JP2012159749A - Bessel beam generator - Google Patents

Bessel beam generator Download PDF

Info

Publication number
JP2012159749A
JP2012159749A JP2011020249A JP2011020249A JP2012159749A JP 2012159749 A JP2012159749 A JP 2012159749A JP 2011020249 A JP2011020249 A JP 2011020249A JP 2011020249 A JP2011020249 A JP 2011020249A JP 2012159749 A JP2012159749 A JP 2012159749A
Authority
JP
Japan
Prior art keywords
bessel beam
lens
generating element
optical fiber
beam generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011020249A
Other languages
Japanese (ja)
Inventor
Takeshi Sasamuro
岳 笹室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2011020249A priority Critical patent/JP2012159749A/en
Publication of JP2012159749A publication Critical patent/JP2012159749A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a Bessel beam generator which facilitates an assembly adjustment work, is compact and is easy to handle.SOLUTION: The Bessel beam generator includes: a light source; an optical fiber for transmitting light emitted from the light source; a lens mounted on the emission end of the optical fiber; a Bessel beam generating element for generating a Bessel beam by the light emitted from the lens; and a ferrule in which the lens is inserted into the incident end thereof and the Bessel beam generating element is inserted into the emission end thereof.

Description

本発明は、非回折性ビームの一種であるベッセルビームに関し、特に、ベッセルビーム発生装置に関する。   The present invention relates to a Bessel beam which is a kind of non-diffractive beam, and more particularly to a Bessel beam generator.

近年は、加工用や顕微鏡用に有用な焦点深度の深いビームが求められており、これに適したビームを発生させる装置として、ベッセルビームを発生させるベッセルビーム発生装置が開発されている(特許文献1参照)。   In recent years, there has been a demand for a beam having a deep focal depth that is useful for processing and a microscope, and a Bessel beam generator that generates a Bessel beam has been developed as a device that generates a beam suitable for this (Patent Document) 1).

特開平7−261027号公報JP-A-7-261027

しかしながら、従来のベッセルビーム発生装置は、レーザ光源から出射されたレーザ光をコリメータレンズ等により平行光として空間伝播させ、これを円錐状のアキシコンプリズムに入射してベッセルビームを発生させるものであった。   However, the conventional Bessel beam generator is configured to propagate a laser beam emitted from a laser light source as parallel light by a collimator lens or the like and to enter a conical axicon prism to generate a Bessel beam. It was.

このため、従来のベッセルビーム発生装置では、平行光を得るためのコリメーション調整やレーザ光に対する各光学部品の光軸の調芯調整の難易度が高く、組立て調整作業が困難であった。   For this reason, in the conventional Bessel beam generator, the degree of difficulty of collimation adjustment for obtaining parallel light and alignment adjustment of the optical axis of each optical component with respect to laser light is high, and assembly adjustment work is difficult.

また、従来のベッセルビーム発生装置は、その形状が大きく、設置の自由度や加工時の取扱いの自由度が低かった。   Further, the conventional Bessel beam generator has a large shape, and has a low degree of freedom in installation and handling at the time of processing.

そこで、本発明は、組立て調整作業が容易で、コンパクトで取扱いが容易なベッセルビーム発生装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a Bessel beam generator that is easy to assemble and adjust, is compact and easy to handle.

本発明によれば、上記課題は、次の手段により解決される。   According to the present invention, the above problem is solved by the following means.

本発明は、光源と、前記光源から出射した光を伝搬する光ファイバと、前記光ファイバの出射端に取り付けられたレンズと、前記レンズから出射した光でベッセルビームを発生させるベッセルビーム発生素子と、前記レンズが入射端に挿入され、前記ベッセルビーム発生素子が出射端に挿入されるフェルールと、を備えたことを特徴とするベッセルビーム発生装置である。   The present invention includes a light source, an optical fiber that propagates light emitted from the light source, a lens attached to an output end of the optical fiber, and a Bessel beam generating element that generates a Bessel beam with the light emitted from the lens. And a ferrule in which the lens is inserted into the entrance end and the Bessel beam generating element is inserted into the exit end.

また、本発明は、前記フェルールは、前記レンズの挿入を止める第1位置決め部と、前記ベッセルビーム発生素子の挿入を止める第2位置決め部と、を有する、ことを特徴とする上記のベッセルビーム発生装置である。   Further, in the present invention, the ferrule includes a first positioning portion that stops insertion of the lens, and a second positioning portion that stops insertion of the Bessel beam generating element. Device.

また、本発明は、前記第1位置決め部と前記第2位置決め部とは、前記レンズから前記ベッセルビーム発生素子へ平行に光が入射するようにして、前記レンズと前記ベッセルビーム発生素子の挿入を止める、ことを特徴とする上記のベッセルビーム発生装置である。   The first positioning unit and the second positioning unit may insert the lens and the Bessel beam generating element so that light enters the Bessel beam generating element in parallel from the lens. The Bessel beam generator described above, wherein the Bessel beam generator is stopped.

また、本発明は、前記レンズは、前記光ファイバと略同じ直径であり、前記光ファイバを伝搬する光を平行光にして出射する屈折率分布型のレンズである、ことを特徴とする上記のベッセルビーム発生装置である。   In the present invention, the lens is a refractive index distribution type lens having substantially the same diameter as the optical fiber and emitting the light propagating through the optical fiber as parallel light. It is a Bessel beam generator.

また、本発明は、前記ベッセルビーム発生素子は、入射端側のコアまたはコア及びクラッドが円錐形状とされた、入射した光をベッセルビームにして出射する光ファイバである、ことを特徴とする上記のベッセルビーム発生装置である。   Also, the present invention is characterized in that the Bessel beam generating element is an optical fiber that emits incident light as a Bessel beam in which the core or the core and the cladding on the incident end side have a conical shape. This is a Bessel beam generator.

また、本発明は、前記円錐形状は、90度以上150度未満の頂角を有する、ことを特徴とする上記のベッセルビーム発生装置である。   Further, the present invention is the Bessel beam generator described above, wherein the conical shape has an apex angle of 90 degrees or more and less than 150 degrees.

本発明によれば、組立て調整作業が容易で、コンパクトで取扱いが容易なベッセルビーム発生装置を提供することができる。   According to the present invention, it is possible to provide a Bessel beam generator that is easy to assemble and adjust, compact, and easy to handle.

本発明の実施形態に係るベッセルビーム発生装置を説明する図であり、(a)はベッセルビーム発生装置の概略断面図であり、(b)はフェルールの概略断面図である。It is a figure explaining the Bessel beam generating device concerning the embodiment of the present invention, (a) is a schematic sectional view of a Bessel beam generating device, and (b) is a schematic sectional view of a ferrule.

以下に、添付した図面を参照しつつ、本発明を実施するための形態について説明する。   EMBODIMENT OF THE INVENTION Below, the form for implementing this invention is demonstrated, referring attached drawing.

図1は、本発明の実施形態に係るベッセルビーム発生装置を説明する図であり、(a)はベッセルビーム発生装置の概略断面図であり、(b)はフェルールの概略断面図である。   1A and 1B are diagrams for explaining a Bessel beam generator according to an embodiment of the present invention. FIG. 1A is a schematic cross-sectional view of the Bessel beam generator, and FIG. 1B is a schematic cross-sectional view of a ferrule.

図1に示すように、本発明の実施形態に係るベッセルビーム発生装置10は、光源11と、光ファイバ12と、レンズ13と、ベッセルビーム発生素子14と、フェルール15と、を備える。以下、順に説明する。   As shown in FIG. 1, a Bessel beam generation apparatus 10 according to an embodiment of the present invention includes a light source 11, an optical fiber 12, a lens 13, a Bessel beam generation element 14, and a ferrule 15. Hereinafter, it demonstrates in order.

[光源11]
光源11には、例えば、レーザ光源を用いる。
[Light source 11]
As the light source 11, for example, a laser light source is used.

[光ファイバ12]
光ファイバ12は、光源11から出射した光を伝搬する。光ファイバ12は、コア12aとクラッド12bとを有している。
[Optical fiber 12]
The optical fiber 12 propagates light emitted from the light source 11. The optical fiber 12 has a core 12a and a clad 12b.

[レンズ13]
レンズ13は、例えば光ファイバ12のクラッド12bと略同じ直径のものとし、光ファイバ12の出射端に融着などの方法により取り付ける。
[Lens 13]
For example, the lens 13 has substantially the same diameter as the clad 12b of the optical fiber 12, and is attached to the output end of the optical fiber 12 by a method such as fusion.

レンズ13には、例えば、光ファイバ12を伝搬する光を平行光にして出射するコリメータレンズを用いる。コリメータレンズとしては、グリンレンズなどの屈折率分布型のレンズを用いることができる。   As the lens 13, for example, a collimator lens that emits light propagating through the optical fiber 12 as parallel light is used. As the collimator lens, a gradient index lens such as a grin lens can be used.

[ベッセルビーム発生素子14]
ベッセルビーム発生素子14は、レンズ13から出射した光でベッセルビームを発生させる。すなわち、ベッセルビーム発生素子14は、レンズ13から出射した光が入射した場合に、ベッセルビームを出射する。
[Bessel beam generating element 14]
The Bessel beam generating element 14 generates a Bessel beam with the light emitted from the lens 13. That is, the Bessel beam generating element 14 emits a Bessel beam when light emitted from the lens 13 is incident.

ベッセルビーム発生素子14としては、例えば、入射端側のコア14a(またはコア14a及びクラッド14b)が円錐形状とされた、入射した光をベッセルビームにして出射する光ファイバ14を用いる。なお、この円錐形状が90度以上150度未満の頂角を有する光ファイバ14は、入射した光を効率よくベッセルビームにして出射するため、本発明の実施形態に係るベッセルビーム発生素子14として特に好ましく用いることができる。   As the Bessel beam generating element 14, for example, an optical fiber 14 in which the incident end side core 14 a (or the core 14 a and the clad 14 b) has a conical shape and emits incident light as a Bessel beam is used. Note that the optical fiber 14 having an apex angle with a conical shape of 90 degrees or more and less than 150 degrees emits incident light efficiently as a Bessel beam, and thus is particularly suitable as the Bessel beam generation element 14 according to the embodiment of the present invention. It can be preferably used.

[フェルール15]
フェルール15は、レンズ13が入射端に挿入され、ベッセルビーム発生素子14が出射端に挿入される。
[Ferrule 15]
In the ferrule 15, the lens 13 is inserted into the incident end, and the Bessel beam generating element 14 is inserted into the outgoing end.

フェルール15は、レンズ13の挿入を止める第1位置決め部15a、15bと、ベッセルビーム発生素子14の挿入を止める第2位置決め部15c、15dと、を有している。   The ferrule 15 includes first positioning portions 15a and 15b for stopping the insertion of the lens 13, and second positioning portions 15c and 15d for stopping the insertion of the Bessel beam generating element 14.

第1位置決め部15a、15bと第2位置決め部15c、15dとは、レンズ13からベッセルビーム発生素子14へ平行に光が入射するようにして、レンズ13とベッセルビーム発生素子14の挿入を止める。   The first positioning portions 15a and 15b and the second positioning portions 15c and 15d stop the insertion of the lens 13 and the Bessel beam generating element 14 so that light enters the Bessel beam generating element 14 from the lens 13 in parallel.

より好ましい例では、第1位置決め部15a、15bと第2位置決め部15c、15dとは、レンズ13からベッセルビーム発生素子14へ入射する光の平行度が最大となるようにして、レンズ13とベッセルビーム発生素子14の挿入を止める。   In a more preferred example, the first positioning portions 15a and 15b and the second positioning portions 15c and 15d are arranged so that the parallelism of light incident on the Bessel beam generating element 14 from the lens 13 is maximized. The insertion of the beam generating element 14 is stopped.

なお、第1位置決め部15a、15bや第2位置決め部15c、15dは、レンズ13やベッセルビーム発生素子14の形状に合わせた形状にすることが好ましい。   The first positioning portions 15a and 15b and the second positioning portions 15c and 15d are preferably shaped according to the shape of the lens 13 and the Bessel beam generating element 14.

例えば、レンズ13を光ファイバ12の出射端に挿入する場合は、第1位置決め部15a、15bの形状を図1に示すような下がり壁とし、この下がり壁に光ファイバ12の出射端を押し当ててレンズ13の挿入を止め、フェルール内におけるレンズ13の位置決めを行うことが好ましい。   For example, when the lens 13 is inserted into the exit end of the optical fiber 12, the first positioning portions 15a and 15b are shaped as a falling wall as shown in FIG. 1, and the exit end of the optical fiber 12 is pressed against the falling wall. It is preferable to stop the insertion of the lens 13 and position the lens 13 in the ferrule.

また、例えば、ベッセルビーム発生素子14の入射端側の形状を円錐形状にする場合は、第2位置決め部15c、15dの形状を図1に示すような円錐形状の壁とし、この円錐形状の壁にベッセルビーム発生素子14を押し当ててベッセルビーム発生素子14の挿入を止め、フェルール内におけるベッセルビーム発生素子14の位置決めを行うことが好ましい。   For example, when the shape of the incident end side of the Bessel beam generating element 14 is conical, the shape of the second positioning portions 15c and 15d is a conical wall as shown in FIG. It is preferable to position the vessel beam generating element 14 in the ferrule by pressing the vessel beam generating element 14 to stop insertion of the vessel beam generating element 14.

フェルール15は、レンズ13とベッセルビーム発生素子14とを挿入した場合に、これらと嵌合する形状であることが好ましい。このようにすれば、レンズ13とベッセルビーム発生素子14とをフェルール内において容易に位置決めすることができる。   The ferrule 15 preferably has a shape that fits when the lens 13 and the Bessel beam generating element 14 are inserted. In this way, the lens 13 and the Bessel beam generating element 14 can be easily positioned within the ferrule.

なお、レンズ13とベッセルビーム発生素子14とは、フェルール15に挿入された後、接着剤などでフェルール15に固定することができる。   The lens 13 and the Bessel beam generating element 14 can be fixed to the ferrule 15 with an adhesive or the like after being inserted into the ferrule 15.

以上説明した本発明の実施形態に係るベッセルビーム発生装置10によれば、レンズ13とベッセルビーム発生素子14とをフェルール15に挿入することにより、レンズ13とベッセルビーム発生素子14とを予め定めた位置関係でフェルール内に配置できるため、コリメーション調整や光軸の調芯調整が容易になる。   According to the vessel beam generating apparatus 10 according to the embodiment of the present invention described above, the lens 13 and the vessel beam generating element 14 are determined in advance by inserting the lens 13 and the vessel beam generating element 14 into the ferrule 15. Since it can be arranged in a ferrule in a positional relationship, collimation adjustment and optical axis alignment adjustment are facilitated.

また、本発明の実施形態に係るベッセルビーム発生装置10は、フェルール15を用いて構成されているため、その形状が小さく、設置の自由度や加工時の取扱いの自由度が高い。   Further, since the Bessel beam generator 10 according to the embodiment of the present invention is configured using the ferrule 15, the shape thereof is small, and the degree of freedom of installation and the degree of freedom of handling during processing are high.

したがって、本発明の実施形態に係るベッセルビーム発生装置10によれば、組立て調整作業が容易で、コンパクトで取扱いが容易なベッセルビーム発生装置を提供することができる。   Therefore, according to the Bessel beam generator 10 according to the embodiment of the present invention, it is possible to provide a Bessel beam generator that is easy to assemble and adjust, compact, and easy to handle.

以上、本発明の実施形態について説明したが、これらの説明は、本発明の一例に関するものであり、本発明は、これらの説明によって何ら限定されるものではない。   As mentioned above, although embodiment of this invention was described, these description is related with an example of this invention, and this invention is not limited at all by these description.

10 ベッセルビーム発生装置
11 光源
12 光ファイバ
12a コア
12b クラッド
13 レンズ
14 光ファイバ(ベッセルビーム発生素子)
14a コア
14b クラッド
15 フェルール
15a 第1位置決め部(下がり壁)
15b 第1位置決め部(下がり壁)
15c 第2位置決め部(円錐形状の壁)
15d 第2位置決め部(円錐形状の壁)
DESCRIPTION OF SYMBOLS 10 Bessel beam generator 11 Light source 12 Optical fiber 12a Core 12b Clad 13 Lens 14 Optical fiber (Bessel beam generating element)
14a Core 14b Clad 15 Ferrule 15a First positioning portion (falling wall)
15b 1st positioning part (falling wall)
15c 2nd positioning part (conical wall)
15d 2nd positioning part (conical wall)

Claims (6)

光源と、
前記光源から出射した光を伝搬する光ファイバと、
前記光ファイバの出射端に取り付けられたレンズと、
前記レンズから出射した光でベッセルビームを発生させるベッセルビーム発生素子と、
前記レンズが入射端に挿入され、前記ベッセルビーム発生素子が出射端に挿入されるフェルールと、
を備えたことを特徴とするベッセルビーム発生装置。
A light source;
An optical fiber for propagating light emitted from the light source;
A lens attached to the output end of the optical fiber;
A Bessel beam generating element that generates a Bessel beam with light emitted from the lens;
A ferrule in which the lens is inserted at the entrance end and the Bessel beam generating element is inserted at the exit end;
A Bessel beam generator characterized by comprising:
前記フェルールは、
前記レンズの挿入を止める第1位置決め部と、
前記ベッセルビーム発生素子の挿入を止める第2位置決め部と、
を有する、
ことを特徴とする請求項1に記載のベッセルビーム発生装置。
The ferrule is
A first positioning part for stopping insertion of the lens;
A second positioning portion for stopping insertion of the Bessel beam generating element;
Having
The Bessel beam generator according to claim 1.
前記第1位置決め部と前記第2位置決め部とは、前記レンズから前記ベッセルビーム発生素子へ平行に光が入射するようにして、前記レンズと前記ベッセルビーム発生素子の挿入を止める、ことを特徴とする請求項2に記載のベッセルビーム発生装置。   The first positioning unit and the second positioning unit stop light from being incident on the Bessel beam generating element in parallel to stop insertion of the lens and the Bessel beam generating element. The Bessel beam generator according to claim 2. 前記レンズは、前記光ファイバと略同じ直径であり、前記光ファイバを伝搬する光を平行光にして出射する屈折率分布型のレンズである、ことを特徴とする請求項1〜請求項3のいずれか1項に記載のベッセルビーム発生装置。   4. The lens according to claim 1, wherein the lens is a refractive index distribution type lens that has substantially the same diameter as the optical fiber and emits light propagating through the optical fiber as parallel light. The Bessel beam generator according to any one of the above. 前記ベッセルビーム発生素子は、入射端側のコアまたはコア及びクラッドが円錐形状とされた、入射した光をベッセルビームにして出射する光ファイバである、ことを特徴とする請求項1〜請求項4のいずれか1項に記載のベッセルビーム発生装置。   5. The Bessel beam generating element is an optical fiber that emits incident light as a Bessel beam, in which a core on the incident end side or a core and a clad are formed in a conical shape. The Bessel beam generator according to any one of the above. 前記円錐形状は、90度以上150度未満の頂角を有する、ことを特徴とする請求項5に記載のベッセルビーム発生装置。
6. The Bessel beam generator according to claim 5, wherein the conical shape has an apex angle of 90 degrees or more and less than 150 degrees.
JP2011020249A 2011-02-01 2011-02-01 Bessel beam generator Pending JP2012159749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011020249A JP2012159749A (en) 2011-02-01 2011-02-01 Bessel beam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011020249A JP2012159749A (en) 2011-02-01 2011-02-01 Bessel beam generator

Publications (1)

Publication Number Publication Date
JP2012159749A true JP2012159749A (en) 2012-08-23

Family

ID=46840305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011020249A Pending JP2012159749A (en) 2011-02-01 2011-02-01 Bessel beam generator

Country Status (1)

Country Link
JP (1) JP2012159749A (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015207001A (en) * 2014-04-21 2015-11-19 オーエフエス ファイテル,エルエルシー Mode converter for high power, higher-order mode optical fiber amplifiers
US9676167B2 (en) 2013-12-17 2017-06-13 Corning Incorporated Laser processing of sapphire substrate and related applications
US9701563B2 (en) 2013-12-17 2017-07-11 Corning Incorporated Laser cut composite glass article and method of cutting
US9815144B2 (en) 2014-07-08 2017-11-14 Corning Incorporated Methods and apparatuses for laser processing materials
US9815730B2 (en) 2013-12-17 2017-11-14 Corning Incorporated Processing 3D shaped transparent brittle substrate
US9850160B2 (en) 2013-12-17 2017-12-26 Corning Incorporated Laser cutting of display glass compositions
US9850159B2 (en) 2012-11-20 2017-12-26 Corning Incorporated High speed laser processing of transparent materials
US10047001B2 (en) 2014-12-04 2018-08-14 Corning Incorporated Glass cutting systems and methods using non-diffracting laser beams
US10144093B2 (en) 2013-12-17 2018-12-04 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US10173916B2 (en) 2013-12-17 2019-01-08 Corning Incorporated Edge chamfering by mechanically processing laser cut glass
CN109270695A (en) * 2018-11-29 2019-01-25 哈尔滨工程大学 A kind of traction beam generated device and production method
US10233112B2 (en) 2013-12-17 2019-03-19 Corning Incorporated Laser processing of slots and holes
US10252931B2 (en) 2015-01-12 2019-04-09 Corning Incorporated Laser cutting of thermally tempered substrates
US10280108B2 (en) 2013-03-21 2019-05-07 Corning Laser Technologies GmbH Device and method for cutting out contours from planar substrates by means of laser
US10335902B2 (en) 2014-07-14 2019-07-02 Corning Incorporated Method and system for arresting crack propagation
US10345604B2 (en) 2017-01-24 2019-07-09 Corning Incorporated Optical fibers and optical systems comprising the same
US10377658B2 (en) 2016-07-29 2019-08-13 Corning Incorporated Apparatuses and methods for laser processing
US10421683B2 (en) 2013-01-15 2019-09-24 Corning Laser Technologies GmbH Method and device for the laser-based machining of sheet-like substrates
US10522963B2 (en) 2016-08-30 2019-12-31 Corning Incorporated Laser cutting of materials with intensity mapping optical system
US10525657B2 (en) 2015-03-27 2020-01-07 Corning Incorporated Gas permeable window and method of fabricating the same
US10526234B2 (en) 2014-07-14 2020-01-07 Corning Incorporated Interface block; system for and method of cutting a substrate being transparent within a range of wavelengths using such interface block
US10611667B2 (en) 2014-07-14 2020-04-07 Corning Incorporated Method and system for forming perforations
US10626040B2 (en) 2017-06-15 2020-04-21 Corning Incorporated Articles capable of individual singulation
US10688599B2 (en) 2017-02-09 2020-06-23 Corning Incorporated Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines
US10730783B2 (en) 2016-09-30 2020-08-04 Corning Incorporated Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots
US10752534B2 (en) 2016-11-01 2020-08-25 Corning Incorporated Apparatuses and methods for laser processing laminate workpiece stacks
US10830943B2 (en) 2017-10-31 2020-11-10 Corning Incorporated Optical fibers and optical systems comprising the same
CN112363320A (en) * 2020-09-27 2021-02-12 四川长虹电器股份有限公司 Optical fiber vortex optical beam generator and preparation method thereof
US11062986B2 (en) 2017-05-25 2021-07-13 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US11114309B2 (en) 2016-06-01 2021-09-07 Corning Incorporated Articles and methods of forming vias in substrates
US11111170B2 (en) 2016-05-06 2021-09-07 Corning Incorporated Laser cutting and removal of contoured shapes from transparent substrates
US11186060B2 (en) 2015-07-10 2021-11-30 Corning Incorporated Methods of continuous fabrication of holes in flexible substrate sheets and products relating to the same
US11542190B2 (en) 2016-10-24 2023-01-03 Corning Incorporated Substrate processing station for laser-based machining of sheet-like glass substrates
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
US11556039B2 (en) 2013-12-17 2023-01-17 Corning Incorporated Electrochromic coated glass articles and methods for laser processing the same
US11648623B2 (en) 2014-07-14 2023-05-16 Corning Incorporated Systems and methods for processing transparent materials using adjustable laser beam focal lines
US11774233B2 (en) 2016-06-29 2023-10-03 Corning Incorporated Method and system for measuring geometric parameters of through holes
US11773004B2 (en) 2015-03-24 2023-10-03 Corning Incorporated Laser cutting and processing of display glass compositions

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9850159B2 (en) 2012-11-20 2017-12-26 Corning Incorporated High speed laser processing of transparent materials
US10421683B2 (en) 2013-01-15 2019-09-24 Corning Laser Technologies GmbH Method and device for the laser-based machining of sheet-like substrates
US11345625B2 (en) 2013-01-15 2022-05-31 Corning Laser Technologies GmbH Method and device for the laser-based machining of sheet-like substrates
US11028003B2 (en) 2013-01-15 2021-06-08 Corning Laser Technologies GmbH Method and device for laser-based machining of flat substrates
US10280108B2 (en) 2013-03-21 2019-05-07 Corning Laser Technologies GmbH Device and method for cutting out contours from planar substrates by means of laser
US11713271B2 (en) 2013-03-21 2023-08-01 Corning Laser Technologies GmbH Device and method for cutting out contours from planar substrates by means of laser
US9850160B2 (en) 2013-12-17 2017-12-26 Corning Incorporated Laser cutting of display glass compositions
US10233112B2 (en) 2013-12-17 2019-03-19 Corning Incorporated Laser processing of slots and holes
US10144093B2 (en) 2013-12-17 2018-12-04 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US10173916B2 (en) 2013-12-17 2019-01-08 Corning Incorporated Edge chamfering by mechanically processing laser cut glass
US10179748B2 (en) 2013-12-17 2019-01-15 Corning Incorporated Laser processing of sapphire substrate and related applications
US10183885B2 (en) 2013-12-17 2019-01-22 Corning Incorporated Laser cut composite glass article and method of cutting
US10442719B2 (en) 2013-12-17 2019-10-15 Corning Incorporated Edge chamfering methods
US11148225B2 (en) 2013-12-17 2021-10-19 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US10611668B2 (en) 2013-12-17 2020-04-07 Corning Incorporated Laser cut composite glass article and method of cutting
US9815730B2 (en) 2013-12-17 2017-11-14 Corning Incorporated Processing 3D shaped transparent brittle substrate
US10293436B2 (en) 2013-12-17 2019-05-21 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US10597321B2 (en) 2013-12-17 2020-03-24 Corning Incorporated Edge chamfering methods
US9701563B2 (en) 2013-12-17 2017-07-11 Corning Incorporated Laser cut composite glass article and method of cutting
US11556039B2 (en) 2013-12-17 2023-01-17 Corning Incorporated Electrochromic coated glass articles and methods for laser processing the same
US10392290B2 (en) 2013-12-17 2019-08-27 Corning Incorporated Processing 3D shaped transparent brittle substrate
US9676167B2 (en) 2013-12-17 2017-06-13 Corning Incorporated Laser processing of sapphire substrate and related applications
JP2015207001A (en) * 2014-04-21 2015-11-19 オーエフエス ファイテル,エルエルシー Mode converter for high power, higher-order mode optical fiber amplifiers
US11697178B2 (en) 2014-07-08 2023-07-11 Corning Incorporated Methods and apparatuses for laser processing materials
US9815144B2 (en) 2014-07-08 2017-11-14 Corning Incorporated Methods and apparatuses for laser processing materials
US11648623B2 (en) 2014-07-14 2023-05-16 Corning Incorporated Systems and methods for processing transparent materials using adjustable laser beam focal lines
US10526234B2 (en) 2014-07-14 2020-01-07 Corning Incorporated Interface block; system for and method of cutting a substrate being transparent within a range of wavelengths using such interface block
US10335902B2 (en) 2014-07-14 2019-07-02 Corning Incorporated Method and system for arresting crack propagation
US10611667B2 (en) 2014-07-14 2020-04-07 Corning Incorporated Method and system for forming perforations
US11014845B2 (en) 2014-12-04 2021-05-25 Corning Incorporated Method of laser cutting glass using non-diffracting laser beams
US10047001B2 (en) 2014-12-04 2018-08-14 Corning Incorporated Glass cutting systems and methods using non-diffracting laser beams
US10252931B2 (en) 2015-01-12 2019-04-09 Corning Incorporated Laser cutting of thermally tempered substrates
US11773004B2 (en) 2015-03-24 2023-10-03 Corning Incorporated Laser cutting and processing of display glass compositions
US10525657B2 (en) 2015-03-27 2020-01-07 Corning Incorporated Gas permeable window and method of fabricating the same
US11186060B2 (en) 2015-07-10 2021-11-30 Corning Incorporated Methods of continuous fabrication of holes in flexible substrate sheets and products relating to the same
US11111170B2 (en) 2016-05-06 2021-09-07 Corning Incorporated Laser cutting and removal of contoured shapes from transparent substrates
US11114309B2 (en) 2016-06-01 2021-09-07 Corning Incorporated Articles and methods of forming vias in substrates
US11774233B2 (en) 2016-06-29 2023-10-03 Corning Incorporated Method and system for measuring geometric parameters of through holes
US10377658B2 (en) 2016-07-29 2019-08-13 Corning Incorporated Apparatuses and methods for laser processing
US10522963B2 (en) 2016-08-30 2019-12-31 Corning Incorporated Laser cutting of materials with intensity mapping optical system
US11130701B2 (en) 2016-09-30 2021-09-28 Corning Incorporated Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots
US10730783B2 (en) 2016-09-30 2020-08-04 Corning Incorporated Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots
US11542190B2 (en) 2016-10-24 2023-01-03 Corning Incorporated Substrate processing station for laser-based machining of sheet-like glass substrates
US10752534B2 (en) 2016-11-01 2020-08-25 Corning Incorporated Apparatuses and methods for laser processing laminate workpiece stacks
US10345604B2 (en) 2017-01-24 2019-07-09 Corning Incorporated Optical fibers and optical systems comprising the same
US10688599B2 (en) 2017-02-09 2020-06-23 Corning Incorporated Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US11062986B2 (en) 2017-05-25 2021-07-13 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US11972993B2 (en) 2017-05-25 2024-04-30 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US10626040B2 (en) 2017-06-15 2020-04-21 Corning Incorporated Articles capable of individual singulation
US10830943B2 (en) 2017-10-31 2020-11-10 Corning Incorporated Optical fibers and optical systems comprising the same
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
CN109270695A (en) * 2018-11-29 2019-01-25 哈尔滨工程大学 A kind of traction beam generated device and production method
CN112363320B (en) * 2020-09-27 2022-02-01 四川长虹电器股份有限公司 Optical fiber vortex optical beam generator and preparation method thereof
CN112363320A (en) * 2020-09-27 2021-02-12 四川长虹电器股份有限公司 Optical fiber vortex optical beam generator and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2012159749A (en) Bessel beam generator
US20150369991A1 (en) Light diffusing fiber lighting device having a single lens
JP2015223463A5 (en)
EP2378333A3 (en) Light-emitting module
WO2009141168A3 (en) Device for joining and tapering fibres or other optical components
JP2015040992A (en) Optical combiner and laser device using the same
JP2015513124A (en) Fiber optic coupler for combining a signal beam with a non-circular light beam
JP2014178628A (en) Fan-in/fan-out device for multiple core fiber connection, optical connection device, and optical connection method
JP2009047979A (en) Optical wave guide type optical coupling mechanism
JP2015223462A5 (en)
TW200704965A (en) Wave coupled light source
WO2011043682A3 (en) Method and device for coupling laser light derived from at least two laser sources into one optical fiber
US9001850B2 (en) Excitation unit for a fiber laser
JP2017203966A5 (en)
WO2007015577A1 (en) Combined light source
TWI264562B (en) Light collecting and uniforming device
JP2015136545A5 (en)
TW201228250A (en) Optical fiber communication apparatus
JP2011164182A (en) Optical connector connection body
JP2014102305A (en) Optical multiplexing device
CN102089113B (en) Hollow core waveguide for laser generation of ultrasonic waves
JP7213499B2 (en) optical coupler
JP2015060084A (en) Light guide body and laser light source device
JP6072116B2 (en) Pulsed fiber laser equipment
WO2016158091A1 (en) Optical fiber device