JP2012164604A - Method for manufacturing metallic separator material for fuel cell, and metallic separator material for fuel cell - Google Patents

Method for manufacturing metallic separator material for fuel cell, and metallic separator material for fuel cell Download PDF

Info

Publication number
JP2012164604A
JP2012164604A JP2011026026A JP2011026026A JP2012164604A JP 2012164604 A JP2012164604 A JP 2012164604A JP 2011026026 A JP2011026026 A JP 2011026026A JP 2011026026 A JP2011026026 A JP 2011026026A JP 2012164604 A JP2012164604 A JP 2012164604A
Authority
JP
Japan
Prior art keywords
fuel cell
separator material
plating
coating layer
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011026026A
Other languages
Japanese (ja)
Other versions
JP5535102B2 (en
Inventor
Atsushi Kodama
篤志 児玉
Tateo Hisada
建男 久田
Keita Kusaka
恵太 日下
Masayoshi Futo
正義 布藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
JX Nippon Mining and Metals Corp
Original Assignee
Daido Steel Co Ltd
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, JX Nippon Mining and Metals Corp filed Critical Daido Steel Co Ltd
Priority to JP2011026026A priority Critical patent/JP5535102B2/en
Publication of JP2012164604A publication Critical patent/JP2012164604A/en
Application granted granted Critical
Publication of JP5535102B2 publication Critical patent/JP5535102B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a metallic separator material for a fuel cell allowing high corrosion resistance to be achieved even if the thickness of an Au coating layer on the surface of a stainless steel sheet is small.SOLUTION: In the method for manufacturing a metallic separator material for a fuel cell, an Au coating layer having a thickness of 20 nm or smaller is formed on the surface of a substrate 2 made of an austenitic stainless steel sheet, with an Au plating bath having a pH of 1.0 or lower. Electroplating is applied while ultrasonic vibration is applied to the substrate and/or the Au plating bath.

Description

本発明は、ステンレス鋼薄板の表面にAu被覆層を電解めっきして形成する燃料電池用金属セパレータ材料の製造方法、及び燃料電池用金属セパレータ材料に関する。   The present invention relates to a method for producing a metal separator material for a fuel cell, which is formed by electroplating an Au coating layer on the surface of a stainless steel sheet, and a metal separator material for a fuel cell.

固体高分子型の燃料電池用セパレータは電気伝導性を有し、燃料電池の各単セルを電気的に接続し、各単セルで発生したエネルギー(電気)を集電すると共に、各単セルへ供給する燃料ガス(燃料液体)や空気(酸素)の流路が形成されている。このセパレータは、インターコネクタ、バイポーラプレート、集電体とも称される。
このような燃料電池用セパレータとして、従来はカーボン板にガス流通路を形成したものが使用されていたが、材料コストや加工コストが大きいという問題がある。一方、カーボン板の代わりに金属板を用いる場合、高温で酸化性の雰囲気に曝されるために腐食や溶出が問題となる。このようなことから、ステンレス鋼板の表面にAuめっきを0.01〜0.06μm被覆する技術や(特許文献1)、ステンレス鋼板の表面にAu,Ru、Rh、Pd、Os、Ir及びPt等から選ばれる貴金属をスパッタ成膜して導電部分を形成する技術(特許文献2)が知られている。
又、ステンレス鋼板の表面に、下地処理を施さずに酸性浴にてダイレクトに金めっきを施す技術(特許文献3)や、ステンレス鋼板の表面に酸化被膜を形成後に金めっきを施す技術(特許文献4)が報告されている。
一方、めっき浴に超音波振動を付与することで、高電流密度による高速めっきを行う技術(特許文献5)が報告されている。
Solid polymer fuel cell separators have electrical conductivity, and each unit cell of the fuel cell is electrically connected to collect energy (electricity) generated in each unit cell and to each unit cell. A flow path for supplying fuel gas (fuel liquid) and air (oxygen) is formed. This separator is also called an interconnector, a bipolar plate, or a current collector.
Conventionally, a fuel cell separator having a gas flow path formed on a carbon plate has been used, but there is a problem that the material cost and processing cost are high. On the other hand, when a metal plate is used instead of the carbon plate, corrosion and elution become a problem because it is exposed to an oxidizing atmosphere at a high temperature. For this reason, the technology of coating the surface of the stainless steel plate with Au plating of 0.01 to 0.06 μm (Patent Document 1), the surface of the stainless steel plate with Au, Ru, Rh, Pd, Os, Ir, Pt, etc. A technique (Patent Document 2) for forming a conductive portion by sputtering a noble metal selected from the above is known.
In addition, a technique for performing gold plating directly in an acidic bath without applying a base treatment to the surface of a stainless steel sheet (Patent Document 3), or a technique for performing gold plating after forming an oxide film on the surface of a stainless steel sheet (Patent Document) 4) has been reported.
On the other hand, a technique (Patent Document 5) that performs high-speed plating with high current density by applying ultrasonic vibration to a plating bath has been reported.

特開平10−228914号公報JP-A-10-228914 特開2001−297777号公報JP 2001-297777 A 特開2004−296381号公報JP 2004-296281 A 特開2007−257883号公報JP 2007-257883 A 特開2002−256479号公報JP 2002-256479 A

しかしながら、金は高価であることから、金の使用量(金膜の厚さ)を低減していく必要があり、ステンレス鋼薄板に直接薄い(ストライク,20nm以下)金めっきを行う必要がある。ところが、金めっきの厚みが20nm未満に薄くなると、被膜欠陥が生じ易くなり、燃料電池用セパレータの耐食性を十分に確保できないという問題がある。特に、燃料電池用セパレータは酸性雰囲気に置かれるため、耐食性の点で厳しい環境下にある。
すなわち、本発明は、ステンレス鋼薄板表面に形成するAu被覆層の厚みが薄くても耐食性に優れた燃料電池用金属セパレータ材料の製造方法及び燃料電池用金属セパレータ材料の提供を目的とする。
However, since gold is expensive, it is necessary to reduce the amount of gold used (gold film thickness), and it is necessary to perform thin (strike, 20 nm or less) gold plating directly on a stainless steel sheet. However, when the thickness of the gold plating is reduced to less than 20 nm, coating defects are likely to occur, and there is a problem that sufficient corrosion resistance of the fuel cell separator cannot be ensured. In particular, since the fuel cell separator is placed in an acidic atmosphere, it is in a severe environment in terms of corrosion resistance.
That is, an object of the present invention is to provide a method for producing a metal separator material for a fuel cell and a metal separator material for a fuel cell that are excellent in corrosion resistance even when the Au coating layer formed on the surface of the stainless steel thin plate is thin.

本発明の燃料電池用セパレータ材料の製造方法は、オーステナイト系ステンレス鋼薄板からなる基材の表面に、pH1.0以下のAuめっき浴を用いて厚み20nm以下のAu被覆層を形成する燃料電池用金属セパレータ材料の製造方法であって、前記基材及び/又は前記Auめっき浴に超音波振動を付与した状態で電解めっきする。   The method for producing a separator material for a fuel cell according to the present invention is for a fuel cell in which an Au coating layer having a thickness of 20 nm or less is formed on the surface of a substrate made of austenitic stainless steel sheet using an Au plating bath having a pH of 1.0 or less. In the method for producing a metal separator material, electrolytic plating is performed in a state where ultrasonic vibration is applied to the substrate and / or the Au plating bath.

前記超音波振動の発振周波数を25〜60kHzとすることが好ましい。
前記Au被覆層をさらに封孔処理することが好ましい。
メルカプト系水溶液中で前記Au被覆層を電解処理して前記封孔処理を行うことが好ましい。
前記基材の表面粗さがRa≦0.08μmであることが好ましい。
The oscillation frequency of the ultrasonic vibration is preferably set to 25 to 60 kHz.
It is preferable that the Au coating layer is further sealed.
It is preferable to perform the sealing treatment by electrolytically treating the Au coating layer in a mercapto-based aqueous solution.
The surface roughness of the substrate is preferably Ra ≦ 0.08 μm.

本発明の燃料電池用セパレータ材料は、前記燃料電池用金属セパレータ材料の製造方法により製造されたものである。
前記基材の結晶粒内において、前記Au被覆層を原子間力顕微鏡により測定したときの算術表面粗さ(Ra)が3.0nm以下であることが好ましい。
The separator material for a fuel cell of the present invention is produced by the method for producing a metal separator material for a fuel cell.
In the crystal grains of the base material, the arithmetic surface roughness (Ra) when the Au coating layer is measured with an atomic force microscope is preferably 3.0 nm or less.

本発明によれば、ステンレス鋼薄板表面に形成するAu被覆層の厚みが薄くても耐食性を向上させることができる。   According to the present invention, the corrosion resistance can be improved even if the Au coating layer formed on the stainless steel sheet surface is thin.

Au被覆層の厚みを7nmとしたときの燃料電池用セパレータ材料の断面のTEM像を示す。The TEM image of the cross section of the separator material for fuel cells when the thickness of Au coating layer is 7 nm is shown. Au被覆層の厚みを15nmとしたときの燃料電池用セパレータ材料の断面のTEM像を示す。The TEM image of the cross section of the separator material for fuel cells when the thickness of Au coating layer is 15 nm is shown. 本発明の実施形態に係る燃料電池スタック(単セル)の断面図である。It is sectional drawing of the fuel cell stack (single cell) which concerns on embodiment of this invention. 本発明の実施形態に係る平面型燃料電池スタックの断面図である。1 is a cross-sectional view of a planar fuel cell stack according to an embodiment of the present invention. 本発明の実施形態に係る燃料電池用金属セパレータ材料の製造方法を行う方法の一例を示し、めっきラインのめっき槽をステンレス条が通過する様子を表した図である。It is a figure showing an example of the method of performing the manufacturing method of the metal separator material for fuel cells which concerns on embodiment of this invention, and showing a mode that a stainless steel strip passes the plating tank of a plating line. バイポーラ型セパレータの構造を示す断面図である。It is sectional drawing which shows the structure of a bipolar type separator.

以下、本発明の実施形態に係る燃料電池用金属セパレータ材料の製造方法について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。
又、本発明において「燃料電池用金属セパレータ」とは、電気伝導性を有し、各単セルを電気的に接続し、各単セルで発生したエネルギー(電気)を集電すると共に、各単セルへ供給する燃料ガス(燃料液体)や空気(酸素)の流路が形成されたものをいう。セパレータは、インターコネクタ、バイポーラプレート、集電体とも称される。
従って、詳しくは後述するが、燃料電池用セパレータとして、板状の基材表面に凹凸状の流路を設けたセパレータの他、上記したパッシブ型DMFC用セパレータのように板状の基材表面にガスやメタノールの流路孔が開口したセパレータを含む。
Hereinafter, the manufacturing method of the metal separator material for fuel cells which concerns on embodiment of this invention is demonstrated. In the present invention, “%” means “% by mass” unless otherwise specified.
Further, in the present invention, the “metal separator for fuel cell” has electrical conductivity, electrically connects each single cell, collects energy (electricity) generated in each single cell, and collects each single cell. A fuel gas (fuel liquid) or air (oxygen) flow path to be supplied to the cell is formed. The separator is also referred to as an interconnector, a bipolar plate, or a current collector.
Therefore, as will be described in detail later, as a separator for a fuel cell, in addition to a separator having an uneven flow path on a plate-like substrate surface, a plate-like substrate surface such as the above-described passive DMFC separator is used. It includes a separator with gas and methanol passage holes.

<基材>
燃料電池用金属セパレータ材料は耐食性と導電性が要求され、その基材には耐食性が求められる。このため基材には耐食性が良好で比較的低コストなオーステナイト系ステンレス鋼薄板を用いる。
オーステナイト系ステンレス鋼薄板の種類は特に制限されないが、例えば、JISに規格するSUS201、SUS304、SUS304L、SUS304LN、SUS316、SUS316L、SUSXM7を挙げることができる。ここで、耐食性に優れる点で、SUS316L(Moを2.5%程度添加したステンレス鋼)が好ましい。
基材の形状も特に制限されず、Auをめっきできる形状であればよいが、セパレータ形状にプレス成形することから、薄板の厚みが0.05〜0.3mmであることが好ましい。
<Base material>
Metal separator materials for fuel cells are required to have corrosion resistance and conductivity, and the base material is required to have corrosion resistance. For this reason, an austenitic stainless steel sheet having good corrosion resistance and relatively low cost is used as the base material.
The type of the austenitic stainless steel sheet is not particularly limited, and examples thereof include SUS201, SUS304, SUS304L, SUS304LN, SUS316, SUS316L, and SUSXM7, which are compliant with JIS. Here, SUS316L (stainless steel to which Mo is added by about 2.5%) is preferable in terms of excellent corrosion resistance.
The shape of the substrate is not particularly limited as long as it is a shape that can be plated with Au. However, the thickness of the thin plate is preferably 0.05 to 0.3 mm because it is press-formed into a separator shape.

又、Au被覆層を平滑に成膜する観点から、基材表面も平滑化した方がよい。ステンレス鋼薄板の表面仕上げ法としては、従来からBA(光輝焼鈍)、研磨仕上げ等が知られているが、20nm以下の薄いAu被覆層を形成する本発明においては、BA処理したステンレス鋼薄板が好ましい。
さらに、基材の表面粗さがRa≦0.08μmであると、Au被覆層を平滑に成膜する観点から好ましい。電解めっきは基材表面の凹凸の凸部に付きやすいため、基材の表面粗さRaを0.08μm以下とすることで均一にめっきが付き、ピンホールなどの欠陥が少なくすることができる。
Also, from the viewpoint of forming the Au coating layer smoothly, it is better to smooth the surface of the substrate. As surface finishing methods for stainless steel thin plates, BA (bright annealing), polishing finishing, and the like have been conventionally known. In the present invention for forming a thin Au coating layer of 20 nm or less, a BA-treated stainless steel thin plate is used. preferable.
Furthermore, when the surface roughness of the substrate is Ra ≦ 0.08 μm, it is preferable from the viewpoint of forming the Au coating layer smoothly. Since electrolytic plating tends to attach to the uneven surface of the base material surface, the surface roughness Ra of the base material is set to 0.08 μm or less so that plating is uniformly applied and defects such as pinholes can be reduced.

<めっき>
基材表面にAu被覆層を電解めっきするため、pH1.0以下のAuめっき浴を用いる。ステンレス鋼薄板に直接Auをめっきするためには、めっき浴のpHが1以下である必要があり、pH1.0以下のAuめっき浴を用いると、基材であるステンレス鋼表面のCr酸化皮膜が除去されやすく、Au被覆層の密着性が向上する。
また、酸性Auめっき浴を用い、基材表面に直接(ダイレクトに)Auめっきすることで、めっき密着性が向上する。これは、従来からコネクタ材では基材にNi下地めっきを行った後、Auめっきを施しているが、Niの耐酸性が弱いため、燃料電池内の雰囲気によりNiめっきが剥がれてしまうからである。さらに、pH1.0以下の酸性Auめっき浴は高電流密度でめっきが可能であるため、めっきの際に基材表面に水素が発生してステンレス表面が活性化され、Auが付きやすくなる。
一方、Auめっき浴のpHが1.0を超えると基材へのめっき密着性が低下する。なお、Auめっき浴のpHが0.2未満になると、電解めっきの際に水素が過多に発生してめっき電流効率が低下するため、pHは0.2以上が好ましい。
pH1.0以下のAuめっき浴としては硫酸水素ナトリウとシアン化金カリウムを主成分とする浴などが挙げられる。又、Au塩としては、シアン化金塩、等を用いることができ、Au塩の金濃度は2〜7g/L程度とすることができる。
<Plating>
In order to electroplat the Au coating layer on the substrate surface, an Au plating bath having a pH of 1.0 or less is used. In order to directly plate Au on a stainless steel thin plate, the pH of the plating bath needs to be 1 or less. When an Au plating bath having a pH of 1.0 or less is used, the Cr oxide film on the surface of the stainless steel as a substrate is formed. It is easy to remove and the adhesion of the Au coating layer is improved.
In addition, plating adhesion is improved by directly (directly) Au plating on the surface of the substrate using an acidic Au plating bath. This is because, in the conventional connector materials, the Ni base plating is applied to the base material and then the Au plating is performed. However, since the acid resistance of Ni is weak, the Ni plating is peeled off by the atmosphere in the fuel cell. . Furthermore, since an acidic Au plating bath having a pH of 1.0 or less can be plated at a high current density, hydrogen is generated on the surface of the base material during the plating, the stainless steel surface is activated, and Au is easily attached.
On the other hand, when the pH of the Au plating bath exceeds 1.0, the plating adhesion to the substrate is lowered. If the pH of the Au plating bath is less than 0.2, excessive hydrogen is generated during electroplating and the plating current efficiency is lowered. Therefore, the pH is preferably 0.2 or more.
Examples of the Au plating bath having a pH of 1.0 or less include a bath mainly composed of sodium hydrogen sulfate and potassium gold cyanide. As the Au salt, a gold cyanide salt or the like can be used, and the gold concentration of the Au salt can be about 2 to 7 g / L.

Auめっきの条件としては、電流密度が低いと基材の凸部に電流が集中してめっき層が平坦になり難く、又、めっき浴温が低いとめっき層が平坦になり難い傾向にある。
又、めっき液中の金濃度は1〜4g/Lが好ましく、より好ましくは1〜2g/Lである。金濃度が1g/L未満であると、電流効率が低下してめっき層が平坦になり難い傾向にある。Auめっきの電流密度は1〜8A/dm、好ましくは電流密度4〜8A/dmとするとよい。
As conditions for Au plating, when the current density is low, current concentrates on the convex portion of the substrate and the plating layer is difficult to flatten, and when the plating bath temperature is low, the plating layer tends to be difficult to flatten.
The gold concentration in the plating solution is preferably 1 to 4 g / L, more preferably 1 to 2 g / L. If the gold concentration is less than 1 g / L, the current efficiency tends to decrease and the plating layer tends not to be flat. The current density of Au plating is 1 to 8 A / dm 2 , preferably 4 to 8 A / dm 2 .

<超音波振動の付与>
また20nmを超えるAuめっき厚みでは問題とならないが、Auめっきを厚み20nm以下とすると、上記したAuめっき浴のpHや浴組成の調整だけでは十分でなく、めっき被膜のピンホールが増えて耐食性が低下する。このため、厚さ20nm以下のAuめっきでは、超音波の照射が有効である。この理由は、Auめっきの際に超音波を用いることで、Auめっき浴が均一に攪拌され、浴中の金イオンが基材表面に均一に供給されるので,ピンホールを低減することができるからである。又、超音波によりAuめっき浴中にキャビテーションを起こさせ,基材表面に滞留する水素や不純物を浮き上がらせ,これらを起点としためっき欠陥(ピンホールなど)を低減することができる。
なお、超音波振動は、基材及び/又はAuめっき浴に付与すればよく、例えば超音波振動子をめっき浴中の基材に接触させたり、Auめっき浴に超音波振動子を接触させることで、超音波振動を付与することができる。又、超音波振動の発振周波数によりAuめっき浴の攪拌状態、キャビテーションの状態が変わるが、周波数を25〜60kHzとすると、超音波の効果を安定して発揮することができる。
超音波振動子としては、例えばチタンやハステロイを外殻とした圧電セラミックなどを用いることができる。
<Applying ultrasonic vibration>
In addition, when the Au plating thickness exceeds 20 nm, there is no problem. However, if the Au plating thickness is 20 nm or less, it is not sufficient to adjust the pH and bath composition of the Au plating bath described above, and the pinholes of the plating film increase and corrosion resistance is increased. descend. For this reason, ultrasonic wave irradiation is effective in Au plating with a thickness of 20 nm or less. The reason for this is that by using ultrasonic waves during Au plating, the Au plating bath is uniformly stirred and the gold ions in the bath are uniformly supplied to the surface of the substrate, so that pinholes can be reduced. Because. Further, cavitation is caused in the Au plating bath by ultrasonic waves, hydrogen and impurities staying on the surface of the base material are lifted, and plating defects (pinholes and the like) starting from these can be reduced.
The ultrasonic vibration may be applied to the base material and / or the Au plating bath. For example, the ultrasonic vibrator is brought into contact with the base material in the plating bath, or the ultrasonic vibrator is brought into contact with the Au plating bath. Thus, ultrasonic vibration can be applied. Moreover, although the stirring state and cavitation state of the Au plating bath change depending on the oscillation frequency of the ultrasonic vibration, when the frequency is 25 to 60 kHz, the effect of the ultrasonic wave can be stably exhibited.
As the ultrasonic vibrator, for example, a piezoelectric ceramic having titanium or hastelloy as an outer shell can be used.

<Au被覆層>
基材表面(片面または両面)に形成するAu被覆層の厚さは,コストの点から20nm以下とするが、耐食性と電気特性(セパレータとMEAの接触抵抗)の観点から2nm以上とするとよい。好ましくはAu被覆層の厚みを5〜20nmとし、より好ましくはAu被覆層の厚みを5〜10nmにすると、耐食性が良好でかつコストを低減することができる。Au被覆層の厚みは、電解法や断面のTEM(透過型電子顕微鏡)像で算出することができる。
基材の結晶粒内において、原子間力顕微鏡により測定したAu被覆層の算術表面粗さ(Ra)が3.0nm以下であると好ましい。本発明者らの検討により、薄い(厚み20nm以下の)Au被覆層においては、表面のRaが大きくなるほど、基材からの金属溶出量も多くなることが判明した。この原因は明確ではないが、Au被覆層のRaが大きいものは、電気めっき時に基材の特定の位置に集中して電析し、その分だけめっき層の厚みが薄い部分が生じ、被膜欠陥に至ることが考えられる。
なお、基材表面へのAuの電着状態は、基材の結晶粒内と結晶粒界とで異なる。具体的には、基材の粒界部分では電着が凹状となるので、基材の粒界を含む部分のRaを原子間力顕微鏡(AFM)で測定すると、Raの測定値は大きくなる。そのため,本発明においては,基材の結晶粒内で測定したRaをAu被覆層のRaとして採用する。
又、省金化の観点から、燃料電池用セパレータ材料を燃料電池用セパレータに加工した際に電極との接触面となる部分等、導電性が必要となる部分のみにAuめっきを施すことも可能である。
<Au coating layer>
The thickness of the Au coating layer formed on the substrate surface (one side or both sides) is 20 nm or less from the viewpoint of cost, but is preferably 2 nm or more from the viewpoint of corrosion resistance and electrical characteristics (contact resistance between separator and MEA). When the thickness of the Au coating layer is preferably 5 to 20 nm, and more preferably 5 to 10 nm, the corrosion resistance is good and the cost can be reduced. The thickness of the Au coating layer can be calculated by an electrolytic method or a cross-sectional TEM (transmission electron microscope) image.
In the crystal grains of the substrate, the arithmetic surface roughness (Ra) of the Au coating layer measured with an atomic force microscope is preferably 3.0 nm or less. As a result of studies by the present inventors, it has been found that in a thin Au coating layer (thickness of 20 nm or less), the amount of metal elution from the substrate increases as the surface Ra increases. Although the cause of this is not clear, when the Au coating layer has a large Ra, electrodeposition is concentrated at a specific position on the substrate during electroplating, resulting in a portion with a thinner plating layer, resulting in film defects. It can be thought of that.
In addition, the electrodeposition state of Au on the substrate surface is different between the crystal grains of the substrate and the crystal grain boundaries. Specifically, since electrodeposition is concave at the grain boundary portion of the substrate, the measured value of Ra increases when the Ra of the portion including the grain boundary of the substrate is measured with an atomic force microscope (AFM). Therefore, in this invention, Ra measured in the crystal grain of a base material is employ | adopted as Ra of Au coating layer.
In addition, from the viewpoint of saving money, it is possible to apply Au plating only to the parts that require electrical conductivity, such as the parts that will be in contact with the electrodes when the fuel cell separator material is processed into a fuel cell separator. It is.

図1は、後述する発明例1−3の燃料電池用セパレータ材料の断面のTEM像を示す。又、図2は、同様にして発明例1−5の燃料電池用セパレータ材料の断面のTEM像を示す。   FIG. 1 shows a TEM image of a cross section of a fuel cell separator material of Invention Example 1-3 described later. FIG. 2 shows a TEM image of a cross section of the fuel cell separator material of Invention Example 1-5 in the same manner.

20nm以下の薄く柔らかい、Au被覆層の平滑性を評価する際、接触式表面粗さ計で測定するとナノレベルの凹凸の評価は困難となり、ステンレス鋼等の基材の粗さを測定することとなってしまう。そのため、本発明において、薄いAu層の平滑性の評価に非接触の原子間力顕微鏡(AFM)を用いる。
AFMにより測定したAu被覆層のRaが3.0nm以下になると、大幅に金属溶出量が少なくなる。Au被覆層のRaは小さいほど好ましいが、Raが0.5nm未満のめっき層を形成するのは実用上難しい。
When evaluating the smoothness of a thin and soft Au coating layer of 20 nm or less, it is difficult to evaluate nano level unevenness when measured with a contact-type surface roughness meter, and measuring the roughness of a substrate such as stainless steel turn into. Therefore, in the present invention, a non-contact atomic force microscope (AFM) is used for evaluating the smoothness of a thin Au layer.
When the Ra of the Au coating layer measured by AFM is 3.0 nm or less, the metal elution amount is greatly reduced. Although the Ra of the Au coating layer is preferably as small as possible, it is practically difficult to form a plating layer with an Ra of less than 0.5 nm.

Au被覆層のRaを3.0nm以下にする方法としては、Auめっき浴に硫酸水素ナトリウムを伝導塩として添加することが挙げられる。この場合、Auめっき浴の組成としては、Au塩、硫酸水素ナトリウム、及び必要に応じてその他の添加剤を含むものを用いることができる。又、硫酸水素ナトリウムの濃度は、50〜100g/L程度とすることができる。   As a method for setting the Ra of the Au coating layer to 3.0 nm or less, sodium hydrogen sulfate is added as a conductive salt to the Au plating bath. In this case, as the composition of the Au plating bath, one containing Au salt, sodium hydrogen sulfate, and other additives as required can be used. Moreover, the density | concentration of sodium hydrogensulfate can be about 50-100 g / L.

なお、図6に示すバイポーラ型セパレータにおいて、表裏面でAu被覆層のめっき厚みを変えることが好ましい。燃料電池用金属セパレータは、一般的に上記した燃料電池用金属セパレータ材料の板材をプレス成形して得られた成形品をレーザー溶接などで2枚張り合わせることで製造され、張り合わせた内側(燃料電池用金属セパレータ材料の裏面側)には通常冷却水が流される。一方、セパレータの外側(燃料電池用金属セパレータ材料の表面側)は、膜電極接合体(MEA;Membrane Electrode Assembly)と接して燃料ガス又は酸化剤ガスが流される。このように使用されることから、燃料電池用金属セパレータ材料の表面側は高耐食性を要求されるが、裏面側ではそれほど耐食性を必要としないので,表面側よりAuめっきの厚みを薄くしてもよい。又、使用部位や使用目的に応じて裏面側にはAuめっきをしなくてもよい。
又、Auめっきは、セパレータ内の耐食性を要する部分(アクティブエリア)に対応する領域のみにめっきしてもよく、これにより金の使用量を減らすことができる(図6参照)。
In the bipolar separator shown in FIG. 6, it is preferable to change the plating thickness of the Au coating layer on the front and back surfaces. A fuel cell metal separator is generally manufactured by laminating two molded products obtained by press-molding a plate material of the above-described fuel cell metal separator material by laser welding or the like. Usually, cooling water is flowed to the back side of the metal separator material. On the other hand, the outer side of the separator (the surface side of the metal separator material for fuel cells) is in contact with a membrane electrode assembly (MEA) and a fuel gas or an oxidant gas is allowed to flow. Because it is used in this way, the surface side of the metal separator material for fuel cells is required to have high corrosion resistance, but the back side does not require so much corrosion resistance, so even if the Au plating thickness is made thinner than the surface side Good. Moreover, it is not necessary to carry out Au plating on the back surface side according to a use site | part and a use purpose.
In addition, Au plating may be performed only on a region corresponding to a portion (active area) that requires corrosion resistance in the separator, thereby reducing the amount of gold used (see FIG. 6).

<封孔処理>
Au被覆層が封孔処理されていることが好ましい。Au被覆層に被膜欠陥(ピンホール部)が存在しても、封孔処理によってこの欠陥を埋め、耐食性を維持することができる。Auめっきの封孔処理は各種の方法が知られているが、メルカプト系水溶液中でAu被覆層を電解処理するのが好ましい。メルカプト系水溶液は、メルカプト基含有化合物を水に溶解したものであり、メルカプト基含有化合物としては、例えば特開2004−265695号公報に記載されたメルカプトベンゾチアゾール誘導体が挙げられる。メルカプト系化合物はピンホール部に吸着、結合し,耐食性を向上させる。
<Sealing treatment>
The Au coating layer is preferably sealed. Even if a coating defect (pinhole part) exists in the Au coating layer, the defect can be filled by the sealing treatment, and the corrosion resistance can be maintained. Various methods are known for sealing the Au plating, but it is preferable to electrolyze the Au coating layer in a mercapto-based aqueous solution. The mercapto aqueous solution is obtained by dissolving a mercapto group-containing compound in water. Examples of the mercapto group-containing compound include mercaptobenzothiazole derivatives described in JP-A No. 2004-265695. Mercapto compounds are adsorbed and bonded to the pinholes to improve corrosion resistance.

<燃料電池用セパレータ>
次に、本発明の燃料電池用セパレータ材料を用いた燃料電池用セパレータについて説明する。図6に示すように、燃料電池用セパレータは、上記した燃料電池用セパレータ材料を所定形状に加工してなり、燃料ガス(水素)又は燃料液体(メタノール)、空気(酸素)、冷却水等を流すための反応ガス流路又は反応液体流路(溝や開口)が形成されている。
<Separator for fuel cell>
Next, a fuel cell separator using the fuel cell separator material of the present invention will be described. As shown in FIG. 6, the fuel cell separator is formed by processing the above-described fuel cell separator material into a predetermined shape, such as fuel gas (hydrogen) or fuel liquid (methanol), air (oxygen), cooling water, etc. A reaction gas channel or a reaction liquid channel (groove or opening) for flow is formed.

<積層型(アクティブ型)燃料電池用セパレータ>
図3は、積層型(アクティブ型)燃料電池の単セルの断面図を示す。なお、図3では後述するセパレータ10の外側にそれぞれ集電板140A,140Bが配置されているが、通常、この単セルを積層してスタックを構成した場合、スタックの両端にのみ一対の集電板が配置される。
そして、セパレータ10は電気伝導性を有し、後述するMEAに接して集電作用を有し、各単セルを電気的に接続する機能を有する。又、後述するように、セパレータ10には燃料ガスや空気(酸素)の流路となる溝が形成されている。
<Laminated (active) fuel cell separator>
FIG. 3 is a cross-sectional view of a single cell of a stacked (active) fuel cell. In FIG. 3, current collector plates 140A and 140B are respectively arranged outside the separator 10 described later. Usually, when a stack is formed by stacking single cells, a pair of current collectors is provided only at both ends of the stack. A board is placed.
The separator 10 has electrical conductivity, has a current collecting action in contact with an MEA described later, and has a function of electrically connecting each single cell. Further, as will be described later, the separator 10 is formed with a groove serving as a flow path for fuel gas and air (oxygen).

図3において、固体高分子電解質膜20の両側にそれぞれアノード電極40とカソード電極60とが積層されて膜電極接合体(MEA;Membrane Electrode Assembly)80が構成されている。又、アノード電極40とカソード電極60の表面には、それぞれアノード側ガス拡散膜90A、カソード側ガス拡散膜90Bがそれぞれ積層されている。本発明において膜電極接合体という場合、ガス拡散膜90A、90Bを含んだ積層体としてもよい。又、例えばアノード電極40やカソード電極60の表面にガス拡散層が形成されている等の場合は、固体高分子電解質膜20、アノード電極40、カソード電極60の積層体を膜電極接合体と称してもよい。   In FIG. 3, a membrane electrode assembly (MEA) 80 is configured by laminating an anode electrode 40 and a cathode electrode 60 on both sides of the solid polymer electrolyte membrane 20. An anode side gas diffusion film 90A and a cathode side gas diffusion film 90B are laminated on the surfaces of the anode electrode 40 and the cathode electrode 60, respectively. In the present invention, the membrane electrode assembly may be a laminate including the gas diffusion films 90A and 90B. For example, when a gas diffusion layer is formed on the surface of the anode electrode 40 or the cathode electrode 60, the laminated body of the solid polymer electrolyte membrane 20, the anode electrode 40, and the cathode electrode 60 is referred to as a membrane electrode assembly. May be.

MEA80の両側には、ガス拡散膜90A、90Bにそれぞれ対向するようにセパレータ10が配置され、セパレータ10がMEA80を挟持している。MEA80側のセパレータ10表面には流路10Lが形成され、後述するガスケット12、流路10L、及びガス拡散膜90A(又は90B)で囲まれた内部空間20内をガスが出入可能になっている。
そして、アノード電極40側の内部空間20には燃料ガス(水素等)が流れ、カソード電極60側の内部空間20に酸化性ガス(酸素、空気等)が流れることにより、電気化学反応が生じるようになっている。
On both sides of the MEA 80, the separator 10 is disposed so as to face the gas diffusion films 90A and 90B, respectively, and the separator 10 holds the MEA 80 therebetween. A flow path 10L is formed on the surface of the separator 10 on the MEA 80 side, and gas can enter and leave the interior space 20 surrounded by a gasket 12, a flow path 10L, and a gas diffusion film 90A (or 90B) described later. .
A fuel gas (hydrogen or the like) flows in the internal space 20 on the anode electrode 40 side, and an oxidizing gas (oxygen, air or the like) flows in the internal space 20 on the cathode electrode 60 side, so that an electrochemical reaction occurs. It has become.

アノード電極40とガス拡散膜90Aの周縁の外側は、これらの積層厚みとほぼ同じ厚みの枠状のシール部材31で囲まれている。又、シール部材31とセパレータ10の周縁との間には、セパレータに接して略枠状のガスケット12が介装され、ガスケット12が流路10Lを囲むようになっている。さらに、セパレータ10の外面(MEA80側と反対側の面)にはセパレータ10に接して集電板140A(又は140B)が積層され、集電板140A(又は140B)とセパレータ10の周縁との間に略枠状のシール部材32が介装されている。
シール部材31及びガスケット12は、燃料ガス又は酸化ガスがセル外に漏れるのを防止するシールを形成する。又、単セルを複数積層してスタックにした場合、セパレータ10の外面と集電板140A(又は140B)との間の空間21には空間20と異なるガス(空間20に酸化性ガスが流れる場合、空間21には水素が流れる)が流れる。従って、シール部材32もセル外にガスが漏れるのを防止する部材として使われる。
The outer periphery of the periphery of the anode electrode 40 and the gas diffusion film 90 </ b> A is surrounded by a frame-shaped seal member 31 having substantially the same thickness as the laminated thickness. A substantially frame-shaped gasket 12 is interposed between the seal member 31 and the peripheral edge of the separator 10 so as to contact the separator, and the gasket 12 surrounds the flow path 10L. Furthermore, a current collector plate 140A (or 140B) is laminated on the outer surface of the separator 10 (the surface opposite to the MEA 80 side) in contact with the separator 10, and between the current collector plate 140A (or 140B) and the periphery of the separator 10 is stacked. A substantially frame-shaped sealing member 32 is interposed between the two.
The seal member 31 and the gasket 12 form a seal that prevents fuel gas or oxidizing gas from leaking out of the cell. When a plurality of single cells are stacked to form a stack, a gas different from the space 20 (when an oxidizing gas flows into the space 20) is formed in the space 21 between the outer surface of the separator 10 and the current collector plate 140A (or 140B). , Hydrogen flows in the space 21). Therefore, the seal member 32 is also used as a member for preventing gas from leaking outside the cell.

そして、MEA80(及びガス拡散膜90A、90B)、セパレータ10、ガスケット12、集電板140A、140Bを含んで燃料電池セルが構成され、複数の燃料電池セルを積層して燃料電池スタックが構成される。   The fuel cell is configured to include the MEA 80 (and the gas diffusion films 90A and 90B), the separator 10, the gasket 12, and the current collector plates 140A and 140B, and a fuel cell stack is configured by stacking a plurality of fuel cells. The

図3に示す積層型(アクティブ型)燃料電池は、上記した水素を燃料として用いる燃料電池のほか、メタノールを燃料として用いるDMFCにも適用することができる。   The stacked (active) fuel cell shown in FIG. 3 can be applied not only to the above-described fuel cell using hydrogen as a fuel, but also to a DMFC using methanol as a fuel.

<平面型(パッシブ型)燃料電池用セパレータ>
図4は、平面型(パッシブ型)燃料電池の単セルの断面図を示す。なお、図4ではセパレータ100の外側にそれぞれ集電板140が配置されているが、通常、この単セルを積層してスタックを構成した場合、スタックの両端にのみ一対の集電板が配置される。
なお,図4において、MEA80の構成は図3の燃料電池と同一であるので同一符号を付して説明を省略する(図4では、ガス拡散膜90A、90Bの記載を省略しているが、ガス拡散膜90A、90Bを有していてもよい)。
<Flat type (passive type) fuel cell separator>
FIG. 4 shows a cross-sectional view of a single cell of a planar (passive type) fuel cell. In FIG. 4, current collector plates 140 are arranged outside the separator 100. Normally, when a stack is formed by stacking single cells, a pair of current collector plates is arranged only at both ends of the stack. The
In FIG. 4, the configuration of the MEA 80 is the same as that of the fuel cell of FIG. Gas diffusion films 90A and 90B may be included).

図4において、セパレータ100は電気伝導性を有し、MEAに接して集電作用を有し、各単セルを電気的に接続する機能を有する。又、後述するように、セパレータ100には燃料液体や空気(酸素)の流路となる孔が形成されている。
セパレータ100は、断面がクランク形状になるよう、長尺平板状の基材の中央付近に段部100sを形成してなり、段部100sを介して上方に位置する上側片100bと、段部100sを介して下方に位置する下側片100aとを有する。段部100sはセパレータ100の長手方向に垂直な方向に延びている。
そして、複数のセパレータ100を長手方向に並べ、隣接するセパレータ100の下側片100aと上側片100bとの間に空間を形成させ、この空間にMEA80を介装する。2つのセパレータ100でMEA80が挟まれた構造体が単セル300となる。このようにして、複数のMEA80がセパレータ100を介して直列に接続されたスタックが構成される。
In FIG. 4, the separator 100 has electrical conductivity, has a current collecting action in contact with the MEA, and has a function of electrically connecting each single cell. In addition, as will be described later, the separator 100 is formed with holes serving as fuel liquid and air (oxygen) flow paths.
The separator 100 is formed with a step portion 100s in the vicinity of the center of the long flat plate-like base material so that the cross section has a crank shape, an upper piece 100b positioned above the step portion 100s, and a step portion 100s. And a lower piece 100a located below. The step portion 100 s extends in a direction perpendicular to the longitudinal direction of the separator 100.
A plurality of separators 100 are arranged in the longitudinal direction, and a space is formed between the lower piece 100a and the upper piece 100b of the adjacent separators 100, and the MEA 80 is interposed in this space. A structure in which the MEA 80 is sandwiched between the two separators 100 is a single cell 300. In this way, a stack in which a plurality of MEAs 80 are connected in series via the separator 100 is configured.

図4に示す平面型(パッシブ型)燃料電池は、上記したメタノールを燃料として用いるDMFCのほか、水素を燃料として用いる燃料電池にも適用することができる。又、平面型(パッシブ型)燃料電池用セパレータの開口部の形状や個数は限定されず、開口部として上記した孔の他、スリットとしてもよく、セパレータ全体が網状であってもよい。   The planar (passive) fuel cell shown in FIG. 4 can be applied to a fuel cell using hydrogen as a fuel in addition to the DMFC using methanol as a fuel. Further, the shape and number of openings of the planar (passive type) fuel cell separator are not limited, and the openings may be slits in addition to the holes described above, or the entire separator may be net-like.

<燃料電池用スタック>
本発明の燃料電池用スタックは、本発明の燃料電池用セパレータ材料を用いてなる。
燃料電池用スタックは、1対の電極で電解質を挟み込んだセルを複数個直列に接続したものであり、各セルの間に燃料電池用セパレータが介装されて燃料ガスや空気を遮断する。燃料ガス(H2)が接触する電極が燃料極(アノード)であり、空気(O2) が接触する電極が空気極(カソード)である。
燃料電池用スタックの構成例は、既に図3及び図4で説明した通りであるが、これに限定されない。
<Fuel cell stack>
The fuel cell stack of the present invention uses the fuel cell separator material of the present invention.
The fuel cell stack is formed by connecting a plurality of cells in which an electrolyte is sandwiched between a pair of electrodes, and a fuel cell separator is interposed between the cells to block fuel gas and air. The electrode in contact with the fuel gas (H 2 ) is the fuel electrode (anode), and the electrode in contact with the air (O 2 ) is the air electrode (cathode).
The configuration example of the fuel cell stack is as described with reference to FIGS. 3 and 4, but is not limited thereto.

<試料の作製>
表1に示す組成のオーステナイト系ステンレス鋼板(表1にJIS規格で記載)に対して冷間圧延と焼鈍を繰り返し、厚みが0.10mmの基材を得た。なお、表面粗さを小さくし、表面の清浄度を上げてめっき欠陥を抑制するため、仕上げ圧延はロール粗さRa≦0.08μmに制御した幅450mmのロールを用い、表面酸化を抑制するため、焼鈍は全て水素90%以上の雰囲気内で行った。ロールの表面粗さは触針式粗さ計(ミツトヨ社製のSJ−400)を用い、JIS B 0601に準拠して測定した。

この基材に、前処理として市販の脱脂液を用いて電解脱脂後、水洗し、さらに電解酸洗後、水洗を施した。電解脱脂は、水酸化ナトリウム40g/Lと非イオン系界面活性剤5g/Lとを含有する脱脂液を使用し,基材を陰極にして10秒間電解した。電解酸洗は硫酸50g/Lを含有する水溶液を使用し,基材を陰極にして10秒間電解した。
<Preparation of sample>
Cold rolling and annealing were repeated on an austenitic stainless steel sheet having the composition shown in Table 1 (described in Table 1 in JIS standards) to obtain a base material having a thickness of 0.10 mm. In order to reduce the surface roughness, increase the surface cleanliness and suppress plating defects, the finish rolling uses a roll having a width of 450 mm controlled to a roll roughness Ra ≦ 0.08 μm, and suppresses surface oxidation. All annealing was performed in an atmosphere of 90% hydrogen or more. The surface roughness of the roll was measured according to JIS B 0601 using a stylus roughness meter (SJ-400 manufactured by Mitutoyo Corporation).

This substrate was subjected to electrolytic degreasing using a commercially available degreasing solution as a pretreatment, followed by washing with water, followed by electrolytic pickling and then washing with water. For electrolytic degreasing, a degreasing solution containing 40 g / L of sodium hydroxide and 5 g / L of a nonionic surfactant was used, and electrolysis was performed for 10 seconds using the substrate as a cathode. For the electrolytic pickling, an aqueous solution containing 50 g / L of sulfuric acid was used, and electrolysis was performed for 10 seconds using the base material as the cathode.

次に、前処理後の基材に直接Auめっきを所定厚み(表1参照)行い、燃料電池用セパレータ材料を作製した。ここで、図5に示すように、Auめっき槽6の底部にハステロイを外殻とした超音波振動子((株)サンテック製)4を配置し、Auめっき槽6内のAuめっき浴に超音波振動を与えつつ、アノード8に対向する基材2に電解めっきを行った。なお、Auめっき槽6の側面にはシール構造6aが設けられ、基材2(ステンレス条)はシール構造6aを通ってAuめっき槽6の側面を通過しつつ、めっきされるようになっている。
Auめっき液(シアン系)は、シアン化金カリウム(III)(金濃度:1〜2g/L)、硫酸水素ナトリウム50〜100g/Lのものを用い、pHを表1のように変化させた。pHの調整は硫酸水素ナトリウムの添加量を変えて行った。なお、Auめっきの際、めっき浴の金濃度1〜4g/L、電流密度1〜8A/dm、の範囲に管理すれば特に問題はなかった。
Next, Au plating was directly performed on the base material after the pretreatment with a predetermined thickness (see Table 1) to produce a fuel cell separator material. Here, as shown in FIG. 5, an ultrasonic vibrator (made by Suntec Co., Ltd.) 4 having Hastelloy as the outer shell is disposed at the bottom of the Au plating tank 6, and the Au plating bath in the Au plating tank 6 is super Electrolytic plating was performed on the substrate 2 facing the anode 8 while applying sonic vibration. A seal structure 6a is provided on the side surface of the Au plating tank 6, and the base material 2 (stainless steel strip) is plated while passing through the side surface of the Au plating tank 6 through the seal structure 6a. .
The Au plating solution (cyanide) used was potassium gold cyanide (III) (gold concentration: 1 to 2 g / L) and sodium hydrogen sulfate 50 to 100 g / L, and the pH was changed as shown in Table 1. . The pH was adjusted by changing the amount of sodium hydrogen sulfate added. In the Au plating, there was no particular problem if the gold concentration in the plating bath was controlled within the range of 1 to 4 g / L and the current density of 1 to 8 A / dm 2 .

さらに、一部の燃料電池用セパレータ材料(表1の発明例3-1,3-2)については、Auめっきを行った後に封孔処理を行った。封孔処理はメルカプトベンゾチアゾールのナトリウム塩を1g/L含有する水溶液(発明例3−1),ベンゾトリアゾールのナトリウム塩を1g/L含有する水溶液(発明例3−2)を使用し,燃料電池用セパレータ材料を陽極にして10秒間電解処理して行った。   Further, some fuel cell separator materials (Invention Examples 3-1 and 3-2 in Table 1) were subjected to sealing after Au plating. Sealing treatment uses an aqueous solution containing 1 g / L of the sodium salt of mercaptobenzothiazole (Invention Example 3-1) and an aqueous solution containing 1 g / L of the sodium salt of benzotriazole (Invention Example 3-2). Electrolytic treatment was carried out for 10 seconds using the separator material for the anode as an anode.

以上のようにして作製した燃料電池用セパレータ材料表面の算術平均粗さRa、及び各種特性を以下のように測定した。   The arithmetic average roughness Ra and various characteristics of the surface of the fuel cell separator material produced as described above were measured as follows.

<表面粗さ>
めっき前基材の表面粗さRaはJIS B 0601に準拠し、非接触式三次元測定装置(三鷹光器社製、型式NH−3)を用い、カットオフ0.25mm、測定長さ1.50mm、n=5で測定し、その平均値をRa値とした、めっき後のAu被覆層の表面粗さRaは、原子間力顕微鏡(島津製作所社製のSPM−9600)を用い、ダイナミックモード(非接触方式)で、走査範囲1μm×1μm、走査速度0.8Hzで、Auめっき前の基材の結晶粒内に相当する場所をn=3で測定し、その平均値をRaの値として用いた。
<Surface roughness>
The surface roughness Ra of the base material before plating is based on JIS B 0601, using a non-contact type three-dimensional measuring device (manufactured by Mitaka Kogyo Co., Ltd., model NH-3), with a cutoff of 0.25 mm and a measurement length of 1. The surface roughness Ra of the Au coating layer after plating, measured at 50 mm and n = 5, with the average value as the Ra value, was measured using an atomic force microscope (SPM-9600 manufactured by Shimadzu Corp.) (Non-contact method) With a scanning range of 1 μm × 1 μm, a scanning speed of 0.8 Hz, the location corresponding to the crystal grains of the base material before Au plating is measured at n = 3, and the average value is taken as the value of Ra Using.

<Au被覆層の密着性>
Auめっき材を90度の角度に折り曲げ、次に曲げ部を0度に戻し、曲げ部にセロテープ(登録商標)を貼り付けてすぐに剥がし、Au被覆層の剥離の有無を光学顕微鏡を用いて調査した。テープにAu被覆層が付着していないものを密着性が良好(OK)とした。
<Adhesion of Au coating layer>
The Au plating material is bent at an angle of 90 degrees, then the bent part is returned to 0 degree, and the cellophane (registered trademark) is attached to the bent part and peeled off immediately, and the presence or absence of peeling of the Au coating layer is checked using an optical microscope. investigated. A tape having no Au coating layer attached to the tape was considered to have good adhesion (OK).

<耐食性>
燃料電池の発電性能(出力、耐久性など)は、セパレータからの溶出イオン量が少ないほど良好であり、発電環境を模擬した耐食性試験ではセパレータの腐食電流密度として1.0×10-5(A/cm2)未満が要求されている。そこで、各燃料電池用セパレータ材料の腐食電流密度を測定した。測定は燃料電池の発電環境を模擬するよう、試験片に0.8V(SHE)の電位を印加させた状態で、90℃,pH3の硫酸溶液に浸漬し、20時間経過時に試験片に流れる電流を測定した。そして、以下の基準で耐食性を評価した。評価が◎〜△であれば実用上問題はない。
◎:腐食電流密度が1×10-7(A/cm2)未満
○:腐食電流密度が1×10-7(A/cm2)以上1×10-6(A/cm2)未満
△:腐食電流密度が1×10-6(A/cm2)以上1×10-5(A/cm2)未満
×:腐食電流密度が1×10-5(A/cm2)以上
<Corrosion resistance>
The power generation performance (output, durability, etc.) of the fuel cell is better as the amount of ions eluted from the separator is smaller. In the corrosion resistance test simulating the power generation environment, the corrosion current density of the separator is 1.0 × 10 -5 (A / cm Less than 2 ) is required. Accordingly, the corrosion current density of each fuel cell separator material was measured. The measurement is performed by immersing the test piece in a sulfuric acid solution at 90 ° C. and pH 3 with a potential of 0.8 V (SHE) applied to the test piece so as to simulate the power generation environment of the fuel cell, and the current flowing through the test piece after 20 hours. Was measured. And corrosion resistance was evaluated according to the following criteria. If the evaluation is A to B, there is no practical problem.
◎: Corrosion current density is less than 1 × 10 -7 (A / cm 2 ) ○: Corrosion current density is 1 × 10 -7 (A / cm 2 ) or more and less than 1 × 10 -6 (A / cm 2 ) △: Corrosion current density is 1 × 10 -6 (A / cm 2 ) or more and less than 1 × 10 -5 (A / cm 2 ) ×: Corrosion current density is 1 × 10 -5 (A / cm 2 ) or more

得られた結果を表1に示す。なお、表1のAuめっき厚の表面と裏面は、それぞれ燃料電池にセパレータとして組んだ時の電解質膜側(表面)、冷却水側(裏面)に対応したものであり、耐食性の評価は各燃料電池用セパレータ材料の表面でのみ行った。   The obtained results are shown in Table 1. The front and back surfaces of the Au plating thickness in Table 1 correspond to the electrolyte membrane side (front surface) and the cooling water side (back surface) when assembled as a separator in a fuel cell, respectively. Corrosion resistance is evaluated for each fuel. It was performed only on the surface of the battery separator material.

表1から明らかなように、pH1.0以下のAuめっき浴を用い、超音波振動を付与した状態で電解めっきした各実施例の場合、Au被覆層の厚みが20nm以下であっても、Au被覆層の密着性に優れ、耐食性にも優れていた。
なお、Auめっき厚及びめっき浴のpHを同一とした発明例2−1〜2−4において、超音波振動の発振周波数をそれぞれ25、60kHzとした発明例2−1、2−2は他の発明例よりも腐食電流密度が小さく、耐食性と発電性能がより優れていた。
又、Auめっき後に封孔処理を施した発明例3−1、3−2の場合、Auめっき厚、めっき浴のpH及び超音波振動の発振周波数を同一とした発明例1−4、1−8に比べ、腐食電流密度が小さく、耐食性がより優れていた。
又、基材の表裏でAuめっき厚をそれぞれ変えた発明例4−1〜4−3の場合も、耐食性が優れていた。
As is clear from Table 1, in the case of each of the examples in which the electroplating was performed using an Au plating bath having a pH of 1.0 or less and ultrasonic vibration was applied, the Au coating layer had a thickness of 20 nm or less. Excellent adhesion of the coating layer and excellent corrosion resistance.
Inventive Examples 2-1 and 2-4 in which the Au plating thickness and the pH of the plating bath are the same, Inventive Examples 2-1 and 2-2 in which the oscillation frequency of ultrasonic vibration is 25 and 60 kHz, respectively, The corrosion current density was smaller than that of the inventive examples, and the corrosion resistance and power generation performance were more excellent.
In the case of Invention Examples 3-1 and 3-2 in which sealing treatment was performed after Au plating, Invention Examples 1-4 and 1 where the Au plating thickness, the pH of the plating bath, and the oscillation frequency of ultrasonic vibration were the same. Compared to 8, the corrosion current density was small and the corrosion resistance was more excellent.
Moreover, also in the case of invention examples 4-1 to 4-3 in which the Au plating thicknesses were changed on the front and back of the base material, the corrosion resistance was excellent.

なお、ロール粗さがRa>0.08μmのロールで基材を仕上げ圧延し、基材の表面粗さRaも0.08μmを超えた発明例5−1の場合、他の条件が同一の発明例1−3に比べ、腐食電流密度が大きくなったが実用上は問題ない。
又、Auめっき浴中の金濃度をそれぞれ4.5g/L、5.0g/Lとした発明例6−1、6−2の場合、金濃度が1〜4g/Lでありその他の条件が同一の発明例1−4に比べ、腐食電流密度が大きくなったが実用上は問題ない。ここで、発明例6−2の場合、Au被覆層のRaが3.0nmを超え、腐食電流密度が大きくなった。
In addition, in the case of Invention Example 5-1, in which the base material is finish-rolled with a roll having a roll roughness Ra> 0.08 μm, and the surface roughness Ra of the base material also exceeds 0.08 μm, the other conditions are the same. Compared with Example 1-3, although the corrosion current density became large, there is no problem in practical use.
In the case of Invention Examples 6-1 and 6-2 in which the gold concentration in the Au plating bath is 4.5 g / L and 5.0 g / L, respectively, the gold concentration is 1 to 4 g / L, and other conditions are Although the corrosion current density is larger than that of the same Invention Example 1-4, there is no problem in practical use. Here, in Invention Example 6-2, the Ra of the Au coating layer exceeded 3.0 nm, and the corrosion current density increased.

一方、Auめっき浴のpHが1.0を超えた比較例1−1の場合、Au被覆層の密着性及び耐食性がいずれも劣った。
超音波振動を付与せずにAuめっきを行った比較例1−2の場合、耐食性が劣った。
又、超音波振動を付与せずにAuめっきを行った後、封孔処理を施した比較例3−1の場合も、耐食性が劣った。
On the other hand, in the case of Comparative Example 1-1 in which the pH of the Au plating bath exceeded 1.0, both the adhesion and corrosion resistance of the Au coating layer were inferior.
In the case of Comparative Example 1-2 in which Au plating was performed without applying ultrasonic vibration, the corrosion resistance was inferior.
Further, in Comparative Example 3-1, in which Au plating was performed without applying ultrasonic vibration and then sealing treatment was performed, the corrosion resistance was inferior.

2 基材
4 超音波振動子
6 Auめっき槽
8 アノード
10、100 セパレータ
12、12B ガスケット
20 固体高分子電解質膜
40 アノード電極
60 カソード電極
80 膜電極接合体(MEA)
2 Base Material 4 Ultrasonic Vibrator 6 Au Plating Tank 8 Anode 10, 100 Separator 12, 12B Gasket 20 Solid Polymer Electrolyte Membrane 40 Anode Electrode 60 Cathode Electrode 80 Membrane Electrode Assembly (MEA)

Claims (9)

オーステナイト系ステンレス鋼薄板からなる基材の表面に、pH1.0以下のAuめっき浴を用いて厚み20nm以下のAu被覆層を形成する燃料電池用金属セパレータ材料の製造方法であって、
前記基材及び/又は前記Auめっき浴に超音波振動を付与した状態で電解めっきする燃料電池用金属セパレータ材料の製造方法。
A method for producing a metal separator material for a fuel cell, wherein an Au coating layer having a thickness of 20 nm or less is formed on a surface of a base material made of austenitic stainless steel thin plate using an Au plating bath having a pH of 1.0 or less,
A method for producing a metal separator material for a fuel cell, in which electrolytic plating is performed in a state where ultrasonic vibration is applied to the substrate and / or the Au plating bath.
前記超音波振動の発振周波数を25〜60kHzとする請求項1に記載の燃料電池用金属セパレータの製造方法。   The method for producing a metal separator for a fuel cell according to claim 1, wherein an oscillation frequency of the ultrasonic vibration is set to 25 to 60 kHz. 前記Au被覆層をさらに封孔処理する請求項1〜2に記載の燃料電池用金属セパレータ材料の製造方法。   The method for producing a metal separator material for a fuel cell according to claim 1, wherein the Au coating layer is further sealed. メルカプト系水溶液中で前記Au被覆層を電解処理して前記封孔処理を行う請求項3に記載の燃料電池用金属セパレータ材料の製造方法。   The method for producing a metal separator material for a fuel cell according to claim 3, wherein the sealing treatment is performed by subjecting the Au coating layer to electrolytic treatment in a mercapto-based aqueous solution. 前記基材の表面粗さがRa≦0.08μmである請求項1〜4のいずれかに記載の燃料電池用金属セパレータ材料の製造方法。   The method for producing a metal separator material for a fuel cell according to any one of claims 1 to 4, wherein the substrate has a surface roughness Ra ≦ 0.08 µm. 請求項1〜5のいずれかに記載の燃料電池用金属セパレータ材料の製造方法により製造された燃料電池用金属セパレータ材料。   The metal separator material for fuel cells manufactured by the manufacturing method of the metal separator material for fuel cells in any one of Claims 1-5. 前記基材の結晶粒内において、前記Au被覆層を原子間力顕微鏡により測定したときの算術表面粗さ(Ra)が3.0nm以下である請求項6に記載の燃料電池用金属セパレータ材料。   The metal separator material for a fuel cell according to claim 6, wherein an arithmetic surface roughness (Ra) when the Au coating layer is measured with an atomic force microscope in the crystal grains of the substrate is 3.0 nm or less. 請求項6又は7に記載のセパレータ材料を用いた燃料電池用セパレータ。   A fuel cell separator using the separator material according to claim 6. 請求項6又は7に記載の燃料電池用セパレータ材料を用いた燃料電池スタック。   A fuel cell stack using the fuel cell separator material according to claim 6.
JP2011026026A 2011-02-09 2011-02-09 Manufacturing method of metal separator material for fuel cell and metal separator material for fuel cell Expired - Fee Related JP5535102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011026026A JP5535102B2 (en) 2011-02-09 2011-02-09 Manufacturing method of metal separator material for fuel cell and metal separator material for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011026026A JP5535102B2 (en) 2011-02-09 2011-02-09 Manufacturing method of metal separator material for fuel cell and metal separator material for fuel cell

Publications (2)

Publication Number Publication Date
JP2012164604A true JP2012164604A (en) 2012-08-30
JP5535102B2 JP5535102B2 (en) 2014-07-02

Family

ID=46843788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011026026A Expired - Fee Related JP5535102B2 (en) 2011-02-09 2011-02-09 Manufacturing method of metal separator material for fuel cell and metal separator material for fuel cell

Country Status (1)

Country Link
JP (1) JP5535102B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021051857A (en) * 2019-09-24 2021-04-01 トヨタ自動車株式会社 Manufacturing method of fuel cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845395A (en) * 1981-09-11 1983-03-16 Konishiroku Photo Ind Co Ltd Electroplating or electrolyzing method
JP2002256479A (en) * 2001-03-05 2002-09-11 Alps Electric Co Ltd Method and equipment for plating
JP2004296381A (en) * 2003-03-28 2004-10-21 Honda Motor Co Ltd Metal separator for fuel cell and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845395A (en) * 1981-09-11 1983-03-16 Konishiroku Photo Ind Co Ltd Electroplating or electrolyzing method
JP2002256479A (en) * 2001-03-05 2002-09-11 Alps Electric Co Ltd Method and equipment for plating
JP2004296381A (en) * 2003-03-28 2004-10-21 Honda Motor Co Ltd Metal separator for fuel cell and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021051857A (en) * 2019-09-24 2021-04-01 トヨタ自動車株式会社 Manufacturing method of fuel cell
JP7215384B2 (en) 2019-09-24 2023-01-31 トヨタ自動車株式会社 Fuel cell manufacturing method

Also Published As

Publication number Publication date
JP5535102B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
KR101266096B1 (en) Fuel cell separator and method for producing same
JP5455204B2 (en) Fuel cell separator material and fuel cell stack using the same
JP5419816B2 (en) Fuel cell separator material, fuel cell separator and fuel cell stack using the same
JP2010238577A (en) Separator material for fuel cell and fuel cell stack using the same
JP5796694B1 (en) Stainless steel foil for separator of polymer electrolyte fuel cell
JP4928222B2 (en) Method for manufacturing fuel cell separator, fuel cell separator and fuel cell
JP5535102B2 (en) Manufacturing method of metal separator material for fuel cell and metal separator material for fuel cell
JP2012162791A (en) Plated material for terminal or connector and manufacturing method therefor
JP5699624B2 (en) Metal plate for polymer electrolyte fuel cell separator and method for producing the same
JP2015153648A (en) Metal porous body and method for manufacturing the same, electrode plate and battery
TWI627790B (en) Stainless steel steel plate for fuel cell separator and manufacturing method thereof
JP2005100813A (en) Separator for fuel cell and its manufacturing method, fuel cell stack and fuel cell vehicle
WO2011122282A1 (en) Separator material for fuel cell, separator for fuel cell and fuel cell stack using the same, and method for producing separator material for fuel cell
CN107210455B (en) Stainless steel plate for separator of solid polymer fuel cell
JP5277048B2 (en) Manufacturing method of fuel cell separator
JP2011175901A (en) Separator material for fuel cell, separator for fuel cell using the same, and fuel cell stack
JP2010153043A (en) Laminated fuel cell
JP2005302669A (en) Manufacturing method of aluminum separator for fuel cell
JP2021051860A (en) Rust-proof plate
JP2021044110A (en) Rust preventive plate for fuel battery and manufacturing method thereof
JP2021051970A (en) Rust-proof plate
JP2023122178A (en) Manufacturing method of fuel cell separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140422

R150 Certificate of patent or registration of utility model

Ref document number: 5535102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees