JP2012162430A - Porous functional material - Google Patents

Porous functional material Download PDF

Info

Publication number
JP2012162430A
JP2012162430A JP2011025591A JP2011025591A JP2012162430A JP 2012162430 A JP2012162430 A JP 2012162430A JP 2011025591 A JP2011025591 A JP 2011025591A JP 2011025591 A JP2011025591 A JP 2011025591A JP 2012162430 A JP2012162430 A JP 2012162430A
Authority
JP
Japan
Prior art keywords
metal
carbide
functional material
cell
porous functional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011025591A
Other languages
Japanese (ja)
Inventor
Masamichi Sato
正倫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011025591A priority Critical patent/JP2012162430A/en
Publication of JP2012162430A publication Critical patent/JP2012162430A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a porous functional material which has electric conductivity only in the thickness direction of its plate, or a porous functional material which has a negative to positive relation of its original carbonized matter with the replica or structure of the carbonized matter, by using carbonized wood.SOLUTION: The porous functional material is obtained by: a process of carbonizing the core part of wood, making at least a part of the carbonized cell to have a thickness penetrating through a plate and chemically plating a metal; a process of carbonizing the sapwood part and impregnating a dispersion of a metal or a metal oxide, and thereafter removing the dispersion solvent; a process of chemically plating metal on the carbonized sapwood or impregnating hydrolysate of a metal alkoxide, and removing the carbonized matter by firing in the presence of oxygen.

Description

本発明は木材を炭化して得られた多孔性材料を利用した多孔性機能材料に関する。   The present invention relates to a porous functional material using a porous material obtained by carbonizing wood.

木材には広葉樹と針葉樹があり、広葉樹は軸方向(樹木の幹の長さ(高さ)方向)に道管、その他の細胞があり、針葉樹では軸方向に仮道管がある。これらの軸方向細胞の他に、放射方向(軸方向に対して直角)の細胞があり、軸方向の細胞と放射方向の細胞との接触部では、両者の管壁に有縁壁孔と呼ばれる壁孔があり、この壁孔を通して放射方向の細胞から軸方向の細胞に養分が供給されることが知られている。すなわち、軸方向の細胞同士がこの壁孔を通して液体の通導があるのである。樹木を軸方向に直角に切断すると、同心円状の年輪が現れる。年輪の樹木の外皮に近い部分は辺材と呼ばれ、成長を続けている部分である。その内側は心材と呼ばれ、成長活動が停止した部分である。辺材部分は約10年で心材となることが知られている。心材部分では壁孔が塞がり、細胞は気密になる。針葉樹ではこの気密になる細胞の長さが3〜4mmである。広葉樹では樹種により、気密になる細胞の長さが違っており、詳細には分からないとされている。   There are broad-leaved trees and conifers in wood, broad-leaved trees have canals and other cells in the axial direction (the length (height) direction of the trunk of the tree), and conifers have temporary canals in the axial direction. In addition to these cells in the axial direction, there are cells in the radial direction (perpendicular to the axial direction), and at the contact portion between the cells in the axial direction and the cells in the radial direction, both tube walls are called edged wall holes. It is known that there is a wall hole, and nutrients are supplied from the radial cell to the axial cell through the wall hole. That is, the cells in the axial direction can conduct liquid through the wall holes. When a tree is cut at right angles to the axial direction, concentric annual rings appear. The part of the tree ring that is close to the outer skin is called sapwood, and is the part that continues to grow. The inside is called the heartwood and is the part where growth activity has stopped. It is known that the sapwood portion will become a core material in about 10 years. In the heartwood part, the wall hole is closed and the cells become airtight. In conifers, the length of this airtight cell is 3-4 mm. In broad-leaved trees, the length of the cells that become airtight differs depending on the species, and it is said that the details are unknown.

日本のように四季がある地域では、春から夏にかけては木の成長が速いため壁の薄い大きい孔からなる細胞が生育する。この部分は早材と呼ばれる。一方夏から秋にかけては木の成長が遅いため、壁が厚い小さな孔からなる細胞が生育する。この部分は晩材と呼ばれる。早材と晩材が交互に同心円状に生育して年輪となるのである。赤道付近の熱帯や亜熱帯で生育する木には年輪が無いか殆ど認識されないものが、広葉樹でも針葉樹でも多数存在することが知られている。   In regions with four seasons, such as Japan, the growth of trees from spring to summer leads to the growth of cells consisting of large pores with thin walls. This part is called early wood. On the other hand, from summer to autumn, the growth of trees is slow, so cells with small holes with thick walls grow. This part is called late wood. Early wood and late wood grow alternately in concentric circles and become annual rings. Trees growing in the tropics and subtropics near the equator are known to have a large number of broad-leaved and coniferous trees that have little or no perception.

木材を炭化したいわゆる木炭は微細な孔(細胞)を無数に有する多孔性材料であり、悪臭を放つ排水中の有機物を吸着して悪臭を減らす排水の浄化作用、室内や冷蔵庫の臭い物質を吸着する脱臭作用を有すること知られている。本発明者は木材炭化物の細胞を利用して、これまで知られていなかった多孔性機能材料が得られることを見出し、本発明に到達した。   So-called charcoal made from carbonized wood is a porous material with countless fine pores (cells) that absorbs organic matter in the wastewater that emits bad odors and reduces odors, and adsorbs odorous substances in rooms and refrigerators. It is known to have a deodorizing action. The present inventor has found that a porous functional material that has not been known so far can be obtained by utilizing wood carbide cells, and has reached the present invention.

日本木材学会編 「すばらしい木の世界」海青社 1995年The Wood Society of Japan "A wonderful world of wood" Kaiseisha 1995

本発明の第1の課題は木材炭化物の細胞内壁に金属膜を形成した多孔性機能材料を提供することである。   A first object of the present invention is to provide a porous functional material in which a metal film is formed on a cell inner wall of wood carbide.

本発明の第2の課題は木材炭化物の細胞内壁に金属膜を形成し、細胞の軸方向にのみ導電性を有する多孔性機能材料を提供することである。   A second object of the present invention is to provide a porous functional material in which a metal film is formed on the cell inner wall of wood carbide and has conductivity only in the axial direction of the cell.

本発明の第3の課題は木材炭化物の細胞内壁に金属粒子或いは金属酸化物を付着させた多孔性機能材料を提供することである。   The third object of the present invention is to provide a porous functional material in which metal particles or metal oxides are attached to the cell inner wall of wood carbide.

本発明の第4の課題は木材炭化物を使用して製造された金属又は金属酸化物から成る多孔性機能材料を提供することである。   A fourth object of the present invention is to provide a porous functional material made of a metal or metal oxide produced using wood carbide.

本発明の第1の課題は木材を炭化し、該炭化物の細胞内壁に金属膜を化学メッキにより形成することにより達成される。   The first object of the present invention is achieved by carbonizing wood and forming a metal film on the inner cell wall of the carbide by chemical plating.

本発明の第2の課題は木材の心材部分を炭化し、該炭化物の細胞の長さ方向に対してほぼ直角な方向に、一部の細胞が貫通する厚さ以下の厚さに切断された平板の細胞内壁に金属を化学メッキすることにより達成される。   The second object of the present invention is to carbonize the core part of the wood, and in a direction substantially perpendicular to the length direction of the cells of the carbide, it is cut to a thickness less than the thickness through which some cells penetrate. This is achieved by chemically plating a metal on the inner cell wall of the flat plate.

本発明の第3の課題を達成するための第1の態様は木材炭化物の細胞内で、化学反応により金属酸化物を形成させることである。第2の態様は木材炭化物の細胞内に金属又は金属酸化物の分散液体を含浸させ、金属又は金属酸化物を細胞内壁に付着させることである。第3の態様は金属塩の水溶液を木材炭化物の細胞内に含浸させ、金属イオンを細胞内壁に吸着させた後、該金属イオンを金属に還元することである。   The first mode for achieving the third object of the present invention is to form a metal oxide by chemical reaction in wood carbide cells. A second aspect is to impregnate a cell of wood carbide with a dispersion liquid of metal or metal oxide, and attach the metal or metal oxide to the cell inner wall. A third aspect is to impregnate a cell of wood carbide with an aqueous solution of a metal salt, adsorb the metal ion on the cell inner wall, and then reduce the metal ion to a metal.

本発明の第4の課題は木材炭化物の少なくとも細胞内壁に金属膜又は酸素存在下で焼成することにより金属酸化物の膜を形成し得る膜を設け、これを酸素存在下で高温で焼成して炭化物を除去することにより達成される。   A fourth problem of the present invention is to provide a metal film or a film capable of forming a metal oxide film by firing in the presence of oxygen on at least the cell inner wall of wood carbide, and firing this at a high temperature in the presence of oxygen. This is achieved by removing carbides.

本発明によれば、木材炭化物を使用して一方向導電性のような多孔性機能材料を得ることができる。また、金属或いは金属酸化物で元の炭化物の内部構造のレプリカを得ること、及び金属或いは金属酸化物で元の炭化物の構造とネガポジの関係にある多孔性機能材料を得ることができる。   According to the present invention, a porous functional material such as unidirectional conductivity can be obtained using wood carbide. Further, it is possible to obtain a replica of the internal structure of the original carbide with a metal or metal oxide, and to obtain a porous functional material having a negative-positive relationship with the structure of the original carbide with a metal or metal oxide.

本発明の多孔性機能材料を得る第1の形態は木材を炭化し、該炭化物の細胞内壁に金属膜を形成することである。前述のとおり木材の辺材部分では細胞の壁孔を液体が通導できるので、その炭化物のおいても細胞間で同様に液体が通導できる。従って、大きなブロック状の木材炭化物であっても、細胞内壁に金属を化学メッキすることが可能である。実際にはメッキによりガスが発生するので、減圧状態でメッキするのが有効である。減圧の程度としては0.2乃至100Paの範囲が適当であるが、この範囲外でも構わない。木材の心材部分は前述のとおり細胞の壁孔が塞がって気密になっているので、細胞の長さの約2倍以下の程度の厚さの平板状の木材炭化物にすることによって液を細胞の内部に浸透させて、化学メッキを行うことができる。化学メッキできる金属は銅、ニッケル、ハンダ等である。   The first mode for obtaining the porous functional material of the present invention is to carbonize wood and form a metal film on the cell inner wall of the carbide. As described above, in the wood sap part, the liquid can be conducted through the cell hole, so that even in the case of the carbide, the liquid can be conducted similarly between the cells. Therefore, even a large block-like wood carbide can be chemically plated with metal on the cell inner wall. In practice, since gas is generated by plating, it is effective to perform plating under reduced pressure. The range of 0.2 to 100 Pa is appropriate as the degree of decompression, but it may be outside this range. As described above, the heartwood part of the wood is airtight with the cell wall pores closed, so that the liquid can be made into a plate-like wood carbide having a thickness less than about twice the length of the cell. Chemical plating can be performed by penetrating the inside. Metals that can be chemically plated are copper, nickel, solder, and the like.

本発明の多孔性機能材料を得る第2の形態は、木材の心材部分を炭化し、該炭化物の細胞の長さ方向に対してほぼ直角な方向に、一部の細胞が貫通する厚さ以下に切断された平板の細胞内壁に金属を化学メッキすることである。第2の形態では木材炭化物が薄い平板状なので、化学メッキ中に発生したガスは容易に細胞の孔から抜けだすので、減圧にする必要はない。炭化温度が約600℃程度までは、炭化物は絶縁性であり、約750℃以上では導電性になるので、第2の形態では炭化温度が約600℃以下が望ましい。   In the second mode of obtaining the porous functional material of the present invention, the core material portion of wood is carbonized, and the thickness is such that some cells penetrate in a direction substantially perpendicular to the length direction of the cells of the carbide. It is to chemically plate metal on the cell inner wall of the flat plate cut into pieces. In the second embodiment, since the wood carbide is a thin flat plate, the gas generated during chemical plating easily escapes from the pores of the cells, so there is no need to reduce the pressure. The carbide is insulative until the carbonization temperature is about 600 ° C., and becomes conductive at about 750 ° C. or higher. Therefore, the carbonization temperature is preferably about 600 ° C. or lower in the second embodiment.

木材を高温で炭化処理すると、軸方向(木の長さ方向)の寸法が約20%収縮するので、木材の厚さはこれを考慮して決定される。針葉樹を用いる場合、平板状炭化物の厚さは2.5〜3mm或いはそれ以下が望ましい。本発明者の実験によると、平板状炭化物の厚さが小さいほど、平板を貫通する細胞の数が多くなる。厚さが約3mmの場合、平板を貫通する細胞の割合は2%以下、2mmの場合は約30%、1mmの場合は90%以上にであった。広葉樹でもこの傾向は同様である。   When the wood is carbonized at a high temperature, the dimension in the axial direction (the length direction of the tree) shrinks by about 20%, and thus the thickness of the wood is determined in consideration of this. When using a conifer, the thickness of the flat carbide is preferably 2.5 to 3 mm or less. According to the experiment of the present inventor, the smaller the thickness of the plate-like carbide, the larger the number of cells penetrating the plate. When the thickness was about 3 mm, the proportion of cells penetrating the flat plate was 2% or less, about 2% was about 30%, and about 1% was 90% or more. The same is true for hardwoods.

本発明の多孔性機能材料を得る第3の形態の中の第1の態様は、木材炭化物の細胞内で、化学反応により金属酸化物を形成することである。例えば、木材炭化物を塩化第2鉄水溶液に浸漬し、炭化物の細胞内に塩化第2鉄水溶液を含浸後、水酸化ナトリウム水溶液に浸漬すると、細胞内で水酸化鉄が形成され、水酸化鉄粒子が細胞内壁に付着する。これを水洗、乾燥した後、無酸素乃至低酸素雰囲気で高温焼成すれば、磁性酸化鉄が形成される。鉄塩の代わりに他の金属塩を用い、金属塩の種類に応じて、酸とアルカリ水溶液を使い分ければ各種金属酸化物を形成することができる。心材部分を炭化したものを用いる場合は、前述のとおり薄い平板状炭化物にする必要がある。細胞内壁に金属を化学メッキした後、化学反応による反応生成物を吸着させてもよい。炭化処理温度が約750℃或いはそれ以上では、炭化物が導電性になるので、金属酸化物として酸化鉄を形成すれば、電磁遮蔽材料が得られる。   The 1st aspect in the 3rd form which obtains the porous functional material of this invention is forming a metal oxide by a chemical reaction within the cell of wood carbide. For example, when wood carbide is immersed in ferric chloride aqueous solution, ferric chloride aqueous solution is impregnated in the cells of carbide and then immersed in sodium hydroxide aqueous solution, iron hydroxide is formed in the cells, and iron hydroxide particles Adheres to the inner cell wall. If this is washed with water and dried, and then fired at a high temperature in an oxygen-free or low-oxygen atmosphere, magnetic iron oxide is formed. Various metal oxides can be formed by using other metal salts instead of iron salts and using different acids and alkaline aqueous solutions depending on the type of metal salt. When using a carbonized core material, it is necessary to use a thin flat carbide as described above. After the metal is chemically plated on the cell inner wall, the reaction product resulting from the chemical reaction may be adsorbed. When the carbonization temperature is about 750 ° C. or higher, the carbide becomes conductive. Therefore, if iron oxide is formed as a metal oxide, an electromagnetic shielding material can be obtained.

本発明の多孔性機能材料を得る第3の形態の中の第2の態様は、木材炭化物の細胞内に、金属又は金属酸化物を分散液体として含浸後、分散溶媒を除去して金属又は金属酸化物を存在させることである。例えば、金属又は金属酸化物粉体を水又は有機溶剤に安定に分散させ、この分散液体を木材炭化物に含浸させた後、分散溶媒を蒸発除去させる。これにより金属又は金属酸化物を細胞内壁に付着させることができる。金属又は金属酸化物、水又は有機溶剤を適当に選択することにより、ナノサイズからサブミクロンサイズの金属又は金属酸化物の安定な分散液を得ることは多数の例が公知であり、それらを利用することができる。例えば、磁性流体は約10nmサイズの酸化鉄が水、炭化水素系の有機溶剤中に安定に分散されたものである。コロイダルシリカ、コロイダルアルミナ、酸化チタンゾル、その他の水又は有機溶剤分散液も公知であり、これらを使用することができる。分散液を木材炭化物の細胞内に完全に浸透させるために、減圧下で木材炭化物を分散液に沈めることが有効である。減圧の程度としては0.2乃至100Paの範囲が適当であるが、この範囲外でも構わない。   The second aspect of the third mode for obtaining the porous functional material of the present invention is that the metal or metal oxide is impregnated into the wood carbide cells as a dispersion liquid, and then the dispersion solvent is removed to remove the metal or metal. The presence of an oxide. For example, a metal or metal oxide powder is stably dispersed in water or an organic solvent, and the dispersion liquid is impregnated into wood carbide, and then the dispersion solvent is removed by evaporation. Thereby, a metal or a metal oxide can be made to adhere to a cell inner wall. Numerous examples are known for obtaining stable dispersions of metals or metal oxides of nano to sub-micron sizes by appropriately selecting metals or metal oxides, water or organic solvents, and use them. can do. For example, the magnetic fluid is obtained by stably dispersing iron oxide having a size of about 10 nm in water or a hydrocarbon organic solvent. Colloidal silica, colloidal alumina, titanium oxide sol, other water or organic solvent dispersions are also known, and these can be used. In order to completely infiltrate the dispersion into the cells of the wood carbide, it is effective to submerge the wood carbide in the dispersion under reduced pressure. The range of 0.2 to 100 Pa is appropriate as the degree of decompression, but it may be outside this range.

本発明の多孔性機能材料を得る第3の形態の中の第3の態様は、金属塩の水溶液を木材炭化物の細胞内に含浸させ、金属イオンを細胞内壁に吸着させた後、該金属イオンを金属に還元することである。例えば、塩化パラジウムの水溶液を木材炭化物の細胞内に浸透させて、パラジウムイオンを細胞壁に吸着させた後、パラジウムイオンを例えばホルマリンで還元してナノサイズの金属パラジウムを得ることができる。金、白金につても同様である。   A third aspect of the third mode for obtaining the porous functional material of the present invention is that a metal salt aqueous solution is impregnated into cells of wood carbide, and the metal ions are adsorbed on the cell inner wall, and then the metal ions are Is reduced to metal. For example, an aqueous solution of palladium chloride can be permeated into wood carbide cells to adsorb palladium ions to the cell wall, and then the palladium ions can be reduced with, for example, formalin to obtain nano-sized metallic palladium. The same applies to gold and platinum.

本発明の多孔性機能材料を得る第4の形態は、木材炭化物の細胞内壁に金属膜、又は酸素存在下で焼成することにより金属酸化物の膜を形成し得る膜を設け、これを酸素存在下で高温焼成して炭化物を除去することである。金属膜は上記の第1の形態と同様にして形成できる。例えば、銅を化学メッキした後、酸素存在下で高温焼成して炭化物を除去すると、炭化物のレプリカ状の銅の多孔体が得られる。レプリカと表現したが、炭化物全体の形状そのままのレプリカを得ることは困難である。銅のメッキ厚が小さい場合、形を自己保持できないので、銅の多孔体は粉末状乃至顆粒状或いは塊状に崩れてしまうが、メッキ厚が5ミクロン程度あれば、炭化物の形が部分的に再現される。年輪の晩材部分では、細胞の孔が非常に小さく、細胞壁が厚い樹種では、晩材の部分に銅が充分にメッキされないので、焼成によってこの部分が消滅して早材の部分だけが残る。上記の塊状と表現しているのは、この早材の部分が一つの塊として形を維持しているのである。粉末状になっている部分を顕微鏡で観察すると、その中に数本乃至数10本の細胞形状が残存している。顆粒状では更に多数の形状が残存している細胞が存在している。銅の他にニッケルでもよい。   In the fourth mode of obtaining the porous functional material of the present invention, a metal film or a film capable of forming a metal oxide film by firing in the presence of oxygen is provided on the cell wall of wood carbide, and this is present in the presence of oxygen. Under high temperature firing to remove carbides. The metal film can be formed in the same manner as in the first embodiment. For example, after chemical plating of copper, the carbide is removed by high-temperature firing in the presence of oxygen to obtain a carbide replica copper porous body. Although expressed as a replica, it is difficult to obtain a replica of the entire shape of the carbide. If the copper plating thickness is small, the shape cannot be self-maintained, so the copper porous body collapses into a powder, granule, or mass, but if the plating thickness is about 5 microns, the shape of the carbide is partially reproduced. Is done. In the latewood part of the annual ring, in the tree species having very small cell holes and thick cell walls, copper is not sufficiently plated on the latewood part, so this part disappears by firing and only the early part remains. The expression of the above-mentioned lump is that this early wood part maintains its shape as a lump. When the powdered portion is observed with a microscope, several to several tens of cell shapes remain in the portion. In the granular form, there are cells in which more shapes remain. Nickel may be used in addition to copper.

酸素存在下で焼成することにより金属酸化物の膜を形成し得る物質の例として、金属アルコキシドの加水分解物がある。例えば、エトキシシランを有機溶剤中で加水分解してポリシロキサン含有溶液として得られる。ポリシロキサン含有溶液を、木材の辺材部分を炭化した炭化物に含浸させ、乾燥後、酸素存在下で高温焼成して炭化物を除去すると、炭化物のレプリカ状のシリカが得られる。ポリシロキサン含有溶液を炭化物に含浸させる際、減圧下で行うのが好ましい。レプリカの形状維持については上記の銅のレプリカと同様のことが言える。すなわち、ポリシロキサンの膜厚が大きいほど形状維持が容易である。金属アルコキシドの金属として、チタン、アルミニウム、タンタル、カルシウム、マグネシウム等がある。   An example of a substance that can form a metal oxide film by firing in the presence of oxygen is a hydrolyzate of a metal alkoxide. For example, ethoxysilane is hydrolyzed in an organic solvent to obtain a polysiloxane-containing solution. When the carbide containing carbonized sapwood portion of the wood is impregnated with the polysiloxane-containing solution, dried, and then calcined at a high temperature in the presence of oxygen to remove the carbide, a silica replica-like silica is obtained. When the carbide is impregnated with the polysiloxane-containing solution, it is preferably performed under reduced pressure. It can be said that the shape of the replica is the same as that of the above-mentioned copper replica. That is, the larger the polysiloxane film thickness, the easier the shape can be maintained. Examples of the metal of the metal alkoxide include titanium, aluminum, tantalum, calcium, and magnesium.

上記の説明において、金属又は金属酸化物の厚さを、細胞の孔が埋まるまで大きくすると、炭化物と構造がネガポジの関係にある多孔性機能材料が得られる。金属を化学メッキで形成する場合、細胞の内壁のみではなく細胞の開口部にもメッキされるようにすると、メッキ後の炭化物の強度が高まり、空気中焼成後の形状維持が容易になる。また、1回の含浸、乾燥後、まだ空隙が残っていれば、更に追加含浸され、空隙が無くなるまで繰り返すのが好ましい。   In the above description, when the thickness of the metal or metal oxide is increased until the pores of the cells are filled, a porous functional material having a negative-positive relationship between the carbide and the structure can be obtained. When the metal is formed by chemical plating, if the plating is performed not only on the inner wall of the cell but also on the opening of the cell, the strength of the carbide after plating is increased, and the shape can be easily maintained after firing in the air. In addition, if voids still remain after one impregnation and drying, it is preferably further impregnated until the voids disappear.

木材細胞の表面或いは細胞壁内部には多数のナノレベルの孔があり、木材炭化物になってもそれらが残っている。従って、本発明の第4の形態の多孔性機能材料は、たとえ粉体状であっても、莫大な数のナノレベルの孔を有しており、これをフィルター材料として使用した場合、その効果は極めて大きい。特に高温での使用に耐えるので、高温でのフィルター用途に好適である。   There are many nano-level pores on the surface of the wood cell or inside the cell wall, and they remain even if it becomes wood carbide. Therefore, the porous functional material according to the fourth aspect of the present invention has a huge number of nano-level pores even if it is in the form of powder. Is extremely large. Particularly, since it can withstand use at high temperatures, it is suitable for high-temperature filter applications.

本発明に使用できる木材としては、殆どの広葉樹、針葉樹があげられる。本発明の第1の形態の多孔性機能材料の内、一方向導電性を有する材料には、細胞の大きさが揃っていてしかも規則的に配列しているという理由で、特に針葉樹が優れている。   The wood that can be used in the present invention includes most hardwoods and conifers. Among the porous functional materials according to the first aspect of the present invention, the material having unidirectional conductivity is particularly excellent in conifers because the cells have the same size and are regularly arranged. Yes.

アガティス材の辺材部分から切り出された断面が20×20mmの角材を、出力30Wの炭酸ガスレーザービームで、長さ方向(細胞の方向は長さ方向)と直角に、厚さ5mmの平板に切断した。この平板を酸素遮断雰囲気で300℃で8時間加熱した後、同じ雰囲気で500℃で1時間加熱し、自然放置で室温に戻した。この炭化処理により角材の断面は約16×16mmに、厚さは約4mmに収縮していた。この平板を、触媒付与液(奥野製薬工業株式会社製触媒付与剤、OPC−80キャタリストMの45ml/L、OPC−SAL Mの260g/L水溶液)に、減圧下(約10Pa)で約8分間浸漬した後、常圧で30分間水洗し、乾燥した。次いで、前記と同様に減圧下で活性化液(奥野製薬工業株式会社製活性化剤、OPC−555アクセラレータMの100ml/L水溶液)に4分間浸漬後、常圧で30分間水洗し、乾燥した。次に、この平板を前記減圧下で奥野製薬工業株式会社製化学メッキ液、OPC−750無電解銅M(OPC−750無電解銅M−Aが100ml/L、OPC−750無電解銅M−Bが100ml/L、OPC−750無電解銅M−Cが2ml/Lの混合液)に浸漬、約2分間よく攪拌しながら多孔性材料の全表面に銅を析出させ、常圧で30分間水洗後乾燥した。乾燥した平板を再び前記メッキ条件で処理した。このメッキ、水洗、乾燥の処理を合計4回繰り返して導電性多孔性材料を得た。内部の細胞にまで充分にメッキされていた。   A square material having a cross section of 20 × 20 mm cut out from the sapwood portion of the Agatis material is formed into a flat plate having a thickness of 5 mm perpendicular to the length direction (cell direction is the length direction) with a carbon dioxide laser beam having an output of 30 W. Disconnected. The flat plate was heated at 300 ° C. for 8 hours in an oxygen-blocking atmosphere, then heated at 500 ° C. for 1 hour in the same atmosphere, and allowed to return to room temperature by being allowed to stand naturally. Due to this carbonization treatment, the cross section of the square was reduced to about 16 × 16 mm and the thickness was reduced to about 4 mm. The flat plate was placed in a catalyst-providing solution (catalyst-providing agent manufactured by Okuno Pharmaceutical Co., Ltd., 45 ml / L of OPC-80 Catalyst M, 260 g / L aqueous solution of OPC-SAL M) under reduced pressure (about 10 Pa) at about 8 After soaking for 30 minutes, it was washed with water at normal pressure for 30 minutes and dried. Then, after immersing in an activation liquid (Okuno Pharmaceutical Co., Ltd. Activator, OPC-555 Accelerator M 100 ml / L aqueous solution) under reduced pressure for 4 minutes as described above, washed with water at normal pressure for 30 minutes and dried. . Next, the plate was subjected to a chemical plating solution manufactured by Okuno Pharmaceutical Co., Ltd., OPC-750 electroless copper M (OPC-750 electroless copper MA was 100 ml / L, OPC-750 electroless copper M- B is 100 ml / L, and OPC-750 electroless copper MC is 2 ml / L) and copper is deposited on the entire surface of the porous material while stirring well for about 2 minutes. It was dried after washing with water. The dried flat plate was treated again under the above plating conditions. This plating, washing with water and drying were repeated a total of 4 times to obtain a conductive porous material. The inner cells were well plated.

アガティス材の心材部分から切り出された断面が15×50mm、長さ(軸方向細胞の方向)が150mmの板を、出力30Wの炭酸ガスレーザービームで、長さ方向と直角に、厚さ2mmの平板状に切断した。両方の切断面には細胞(仮道管)の開口部が均一に露出し、年輪は無かった。ほぼ30%の細胞は平板を貫通していた。この平板を酸素遮断雰囲気で300℃で8時間加熱した後、同じ雰囲気で500℃で1時間加熱し、自然放置で室温に戻した。高温炭化処理により、平板の断面寸法、厚さとも約85%に収縮した。かくして得られた厚さ約1.6mmの平板状炭化物は、両面に細胞の炭化物が均一に露出し、約30%の細胞は平板を貫通し、しかも細胞間で液体の通導がないものである。この平板を、実施例1と同じ触媒付与液に約4分間浸漬した後、4分間水洗し、実施例1と同じ活性化液に4分間浸漬後、4分間水洗、乾燥した。かくして得られたパラジウムのナノ粒子を壁面に吸着した多孔性材料は、フィルター用途、化学メッキ用途、その他の用途のための出発材料として使用できる。   A plate with a cross-section of 15 × 50 mm and a length (in the direction of the axial cell) of 150 mm cut from the core part of the Agatis material is 2 mm thick with a carbon dioxide laser beam with an output of 30 W perpendicular to the length direction. Cut into a flat plate. Both cut surfaces were uniformly exposed with cell (prosthetic canal) openings, with no annual rings. Nearly 30% of the cells penetrated the plate. The flat plate was heated at 300 ° C. for 8 hours in an oxygen-blocking atmosphere, then heated at 500 ° C. for 1 hour in the same atmosphere, and allowed to return to room temperature by being left standing. Due to the high-temperature carbonization treatment, both the cross-sectional dimension and thickness of the flat plate contracted to about 85%. The plate-like carbide having a thickness of about 1.6 mm obtained in this way is such that cell carbide is uniformly exposed on both sides, about 30% of the cells penetrate the plate, and there is no liquid conduction between the cells. is there. This flat plate was immersed in the same catalyst-providing solution as in Example 1 for about 4 minutes, then washed with water for 4 minutes, immersed in the same activation solution as in Example 1 for 4 minutes, washed with water for 4 minutes, and dried. The porous material obtained by adsorbing palladium nanoparticles on the wall surface in this way can be used as a starting material for filter applications, chemical plating applications, and other applications.

実施例2のパラジウムナノ粒子を有する平板を、実施例1と同じ化学メッキ液に約10分間よく攪拌しながら浸漬、多孔性材料の表面に銅を析出させて導電性多孔性材料を得た。この平板の両面に、酢酸ビニル樹脂の水エマルジョン(酢酸ビニル樹脂55%)を塗布した。乾燥後、両面を粒度800番の研磨シートで研磨し、約0.3mmずつ削り落とした後、酢酸ブチルで樹脂を溶解除去、乾燥した。かくして厚さ方向にのみ導電性を有する約1mm厚の材料を得た。得られた面はハンダ付けが可能であった。得られた平板を、約280℃に加熱されたホットプレートの上に載せ、約0.5mm角のハンダ(融点199℃)を置いたところ、ハンダが溶融して裏面に到達した。ハンダを同じ位置に追加して置くことにより、盛り上がりを形成することできた。   The flat plate having the palladium nanoparticles of Example 2 was immersed in the same chemical plating solution as in Example 1 for about 10 minutes with good stirring, and copper was deposited on the surface of the porous material to obtain a conductive porous material. A water emulsion of vinyl acetate resin (vinyl acetate resin 55%) was applied to both surfaces of the flat plate. After drying, both surfaces were polished with an abrasive sheet having a particle size of # 800, scraped off by about 0.3 mm, and then the resin was dissolved and removed with butyl acetate and dried. Thus, a material having a thickness of about 1 mm having conductivity only in the thickness direction was obtained. The obtained surface could be soldered. The obtained flat plate was placed on a hot plate heated to about 280 ° C., and about 0.5 mm square solder (melting point: 199 ° C.) was placed. The solder melted and reached the back surface. By adding additional solder at the same position, a bulge could be formed.

実施例2で得られたのと同じ厚さ約1.6mmの炭化物平板(触媒付与する前のもの)を水平に置き、その上面にマイクロピペットを用いて、実施例1と同じ触媒付与液を10μL滴下し、3分後に同じ場所に更に10μL滴下し、3分間水洗、乾燥した。これを実施例2と同じように活性化処理し、化学メッキしたところ、約0.2mmの径の部分の細胞の内壁と開口端に銅がメッキされた。この領域が触媒付与され、メッキ核が形成されたことが分かる。この部分にハンダ付けが可能であった。このようにして、局所的にハンダ付けが可能である。   Place the same 1.6 mm thick carbide flat plate (before applying the catalyst) as obtained in Example 2 horizontally, and use the micropipette on the top surface to apply the same catalyst applying liquid as in Example 1. 10 μL was dropped, and after 3 minutes, another 10 μL was dropped in the same place, washed with water and dried for 3 minutes. When this was activated and chemically plated in the same manner as in Example 2, copper was plated on the inner wall and open end of the cell having a diameter of about 0.2 mm. It can be seen that this region is provided with a catalyst and plating nuclei are formed. This part could be soldered. In this way, local soldering is possible.

実施例1で得られたのと同様にして得られた厚さ約4mmの炭化物平板(触媒付与する前のもの)を、水酸化第2鉄の飽和水溶液に浸漬し、炭化物細胞の孔の中に水溶液を充満させた後、表面に付着している水酸化第2鉄の水溶液を洗い流す程度に軽く水洗して1Nの水酸化ナトリウム水溶液に浸漬した。炭化物細胞の孔の中で反応が生じ、水酸化鉄が炭化物細胞壁に吸着した。10分間水洗、乾燥後、これを酸素遮断雰囲気で500℃に30分加熱したところ、フェライトが細胞壁に形成された。   A carbide plate (about 4 mm thick) obtained in the same manner as that obtained in Example 1 (before applying the catalyst) was immersed in a saturated aqueous solution of ferric hydroxide, and inside the pores of the carbide cells. After being filled with an aqueous solution, the solution was lightly washed to such an extent that the aqueous solution of ferric hydroxide adhering to the surface was washed away, and immersed in a 1N aqueous sodium hydroxide solution. A reaction occurred in the pores of the carbide cells and iron hydroxide was adsorbed on the carbide cell walls. After washing with water and drying for 10 minutes, this was heated to 500 ° C. for 30 minutes in an oxygen-blocking atmosphere, and ferrite was formed on the cell walls.

実施例1で得られたのと同様にして得られた厚さ約4mmの炭化物平板(触媒付与する前のもの)を、磁性流体のイソパラフィン分散液に2分間浸漬後、取り出して自然乾燥した。磁性流体としては市販品(発売元 株式会社富士コスモサイエンス 磁性流体ふしぎ観察キット)を使用した。この磁性流体は磁性体が炭化水素系溶剤に分散された粘度の大きな流体なので、イソパラフィン系溶剤(エッソIsopar−H)で約100倍(体積比)に希釈したものを使用した。完全に乾燥後、炭化物平板を水に浮かべてマグネットを近づけたところ、平板はマグネットに吸い寄せられたので、細胞壁に磁性体が付着していることが予想できた。炭化物平板を破断し、細胞壁を電子顕微鏡で観察したところ、磁性体の存在が確認された。   A carbide flat plate having a thickness of about 4 mm obtained in the same manner as that obtained in Example 1 (before applying the catalyst) was immersed in an isoparaffin dispersion of magnetic fluid for 2 minutes and then taken out and air-dried. As the magnetic fluid, a commercially available product (manufactured by Fuji Cosmo Science Co., Ltd. Magnetic fluid mysterious observation kit) was used. Since this magnetic fluid is a fluid having a large viscosity in which a magnetic substance is dispersed in a hydrocarbon solvent, a fluid diluted about 100 times (volume ratio) with an isoparaffin solvent (Esso Isopar-H) was used. After complete drying, the carbide plate was floated on water and the magnet was brought close to it. As the plate was attracted by the magnet, it was expected that a magnetic substance was attached to the cell wall. When the carbide flat plate was broken and the cell wall was observed with an electron microscope, the presence of a magnetic substance was confirmed.

実施例1で得られたのと同様にして得られた厚さ約4mmの炭化物平板(触媒付与する前のもの)を、日産化学工業株式会社製オルガノシリカゾルIPA−ST(イソプロパノール中に粒径10〜20nmのコロイダルシリカが分散されている)に2分間浸漬後、取り出して自然乾燥した。完全に乾燥後、細胞壁を電子顕微鏡で観察したところ、シリカ粒子の存在が確認された。   A carbide flat plate having a thickness of about 4 mm obtained in the same manner as that obtained in Example 1 (before applying the catalyst) was prepared by using an organosilica sol IPA-ST manufactured by Nissan Chemical Industries, Ltd. After immersing in ˜20 nm colloidal silica) for 2 minutes, it was taken out and air dried. When the cell wall was observed with an electron microscope after completely drying, the presence of silica particles was confirmed.

エゾ松の辺材部分から切り出された断面が45×45mmの角材を通常の木材切断用バンドソーで、長さ方向(細胞の方向は長さ方向)と直角に長さ50mmのブロックに切断した。このブロックを実施例1の炭化処理と同じ条件で炭化した。この炭化処理により角材の断面は約38×38mmに収縮していた。バンドソーによる切断面の炭化後の面状は、ちぎられた細胞の炭化物で覆われ、細胞の開口部は全く露出していない。そこで、ダイアモンド研磨粒子を含有するブレードを装填したバンドソーで、上記炭化物ブロックの長さ方向の端面から約1.5mmのところで切断除去し、新しい切断面を出した。切断面に付着した切断粉を除去してから顕微鏡で観察したところ、ほぼ均一に細胞の開口部が露出していた。ところどころに小さな窪みが存在し、レーザービームによる切断に比べると均一性はやや劣る。新しい切断面を端面として約2mm厚の平板を切り出した。この平板を実施例1と同様に、触媒付与処理した後、実施例1と同様に銅を厚さ約5ミクロンになるように化学メッキした。充分に水洗、乾燥後、得られたものを空気中で約450℃で2時間焼成し、炭化物を除去した。自然放置冷却後、部分的に顆粒を含む茶褐色の粉末状のものが得られた。これを顕微鏡で観察したところ、炭化物の多孔性のレプリカであった。   A square wood having a cross section of 45 × 45 mm cut out from a sapwood portion of Ezo pine was cut into a block having a length of 50 mm perpendicular to the length direction (cell direction is the length direction) with a normal wood cutting band saw. This block was carbonized under the same conditions as in the carbonization treatment of Example 1. Due to this carbonization treatment, the cross section of the square was contracted to about 38 × 38 mm. The surface shape after carbonization of the cut surface by the band saw is covered with torn cell carbide, and the opening of the cell is not exposed at all. Therefore, a band saw loaded with a blade containing diamond abrasive particles was cut and removed at about 1.5 mm from the end face in the longitudinal direction of the carbide block to give a new cut surface. When the cut powder adhering to the cut surface was removed and observed with a microscope, the cell openings were almost uniformly exposed. There are small depressions in some places, and the uniformity is slightly inferior compared to cutting with a laser beam. A flat plate having a thickness of about 2 mm was cut using the new cut surface as an end surface. This flat plate was treated with a catalyst in the same manner as in Example 1, and then chemically plated to a thickness of about 5 microns in the same manner as in Example 1. After thoroughly washing with water and drying, the resulting product was baked in air at about 450 ° C. for 2 hours to remove carbides. After natural cooling, a brownish powder that partially contained granules was obtained. When this was observed with a microscope, it was a porous replica of carbide.

実施例8で得られたのと同じ約2mm厚の炭化平板の全表面に、実施例1と同様にパラジウム粒子を吸着させた多孔性材料の片面に、酢酸ビニル樹脂の水エマルジョン(酢酸ビニル樹脂55%)を塗布することによってこの面の細胞の開口部に酢酸ビニル樹脂を注入した。この面を粒度800番の研磨シートで、細胞の開口端が均一に露出するまで研磨した後、酢酸ブチルで樹脂を溶解除去、乾燥した。この操作により、研磨面に露出している細胞の開口端にはパラジウム粒子が存在していない状態になった。次に、実施例5と同じ化学メッキ液に浸漬し、細胞の孔が埋まるまで銅を厚くメッキした。メッキ厚は、炭化物細胞の孔が塞がらない程度の厚さにとどめた。充分に水洗後、乾燥した。得られたものを空気中で、400℃乃至450℃で2時間焼成し、細胞壁を構成していた炭化物を気化、消滅させた後室温に戻した。焼成により発生した灰分を3%水酸化ナトリウム水溶液で溶解除去した後、水洗、乾燥して得られたものは、細胞の壁と孔の関係が、元の炭化物平板とネガポジの関係にある。炭化物細胞の壁は空隙となり、炭化物細胞の孔の部分は銅によって充填された。平板の片方の面(研磨されなかった面)には銅が析出し、析出厚が大きくなるに従い膜状に発展するので、元の炭化物とネガポジの関係にある構造が保たれた。空隙の厚さは非常に小さいので、新しい用途開発に展開できる。銅の化学メッキの代わりに、金、ニッケル等の化学メッキでも良い。   A water emulsion of vinyl acetate resin (vinyl acetate resin) is formed on one side of a porous material in which palladium particles are adsorbed in the same manner as in Example 1 on the entire surface of a carbonized flat plate having a thickness of about 2 mm as obtained in Example 8. 55%) was applied to inject vinyl acetate resin into the cell openings on this surface. This surface was polished with a polishing sheet having a particle size of # 800 until the open ends of the cells were uniformly exposed, and then the resin was dissolved and removed with butyl acetate and dried. By this operation, palladium particles were not present at the open ends of the cells exposed on the polished surface. Next, it was immersed in the same chemical plating solution as in Example 5, and copper was plated thick until the cell pores were filled. The plating thickness was kept to such an extent that the pores of the carbide cells were not blocked. After thoroughly washing with water, it was dried. The obtained product was baked in the air at 400 ° C. to 450 ° C. for 2 hours to evaporate and extinguish the carbide constituting the cell wall, and then returned to room temperature. The ash generated by firing is dissolved and removed with a 3% aqueous sodium hydroxide solution, then washed with water and dried. The relationship between the cell walls and the pores is in the negative positive relationship with the original carbide plate. The carbide cell walls became voids and the pores of the carbide cells were filled with copper. Copper was deposited on one surface of the flat plate (the surface that was not polished) and developed into a film shape as the deposition thickness increased, so that the structure in a negative-positive relationship with the original carbide was maintained. Since the gap thickness is very small, it can be developed for new application development. Instead of chemical plating of copper, chemical plating of gold, nickel or the like may be used.

桂材の辺材部分から切り出された断面が40×40mmの角材を、長さ方向(軸方向細胞の方向)と直角に、通常の木材切断用バンドソーで長さ50mmのブロックに切断した。このブロックを、実施例1の炭化処理と同じ条件で炭化した。炭化後の角材の断面は約25×24mmに収縮していた。実施例8と同様に、ダイアモンド研磨粒子を含有するブレードを装填したバンドソーで、上記炭化物ブロックの長さ方向の端面から約1.5mmのところで切断除去した。次いで、この切断面を端面として同様にして切断し約2mm厚の平板状炭化物を切り出した。かくして両面に細胞の開口部がほぼ均一に露出した平板状炭化物が得られた。この炭化物平板をポリシロキサンの有機溶剤液(品川白煉瓦株式会社製 NIC−C5 テトラメトキシシランの加水分解物であるポリシロキサンをキシレンと酢酸ブチルの混合溶剤に溶解したもの)に浸漬した。平板から気泡が盛んに発生するが、気泡の発生が無くなった時点で、平板を取り出し、立てかけ自然乾燥した。完全に乾燥後、実施例6と同様に焼成して炭化物を除去した。得られたものは、やや灰色がかった白色で、もろいものであったが形状は維持されていた。ピンセットで掴むことはできたが、強く掴むと容易に壊れてしまう。顕微鏡で観察したところ、炭化物のレプリカであった。   A square bar having a cross section of 40 × 40 mm cut out from the sapwood portion of katsura was cut into a block having a length of 50 mm with a normal wood cutting band saw at a right angle to the length direction (axial direction of cells). This block was carbonized under the same conditions as in the carbonization treatment of Example 1. The cross section of the square bar after carbonization was contracted to about 25 × 24 mm. In the same manner as in Example 8, a band saw loaded with a blade containing diamond abrasive particles was cut and removed at about 1.5 mm from the longitudinal end face of the carbide block. Subsequently, this cut surface was cut in the same manner as an end surface to cut a flat carbide having a thickness of about 2 mm. In this way, a plate-like carbide having cell openings almost uniformly exposed on both sides was obtained. This carbide flat plate was immersed in an organic solvent solution of polysiloxane (manufactured by Shinagawa Shira brick Co., Ltd., NIC-C5 polymethoxysilane hydrolyzate of polysiloxane dissolved in a mixed solvent of xylene and butyl acetate). Bubbles were actively generated from the flat plate, but when the generation of bubbles disappeared, the flat plate was taken out and stood to dry naturally. After complete drying, the carbide was removed by firing in the same manner as in Example 6. The resulting product was slightly grayish white and fragile, but its shape was maintained. I could grab it with tweezers, but it would break easily if I grab it hard. Observation with a microscope revealed a carbide replica.

実施例10において、ポリシロキサン溶液を含浸、乾燥したものを、もう一度ポリシロキサン溶液に浸漬、気泡の発生が無くなった時点で取り出し乾燥した。乾燥後、もう一度ポリシロキサン溶液に浸漬した後乾燥した。三度目の含浸処理では気泡の発生は殆ど無かった。完全に乾燥したものを、実施例7と同様に焼成してほぼ白色のシリカからなる多孔性機能材料が得られた。得られたものの構造は、元の炭化物とネガポジの関係になっていた。   In Example 10, the product impregnated and dried with the polysiloxane solution was once again immersed in the polysiloxane solution and taken out and dried when no bubbles were generated. After drying, it was again dipped in a polysiloxane solution and dried. In the third impregnation treatment, almost no bubbles were generated. The completely dried product was fired in the same manner as in Example 7 to obtain a porous functional material made of almost white silica. The structure of what was obtained had a negative-positive relationship with the original carbide.

本発明の多孔性機能材料は多くの化学反応への利用、メッキして導電性の部材としての用途等、広い範囲の用途に供し得る。しかも本発明のものは木材細胞の炭化物を利用した多孔性材料であるため、材料の入手が容易であり、また環境面でも優れている。   The porous functional material of the present invention can be used in a wide range of applications such as use in many chemical reactions, plating and use as a conductive member. Moreover, since the material of the present invention is a porous material using a carbide of wood cells, the material is easily available and is excellent in terms of environment.

Claims (12)

木材を無酸素乃至低酸素雰囲気で炭化した後、該炭化物の細胞の少なくとも内壁に金属膜、金属粒子、金属酸化物粒子の少なくともいずれかが付着されていることを特徴とする多孔性機能材料。   A porous functional material, wherein after wood is carbonized in an oxygen-free or low-oxygen atmosphere, at least one of a metal film, metal particles, and metal oxide particles is attached to at least an inner wall of the cells of the carbide. 炭化物が平板状であり、両面に細胞の開口部が露出し、且つ少なくとも一部の細胞が該平板を貫通していることを特徴とする請求項1に記載の多孔性機能材料。   2. The porous functional material according to claim 1, wherein the carbide has a flat plate shape, cell openings are exposed on both surfaces, and at least some of the cells penetrate the flat plate. 炭化物が木材の心材部分を炭化したものであり、細胞の内壁に金属膜が設けられた炭化物が、細胞の軸方向にのみ導電性であることを特徴とする請求項2に記載の多孔性機能材料。   The porous function according to claim 2, wherein the carbide is obtained by carbonizing a core part of wood, and the carbide having a metal film provided on the inner wall of the cell is conductive only in the axial direction of the cell. material. 金属が銅、ニッケル、ハンダのいずれかであることを特徴とする請求項3に記載の多孔性機能材料。   The porous functional material according to claim 3, wherein the metal is copper, nickel, or solder. 金属粒子がパラジウム、金、白金のいずれかであることを特徴とする請求項1に記載の多孔性機能材料。   The porous functional material according to claim 1, wherein the metal particles are any one of palladium, gold, and platinum. 金属酸化物が、細胞内において化学反応により形成されたものであることを特徴とする請求項1に記載の多孔性機能材料。   The porous functional material according to claim 1, wherein the metal oxide is formed by a chemical reaction in the cell. 金属酸化物の分散液体を細胞内に含浸させた後、分散溶媒を除去したものであることを特徴とする請求項1に記載の多孔性機能材料。   The porous functional material according to claim 1, wherein the dispersion solvent is removed after impregnating the cell with a metal oxide dispersion liquid. 木材を無酸素乃至低酸素雰囲気で炭化した後、該炭化物の少なくとも細胞内壁に、金属膜、又は酸素存在下で焼成することにより金属酸化物の膜を形成し得る膜を設けた後、該材料を酸素存在下で焼成して炭化物を除去して得られたものであることを特徴とする多孔性機能材料。   After carbonizing wood in an oxygen-free or low-oxygen atmosphere, at least the inner wall of the carbide is provided with a metal film or a film capable of forming a metal oxide film by firing in the presence of oxygen, and then the material. A porous functional material obtained by calcination in the presence of oxygen to remove carbides. 金属膜、又は酸素存在下で焼成することにより金属酸化物の膜を形成し得る膜を細胞の孔が埋まる厚さに設けたことを特徴とする請求項8に記載の多孔性機能材料。   9. The porous functional material according to claim 8, wherein a metal film or a film capable of forming a metal oxide film by firing in the presence of oxygen is provided to a thickness that fills the pores of the cells. 酸素存在下で焼成することにより金属酸化物の膜を形成し得る膜が金属アルコキシドの加水分解物の膜あることを特徴とする請求項8乃至請求項9に記載の多孔性機能材料。   10. The porous functional material according to claim 8, wherein the film capable of forming a metal oxide film by firing in the presence of oxygen is a metal alkoxide hydrolyzate film. 金属アルコキシドの金属がAl、Ca、Mg、Si、Ti、Taのいずれかであることを特徴とする請求項10に記載の多孔性機能材料。   The porous functional material according to claim 10, wherein the metal of the metal alkoxide is any one of Al, Ca, Mg, Si, Ti, and Ta. 金属膜の金属が銅、ニッケルのいずれかであることを特徴とする請求項8乃至請求項9に記載の多孔性機能材料。   The porous functional material according to claim 8, wherein the metal of the metal film is copper or nickel.
JP2011025591A 2011-02-09 2011-02-09 Porous functional material Withdrawn JP2012162430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011025591A JP2012162430A (en) 2011-02-09 2011-02-09 Porous functional material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011025591A JP2012162430A (en) 2011-02-09 2011-02-09 Porous functional material

Publications (1)

Publication Number Publication Date
JP2012162430A true JP2012162430A (en) 2012-08-30

Family

ID=46842234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011025591A Withdrawn JP2012162430A (en) 2011-02-09 2011-02-09 Porous functional material

Country Status (1)

Country Link
JP (1) JP2012162430A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107838427A (en) * 2017-10-31 2018-03-27 成都易态科技有限公司 Porous sintered metal laminated film and preparation method thereof
JP2021127258A (en) * 2020-02-10 2021-09-02 正倫 佐藤 Carbonized thin plate and filtering unit
CN107838427B (en) * 2017-10-31 2024-05-14 成都易态科技有限公司 Porous sintered metal composite film and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107838427A (en) * 2017-10-31 2018-03-27 成都易态科技有限公司 Porous sintered metal laminated film and preparation method thereof
CN107838427B (en) * 2017-10-31 2024-05-14 成都易态科技有限公司 Porous sintered metal composite film and preparation method thereof
JP2021127258A (en) * 2020-02-10 2021-09-02 正倫 佐藤 Carbonized thin plate and filtering unit
JP7250233B2 (en) 2020-02-10 2023-04-03 正倫 佐藤 Carbonized sheet and filtration unit

Similar Documents

Publication Publication Date Title
WO2015176543A1 (en) Method for generating denitration catalyst in situ on filter material
CN103446899A (en) Organic and inorganic surface chemically-crosslinked alginate-based hybrid hydrogel filter membrane, and preparation method thereof
Yu et al. Preparation of a novel anti-fouling β-cyclodextrin–PVDF membrane
JP2001152025A (en) Coated active carbon
Tian et al. Reusable and cross‐linked cellulose nanofibrils aerogel for the removal of heavy metal ions
JP5094712B2 (en) Macroporous carbon material and mesoporous carbon material made of wood as raw material and method for producing the same, and porous metal carbon material and method for producing the same
Mistar et al. Adsorption of mercury (II) using activated carbon produced from Bambusa vulgaris var. striata in a fixed-bed column
Lefebvre et al. Polydopamine-coated open cell polyurethane foam as an efficient and easy-to-regenerate soft structured catalytic support (S2CS) for the reduction of dye
JP7177840B2 (en) Method for producing adsorbent that adsorbs phosphorus or arsenic
CN104475019A (en) Graphene-porous ceramic composite adsorbing material and preparation method and application thereof
Torrey et al. Oxidation behavior of zero-valent iron nanoparticles in mixed matrix water purification membranes
CN104130004A (en) Preparation method of high-strength block-shaped porous alumina nano-ceramic
JP2020011211A (en) Method for producing adsorbent
CN103263859A (en) Biomimetic mineralization preparation method of polyelectrolyte/calcium carbonate composite nanofiltration membrane
Kar et al. Synthesis of nano-spherical nickel by templating hibiscus flower petals
JP2008195016A (en) Silica-coating porous metal keeping hydrophilic property for long term and its production method
Kan et al. Molten salt synthesis of porous chromium carbide/carbon biomorphic ceramics for Pb2+ removal from water
PL239357B1 (en) Method for obtaining mobile magnetic composite adsorbents
JP2012162430A (en) Porous functional material
Zhang et al. Cavitation mediated 3D microstructured architectures from nanocarbon
CN112678821A (en) Self-supporting carbon material and preparation method and application thereof
WO2015109385A1 (en) Carbon monolith, carbon monolith with metal impregnant and method of producing same
CN107008158B (en) Preparation method of ceramic composite membrane
Kim et al. Cu nanoparticle-embedded carbon foams with improved compressive strength and thermal conductivity
KR102071820B1 (en) Manufacture Method of Activated Carbon Fiber with Antibacterial and Antiviral

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513