして、溶接金属に高い引張強度及び高い靱性を両立して得るために、高張力鋼板のTiの含有量を0.03質量%以下とし、レーザ・アークハイブリッド溶接で使用する溶接材料のTiの含有量を0.06質量%以下とし、更に、高張力鋼板及びアーク溶接材料の組成から夫々算出される炭素当量Ceqに着目した。即ち、C、Si、Mn、Ni、Cr、Mo及びVの含有量を、[C]、[Si]、[Mn]、[Ni]、[Cr]、[Mo]及び[V]としたときに、下記数式2により与えられる炭素当量を、高張力鋼板がCeq、アーク溶接材料がCeqであるとしたときに、アーク溶接材料の炭素当量Ceqが高張力鋼板の炭素当量Ceqに対して所定の関係を満足するように溶接材料を選択すれば、溶接部の引張強度及び靱性のいずれも高くすることができることを知見し、本願発明を見出した。 In order to solve this problem, the inventors of the present application conducted various experimental studies on a high-tensile steel plate having a thickness of 3.2 to 12 mm. In order to obtain both high tensile strength and high toughness in the weld metal, the Ti content of the high-tensile steel sheet is set to 0.03% by mass or less, and the Ti content of the welding material used in laser-arc hybrid welding is included. The amount was set to 0.06% by mass or less, and attention was paid to the carbon equivalent Ceq calculated from the compositions of the high-tensile steel plate and the arc welding material. That is, when the contents of C, Si, Mn, Ni, Cr, Mo and V are [C], [Si], [Mn], [Ni], [Cr], [Mo] and [V] in the carbon equivalent given by equation 2 below, high-tensile steel sheet Ceq X, when the arc welding is to be Ceq Y, the carbon equivalent Ceq Y arc welding materials to carbon equivalent Ceq X of high-tensile steel plate On the other hand, it has been found that if the welding material is selected so as to satisfy a predetermined relationship, both the tensile strength and toughness of the welded portion can be increased, and the present invention has been found.

Figure 2012166213
Figure 2012166213

図1は、本発明に係る高張力鋼板のレーザ・アークハイブリッド溶接において、鋼板及び溶接ワイヤの炭素当量の適正範囲を示すグラフ図である。図1中の太線で囲まれた領域が本発明の範囲である。即ち、本発明においては、アーク溶接材料の炭素当量Ceqは、0.28乃至0.55質量%であり、高張力鋼板の炭素当量Ceqに対して、下記数式3の関係式を満足する。 FIG. 1 is a graph showing an appropriate range of carbon equivalents of a steel plate and a welding wire in laser-arc hybrid welding of a high-strength steel plate according to the present invention. A region surrounded by a thick line in FIG. 1 is the scope of the present invention. That is, in the present invention, the carbon equivalent Ceq Y of the arc welding material is 0.28 to 0.55 mass%, and satisfies the relational expression of the following Equation 3 with respect to the carbon equivalent Ceq X of the high-tensile steel plate. .

Figure 2012166213
Figure 2012166213

アーク溶接材料の炭素当量Ceqは、溶接金属の機械的性能に影響する。本発明においては、アーク溶接材料の炭素当量Ceqを0.28乃至0.55質量%にすることにより、高い引張強度及び靱性を有する溶接金属が得られる。即ち、アーク溶接材料の炭素当量Ceqが0.28未満であると、高い引張強度を有する溶接金属が得られない。一方、アーク溶接材料の炭素当量Ceqが0.55を超えると、溶接金属の衝撃値が小さくなる(靱性が低下する)。 The carbon equivalent Ceq Y of the arc welding material affects the mechanical performance of the weld metal. In the present invention, a weld metal having high tensile strength and toughness can be obtained by setting the carbon equivalent Ceq Y of the arc welding material to 0.28 to 0.55 mass%. That is, if the carbon equivalent Ceq Y of the arc welding material is less than 0.28, a weld metal having high tensile strength cannot be obtained. On the other hand, when the carbon equivalent Ceq Y of the arc welding material exceeds 0.55, the impact value of the weld metal becomes small (toughness decreases).

そして、本発明においては、アーク溶接材料の炭素当量Ceqが高張力鋼板の炭素当量Ceqに対して、上記数式3を満足するような溶接材料を選択することにより、得られる溶接金属のミクロ組織は、微細なベイナイト組織となり、高い強度及び高い靱性を有するようになる。即ち、アーク溶接材料の炭素当量Ceqが−2.15×Ceq+1.4未満の領域は、図1に示す適正範囲よりも左の領域であり、溶接金属の靱性をある程度高めることはできるものの、母材の希釈率が高いために溶接金属の引張強度が不足する。一方、アーク溶接材料の炭素当量Ceqが−2.15×Ceq+1.6を超える領域は、図1に示す適正範囲よりも右側の領域であり、アーク溶接材料の炭素当量Ceqを母材と同程度まで高くすると、溶接金属がマルテンサイト主体のミクロ組織となり、靱性が確保できなくなる。 In the present invention, by selecting a welding material in which the carbon equivalent Ceq Y of the arc welding material satisfies the above Equation 3 with respect to the carbon equivalent Ceq X of the high-strength steel plate, The structure becomes a fine bainite structure and has high strength and high toughness. That is, the region where the carbon equivalent Ceq Y of the arc welding material is less than −2.15 × Ceq X +1.4 is a region on the left side of the appropriate range shown in FIG. 1, and the toughness of the weld metal can be increased to some extent. However, the tensile strength of the weld metal is insufficient due to the high dilution rate of the base metal. On the other hand, the region where the carbon equivalent Ceq Y of the arc welding material exceeds −2.15 × Ceq X +1.6 is the region on the right side of the appropriate range shown in FIG. 1, and the carbon equivalent Ceq Y of the arc welding material is the base. If it is made as high as that of the material, the weld metal becomes a microstructure mainly composed of martensite, and toughness cannot be secured.

また、本願発明者等は、上記のように選択した溶接材料により、板厚が3.2乃至12mmの780乃至980MPa級高張力鋼板をレーザ・アークハイブリッド溶接する際に、適切な溶接条件を選択すれば、良好なビード形状が得られ、溶接作業性も向上させられることを知見した。即ち、本発明においては、アーク溶接の溶接トーチを溶接方向に対する傾斜角度が前進角5°乃至後退角10°の範囲となるように配置し、溶接方向に対するレーザ光の傾斜角度を前進角15乃至30°の範囲となるようにレーザ光を照射し、レーザ光の照射位置よりも溶接方向前方に0乃至7mm離隔した位置に溶接トーチから溶接ワイヤを供給してアーク溶接をレーザ溶接に先行させて溶接することが好ましい。   In addition, the inventors of the present application select appropriate welding conditions when laser-arc hybrid welding of 780 to 980 MPa class high-tensile steel sheets having a thickness of 3.2 to 12 mm is performed using the welding material selected as described above. As a result, it was found that a good bead shape can be obtained and the welding workability can be improved. That is, in the present invention, the arc welding welding torch is arranged so that the inclination angle with respect to the welding direction is in the range of the advance angle 5 ° to the receding angle 10 °, and the inclination angle of the laser beam with respect to the welding direction is set to the advance angle 15 to. A laser beam is irradiated so as to be in a range of 30 °, and a welding wire is supplied from a welding torch at a position 0 to 7 mm away from the laser beam irradiation position in front of the welding direction so that arc welding precedes laser welding. It is preferable to weld.

レーザ・アークハイブリッド溶接において、溶接トーチの傾斜角度及びレーザ光の照射角度と、レーザ光の照射位置に対する溶接ワイヤの供給位置とを上記範囲に設定し、アーク溶接をレーザ溶接に先行させて溶接することにより、レーザ光の吸収率を高く確保しながら、傾斜角度が前進角となるように照射したレーザ光により、片面溶接における鋼板裏面への溶湯の送り込み時間が増大し、突き合わせて配置した鋼板同士のギャップが広い場合においても、良好な裏波ビードが得られる。一方、レーザ溶接をアーク溶接に先行させて溶接した場合には、レーザ光の吸収率が低下して、溶込み深さが減少し、鋼板裏面への溶湯の送り込みが不足し、良好な裏波ビードが得られるギャップの範囲が狭くなる。また、アーク溶接をレーザ溶接に先行させて溶接した場合においても、溶接トーチの後退角を大きくすると、レーザ光を垂直に近い照射角度で照射することにより、ある程度のギャップ範囲において良好な裏波ビードが得られるが、ビード形状が凸形状になりやすくなる。   In laser / arc hybrid welding, the welding torch tilt angle and laser beam irradiation angle, and the welding wire supply position with respect to the laser beam irradiation position are set within the above ranges, and arc welding is performed prior to laser welding. Thus, while ensuring a high absorption rate of the laser beam, the laser beam irradiated so that the inclination angle becomes a forward angle increases the feeding time of the molten metal to the back surface of the steel plate in single-sided welding, and the steel plates arranged to face each other Even when the gap is wide, a good back bead can be obtained. On the other hand, when laser welding is performed prior to arc welding, the absorption rate of laser light is reduced, the penetration depth is reduced, the molten metal is not fed to the back surface of the steel sheet, and a good back wave is obtained. The range of the gap where the bead is obtained becomes narrow. Even when arc welding is performed prior to laser welding, if the receding angle of the welding torch is increased, the laser beam is irradiated at an irradiation angle close to the vertical so that a good back bead can be obtained in a certain gap range. However, the bead shape tends to be a convex shape.

本発明においては、上記適正範囲の組成となるようなアーク溶接材料及び高張力鋼板を選択して溶接して得られた溶接金属の炭素当量Ceqは、0.44乃至0.51質量%となる。 In the present invention, the carbon equivalent Ceq Z of the weld metal obtained by selecting and welding an arc welding material and a high-tensile steel plate that have a composition in the above appropriate range is 0.44 to 0.51% by mass. Become.

そして、この溶接金属において、溶接金属の炭素当量Ceqが上記範囲となる場合に、靱性が若干劣化する場合がある。本願発明者等は、この問題点を解決すべく検討を行った。その結果、溶接金属中のTiの含有量が溶接金属の全質量あたり0.03質量%を超えた場合に、靱性が若干劣化することを知見した。即ち、780MPa級以上の強度レベルを有する溶接金属がTiを含有することにより、金属組織のマトリクス構造に格子歪みが付与され、また、チタンの複合酸化物の生成により、延性破面におけるディンプル深さが低下し、靱性が劣化するものと推測される。よって、本発明においては、溶接金属は、Tiの含有量が溶接金属の全質量あたり0.03質量%以下であれば、高い靱性を確保できる。このような溶接金属を得るために、本発明においては、高張力鋼板中のTiの含有量を0.03質量%以下と少なくし、溶接材料中のTiの含有量を0.06質量%以下と少なくしている。 And in this weld metal, when the carbon equivalent Ceq Z of a weld metal becomes the said range, toughness may deteriorate a little. The inventors of the present application have studied to solve this problem. As a result, it has been found that when the Ti content in the weld metal exceeds 0.03% by mass per total mass of the weld metal, the toughness is slightly deteriorated. That is, when the weld metal having a strength level of 780 MPa or higher contains Ti, lattice distortion is imparted to the matrix structure of the metal structure, and the dimple depth at the ductile fracture surface is caused by the formation of the composite oxide of titanium. It is estimated that the toughness deteriorates. Therefore, in the present invention, the weld metal can ensure high toughness if the Ti content is 0.03% by mass or less per total mass of the weld metal. In order to obtain such a weld metal, in the present invention, the content of Ti in the high-tensile steel sheet is reduced to 0.03% by mass or less, and the content of Ti in the welding material is 0.06% by mass or less. And less.

以下、本発明の範囲を満足する実施例の効果を比較例と対比して説明する。   The effects of the examples that satisfy the scope of the present invention will be described below in comparison with comparative examples.

(第1実施例)
本第1実施例は、種々の組成を有する高張力鋼板とアーク溶接材料とを種々組み合わせたレーザ・アークハイブリッド溶接の実施例である。異なる組成を有する780MPa級高張力鋼板(板厚:6mm、幅:100mm、長さ:240mm)を4種類と、異なる組成を有するアーク溶接ワイヤを11種類用意し、これらから1種類ずつを選択して、実施例及び比較例の高張力鋼板及びアーク溶接ワイヤの組み合わせとした。高張力鋼板の組成及び溶接ワイヤの組成を表1及び表2に示す。
(First embodiment)
The first embodiment is an embodiment of laser-arc hybrid welding in which various combinations of high-tensile steel plates having various compositions and arc welding materials are combined. Four types of 780 MPa class high-tensile steel plates (thickness: 6 mm, width: 100 mm, length: 240 mm) having different compositions and eleven types of arc welding wires having different compositions are prepared, and one of these is selected. Thus, a combination of the high-tensile steel plates and arc welding wires of the examples and comparative examples was used. Tables 1 and 2 show the composition of the high-tensile steel plate and the composition of the welding wire.

そして、図2に示すように、選択された2枚の高張力鋼板1を、ギャップ1mmで突き合わせて配置し、継手形状をI形開先とした。レーザには、出力5kWのファイバレーザを用い、レーザ光の焦点位置を母材表面±0mmとした。図3に示すように、溶接方向に対する溶接トーチ2の傾斜角度が前進角(又は後退角)0°となるように垂直に配置し、溶接方向に対するレーザ光3の照射角度を前進角25°に設定した。そして、レーザ光の照射位置から3mm離隔した位置に、溶接トーチ2から選択された溶接ワイヤ4を供給し、アーク溶接をレーザ溶接に先行させ、高張力鋼板の突き合わせ部を同一の溶接条件でレーザ・アークハイブリッド溶接した。レーザ溶接用の電源としては、市販のパルス電源を使用した。下記表3に各溶接条件を示す。   Then, as shown in FIG. 2, the two selected high-tensile steel plates 1 were arranged to face each other with a gap of 1 mm, and the joint shape was an I-shaped groove. As the laser, a fiber laser having an output of 5 kW was used, and the focal position of the laser beam was set to the base material surface ± 0 mm. As shown in FIG. 3, the welding torch 2 is arranged vertically so that the inclination angle of the welding torch 2 with respect to the welding direction becomes 0 ° (or receding angle), and the irradiation angle of the laser beam 3 with respect to the welding direction is set to 25 °. Set. Then, the welding wire 4 selected from the welding torch 2 is supplied to a position 3 mm away from the irradiation position of the laser beam, the arc welding is preceded by laser welding, and the butt portion of the high-tensile steel plate is lasered under the same welding conditions. -Arc hybrid welded. A commercially available pulse power source was used as the power source for laser welding. Table 3 below shows each welding condition.

Figure 2012166213
Figure 2012166213

Figure 2012166213
Figure 2012166213

Figure 2012166213
Figure 2012166213

実施例及び比較例の高張力鋼板及び溶接ワイヤの組み合わせを下記表4に示す。各実施例及び比較例について、レーザ・アークハイブリッド溶接により得られた溶接金属に対して、JIS Z3111:2005(溶着金属の引張及び衝撃試験方法)及びJIS Z2242:2005(金属材料のシャルピー衝撃試験方法)に規定されている引張試験及びシャルピー衝撃試験を行った。即ち、溶接金属から平行部:4mm、厚さ:1mmの全溶接金属引張試験片を採取し、常温で引張試験を行った。また、溶接継手から、厚さ5mm、幅10mm、長さ55mmのハーフサイズシャルピー衝撃試験片を採取し、深さ2mmの45度V字溝(Vノッチ)を加工し、−20℃の温度でシャルピー衝撃試験を行った。各溶接金属からは、切粉状の試料を採取し、その化学成分を分析した。各実施例及び比較例の試験片の炭素当量Ceqを表5に示す。また、各実施例及び比較例の溶接ワイヤ及び鋼板の組成から算出された炭素当量の関係を図4に示す。 Table 4 below shows combinations of high-tensile steel plates and welding wires in Examples and Comparative Examples. About each Example and a comparative example, JIS Z3111: 2005 (the tensile and impact test method of a welding metal) and JIS Z2242: 2005 (the Charpy impact test method of a metal material) with respect to the weld metal obtained by laser arc hybrid welding The tensile test and Charpy impact test specified in) were conducted. That is, all weld metal tensile test pieces having a parallel part of 4 mm and a thickness of 1 mm were collected from the weld metal and subjected to a tensile test at room temperature. In addition, a half-size Charpy impact test piece having a thickness of 5 mm, a width of 10 mm, and a length of 55 mm was taken from the welded joint, and a 45-degree V-shaped groove (V notch) having a depth of 2 mm was processed at a temperature of −20 ° C. A Charpy impact test was performed. A chip sample was taken from each weld metal and analyzed for its chemical composition. Table 5 shows the carbon equivalent Ceq Z of the test pieces of each Example and Comparative Example. Moreover, the relationship of the carbon equivalent calculated from the composition of the welding wire and steel plate of each Example and a comparative example is shown in FIG.

そして、各実施例及び比較例の溶接金属について、その機械的性能を評価した。引張強さは、780MPa以上を良好(○)、780MPa未満を不良(×)とし、シャルピー衝撃試験結果は、−20℃における吸収エネルギが32J以上を極めて良好(○)、27J以上32J未満を良好(△)、27J未満を不良(×)と評価した。各評価結果を表5にあわせて示す。   And the mechanical performance was evaluated about the weld metal of each Example and the comparative example. Tensile strength is good (◯) when 780 MPa or higher, poor (×) when lower than 780 MPa, and Charpy impact test results show that the absorbed energy at −20 ° C. is extremely good (◯), and good when it is 27 J or more and less than 32 J. (△), less than 27J was evaluated as defective (×). Each evaluation result is shown in Table 5 together.

Figure 2012166213
Figure 2012166213

Figure 2012166213
Figure 2012166213

表5及び図4に示すように、実施例No.1乃至12は、溶接ワイヤの炭素当量Ceqが本発明の範囲を満足し、溶接ワイヤの炭素当量Ceqが高張力鋼板の炭素当量Ceqに対して所定の範囲内にあるので、高い引張強度及び高い靱性を有する溶接金属が得られた。 As shown in Table 5 and FIG. 1 to 12, the carbon equivalent Ceq Y of the welding wire satisfies the range of the present invention, and the carbon equivalent Ceq Y of the welding wire is within a predetermined range with respect to the carbon equivalent Ceq X of the high-tensile steel plate. A weld metal having strength and high toughness was obtained.

比較例No.13乃至26は、高張力鋼板と溶接ワイヤとの組み合わせが本発明の範囲を満足しなかったので、溶接金属の引張強度又は靱性が低下した。このうち、比較例No.13乃至16,No.18乃至20,No.24乃至26は、得られた溶接金属の炭素当量Ceqが本発明の請求項3の範囲の下限値未満であったため、溶接金属の引張強度を高くすることができなかった。また、比較例No.17,No.21乃至23は、得られた溶接金属の炭素当量Ceqが本発明の請求項3の範囲を超えたため、溶接金属の靱性を高くすることができなかった。 Comparative Example No. In Nos. 13 to 26, since the combination of the high-tensile steel plate and the welding wire did not satisfy the scope of the present invention, the tensile strength or toughness of the weld metal was lowered. Of these, Comparative Example No. 13 to 16, no. 18-20, no. In Nos. 24 to 26, since the carbon equivalent Ceq Z of the obtained weld metal was less than the lower limit value of the range of claim 3 of the present invention, the tensile strength of the weld metal could not be increased. Comparative Example No. 17, no. In Nos. 21 to 23, since the carbon equivalent Ceq Z of the obtained weld metal exceeded the range of claim 3 of the present invention, the toughness of the weld metal could not be increased.

なお、比較例No.16は、溶接ワイヤの炭素当量Ceqが鋼板の炭素当量Ceqから算出された所定範囲の下限値未満であり、本発明の範囲を満足しない溶接方法により得られた溶接金属であり、溶接金属の引張強度が低下した。 Comparative Example No. No. 16 is a weld metal obtained by a welding method in which the carbon equivalent Ceq Y of the welding wire is less than the lower limit of the predetermined range calculated from the carbon equivalent Ceq X of the steel sheet, The tensile strength of was reduced.

(第2実施例)
次に、第2実施例について説明する。本第2実施例においては、1種類の高張力鋼板について溶接ワイヤを種々変更し、レーザ・アークハイブリッド溶接によって得られた溶接金属の機械的特性を検討した。即ち、下記表6に示す組成を有する高張力鋼板に対して、表2に示すWA乃至WFの溶接ワイヤを使用し、レーザ・アークハイブリッド溶接を行った。各実施例及び比較例の鋼板及び溶接ワイヤの組み合わせと、これにより得られた溶接金属の組成を表7に示す。また、各実施例及び比較例の溶接ワイヤ及び鋼板の炭素当量の関係を図5に示す。そして、各実施例及び比較例の鋼板及び溶接ワイヤの組み合わせについて、第1実施例と同様の引張試験及びシャルピー衝撃試験を行い、第1実施例と同様の判定基準により溶接金属の引張強度及び靱性を評価した。引張試験及びシャルピー衝撃試験による評価結果を表8に示す。
(Second embodiment)
Next, a second embodiment will be described. In the second example, various welding wires were changed for one type of high-tensile steel plate, and the mechanical properties of the weld metal obtained by laser-arc hybrid welding were examined. That is, laser-arc hybrid welding was performed on high-tensile steel plates having the compositions shown in Table 6 below using WA to WF welding wires shown in Table 2. Table 7 shows the combinations of the steel plates and welding wires of each Example and Comparative Example, and the composition of the weld metal obtained thereby. Moreover, the relationship of the carbon equivalent of the welding wire of each Example and a comparative example and a steel plate is shown in FIG. And about the combination of the steel plate and welding wire of each Example and a comparative example, the tension test and Charpy impact test similar to 1st Example are performed, and the tensile strength and toughness of a weld metal are performed according to the same judgment criteria as 1st Example. Evaluated. Table 8 shows the evaluation results of the tensile test and the Charpy impact test.

Figure 2012166213
Figure 2012166213

Figure 2012166213
Figure 2012166213

Figure 2012166213
Figure 2012166213

表8及び図5に示すように、実施例No.27乃至29は、溶接ワイヤの炭素当量Ceqが本発明の範囲を満足し、溶接ワイヤの炭素当量Ceqが、高張力鋼板の炭素当量Ceqに対して所定の範囲を満足するので、引張強度及び靱性の双方が高い溶接金属が得られた。これにより、本発明においては、溶接対象の高張力鋼板の組成から最適な溶接ワイヤを選択して溶接すれば、溶接金属に高い引張強度及び靱性が得られることが分かった。 As shown in Table 8 and FIG. In Nos. 27 to 29, the carbon equivalent Ceq Y of the welding wire satisfies the range of the present invention, and the carbon equivalent Ceq Y of the welding wire satisfies the predetermined range with respect to the carbon equivalent Ceq X of the high-tensile steel plate. A weld metal having both high strength and toughness was obtained. Thereby, in this invention, if the optimal welding wire was selected and welded from the composition of the high-tensile steel plate of welding object, it turned out that high tensile strength and toughness are obtained to a weld metal.

これに対して、比較例No.30乃至33は、溶接ワイヤの炭素当量Ceqが大きく、レーザ・アークハイブリッド溶接により得られた溶接金属の靱性が劣化した。 In contrast, Comparative Example No. In Nos. 30 to 33, the carbon equivalent Ceq Y of the welding wire was large, and the toughness of the weld metal obtained by laser-arc hybrid welding deteriorated.

(第3実施例)
次に、第3実施例について説明する。本第3実施例においては、板厚及び組成が異なる3種類の高張力鋼板PF乃至PHの夫々に対して、表2に示すWA、WC、WFの溶接ワイヤを使用し、レーザ・アークハイブリッド溶接を行った。各鋼板PF乃至PHの板厚及び組成を表9に示す。本実施例においては、高張力鋼板の板厚により、レーザ・アークハイブリッド溶接の溶接条件を変更した。表10に各鋼板の溶接条件を示す。また、継手形状はいずれの板厚の鋼板においてもI形開先とし、ルートギャップは、板厚3.2mmのものを0mm、板厚9mm及び12mmのものを1mmとした。各実施例及び比較例の鋼板及び溶接ワイヤの組み合わせと、これにより得られた溶接金属の組成を表11に示す。また、各実施例及び比較例の溶接ワイヤ及び鋼板の炭素当量の関係を図6に示す。
(Third embodiment)
Next, a third embodiment will be described. In this third embodiment, WA, WC, and WF welding wires shown in Table 2 are used for each of three types of high-strength steel plates PF to PH having different thicknesses and compositions, and laser-arc hybrid welding is performed. Went. Table 9 shows the thickness and composition of each steel plate PF to PH. In this example, the welding conditions for laser-arc hybrid welding were changed depending on the thickness of the high-tensile steel plate. Table 10 shows the welding conditions for each steel plate. In addition, the joint shape was an I-shaped groove in any steel plate thickness, and the root gap was set to 0 mm when the plate thickness was 3.2 mm, and 1 mm when the plate thickness was 9 mm and 12 mm. Table 11 shows the combinations of the steel plates and welding wires of each Example and Comparative Example, and the composition of the weld metal obtained thereby. Moreover, the relationship of the carbon equivalent of the welding wire of each Example and a comparative example and a steel plate is shown in FIG.

Figure 2012166213
Figure 2012166213

Figure 2012166213
Figure 2012166213

Figure 2012166213
Figure 2012166213

本実施例においては、引張試験及びシャルピー衝撃試験に使用する試験片の寸法は、板厚により変更した。即ち、引張試験においては、板厚3.2mmの鋼板同士を溶接した溶接金属から平行部:3mm、厚さ:1mmの全溶接金属引張試験片を採取し、板厚9mmの鋼板同士を溶接した溶接金属から平行部:7.5mm、厚さ:1mmの全溶接金属引張試験片を採取し、板厚12mmの鋼板同士を溶接した溶接金属から平行部:10mm、厚さ:1mmの全溶接金属引張試験片を採取した。また、シャルピー衝撃試験片については、板厚3.2mmの鋼板同士の溶接継手部からは、厚さ2.5mm、幅10mm、長さ55mm(1/4サイズ)試験片を採取し、板厚9mmの鋼板同士の溶接継手部からは、厚さ7.5mm、幅10mm、長さ55mm(3/4サイズ)試験片を採取し、板厚12mmの鋼板同士の溶接継手部からは、厚さ2.5mm、幅10mm、長さ55mm(フルサイズ)試験片を採取した。   In the present Example, the dimension of the test piece used for a tension test and a Charpy impact test was changed with plate | board thickness. That is, in the tensile test, all weld metal tensile test pieces having a parallel portion of 3 mm and a thickness of 1 mm were collected from the weld metal obtained by welding steel plates having a thickness of 3.2 mm, and the steel plates having a thickness of 9 mm were welded to each other. All weld metal tensile specimens with parallel part: 7.5 mm and thickness: 1 mm were collected from the weld metal and welded with welded steel plates with a thickness of 12 mm. Parallel part: 10 mm and thickness: 1 mm. Tensile specimens were collected. As for the Charpy impact test piece, a test piece having a thickness of 2.5 mm, a width of 10 mm, and a length of 55 mm (1/4 size) was sampled from a welded joint between 3.2 mm thick steel plates. From a welded joint between 9 mm steel plates, a specimen having a thickness of 7.5 mm, a width of 10 mm, and a length of 55 mm (3/4 size) was sampled. A test piece of 2.5 mm, a width of 10 mm, and a length of 55 mm (full size) was collected.

そして、各実施例及び比較例の高張力鋼板及び溶接ワイヤの組み合わせについて、第1実施例と同様の引張試験及びシャルピー衝撃試験を行った。本実施例においては、溶接金属の引張強度は、第1及び第2実施例と同様の判定基準により評価し、シャルピー衝撃試験による靱性の評価については、板厚により評価基準を分けた。即ち、板厚が3.2mm鋼板同士の溶接継手部から採取した試験片については、−20℃における吸収エネルギが14J以上である場合を良好とし、板厚が9mm鋼板同士の溶接継手部から採取した試験片については、−20℃における吸収エネルギが40J以上である場合を良好とし、板厚が12mm鋼板同士の溶接継手部から採取した試験片については、−20℃における吸収エネルギが54J以上である場合を良好とした。各評価結果を表12に示す。   And about the combination of the high-tensile steel plate and welding wire of each Example and a comparative example, the tension test and Charpy impact test similar to 1st Example were done. In this example, the tensile strength of the weld metal was evaluated based on the same criteria as in the first and second examples, and the toughness evaluation by the Charpy impact test was divided according to the plate thickness. That is, about the test piece extract | collected from the welded joint part of 3.2 mm steel plates, the case where the absorbed energy in -20 degreeC is 14J or more is good, and it collects from the welded joint part of 9 mm steel plates. For the test piece, the case where the absorbed energy at −20 ° C. is 40 J or more is good, and for the test piece taken from the welded joint portion of the steel plates having a thickness of 12 mm, the absorbed energy at −20 ° C. is 54 J or more. Some cases were considered good. Table 12 shows the evaluation results.

Figure 2012166213
Figure 2012166213

表12及び図6に示すように、実施例No.33乃至37は、溶接ワイヤの炭素当量Ceqが本発明の範囲を満足し、溶接ワイヤの炭素当量Ceqが、高張力鋼板の炭素当量Ceqに対して所定の範囲を満足するので、引張強度及び靱性のいずれも高い溶接金属が得られた。これにより、本発明は、高張力鋼板の板厚によらず、十分な効果を奏することが分かった。 As shown in Table 12 and FIG. In Nos. 33 to 37, the carbon equivalent Ceq Y of the welding wire satisfies the range of the present invention, and the carbon equivalent Ceq Y of the welding wire satisfies the predetermined range with respect to the carbon equivalent Ceq X of the high-tensile steel plate. A weld metal having high strength and toughness was obtained. Thereby, it turned out that this invention has sufficient effect irrespective of the board thickness of a high-tensile steel plate.

これに対して、比較例No.38、No.39は、溶接ワイヤの炭素当量Ceqが小さく、引張強度が低下し、比較例No.40は、溶接ワイヤの炭素当量Ceqが大きく、靱性が低下した。なお、比較例No.41は、溶接ワイヤの炭素当量Ceqが鋼板の炭素当量Ceqから算出された所定範囲の下限値未満であり、本発明の範囲を満足しない溶接方法により得られた溶接金属であったため、溶接金属の引張強度が低下した。 In contrast, Comparative Example No. 38, no. No. 39 has a small carbon equivalent Ceq Y of the welding wire, and the tensile strength is reduced. In No. 40, the carbon equivalent Ceq Y of the welding wire was large, and the toughness was lowered. Comparative Example No. No. 41 is a weld metal obtained by a welding method in which the carbon equivalent Ceq Y of the welding wire is less than the lower limit of the predetermined range calculated from the carbon equivalent Ceq X of the steel sheet. The tensile strength of the metal decreased.

(第4実施例)
次に、本発明の第4実施例について説明する。本第4実施例においては、本発明の範囲を満足するように高張力鋼板と溶接ワイヤとを組み合わせて選択し、溶接トーチ及びレーザ光の配置を変更して溶接部の耐ギャップ性を比較した。即ち、継手部は、I形突き合わせ継手とし、溶接対象の高張力鋼板1として、図7に示すように突き合わせ部のギャップが0mmから5mmまで連続的に変化するテーパギャップ試験片を使用し、裏波ビードが良好に形成されるギャップの範囲を調査した。
(Fourth embodiment)
Next, a fourth embodiment of the present invention will be described. In the fourth embodiment, a combination of a high-tensile steel plate and a welding wire is selected so as to satisfy the scope of the present invention, and the arrangement of the welding torch and laser beam is changed to compare the gap resistance of the welded portion. . That is, the joint portion is an I-type butt joint, and as the high-tensile steel plate 1 to be welded, a taper gap test piece in which the gap of the butt portion continuously changes from 0 mm to 5 mm as shown in FIG. The range of gaps in which wave beads were well formed was investigated.

溶接トーチ及びレーザ光の配置は、図8に示すように、配列Aをレーザ溶接先行(垂直方向)、アーク溶接後行(前進角25°)とし、配列Bをアーク溶接先行(後退角25°)、レーザ溶接後行(垂直方向)とし、配列Cをレーザ溶接先行(後退角25°)、アーク溶接後行(垂直方向)とし、配列Dをアーク溶接先行(垂直方向)、レーザ溶接後行(前進角25°)とした。溶接条件は、第1実施例の表3に示す条件とし、レーザ光の照射位置と溶接ワイヤの供給位置との間は3mm離隔させた。   As shown in FIG. 8, the arrangement of the welding torch and the laser beam is as follows. Arrangement A is laser welding preceding (vertical direction), arc welding is followed (advance angle 25 °), and arrangement B is arc welding preceding (receding angle 25 °). ), Laser welding after (vertical direction), array C as laser welding preceding (retraction angle 25 °), arc welding after (vertical direction), array D as arc welding preceding (vertical direction), laser welding after (Advance angle 25 °). The welding conditions were as shown in Table 3 of the first example, and the laser beam irradiation position and the welding wire supply position were separated by 3 mm.

各配列について、良好な裏波ビードが形成されたギャップ範囲を図9に示す。図9に示すように、配列Aにおいては、ギャップが0乃至2.1mmの範囲で良好な裏波ビードが形成された。配列Bにおいては、ギャップが0乃至2.7mmの範囲で良好な裏波ビードが形成された。配列Cにおいては、ギャップが2.9mm以下の範囲で裏波ビードが良好に形成されたが、溶け込み深さ不足により、ギャップが0mmの地点にて貫通ビードが得られなかった。なお、図9に示す配列Cにおいて、ギャップが0mmの地点におけるグラフ図の隙間は、貫通ビードが得られなかったことを示している。配列Dにおいては、ギャップが0乃至3mmの範囲で良好な裏波ビードが形成され、最も良好な耐ギャップ性を示した。   FIG. 9 shows the gap range where a good back bead was formed for each array. As shown in FIG. 9, in array A, a good back bead was formed in the gap range of 0 to 2.1 mm. In the array B, good back bead was formed in the gap range of 0 to 2.7 mm. In arrangement C, the back bead was formed well in the range where the gap was 2.9 mm or less. However, the penetration bead was not obtained at the point where the gap was 0 mm due to insufficient penetration depth. In the array C shown in FIG. 9, the gap in the graph at the point where the gap is 0 mm indicates that no through bead was obtained. In array D, a good back bead was formed in the gap range of 0 to 3 mm, and the best gap resistance was exhibited.

(第5実施例)
次に、本発明の第5実施例について説明する。本第5実施例においては、第4実施例において最も良好な耐ギャップ性を示した配列Dについて、溶接トーチの傾斜角度及びレーザ光の照射角度と、レーザ光の照射位置から溶接ワイヤの供給位置までの距離とを種々変更し、夫々、耐ギャップ性を調査することにより、最適な溶接条件を検討した。使用した試験片及び溶接条件は、第4実施例と同一である。各設定条件を表13に示す。そして、ギャップが0乃至2.7mmを超える範囲で良好な裏波ビードが形成された場合を合格(○)と評価した。評価結果を表13にあわせて示す。
(5th Example)
Next, a fifth embodiment of the present invention will be described. In the fifth embodiment, with respect to the array D which showed the best gap resistance in the fourth embodiment, the welding torch tilt angle and the laser beam irradiation angle, and the laser beam irradiation position to the welding wire supply position The optimum welding conditions were examined by variously changing the distance to each other and investigating the gap resistance. The test pieces and welding conditions used were the same as those in the fourth example. Table 13 shows each setting condition. And the case where the favorable back bead was formed in the range whose gap exceeds 0 thru | or 2.7 mm was evaluated as the pass ((circle)). The evaluation results are shown in Table 13 together.

Figure 2012166213
Figure 2012166213

表13に示すように、溶接ワイヤとレーザ光の照射位置との間の距離を固定した場合においては、溶接トーチの傾斜角度は前進角−5°から後退角10度の範囲としたときに、良好な裏波ビードが形成されるギャップ範囲が広く、レーザ光は前進角15乃至30°としたときに広いギャップ範囲で良好な裏波ビードが形成された。   As shown in Table 13, when the distance between the welding wire and the irradiation position of the laser beam is fixed, when the inclination angle of the welding torch is in the range of the advance angle -5 ° to the receding angle 10 °, The gap range in which a good back bead is formed is wide, and when the laser beam has a forward angle of 15 to 30 °, a good back bead is formed in a wide gap range.

また、溶接トーチの傾斜角度及びレーザ光の照射角度を上記範囲とした場合においては、溶接ワイヤの供給位置とレーザ光の照射位置との間のギャップを0乃至7mmとしたときに、広いギャップ範囲で良好な裏波ビードが形成された。   When the welding torch tilt angle and the laser beam irradiation angle are in the above ranges, a wide gap range is obtained when the gap between the welding wire supply position and the laser beam irradiation position is 0 to 7 mm. A good back bead was formed.

よって、本発明においては、アーク溶接の溶接トーチを溶接方向に対する傾斜角度が前進角5°乃至後退角10°の範囲となるように配置し、溶接方向に対するレーザ光の傾斜角度を前進角15乃至30°の範囲となるようにレーザ光を照射し、レーザ光の照射位置よりも溶接方向前方に0乃至7mm離隔した位置に溶接トーチから溶接ワイヤを供給してアーク溶接をレーザ溶接に先行させて溶接することが好ましい。   Therefore, in the present invention, the arc welding welding torch is arranged so that the inclination angle with respect to the welding direction is in the range of the advance angle 5 ° to the receding angle 10 °, and the inclination angle of the laser beam with respect to the welding direction is set to the advance angle 15 to. A laser beam is irradiated so as to be in a range of 30 °, and a welding wire is supplied from a welding torch at a position 0 to 7 mm away from the laser beam irradiation position in front of the welding direction so that arc welding precedes laser welding. It is preferable to weld.

1:高張力鋼板、2:溶接トーチ、3:レーザ光、4:溶接ワイヤ 1: high-tensile steel plate, 2: welding torch, 3: laser beam, 4: welding wire

Claims (3)

板厚が3.2乃至12mmの780乃至980MPa級高張力鋼板をレーザ・アークハイブリッド溶接で突き合わせ溶接する高張力鋼板のレーザ・アークハイブリッド溶接方法において、
前記高張力鋼板のTiの含有量が0.03質量%以下であり、前記レーザ・アークハイブリッド溶接で使用する溶接材料のTiの含有量が0.06質量%以下であり、
C、Si、Mn、Ni、Cr、Mo及びVの含有量を、[C]、[Si]、[Mn]、[Ni]、[Cr]、[Mo]及び[V]として、下記数式により与えられる炭素当量を、高張力鋼板がCeq、アーク溶接材料がCeqであるとしたとき、前記アーク溶接材料の炭素当量Ceqは、0.28乃至0.55質量%であり、このCeqと、前記高張力鋼板の炭素当量Ceqとが、−2.15×Ceq+1.4≦Ceq≦−2.15×Ceq+1.6の関係式を満足するように、高張力鋼板とアーク溶接材料とを組み合わせて溶接することを特徴とする高張力鋼板のレーザ・アークハイブリッド溶接方法。
Figure 2012166213
In the laser-arc hybrid welding method for high-tensile steel plates, in which a 780-980 MPa class high-tensile steel plate having a thickness of 3.2-12 mm is butt welded by laser-arc hybrid welding,
The Ti content of the high-tensile steel plate is 0.03% by mass or less, and the Ti content of the welding material used in the laser-arc hybrid welding is 0.06% by mass or less,
The contents of C, Si, Mn, Ni, Cr, Mo, and V are set as [C], [Si], [Mn], [Ni], [Cr], [Mo], and [V] according to the following formula. Assuming that the given carbon equivalent is Ceq X for the high-tensile steel plate and Ceq Y for the arc welding material, the carbon equivalent Ceq Y of the arc welding material is 0.28 to 0.55% by mass. The high tension is set so that Y and the carbon equivalent Ceq X of the high-tensile steel plate satisfy the relational expression of −2.15 × Ceq X + 1.4 ≦ Ceq Y ≦ −2.15 × Ceq X +1.6. A laser-arc hybrid welding method for high-strength steel sheets, characterized by welding by combining a steel sheet and an arc welding material.
Figure 2012166213
溶接方向に対する傾斜角度が前進角5°乃至後退角10°の範囲となるように溶接トーチを配置し、溶接方向に対する傾斜角度が前進角15乃至30°の範囲となるようにレーザ光を照射し、レーザ光の照射位置よりも溶接方向前方に0乃至7mm離隔した位置に前記溶接トーチから溶接ワイヤを供給してアーク溶接をレーザ溶接に先行させて溶接することを特徴とする請求項1に記載の高張力鋼板のレーザ・アークハイブリッド溶接方法。 The welding torch is arranged so that the inclination angle with respect to the welding direction is in the range of the advance angle of 5 ° to the receding angle of 10 °, and the laser beam is irradiated so that the inclination angle with respect to the welding direction is in the range of the advance angle of 15 to 30 °. The welding wire is supplied from the welding torch at a position separated by 0 to 7 mm forward of the welding direction from the laser beam irradiation position, and arc welding is performed prior to laser welding for welding. Laser-arc hybrid welding method for high-strength steel sheets. 前記請求項1又は2に記載の高張力鋼板のレーザ・アークハイブリッド溶接方法によって得られる高張力鋼板溶接金属であって、
溶接金属の炭素当量Ceqが0.44乃至0.51質量%であり、Tiの含有量が溶接金属の全質量あたり0.03質量%以下であることを特徴とする高張力鋼板溶接金属。
A high-strength steel plate weld metal obtained by the laser-arc hybrid welding method for a high-strength steel plate according to claim 1 or 2,
A high-strength steel sheet weld metal, wherein the weld metal has a carbon equivalent Ceq Z of 0.44 to 0.51 mass% and a Ti content of 0.03 mass% or less per total mass of the weld metal.
JP2011027881A 2011-02-10 2011-02-10 Laser-arc hybrid welding method for high-strength steel sheet and high-strength steel sheet weld metal obtained thereby Active JP5693279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011027881A JP5693279B2 (en) 2011-02-10 2011-02-10 Laser-arc hybrid welding method for high-strength steel sheet and high-strength steel sheet weld metal obtained thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011027881A JP5693279B2 (en) 2011-02-10 2011-02-10 Laser-arc hybrid welding method for high-strength steel sheet and high-strength steel sheet weld metal obtained thereby

Publications (2)

Publication Number Publication Date
JP2012166213A true JP2012166213A (en) 2012-09-06
JP5693279B2 JP5693279B2 (en) 2015-04-01

Family

ID=46970902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011027881A Active JP5693279B2 (en) 2011-02-10 2011-02-10 Laser-arc hybrid welding method for high-strength steel sheet and high-strength steel sheet weld metal obtained thereby

Country Status (1)

Country Link
JP (1) JP5693279B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016030289A (en) * 2014-07-30 2016-03-07 三菱重工業株式会社 Welding device and welding method
JP2017154156A (en) * 2016-03-02 2017-09-07 新日鐵住金株式会社 Narrow groove weld joint using laser arc hybrid weld method and manufacturing method for the same
JP2017185522A (en) * 2016-04-05 2017-10-12 新日鐵住金株式会社 WELDED JOINT BY LASER ARC HYBRID WELDING METHOD USING Ni-BASED ALLOY WELDING MATERIAL AND METHOD OF MANUFACTURING THE SAME
CN109128564A (en) * 2018-10-10 2019-01-04 滁州岳众汽车零部件有限公司 A kind of welding method for auto parts and components production
JP2020044565A (en) * 2018-09-20 2020-03-26 日本製鉄株式会社 Hybrid welding method and weld joint manufacturing method
JP7279870B1 (en) * 2021-11-29 2023-05-23 Jfeスチール株式会社 Manufacturing method of laser-arc hybrid welded joint
WO2023095477A1 (en) * 2021-11-29 2023-06-01 Jfeスチール株式会社 Method for producing laser/arc hybrid welded joint

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105458509B (en) * 2015-12-15 2017-09-01 中国科学院力学研究所 Aluminium alloy electric arc padding laser rearmounted complex welding method and welder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003220481A (en) * 2002-01-23 2003-08-05 Kobe Steel Ltd Method and welding wire for arc-laser composite welding
JP2003245786A (en) * 2002-02-26 2003-09-02 Daihen Corp Ac mig pulse arc combined with laser welding method
JP2006299398A (en) * 2005-03-22 2006-11-02 Nippon Steel Corp Method for producing high strength steel sheet having not lower than 760 mpa tensile strength and excellent strain-aging characteristic and method for producing high strength steel tube using it
JP2010228000A (en) * 2009-03-02 2010-10-14 Nippon Steel Corp Laser-arc hybrid welding method which attains long fatigue life
JP2012115839A (en) * 2010-11-29 2012-06-21 Jfe Steel Corp Laser beam-welded joint excellent in ductility of weld metal portion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003220481A (en) * 2002-01-23 2003-08-05 Kobe Steel Ltd Method and welding wire for arc-laser composite welding
JP2003245786A (en) * 2002-02-26 2003-09-02 Daihen Corp Ac mig pulse arc combined with laser welding method
JP2006299398A (en) * 2005-03-22 2006-11-02 Nippon Steel Corp Method for producing high strength steel sheet having not lower than 760 mpa tensile strength and excellent strain-aging characteristic and method for producing high strength steel tube using it
JP2010228000A (en) * 2009-03-02 2010-10-14 Nippon Steel Corp Laser-arc hybrid welding method which attains long fatigue life
JP2012115839A (en) * 2010-11-29 2012-06-21 Jfe Steel Corp Laser beam-welded joint excellent in ductility of weld metal portion

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016030289A (en) * 2014-07-30 2016-03-07 三菱重工業株式会社 Welding device and welding method
JP2017154156A (en) * 2016-03-02 2017-09-07 新日鐵住金株式会社 Narrow groove weld joint using laser arc hybrid weld method and manufacturing method for the same
JP2017185522A (en) * 2016-04-05 2017-10-12 新日鐵住金株式会社 WELDED JOINT BY LASER ARC HYBRID WELDING METHOD USING Ni-BASED ALLOY WELDING MATERIAL AND METHOD OF MANUFACTURING THE SAME
JP2020044565A (en) * 2018-09-20 2020-03-26 日本製鉄株式会社 Hybrid welding method and weld joint manufacturing method
CN109128564A (en) * 2018-10-10 2019-01-04 滁州岳众汽车零部件有限公司 A kind of welding method for auto parts and components production
JP7279870B1 (en) * 2021-11-29 2023-05-23 Jfeスチール株式会社 Manufacturing method of laser-arc hybrid welded joint
WO2023095477A1 (en) * 2021-11-29 2023-06-01 Jfeスチール株式会社 Method for producing laser/arc hybrid welded joint

Also Published As

Publication number Publication date
JP5693279B2 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
JP5693279B2 (en) Laser-arc hybrid welding method for high-strength steel sheet and high-strength steel sheet weld metal obtained thereby
JP4811166B2 (en) Manufacturing method of super high strength welded steel pipe exceeding tensile strength 800MPa
WO2011155620A1 (en) Ultra high-strength welded joint and method for producing same
JP4528089B2 (en) Large heat input butt welded joints for ship hulls with brittle fracture resistance
DOMEX et al. Laser welding of the new grade of advanced high-strength steel Domex 960
KR20120002935A (en) Fillet weld joint and method for gas shielded arc welding
TWI725454B (en) Steel sheet, tailor welded blank, hot press formed product, steel pipe, hollow quenched product, and manufacturing method of steel sheet
Jia et al. Microstructure and mechanical properties of fiber laser welded joints of ultrahigh-strength steel 22MnB5 and dual-phase steels
WO2013051249A1 (en) Welded steel pipe with excellent welding heat-affected zone toughness, and process for producing same
Tingey et al. Effect of tool centreline deviation on the mechanical properties of friction stir welded DH36 steel
CN110076430B (en) Gas shielded welding method for 1000MPa steel plate with thickness of more than or equal to 40mm
Guo et al. Laser welding of high strength steels (S960 and S700) with medium thickness
JP6201803B2 (en) Submerged arc welds with excellent low temperature toughness
JP6635235B1 (en) Lap laser welded joint, manufacturing method of lap laser welded joint, and skeletal parts for automobile
JP2007021532A (en) Electron beam welded joint having excellent resistance to generation of brittle fracture
JP6638529B2 (en) Weld joint by laser-arc hybrid welding method using Ni-base alloy-based welding material and method for producing the same
JP2005125348A (en) Large heat input butt welded joint superior in brittle fracture characteristic resistance
Chen et al. Metallurgical and Mechanical Properties of Fibrous Laser Welded Thick Q890 High Strength Low Alloy Steel with Varying Weld Geometries
JP2019188407A (en) Laser welded joint and method for production thereof
Hamad et al. Effect of GMAW procedure on the heat-affected zone (HAZ) toughness of X80 (grade 550) linepipe
US11638969B2 (en) Laser-welded lap joint, method for producing laser-welded lap joint, and automobile frame component
JP6601598B1 (en) Steel plate, tailored blank, method for producing hot press-formed product, steel pipe, and method for producing hollow quenched product
Lei et al. Microstructure and mechanical properties of high strength TMCP steel hybrid disk laser-MAG welded joint
Hayat et al. Microstructural and mechanical properties of dual-phase steels welded using GMAW with solid and flux-cored welding wires
McGaughy et al. Characterization of Weld Properties for Arctic Service

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150203

R150 Certificate of patent or registration of utility model

Ref document number: 5693279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250