JP2012157383A - Endoscope apparatus - Google Patents

Endoscope apparatus Download PDF

Info

Publication number
JP2012157383A
JP2012157383A JP2011017085A JP2011017085A JP2012157383A JP 2012157383 A JP2012157383 A JP 2012157383A JP 2011017085 A JP2011017085 A JP 2011017085A JP 2011017085 A JP2011017085 A JP 2011017085A JP 2012157383 A JP2012157383 A JP 2012157383A
Authority
JP
Japan
Prior art keywords
light
wavelength
infrared
observation mode
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011017085A
Other languages
Japanese (ja)
Inventor
Toshiaki Watanabe
俊明 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2011017085A priority Critical patent/JP2012157383A/en
Publication of JP2012157383A publication Critical patent/JP2012157383A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an endoscope apparatus which usually displays a white light image and simultaneously, acquires a narrow band light image and a bright near infrared fluorescence image with high SN.SOLUTION: The endoscope apparatus includes: an illumination part 1 of white light and near infrared excitation light; an optical path branch part 2 branching the reflection light into two optical paths and guiding an near infrared fluorescence image only to a second optical path; a white light image acquisition part 3 disposed on the second optical path; a variable spectroscopic optical element 4 disposed on the second optical path; a special light image acquisition part 5 acquiring a narrow band light image or near infrared fluorescence image transmitted by the variable spectroscopic optical element 4; an imaging mode switching part 6 switching the imaging mode to any of a narrow band imaging mode and a near infrared imaging mode; and a control part 7 switching the spectral characteristics of the variable spectral optical element 4 in such a manner that the transmission peak is caused to exist in a desired narrow band within a wavelength band of the white light and to transmit near infrared fluorescence wavelength in the narrow band imaging mode, and the transmission peak is caused to not exist within the wavelength band of white light and to transmit the near infrared fluorescence light wavelength in the near infrared imaging mode.

Description

本発明は、生体組織に近赤外励起光及び可視光を照射し、生体組織の白色光画像を表示装置に常時表示させると同時に、狭帯域光画像又は近赤外蛍光画像などの特殊光画像を表示装置に表示させる内視鏡装置に関する。   The present invention irradiates a living tissue with near-infrared excitation light and visible light and always displays a white light image of the living tissue on a display device, and at the same time, a special light image such as a narrow-band light image or a near-infrared fluorescent image. The present invention relates to an endoscope apparatus that displays a message on a display device.

近年、内視鏡を用いた観察においては、がんなど微細病変の早期発見や術前の病変範囲の精密診断などのために、通常光観察とは異なる光の波長制御を行うことで、組織の特定の構造を強調して表示させて行う観察、いわゆる「特殊光観察」が広く行なわれている。   In recent years, endoscopic observation has been performed by controlling the wavelength of light different from normal light observation for early detection of fine lesions such as cancer and precise diagnosis of lesion areas before surgery. Observation that is performed by emphasizing and displaying a specific structure, so-called “special light observation” is widely performed.

特殊光観察としては、例えば、血液中のヘモグロビンに吸収されやすい400nm程度の光の狭帯域光画像を取得することで、粘膜表層の毛細血管を強調表示させる、或いはヘモグロビンに吸収されやすい550nm程度の光の狭帯域光画像を取得することで、組織の中層領域の血管を強調表示させて行う、狭帯域光観察(NBI)や、インドシアニングリーン(ICG)等の蛍光物質を静脈注射し、800nm程度の近赤外励起光を照射した際に発生する850nm程度の近赤外蛍光画像を取得することで深部血管を観察する、近赤外蛍光観察といったような観察がある。   As the special light observation, for example, by acquiring a narrow-band light image of about 400 nm light that is easily absorbed by hemoglobin in the blood, the capillaries on the surface layer of the mucosa are highlighted, or about 550 nm that is easily absorbed by hemoglobin. By acquiring a narrow-band light image of light, a fluorescent substance such as narrow-band light observation (NBI) or indocyanine green (ICG) is performed by highlighting blood vessels in the middle layer region of the tissue, and 800 nm There are observations such as near-infrared fluorescence observation, in which deep blood vessels are observed by acquiring a near-infrared fluorescence image of about 850 nm that is generated when a near-infrared excitation light is irradiated.

また、医師等の観察者においては、生体における病変部の位置を正確に把握しやすくするために、通常光観察に用いられる生体組織の白色光画像を表示装置に常時表示させることが必要とされる。   Further, in order to make it easy for an observer such as a doctor to accurately grasp the position of a lesioned part in a living body, it is necessary to always display a white light image of a living tissue used for normal light observation on a display device. The

このため、内視鏡装置には、白色光画像を表示装置に常時表示し、必要に応じて、特殊光画像を白色光画像とともに別の画面に同時に表示させる、或いは白色光画像上に重畳表示させることが望まれている。   For this reason, the endoscope apparatus always displays a white light image on the display device, and if necessary, displays the special light image together with the white light image on another screen at the same time, or displays the special light image superimposed on the white light image. It is hoped that

ところで、従来、分光画像を取得する光学素子として、例えば、特許文献1、2に記載のエタロン型の分光光学素子が知られている。
エタロン型の分光光学素子は、光透過物質からなる対向する2枚の基板上に反射膜を備え、反射膜を設けた基板の間隔に応じて特定の波長の光を透過させることができる分光透過率可変素子である。
エタロン型の分光光学素子に設ける反射膜には、特許文献2では金属反射膜、あるいは特許文献1では誘電体多層膜が用いられている。
Conventionally, for example, etalon-type spectroscopic optical elements described in Patent Documents 1 and 2 are known as optical elements for acquiring spectral images.
An etalon-type spectroscopic optical element includes a reflective film on two opposing substrates made of a light transmitting material, and can transmit light of a specific wavelength according to the distance between the substrates provided with the reflective film. It is a variable rate element.
As the reflective film provided on the etalon-type spectroscopic optical element, Patent Document 2 uses a metal reflective film, or Patent Document 1 uses a dielectric multilayer film.

特開2002−148528号公報JP 2002-148528 A 特開平1−94312号公報JP-A-1-94312

ところで、エタロン型の分光光学素子を用いて、上述したようなすべての特殊光画像を取得できるようにするには、可視光から近赤外蛍光に至るまでの広い波長帯域(400nm〜900nm)にわたって所定の波長幅で透過波長を変化させることのできる特性を持たせる必要がある。   By the way, in order to be able to acquire all the special light images as described above by using the etalon type spectroscopic optical element, over a wide wavelength band (400 nm to 900 nm) from visible light to near infrared fluorescence. It is necessary to have a characteristic capable of changing the transmission wavelength with a predetermined wavelength width.

しかるに、特許文献1に示すような誘電体多層膜を用いて幅広い波長帯域にわたり所定の波長幅で透過波長を変化させることのできる特性を持つ反射膜を設計するには、蒸着物質の屈折率差を大きくとる必要があるが、現在の誘電体多層膜の製造に使用できる蒸着物質の屈折率差には限りがあるため、実現が困難である。   However, in order to design a reflective film having a characteristic capable of changing a transmission wavelength with a predetermined wavelength width over a wide wavelength band using a dielectric multilayer film as shown in Patent Document 1, the refractive index difference of the vapor deposition material is used. However, it is difficult to realize this because the difference in the refractive index of the vapor deposition material that can be used for the production of the current dielectric multilayer film is limited.

また、幅広い波長帯域にわたり所定の波長幅で透過波長を変化させることのできる特性を持つ反射膜を設計するために、特許文献2に示すような、銀(Ag)やアルミ(Al)などの金属反射膜をエタロン型の分光光学素子に設ける反射膜として基板にコートした場合、コート物質自体が光を吸収することにより透過率が50%前後に低くなるため、特殊光観察における十分な明るさの画像を得ることができない。特に、近赤外領域の蛍光は、強度が低く、しかも、蛍光画像の取得に用いられる撮像素子の分光感度も低いため、十分な信号強度を得ることができず、例えば、他の波長帯域からの漏れ光などのノイズ成分の影響を大きくうけてSNが低下し易い。   In addition, in order to design a reflective film having a characteristic capable of changing a transmission wavelength with a predetermined wavelength width over a wide wavelength band, a metal such as silver (Ag) or aluminum (Al) as shown in Patent Document 2 When the reflective film is coated on the substrate as a reflective film provided on the etalon type spectroscopic optical element, the transmittance is lowered to about 50% by absorbing the light by the coating substance itself, so that the brightness of the special light observation is sufficient. I can't get an image. In particular, the fluorescence in the near infrared region has low intensity, and the spectral sensitivity of the imaging device used to acquire the fluorescence image is also low, so that sufficient signal intensity cannot be obtained. For example, from other wavelength bands The SN is likely to decrease due to the influence of noise components such as leakage light.

本発明は、このような従来の問題点に鑑みてなされたものであり、白色光画像を常時表示しながら、同時に可視光の狭帯域光画像から近赤外蛍光画像の広い範囲にわたる特殊光画像を取得でき、且つ、高SNで明るい近赤外蛍光画像を取得可能な内視鏡装置を提供することを目的としている。   The present invention has been made in view of the above-described conventional problems, and always displays a white light image while simultaneously displaying a special light image over a wide range from a visible narrow-band light image to a near-infrared fluorescent image. It is an object of the present invention to provide an endoscope apparatus that can acquire a bright near-infrared fluorescent image with a high SN.

上記目的を達成するため、本発明による内視鏡装置は、被写体に白色光と近赤外励起光を照射する照明部と、前記被写体で反射した光を第1及び第2の光路に分岐し、且つ、前記被写体から発生した近赤外蛍光を前記第2の光路のみに導く光路分岐部と、前記第1の光路上に配置され、前記被写体で反射した白色光画像を取得する白色光画像取得部と、前記第2の光路上に配置され、対向する表面に誘電体多層膜が設けられた対向する2枚の光学基板を有してなり、前記対向する2枚の光学基板同士の距離または角度を変えることにより分光特性が可変となる、少なくとも1つの可変分光光学素子と、前記可変分光光学素子を透過した光を受光し、狭帯域光画像または近赤外蛍光画像を取得する特殊光画像取得部と、白色光画像と共に狭帯域光画像を観察する狭帯域光観察モードと白色光画像と共に近赤外光画像を観察する近赤外光観察モードとのいずれかに観察モードを切替える観察モード切替部と、観察モード切替部による観察モードの切替えに応じて、前記可変分光光学素子における前記対向する2枚の光学基板同士の距離及び角度を制御する制御部を有し、前記可変分光素子は、少なくとも近赤外蛍光波長を透過させるとともに、少なくとも白色光の波長帯域を間に含む、近赤外蛍光の波長帯域よりも短波長側の所定の波長帯域内において所定の波長幅で透過波長を変化させうる特性を有し、前記制御部を介して前記対向する2枚の光学基板同士の距離及び角度が制御されることにより、前記狭帯域光観察モードでは白色光の波長帯域内における所望の狭帯域に透過ピークを存在させ、且つ、少なくとも近赤外蛍光波長を透過させ、前記近赤外光観察モードでは白色光の波長帯域内において透過ピークを存在させず、且つ、少なくとも近赤外蛍光波長を透過させるように、分光特性が切替わることを特徴としている。   In order to achieve the above object, an endoscope apparatus according to the present invention branches an illumination unit that irradiates a subject with white light and near-infrared excitation light, and branches light reflected by the subject into first and second optical paths. And an optical path branching unit that guides near-infrared fluorescence generated from the subject only to the second optical path, and a white light image that is disposed on the first optical path and acquires a white light image reflected by the subject. An acquisition unit and two opposing optical substrates disposed on the second optical path and provided with a dielectric multilayer film on the opposing surfaces, and the distance between the two opposing optical substrates Alternatively, at least one variable spectroscopic optical element whose spectral characteristics are variable by changing the angle, and special light that receives light transmitted through the variable spectroscopic optical element and acquires a narrowband light image or a near-infrared fluorescent image. Narrow band with image acquisition unit and white light image Observation mode switching unit for switching the observation mode to either a narrow-band light observation mode for observing an image or a near-infrared light observation mode for observing a near-infrared light image together with a white light image, and an observation mode by the observation mode switching unit And a control unit that controls the distance and angle between the two optical substrates facing each other in the variable spectral optical element, and the variable spectral element transmits at least the near-infrared fluorescence wavelength. The control unit has a characteristic that can change a transmission wavelength with a predetermined wavelength width within a predetermined wavelength band shorter than the wavelength band of near-infrared fluorescence, including at least the wavelength band of white light. By controlling the distance and the angle between the two optical substrates facing each other via a light beam, in the narrow-band light observation mode, the transmission peak is in a desired narrow band within the wavelength band of white light. Exist and transmit at least near-infrared fluorescence wavelength, and in the near-infrared light observation mode, no transmission peak exists in the wavelength band of white light, and at least transmits near-infrared fluorescence wavelength. The spectral characteristics are switched.

また、本発明の内視鏡装置においては、前記可変分光光学素子は、前記近赤外光観察モードでは紫外光の波長帯域と近赤外蛍光の波長帯域との間の波長帯域内において透過ピークが消失するように、前記制御部を介して前記対向する2枚の光学基板同士の距離及び角度が制御されるのが好ましい。   In the endoscope apparatus of the present invention, the variable spectral optical element has a transmission peak in a wavelength band between a wavelength band of ultraviolet light and a wavelength band of near-infrared fluorescence in the near-infrared light observation mode. It is preferable that the distance and the angle between the two optical substrates facing each other are controlled via the control unit so that disappears.

また、本発明の内視鏡装置においては、前記可変分光光学素子は、前記近赤外光観察モードでは白色光の波長帯域外の所定の狭帯域に透過ピークを存在させるように、前記制御部を介して前記対向する2枚の光学基板同士の距離及び角度が制御されるのが好ましい。   In the endoscope apparatus according to the present invention, the variable spectroscopic optical element may be configured such that, in the near-infrared light observation mode, the control unit includes a transmission peak in a predetermined narrow band outside the wavelength band of white light. It is preferable that the distance and the angle between the two optical substrates facing each other are controlled via each other.

また、本発明の内視鏡装置においては、前記可変分光光学素子は、前記制御部を介して、前記狭帯域光観察モードでは前記対向する2枚の光学基板同士の角度が平行に保持された状態で所定の距離に制御され、前記近赤外光観察モードでは前記対向する2枚の光学基板同士が平行でない所定の角度に制御されるのが好ましい。   In the endoscope apparatus according to the present invention, the variable spectroscopic optical element is configured so that the angle between the two optical substrates facing each other is held in parallel in the narrowband light observation mode via the control unit. In the near infrared light observation mode, it is preferable that the two opposing optical substrates are controlled to a predetermined angle that is not parallel to each other.

また、本発明の内視鏡装置においては、前記可変分光光学素子は、前記近赤外光観察モードでは白色光の波長帯域よりも短波長側の所定の狭帯域に透過ピークがシフトするように、前記制御部を介して前記対向する2枚の光学基板同士の距離及び角度が制御されるのが好ましい。   In the endoscope apparatus of the present invention, the variable spectroscopic optical element is configured such that, in the near-infrared light observation mode, a transmission peak shifts to a predetermined narrow band shorter than the wavelength band of white light. The distance and the angle between the two optical substrates facing each other are preferably controlled via the controller.

また、本発明の内視鏡装置においては、近赤外励起波長をカットするフィルターが、前記第2の光路上に設けられ、前記可変分光光学素子は、前記近赤外光観察モードでは白色光の波長帯域よりも長波長側の所定の狭帯域に透過ピークがシフトするように、前記制御部を介して前記対向する2枚の光学基板同士の距離及び角度が制御されるのが好ましい。   In the endoscope apparatus of the present invention, a filter for cutting near-infrared excitation wavelengths is provided on the second optical path, and the variable spectral optical element is white light in the near-infrared light observation mode. It is preferable that the distance and angle between the two optical substrates facing each other are controlled via the control unit so that the transmission peak shifts to a predetermined narrow band on the longer wavelength side than the wavelength band.

また、本発明の内視鏡装置においては、近赤外励起波長をカットするフィルターが、前記第2の光路上に設けられ、前記可変分光光学素子は、前記近赤外光観察モードでは白色光の波長帯域よりも短波長側の第1の所定の狭帯域及び白色光の波長帯域よりも長波長側の第2の所定の狭帯域に透過ピークがシフトするように、前記制御部を介して前記対向する2枚の光学基板同士の距離及び角度が制御されるのが好ましい。   In the endoscope apparatus of the present invention, a filter for cutting near-infrared excitation wavelengths is provided on the second optical path, and the variable spectral optical element is white light in the near-infrared light observation mode. Through the control unit so that the transmission peak is shifted to the first predetermined narrow band on the shorter wavelength side than the wavelength band of the first wavelength and the second predetermined narrow band on the longer wavelength side of the wavelength band of the white light. It is preferable that the distance and angle between the two facing optical substrates are controlled.

また、本発明の内視鏡装置においては、前記可変分光光学素子は、前記制御部を介して、前記狭帯域光観察モードでは前記対向する2枚の光学基板同士の角度が平行に保持された状態で所定の距離に制御され、前記近赤外光観察モードでは前記対向する2枚の光学基板同士が紫外光の波長帯域と近赤外蛍光の波長帯域との間の波長帯域内において透過ピークが消失する程度離れた所定の距離に制御されるのが好ましい。   In the endoscope apparatus according to the present invention, the variable spectroscopic optical element is configured so that the angle between the two optical substrates facing each other is held in parallel in the narrowband light observation mode via the control unit. In the near-infrared light observation mode, the two optical substrates facing each other transmit a transmission peak in a wavelength band between the wavelength band of ultraviolet light and the wavelength band of near-infrared fluorescence. It is preferable that the distance is controlled to a predetermined distance that is so far as to disappear.

また、本発明の内視鏡装置においては、前記可変分光光学素子は、直列に配置された第1の可変分光光学素子と第2の可変分光光学素子からなり、前記第1の可変分光光学素子と前記第2の可変分光光学素子は、前記狭帯域光観察モードでは白色光の波長帯域内において互いに同じ所望の狭帯域に透過ピークを存在させ、前記近赤外光観察モードでは白色光の波長帯域内において互いの透過波長が重ならない異なる所定の狭帯域に透過ピークを存在させるように、前記制御部を介して夫々の前記対向する2枚の光学基板同士の距離及び角度が制御されるのが好ましい。   In the endoscope apparatus of the present invention, the variable spectroscopic optical element includes a first variable spectroscopic optical element and a second variable spectroscopic optical element arranged in series, and the first variable spectroscopic optical element And the second variable spectroscopic optical element have transmission peaks in the same desired narrow band within the wavelength band of white light in the narrow band light observation mode, and the wavelength of white light in the near infrared light observation mode. The distance and angle between the two opposing optical substrates are controlled via the control unit so that transmission peaks exist in different predetermined narrow bands where the transmission wavelengths do not overlap each other within the band. Is preferred.

また、本発明の内視鏡装置においては、近赤外励起波長をカットするフィルターが、前記第2の光路上に設けられ、前記可変分光光学素子は、近赤外励起波長及び近赤外蛍光波長を透過させるとともに、少なくとも白色光の波長帯域を間に含む、近赤外励起光の波長帯域よりも短波長側の所定の波長帯域内において所定の波長幅で透過波長を変化させうる特性を有し、前記制御部を介して前記対向する2枚の光学基板同士の距離及び角度が制御されることにより、前記狭帯域光観察モードでは白色光の波長帯域内における所望の狭帯域に透過ピークを存在させ、且つ、近赤外励起波長及び近赤外蛍光波長を透過させ、前記近赤外光観察モードでは紫外光の波長帯域と近赤外励起光の波長帯域との間の波長帯域内において透過ピークが消失し、且つ、近赤外励起波長及び近赤外蛍光波長を透過させるように、分光特性が切替わるのが好ましい。   In the endoscope apparatus of the present invention, a filter for cutting the near-infrared excitation wavelength is provided on the second optical path, and the variable spectroscopic optical element includes the near-infrared excitation wavelength and the near-infrared fluorescence. A characteristic that can transmit the wavelength and change the transmission wavelength with a predetermined wavelength width within a predetermined wavelength band shorter than the wavelength band of near-infrared excitation light, including at least the wavelength band of white light. And the transmission peak in a desired narrow band within the wavelength band of white light in the narrow band light observation mode by controlling the distance and angle between the two optical substrates facing each other via the control unit. In the near-infrared excitation wavelength and near-infrared fluorescence wavelength, and in the near-infrared light observation mode, within the wavelength band between the wavelength band of ultraviolet light and the wavelength band of near-infrared excitation light. The transmission peak disappears at One, to transmit near infrared excitation wavelength and near-infrared fluorescence wavelength, preferably the spectral characteristic is switched.

また、本発明の内視鏡装置においては、近赤外励起波長をカットするフィルターが、前記第2の光路上に設けられ、前記可変分光光学素子は、近赤外励起波長及び近赤外蛍光波長を透過させるとともに、少なくとも白色光の波長帯域を間に含む、近赤外励起光の波長帯域よりも短波長側の所定の波長帯域内において所定の波長幅で透過波長を変化させうる特性を有し、前記制御部を介して前記対向する2枚の光学基板同士の距離及び角度が制御されることにより、前記狭帯域光観察モードでは白色光の波長帯域内における所望の狭帯域に透過ピークを存在させ、且つ、近赤外励起波長及び近赤外蛍光波長を透過させ、前記近赤外光観察モードでは白色光の波長帯域よりも短波長側の所定の狭帯域に透過ピークがシフトし、且つ、近赤外励起波長及び近赤外蛍光波長を透過させるように、分光特性が切替わるのが好ましい。   In the endoscope apparatus of the present invention, a filter for cutting the near-infrared excitation wavelength is provided on the second optical path, and the variable spectroscopic optical element includes the near-infrared excitation wavelength and the near-infrared fluorescence. A characteristic that can transmit the wavelength and change the transmission wavelength with a predetermined wavelength width within a predetermined wavelength band shorter than the wavelength band of near-infrared excitation light, including at least the wavelength band of white light. And the transmission peak in a desired narrow band within the wavelength band of white light in the narrow band light observation mode by controlling the distance and angle between the two optical substrates facing each other via the control unit. And transmit the near-infrared excitation wavelength and near-infrared fluorescence wavelength, and in the near-infrared light observation mode, the transmission peak shifts to a predetermined narrow band shorter than the wavelength band of white light. And near infrared excitation wave And to transmit near infrared fluorescence wavelength, preferably the spectral characteristic is switched.

また、本発明の内視鏡装置においては、前記可変分光光学素子は、前記制御部を介して、前記狭帯域光観察モードでは前記対向する2枚の光学基板同士の角度が平行に保持された状態で所定の距離に制御され、前記近赤外光観察モードでは前記対向する2枚の光学基板同士が紫外光の波長帯域と近赤外励起光の波長帯域との間の波長帯域内において透過ピークが消失する程度離れた所定の距離に制御されるのが好ましい。   In the endoscope apparatus according to the present invention, the variable spectroscopic optical element is configured so that the angle between the two optical substrates facing each other is held in parallel in the narrowband light observation mode via the control unit. In the near-infrared light observation mode, the two optical substrates facing each other are transmitted within a wavelength band between the wavelength band of ultraviolet light and the wavelength band of near-infrared excitation light in the near-infrared light observation mode. It is preferable that the distance be controlled to a predetermined distance so that the peak disappears.

また、本発明の内視鏡装置においては、前記観察モード切替部が、前記狭帯域光観察モードと前記近赤外光観察モードとを時分割で切替えるように構成されているのが好ましい。   In the endoscope apparatus of the present invention, it is preferable that the observation mode switching unit is configured to switch between the narrow-band light observation mode and the near-infrared light observation mode in a time division manner.

本発明によれば、白色光画像を常時表示しながら、同時に可視光の狭帯域光画像から近赤外蛍光画像の広い範囲にわたる特殊光画像を取得でき、且つ、高SNで明るい近赤外蛍光画像を取得可能な内視鏡装置が得られる。   According to the present invention, a special light image covering a wide range from a visible narrow-band light image to a near-infrared fluorescent image can be acquired at the same time while displaying a white light image at all times, and the bright near-infrared fluorescence is bright with high SN. An endoscope apparatus capable of acquiring an image is obtained.

本発明の一実施形態にかかる内視鏡装置全体の構成を概略的に示すブロック図である。1 is a block diagram schematically showing an overall configuration of an endoscope apparatus according to an embodiment of the present invention. FIG. 本発明の各実施例に共通の内視鏡装置全体の構成を示すブロック図である。It is a block diagram which shows the structure of the whole endoscope apparatus common to each Example of this invention. 本発明の実施例1の内視鏡装置を用いた特殊光観察における光学特性の一例を示す説明図で、(a)は照明光のスペクトルを示すグラフ、(b)は狭帯域光観察モードでの可変分光光学素子を構成する2枚の光学基板同士の距離及び角度を示す図、(c)は狭帯域光観察モードでの可変分光光学素子の分光透過率を示すグラフ、(d)は近赤外光観察モードでの可変分光光学素子を構成する2枚の光学基板同士の距離及び角度を示す図、(e)は近赤外光観察モードでの可変分光光学素子の分光透過率を示すグラフである。It is explanatory drawing which shows an example of the optical characteristic in the special light observation using the endoscope apparatus of Example 1 of this invention, (a) is a graph which shows the spectrum of illumination light, (b) is a narrow-band light observation mode. The figure which shows the distance and angle of the two optical substrates which comprise the variable spectroscopic optical element of this, (c) is a graph which shows the spectral transmittance of the variable spectroscopic optical element in a narrow-band light observation mode, (d) is near The figure which shows the distance and angle of two optical substrates which comprise the variable spectral optical element in infrared light observation mode, (e) shows the spectral transmittance of the variable spectral optical element in near infrared light observation mode It is a graph. 実施例1の変形例1にかかる内視鏡装置を用いた特殊光観察における光学特性の一例を示す説明図で、(a)は照明光のスペクトルを示すグラフ、(b)は狭帯域光観察モードでの可変分光光学素子を構成する2枚の光学基板同士の距離及び角度を示す図、(c)は狭帯域光観察モードでの可変分光光学素子の分光透過率を示すグラフ、(d)は近赤外光観察モードでの可変分光光学素子を構成する2枚の光学基板同士の距離及び角度を示す図、(e)は近赤外光観察モードでの可変分光光学素子の分光透過率を示すグラフである。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing which shows an example of the optical characteristic in the special light observation using the endoscope apparatus concerning the modification 1 of Example 1, (a) is a graph which shows the spectrum of illumination light, (b) is a narrow-band light observation. The figure which shows the distance and angle of two optical substrates which comprise the variable spectral optical element in a mode, (c) is a graph which shows the spectral transmittance of the variable spectral optical element in a narrow-band light observation mode, (d) Is a diagram showing the distance and angle between two optical substrates constituting the variable spectral optical element in the near infrared light observation mode, and (e) is the spectral transmittance of the variable spectral optical element in the near infrared light observation mode. It is a graph which shows. 実施例1の変形例2にかかる内視鏡装置を用いた特殊光観察における光学特性の一例を示す説明図で、(a)は照明光のスペクトルを示すグラフ、(b)は狭帯域光観察モードでの可変分光光学素子を構成する2枚の光学基板同士の距離及び角度を示す図、(c)は狭帯域光観察モードでの可変分光光学素子の分光透過率を示すグラフ、(d)は近赤外光観察モードでの可変分光光学素子を構成する2枚の光学基板同士の距離及び角度を示す図、(e)は近赤外光観察モードでの可変分光光学素子の分光透過率を示すグラフである。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing which shows an example of the optical characteristic in the special light observation using the endoscope apparatus concerning the modification 2 of Example 1, (a) is a graph which shows the spectrum of illumination light, (b) is narrow-band light observation. The figure which shows the distance and angle of two optical substrates which comprise the variable spectral optical element in a mode, (c) is a graph which shows the spectral transmittance of the variable spectral optical element in a narrow-band light observation mode, (d) Is a diagram showing the distance and angle between two optical substrates constituting the variable spectral optical element in the near infrared light observation mode, and (e) is the spectral transmittance of the variable spectral optical element in the near infrared light observation mode. It is a graph which shows. 本発明の実施例2の内視鏡装置全体の構成を示すブロック図である。It is a block diagram which shows the structure of the whole endoscope apparatus of Example 2 of this invention. 実施例2の内視鏡装置を用いた特殊光観察における光学特性の一例を示す説明図で、(a)は照明光のスペクトルを示すグラフ、(b)は近赤外励起光カットフィルタの分光透過率を示すグラフ、(c)は近赤外光観察モードでの可変分光光学素子を構成する2枚の光学基板同士の距離及び角度を示す図、(d)は近赤外光観察モードでの可変分光光学素子の分光透過率を示すグラフ、(e)は近赤外光観察モードにおいて近赤外励起光カットフィルタの光学特性と可変分光光学素子の光学特性とを合わせた光学特性を示すグラフである。FIG. 6 is an explanatory diagram showing an example of optical characteristics in special light observation using the endoscope apparatus of Example 2, where (a) is a graph showing a spectrum of illumination light, and (b) is a spectrum of a near-infrared excitation light cut filter. Graph showing transmittance, (c) is a diagram showing the distance and angle between two optical substrates constituting the variable spectral optical element in the near-infrared light observation mode, and (d) is in the near-infrared light observation mode. (E) shows the optical characteristics of the near-infrared excitation light cut filter combined with the optical characteristics of the variable-spectrum optical element in the near-infrared light observation mode. It is a graph. 実施例2の変形例1にかかる内視鏡装置を用いた特殊光観察における光学特性の一例を示す説明図で、(a)は照明光のスペクトルを示すグラフ、(b)は近赤外励起光カットフィルタの分光透過率を示すグラフ、(c)は近赤外光観察モードでの可変分光光学素子を構成する2枚の光学基板同士の距離及び角度を示す図、(d)は近赤外光観察モードでの可変分光光学素子の分光透過率を示すグラフ、(e)は近赤外光観察モードにおいて近赤外励起光カットフィルタと可変分光光学素子の両方を透過する波長帯域を示すグラフである。FIG. 7 is an explanatory diagram illustrating an example of optical characteristics in special light observation using the endoscope apparatus according to the first modification of the second embodiment, where (a) is a graph showing the spectrum of illumination light, and (b) is near-infrared excitation. A graph showing the spectral transmittance of the light cut filter, (c) is a diagram showing the distance and angle between the two optical substrates constituting the variable spectral optical element in the near-infrared light observation mode, and (d) is a near red color. Graph showing the spectral transmittance of the variable spectroscopic optical element in the external light observation mode, (e) shows the wavelength band that transmits both the near infrared excitation light cut filter and the variable spectroscopic optical element in the near infrared light observation mode. It is a graph. 実施例2の変形例2にかかる内視鏡装置を用いた特殊光観察における光学特性の一例を示す説明図で、(a)は照明光のスペクトルを示すグラフ、(b)は近赤外励起光カットフィルタの分光透過率を示すグラフ、(c)は近赤外光観察モードでの可変分光光学素子を構成する2枚の光学基板同士の距離及び角度を示す図、(d)は近赤外光観察モードでの可変分光光学素子の分光透過率を示すグラフ、(e)は近赤外光観察モードにおいて近赤外励起光カットフィルタの光学特性と可変分光光学素子の光学特性とを合わせた光学特性を示すグラフである。FIG. 6 is an explanatory diagram illustrating an example of optical characteristics in special light observation using an endoscope apparatus according to a second modification of the second embodiment, where (a) is a graph showing the spectrum of illumination light, and (b) is near-infrared excitation. A graph showing the spectral transmittance of the light cut filter, (c) is a diagram showing the distance and angle between the two optical substrates constituting the variable spectral optical element in the near-infrared light observation mode, and (d) is a near red color. Graph showing the spectral transmittance of the variable spectroscopic optical element in the external light observation mode, (e) shows the optical characteristics of the near infrared excitation light cut filter and the optical characteristics of the variable spectroscopic optical element in the near infrared light observation mode. 5 is a graph showing optical characteristics. 本発明の実施例3の内視鏡装置全体の構成を示すブロック図である。It is a block diagram which shows the structure of the whole endoscope apparatus of Example 3 of this invention. 実施例3の内視鏡装置を用いた特殊光観察における光学特性の一例を示す説明図で、(a)は照明光のスペクトルを示すグラフ、(b)は近赤外光観察モードでの第1の可変分光光学素子を構成する2枚の光学基板同士の距離及び角度を示す図、(c)は近赤外光観察モードでの第1の可変分光光学素子の分光透過率を示すグラフ、(d)は近赤外光観察モードでの第2の可変分光光学素子を構成する2枚の光学基板同士の距離及び角度を示す図、(e)は近赤外光観察モードでの第1の可変分光光学素子の分光透過率を示すグラフ、(f)は近赤外光観察モードにおける第1の可変分光光学素子の分光特性と第2の可変分光光学素子の分光特性とを合わせた分光特性を示すグラフである。FIG. 6 is an explanatory diagram showing an example of optical characteristics in special light observation using the endoscope apparatus of Example 3, wherein (a) is a graph showing the spectrum of illumination light, and (b) is the first in the near-infrared light observation mode. The figure which shows the distance and angle of two optical substrates which comprise 1 variable spectral optical element, (c) is a graph which shows the spectral transmittance of the 1st variable spectral optical element in near-infrared light observation mode, (d) is a diagram showing the distance and angle between the two optical substrates constituting the second variable spectroscopic optical element in the near infrared light observation mode, and (e) is the first in the near infrared light observation mode. (F) is a spectrum obtained by combining the spectral characteristics of the first variable spectral optical element and the spectral characteristics of the second variable spectral optical element in the near-infrared light observation mode. It is a graph which shows a characteristic.

本発明の内視鏡装置は、エタロン型の可変分光光学素子を介して特殊光画像の観察を行い、特殊光観察モードにおける白色光の波長帯域内の狭帯域光画像を観察する狭帯域光観察モードと近赤外蛍光画像を観察する近赤外光観察モードとの切替えに応じて、エタロン型の可変分光光学素子の分光特性が切替わるように構成されている。エタロン型の可変分光光学素子を構成する反射膜には、透過率の高い誘電体多層膜を用いている。また、エタロン型の可変分光光学素子において所定の波長幅で透過波長を変化させることのできる波長帯域から外れた近赤外光の波長帯域を、近赤外光観察モードにおける透過波長帯域として用いている。さらに、近赤外光観察モードでは、エタロン型の可変分光光学素子において透過ピークを白色光の波長帯域内に存在させないように、制御部を介してエタロン型の可変分光光学素子を構成する対向する基板同士の距離及び角度が制御されるように構成されている。
このため、本発明の内視鏡装置によれば、可視光の狭帯域光画像から近赤外蛍光画像の広い範囲にわたる特殊光画像を取得でき、且つ、近赤外蛍光画像観察においても高SNで十分な明るさの画像を得ることができる。
The endoscope apparatus of the present invention observes a special light image through an etalon-type variable spectroscopic optical element, and observes a narrowband light image in the wavelength band of white light in the special light observation mode. The spectral characteristics of the etalon-type variable spectroscopic optical element are switched according to switching between the mode and the near-infrared light observation mode for observing the near-infrared fluorescence image. A dielectric multilayer film having a high transmittance is used for the reflective film constituting the etalon type variable spectroscopic optical element. In addition, the near-infrared light wavelength band that is out of the wavelength band in which the transmission wavelength can be changed with a predetermined wavelength width in the etalon-type variable spectroscopic optical element is used as the transmission wavelength band in the near-infrared light observation mode. Yes. Further, in the near-infrared light observation mode, the etalon-type variable spectroscopic optical element is opposed to the etalon-type variable spectroscopic optical element via the control unit so that the transmission peak does not exist in the wavelength band of white light. The distance and angle between the substrates are controlled.
For this reason, according to the endoscope apparatus of the present invention, it is possible to acquire a special light image over a wide range from a visible narrow-band light image to a near-infrared fluorescent image, and also in high-SN fluorescence image observation. Can obtain an image with sufficient brightness.

図1は本発明の一実施形態にかかる内視鏡装置全体の構成を概略的に示すブロック図である。
図1の内視鏡装置は、照明部1と、光路分岐部2と、白色光画像取得部3と、少なくとも1つの可変分光光学素子4と、特殊光画像取得部5と、観察モード切替部6と、制御部7と、画像合成部8と、表示部9を有している。なお、図1中、10は被写体としての生体組織である。
FIG. 1 is a block diagram schematically showing the overall configuration of an endoscope apparatus according to an embodiment of the present invention.
The endoscope apparatus of FIG. 1 includes an illuminating unit 1, an optical path branching unit 2, a white light image acquiring unit 3, at least one variable spectral optical element 4, a special light image acquiring unit 5, and an observation mode switching unit. 6, a control unit 7, an image composition unit 8, and a display unit 9. In FIG. 1, reference numeral 10 denotes a living tissue as a subject.

照明部1は、例えば、白色光源と近赤外励起光源(図示省略)、これらの光源からの光を合成するビームスプリッタなどの光路合成部(図示省略)、光路合成部で合成した光を生体組織10に導くライトガイド(図示省略)等を有し、白色光と近赤外励起光を生体組織10に照射することができるように構成されている。
光路分岐部2は、例えば、ビームスプリッタからなり、生体組織10で反射した光を所定の割合で第1及び第2の光路L1,L2に分岐するとともに、生体組織10から発生した近赤外蛍光を第2の光路のみに導くように構成されている。
白色光画像取得部3は、第1の光路L1上に配置され、例えば、CCDやCMOSなどの固体撮像素子を有してなり、生体組織10で反射した白色光画像を取得するように構成されている。
可変分光光学素子4は、第2の光路L2上に配置され、対向する表面に反射膜として誘電体多層膜が設けられた対向する2枚の光学基板を有してなり、対向する2枚の光学基板同士の距離または角度を変えることにより分光特性が可変となる、エタロン型の可変分光光学素子として構成されている。
特殊光画像取得部5は、例えば、CCDやCMOSなどの固体撮像素子を有してなり、可変分光光学素子4を透過した光を受光することで、狭帯域光画像または近赤外蛍光画像を取得するように構成されている。
観察モード切替部6は、白色光画像と共に狭帯域光画像を観察する狭帯域光観察モードと白色光画像と共に近赤外光画像を観察する近赤外光観察モードとのいずれかに観察モードを切替えるように構成されている。
制御部7は、可変分光光学素子4における対向する2枚の光学基板同士の距離及び角度を制御するように構成されている。
The illuminating unit 1 includes, for example, a white light source and a near-infrared excitation light source (not shown), an optical path synthesis unit (not shown) such as a beam splitter that synthesizes light from these light sources, and light synthesized by the optical path synthesis unit. It has a light guide (not shown) that leads to the tissue 10 and is configured to irradiate the living tissue 10 with white light and near-infrared excitation light.
The optical path branching unit 2 is made of, for example, a beam splitter, branches light reflected by the biological tissue 10 into the first and second optical paths L1 and L2 at a predetermined ratio, and generates near-infrared fluorescence generated from the biological tissue 10. Is guided only to the second optical path.
The white light image acquisition unit 3 is disposed on the first optical path L1 and includes, for example, a solid-state imaging device such as a CCD or a CMOS, and is configured to acquire a white light image reflected by the living tissue 10. ing.
The variable spectroscopic optical element 4 is disposed on the second optical path L2, and includes two opposing optical substrates each provided with a dielectric multilayer film as a reflective film on the opposing surface. It is configured as an etalon-type variable spectroscopic optical element whose spectral characteristics are variable by changing the distance or angle between the optical substrates.
The special light image acquisition unit 5 includes, for example, a solid-state imaging device such as a CCD or a CMOS, and receives a light transmitted through the variable spectral optical element 4 so that a narrow band light image or a near-infrared fluorescent image is obtained. Is configured to get.
The observation mode switching unit 6 switches the observation mode to either a narrow band light observation mode for observing a narrow band light image together with a white light image or a near infrared light observation mode for observing a near infrared light image together with a white light image. It is configured to switch.
The control unit 7 is configured to control the distance and angle between two opposing optical substrates in the variable spectral optical element 4.

ここで、図1の内視鏡装置では、可変分光光学素子4は、少なくとも近赤外蛍光波長を透過させるとともに、少なくとも白色光の波長帯域を含む所定の波長帯域内において所定の波長幅で透過波長を変化させうる特性を有している。そして、可変分光光学素子4は、制御部7を介して対向する2枚の光学基板同士の距離及び角度が制御されることにより、狭帯域光観察モードでは白色光の波長帯域内における所望の狭帯域に透過ピークを存在させ、且つ、少なくとも近赤外蛍光波長を透過させ、近赤外光観察モードでは白色光の波長帯域内において透過ピークを存在させず、且つ、少なくとも近赤外蛍光波長を透過させるように、分光特性が切替わるようになっている。   Here, in the endoscope apparatus of FIG. 1, the variable spectroscopic optical element 4 transmits at least a near-infrared fluorescence wavelength, and transmits at a predetermined wavelength band within a predetermined wavelength band including at least a wavelength band of white light. It has characteristics that can change the wavelength. The variable spectroscopic optical element 4 controls the distance and angle between the two optical substrates facing each other via the control unit 7, so that the narrow spectral light observation mode has a desired narrow wavelength within the wavelength band of white light. In the near-infrared light observation mode, there is no transmission peak in the wavelength band of white light, and at least the near-infrared fluorescence wavelength is transmitted. Spectral characteristics are switched so as to transmit.

なお、狭帯域光観察モード、近赤外光観察モードの選択は、図示省略した観察モード入力部により行うように構成されている。観察モード入力部(図示省略)は、観察モード切替部6に接続しており、選択した観察モード情報(狭帯域光観察モードまたは近赤外光観察モード)を観察モード切替部6に送信するようになっている。観察モード切替部6は、制御部7と接続しており、観察モード入力部を介して選択された観察モード情報(近赤外光観察モードまたは狭帯域光観察モード)に応じて可変分光光学素子4の分光特性が切替わるように、制御部7に所定の制御を行わせるようになっている。また、図1の内視鏡装置では、観察モード切替部6は、照明部1の近赤外励起光源と接続しており、観察モード入力部を介して選択された観察モード情報(近赤外光観察モードまたは狭帯域光観察モード)に応じて、照明部1の近赤外励起光源のON・OFF制御も行うようになっている。
画像合成部8は、白色光画像取得部3が取得した白色光画像と特殊光画像取得部5が取得した特殊光画像とを合成するように構成されている。なお、画像合成部8による画像合成の態様は、例えば、白色光画像と特殊光画像を並列配置した態様でもよいし、白色光画像に特殊光画像を重畳した態様でもよい。
表示部9は、画像合成部8が合成した白色光画像と特殊光画像との合成画像を表示するように構成されている。
なお、生体組織10は、近赤外波長帯域内における所定波長の蛍光を発する蛍光色素が標識されている。
The narrow-band light observation mode and the near-infrared light observation mode are selected by an observation mode input unit (not shown). The observation mode input unit (not shown) is connected to the observation mode switching unit 6 so as to transmit the selected observation mode information (narrowband light observation mode or near infrared light observation mode) to the observation mode switching unit 6. It has become. The observation mode switching unit 6 is connected to the control unit 7 and is a variable spectroscopic optical element according to the observation mode information (near infrared light observation mode or narrowband light observation mode) selected via the observation mode input unit. The control unit 7 is caused to perform predetermined control so that the spectral characteristics of 4 are switched. In the endoscope apparatus of FIG. 1, the observation mode switching unit 6 is connected to the near-infrared excitation light source of the illumination unit 1, and the observation mode information (near infrared) selected via the observation mode input unit. In accordance with the light observation mode or the narrow-band light observation mode, ON / OFF control of the near-infrared excitation light source of the illumination unit 1 is also performed.
The image synthesis unit 8 is configured to synthesize the white light image acquired by the white light image acquisition unit 3 and the special light image acquired by the special light image acquisition unit 5. The mode of image synthesis by the image synthesis unit 8 may be, for example, a mode in which a white light image and a special light image are arranged in parallel, or a mode in which a special light image is superimposed on a white light image.
The display unit 9 is configured to display a combined image of the white light image and the special light image combined by the image combining unit 8.
The biological tissue 10 is labeled with a fluorescent dye that emits fluorescence of a predetermined wavelength within the near-infrared wavelength band.

このように構成された図1の内視鏡装置を用いて狭帯域光観察モード(即ち、白色光画像と共に狭帯域光画像を観察するモード)で観察を行う場合、観察者は図示省略した観察モード入力部を介して狭帯域光観察モードを選択する。観察モード入力部を介して選択された狭帯域光観察モードのモード情報は、観察モード切替部6に送信される。観察モード切替部6は、照明部1の近赤外励起光源をOFFにするとともに、可変分光光学素子4の分光特性が、白色光の波長帯域内における所望の狭帯域に透過ピークを存在させ、且つ、少なくとも近赤外蛍光波長を透過させる特性となるように、制御部7に、可変分光光学素子4における対向する2枚の光学基板同士の距離及び角度を制御させる。   When performing observation in a narrow-band light observation mode (that is, a mode for observing a narrow-band light image together with a white light image) using the endoscope apparatus configured as described above in FIG. A narrow-band light observation mode is selected via the mode input unit. The mode information of the narrow-band light observation mode selected via the observation mode input unit is transmitted to the observation mode switching unit 6. The observation mode switching unit 6 turns off the near-infrared excitation light source of the illumination unit 1 and causes the spectral characteristic of the variable spectral optical element 4 to have a transmission peak in a desired narrow band within the wavelength band of white light, In addition, the control unit 7 controls the distance and angle between the two optical substrates facing each other in the variable spectroscopic optical element 4 so as to at least transmit the near-infrared fluorescence wavelength.

照明部1は、白色光源から出射した白色光を、光路合成部、ライトガイド等を経由させて生体組織10に照射する。生体組織10から反射した白色光は、光路分岐部2を介して所定の割合で第1及び第2の光路L1,L2に分岐される。光路L1を通る白色光は、白色光画像取得部3に入射する。白色光画像取得部3は、白色光画像を取得する。一方、光路L2を通る白色光は、可変分光素子4に入射する。このとき、可変分光光学素子4は、白色光の波長帯域内における所望の狭帯域に透過ピークを存在させ、且つ、少なくとも近赤外蛍光波長を透過させる分光特性を有しているので、入射した白色光のうち、所望の狭帯域に透過ピークを持つ所定幅の透過波長を透過させる。可変分光光学素子4を透過した狭帯域光は、特殊光画像取得部5に入射する。特殊光画像取得部5は、狭帯域光画像を取得する。白色光画像取得部3が取得した白色光画像と特殊光画像取得部5が取得した狭帯域光画像は、画像合成部8を介して合成され、合成された画像は、表示部9を介して表示される。   The illumination unit 1 irradiates the living tissue 10 with white light emitted from a white light source via an optical path synthesis unit, a light guide, and the like. The white light reflected from the biological tissue 10 is branched into the first and second optical paths L1 and L2 through the optical path branching unit 2 at a predetermined ratio. White light passing through the optical path L1 enters the white light image acquisition unit 3. The white light image acquisition unit 3 acquires a white light image. On the other hand, white light passing through the optical path L <b> 2 enters the variable spectral element 4. At this time, the variable spectroscopic optical element 4 has a spectral characteristic that allows a transmission peak to exist in a desired narrow band within the wavelength band of white light and transmits at least the near-infrared fluorescence wavelength. Of white light, a transmission wavelength having a predetermined width having a transmission peak in a desired narrow band is transmitted. The narrow band light transmitted through the variable spectral optical element 4 enters the special light image acquisition unit 5. The special light image acquisition unit 5 acquires a narrowband light image. The white light image acquired by the white light image acquisition unit 3 and the narrowband light image acquired by the special light image acquisition unit 5 are combined via the image combining unit 8, and the combined image is displayed via the display unit 9. Is displayed.

また、近赤外光観察モード(即ち、白色光画像と共に近赤外蛍光画像を観察するモード)で観察を行う場合、観察者は図示省略した観察モード入力部を介して近赤外光観察モードを選択する。観察モード入力部を介して選択された近赤外光観察モードのモード情報は、観察モード切替部6に送信される。観察モード切替部6は、照明部1の近赤外励起光源をONにするとともに、可変分光光学素子4の分光特性が、白色光の波長帯域内において透過ピークを存在させず、且つ、少なくとも近赤外蛍光波長を透過させる特性となるように、制御部7に、可変分光光学素子4における対向する2枚の光学基板同士の距離及び角度を制御させる。   When performing observation in the near-infrared light observation mode (that is, the mode for observing the near-infrared fluorescent image together with the white light image), the observer can use the near-infrared light observation mode via the observation mode input unit (not shown). Select. The mode information of the near infrared light observation mode selected via the observation mode input unit is transmitted to the observation mode switching unit 6. The observation mode switching unit 6 turns on the near-infrared excitation light source of the illuminating unit 1, and the spectral characteristics of the variable spectral optical element 4 do not have a transmission peak in the wavelength band of white light, and at least near The control unit 7 is caused to control the distance and the angle between the two optical substrates facing each other in the variable spectral optical element 4 so that the infrared fluorescent wavelength is transmitted.

照明部1は、白色光源から出射した白色光と近赤外励起光源から出射した近赤外励起光を、光路合成部で合成し、ライトガイド等を経由させて生体組織10に照射する。生体組織10から反射した光は、光路分岐部2を介して所定の割合で第1及び第2の光路L1,L2に分岐される。また、生体組織10から発生した近赤外蛍光は、光路分岐部2を介して第2の光路のみに導かれる。光路L1を通る生体組織10からの反射光は、白色光画像取得部3に入射する。白色光画像取得部3は、白色光画像を取得する。一方、光路L2を通る生体組織10からの反射光及び生体組織10から発生した近赤外蛍光は、可変分光素子4に入射する。このとき、可変分光光学素子4は、白色光の波長帯域内における所望の狭帯域に透過ピークを存在させず、且つ、少なくとも近赤外蛍光波長を透過させる分光特性を有しているので、入射した光のうち、白色光の波長帯域の光は透過させず、近赤外蛍光波長を透過させる。可変分光光学素子4を透過した近赤外蛍光は、特殊光画像取得部5に入射する。特殊光画像取得部5は、近赤外蛍光画像を取得する。白色光画像取得部3が取得した白色光画像と特殊光画像取得部5が取得した近赤外蛍光画像は、画像合成部8を介して合成され、合成された画像は、表示部9を介して表示される。   The illumination unit 1 synthesizes the white light emitted from the white light source and the near infrared excitation light emitted from the near infrared excitation light source in the optical path synthesis unit, and irradiates the living tissue 10 via a light guide or the like. The light reflected from the living tissue 10 is branched into the first and second optical paths L1 and L2 through the optical path branching unit 2 at a predetermined ratio. Further, near-infrared fluorescence generated from the living tissue 10 is guided only to the second optical path via the optical path branching unit 2. The reflected light from the living tissue 10 passing through the optical path L1 enters the white light image acquisition unit 3. The white light image acquisition unit 3 acquires a white light image. On the other hand, the reflected light from the biological tissue 10 passing through the optical path L <b> 2 and the near-infrared fluorescence generated from the biological tissue 10 enter the variable spectroscopic element 4. At this time, the variable spectroscopic optical element 4 does not have a transmission peak in a desired narrow band within the wavelength band of white light, and has a spectral characteristic that transmits at least the near-infrared fluorescence wavelength. Of the obtained light, light in the wavelength band of white light is not transmitted, but the near-infrared fluorescence wavelength is transmitted. Near-infrared fluorescence transmitted through the variable spectral optical element 4 enters the special light image acquisition unit 5. The special light image acquisition unit 5 acquires a near-infrared fluorescent image. The white light image acquired by the white light image acquisition unit 3 and the near-infrared fluorescent image acquired by the special light image acquisition unit 5 are combined via the image combining unit 8, and the combined image is displayed via the display unit 9. Displayed.

図1の内視鏡装置によれば、可変分光光学素子4を、対向する2枚の光学基板の表面に設ける反射膜に誘電体多層膜を用い、且つ、少なくとも近赤外蛍光波長を透過させるとともに、少なくとも生体組織10で反射した白色光の波長帯域を間に含む、近赤外蛍光の波長帯域よりも短波長側の所定の波長帯域内において所定の波長幅で透過波長を変化させうる特性を有し、制御部7を介して対向する2枚の光学基板同士の距離及び角度が制御されることにより、狭帯域光観察モードでは白色光の波長帯域内における所望の狭帯域に透過ピークを存在させ、且つ、少なくとも近赤外蛍光波長を透過させ、近赤外光観察モードでは白色光の波長帯域内において透過ピークを存在させず、且つ、少なくとも近赤外蛍光波長を透過させるように、分光特性が切替わるように構成したので、白色光画像を常時表示しながら、同時に可視光の狭帯域光画像から近赤外蛍光画像の広い範囲にわたる特殊光画像を取得でき、且つ、近赤外蛍光観察時に白色光の波長帯域のノイズ成分が除去された高SNで十分な明るさの近赤外蛍光画像を取得することができる。   According to the endoscope apparatus of FIG. 1, the variable spectral optical element 4 uses a dielectric multilayer film as a reflection film provided on the surfaces of two opposing optical substrates, and transmits at least the near-infrared fluorescence wavelength. And a characteristic capable of changing the transmission wavelength with a predetermined wavelength width within a predetermined wavelength band shorter than the wavelength band of near-infrared fluorescence, including at least the wavelength band of white light reflected by the living tissue 10. In the narrow-band light observation mode, a transmission peak is generated in a desired narrow band in the wavelength band of white light by controlling the distance and angle between the two optical substrates facing each other via the control unit 7. Exist and transmit at least near-infrared fluorescence wavelength, in the near-infrared light observation mode, do not have a transmission peak in the wavelength band of white light, and at least transmit near-infrared fluorescence wavelength, Spectroscopic Since the white light image is always displayed, a special light image covering a wide range from a visible narrow-band light image to a near-infrared fluorescence image can be acquired at the same time, and near-infrared fluorescence observation can be performed. It is possible to acquire a near-infrared fluorescent image with sufficient brightness at high SN from which noise components in the wavelength band of white light are sometimes removed.

なお、図1の内視鏡装置においては、可変分光光学素子4が、近赤外光観察モードでは紫外光の波長帯域と近赤外蛍光の波長帯域との間の波長帯域内において透過ピークが消失するように、制御部7を介して対向する2枚の光学基板同士の距離及び角度が制御されるようにするのが好ましい。
あるいは、図1の内視鏡装置においては、可変分光光学素子4が、近赤外光観察モードでは白色光の波長帯域外の所定の狭帯域に透過ピークを存在させるように、制御部7を介して対向する2枚の光学基板同士の距離及び角度が制御されるようにしてもよい。
In the endoscope apparatus of FIG. 1, the variable spectroscopic optical element 4 has a transmission peak in the wavelength band between the wavelength band of ultraviolet light and the wavelength band of near infrared fluorescence in the near infrared light observation mode. It is preferable that the distance and angle between the two optical substrates facing each other are controlled via the control unit 7 so as to disappear.
Alternatively, in the endoscope apparatus of FIG. 1, the control unit 7 is set so that the variable spectral optical element 4 has a transmission peak in a predetermined narrow band outside the wavelength band of white light in the near-infrared light observation mode. The distance and angle between the two optical substrates facing each other may be controlled.

また、図1の内視鏡装置においては、可変分光光学素子4が、制御部7を介して、狭帯域光観察モードでは対向する2枚の光学基板同士の角度が平行に保持された状態で所定の距離に制御され、近赤外光観察モードでは対向する2枚の光学基板同士が平行でない所定の角度に制御されるようにするのが好ましい。
狭帯域光観察モードにおいて、可変分光光学素子4を構成する対向する2枚の光学基板同士を平行に保持するようにすれば、白色光の波長帯域内における所望の狭帯域に透過ピークを高精度に制御することができる。また、近赤外光観察モードにおいて、可変分光光学素子4を構成する対向する2枚の光学基板同士が平行でない所定の角度を持つようにすれば、白色光の波長帯域内における透過ピークをなくすことができ、その結果、白色光の波長帯域のノイズ成分が除去された高SNで十分な明るさの近赤外蛍光画像を得ることができる。
In the endoscope apparatus of FIG. 1, the variable spectroscopic optical element 4 is in a state in which the angles of the two optical substrates facing each other are held in parallel through the control unit 7 in the narrow-band light observation mode. Preferably, the distance is controlled to a predetermined distance, and in the near-infrared light observation mode, the two optical substrates facing each other are controlled to a predetermined angle that is not parallel to each other.
In the narrow-band light observation mode, if the two opposing optical substrates constituting the variable spectroscopic optical element 4 are held in parallel, the transmission peak can be accurately obtained in a desired narrow band within the wavelength band of white light. Can be controlled. In the near-infrared light observation mode, if the two opposing optical substrates constituting the variable spectroscopic optical element 4 have a predetermined angle that is not parallel to each other, the transmission peak in the wavelength band of white light is eliminated. As a result, it is possible to obtain a near-infrared fluorescent image with sufficient brightness at a high SN from which noise components in the wavelength band of white light are removed.

あるいは、図1の内視鏡装置においては、可変分光光学素子4が、近赤外光観察モードでは白色光の波長帯域よりも短波長側の所定の狭帯域に透過ピークがシフトするように、制御部7を介して対向する2枚の光学基板同士の距離及び角度が制御されるようにしてもよい。
このようにしても、白色光の波長帯域内における透過ピークをなくすことができ、その結果、白色光の波長帯域のノイズ成分が除去された高SNで十分な明るさの近赤外蛍光画像を得ることができる。
Alternatively, in the endoscope apparatus of FIG. 1, the variable spectroscopic optical element 4 has a transmission peak shifted to a predetermined narrow band shorter than the wavelength band of white light in the near-infrared light observation mode. The distance and angle between the two optical substrates facing each other may be controlled via the control unit 7.
Even in this case, it is possible to eliminate the transmission peak in the wavelength band of white light, and as a result, a near-infrared fluorescent image with sufficient brightness at a high SN from which noise components in the wavelength band of white light are removed. Obtainable.

あるいは、図1の内視鏡装置においては、近赤外励起波長をカットするフィルターを、第2の光路上に設けるとともに、可変分光光学素子4が、近赤外光観察モードでは白色光の波長帯域よりも長波長側の所定の狭帯域に透過ピークがシフトするように、制御部7を介して対向する2枚の光学基板同士の距離及び角度が制御されるようにしてもよい。
あるいは、図1の内視鏡装置においては、近赤外励起波長をカットするフィルターを、第2の光路上に設けるとともに、可変分光光学素子4が、近赤外光観察モードでは白色光の波長帯域よりも短波長側の第1の所定の狭帯域及び白色光の波長帯域よりも長波長側の第2の所定の狭帯域に透過ピークがシフトするように、制御部7を介して対向する2枚の光学基板同士の距離及び角度が制御されるようにしてもよい。
これらのようにしても、近赤外光観察モードにおいて可変分光光学素子4が透過させうる近赤外励起波長を、近赤外励起波長をカットするフィルターで除去することができ、その結果、白色光及び近赤外励起光の波長帯域のノイズ成分が除去された高SNで十分な明るさの近赤外蛍光画像を得ることができる。
Alternatively, in the endoscope apparatus of FIG. 1, a filter that cuts the near-infrared excitation wavelength is provided on the second optical path, and the variable spectral optical element 4 has a wavelength of white light in the near-infrared light observation mode. The distance and angle between the two optical substrates facing each other may be controlled via the control unit 7 so that the transmission peak shifts to a predetermined narrow band on the longer wavelength side than the band.
Alternatively, in the endoscope apparatus of FIG. 1, a filter that cuts the near-infrared excitation wavelength is provided on the second optical path, and the variable spectral optical element 4 has a wavelength of white light in the near-infrared light observation mode. Opposing via the control unit 7 so that the transmission peak shifts to a first predetermined narrow band on the shorter wavelength side than the band and a second predetermined narrow band on the longer wavelength side than the wavelength band of white light. The distance and angle between the two optical substrates may be controlled.
Even in such a case, the near-infrared excitation wavelength that can be transmitted by the variable spectroscopic optical element 4 in the near-infrared light observation mode can be removed by the filter that cuts the near-infrared excitation wavelength. It is possible to obtain a near-infrared fluorescent image with sufficient brightness at a high SN from which noise components in the wavelength band of light and near-infrared excitation light are removed.

あるいは、図1の内視鏡装置においては、可変分光光学素子4が、制御部7を介して、狭帯域光観察モードでは対向する2枚の光学基板同士の角度が平行に保持された状態で所定の距離に制御され、近赤外光観察モードでは対向する2枚の光学基板同士が紫外光の波長帯域と近赤外蛍光の波長帯域との間の波長帯域内において透過ピークが消失する程度離れた所定の距離に制御されるようにしてもよい。
あるいは、図1の内視鏡装置においては、可変分光光学素子4を、直列に配置された第1の可変分光光学素子4aと第2の可変分光光学素子4aとで構成し、第1の可変分光光学素子4aと第2の可変分光光学素子4bが、狭帯域光観察モードでは白色光の波長帯域内において同じ所望の狭帯域に透過ピークを存在させ、近赤外光観察モードでは白色光の波長帯域内において互いの透過波長が重ならない異なる所定の狭帯域に透過ピークを存在させるように、制御部7を介して夫々の対向する2枚の光学基板同士の距離及び角度が制御されるようにしてもよい。
これらのようにしても、可視光の狭帯域光画像から近赤外蛍光画像の広い範囲にわたる特殊光画像を取得でき、且つ、近赤外蛍光観察時に白色光の波長帯域のノイズ成分が除去された高SNで十分な明るさの近赤外蛍光画像を取得することができる。
Alternatively, in the endoscope apparatus of FIG. 1, the variable spectroscopic optical element 4 is in a state where the angles of the two optical substrates facing each other are held in parallel through the control unit 7 in the narrow-band light observation mode. Controlled to a predetermined distance, and in the near-infrared light observation mode, the two optical substrates facing each other have a transmission peak disappearing in a wavelength band between the wavelength band of ultraviolet light and the wavelength band of near-infrared fluorescence It may be controlled to a predetermined distance apart.
Alternatively, in the endoscope apparatus of FIG. 1, the variable spectroscopic optical element 4 is composed of a first variable spectroscopic optical element 4a and a second variable spectroscopic optical element 4a arranged in series, and the first variable spectroscopic optical element 4a is configured. The spectroscopic optical element 4a and the second variable spectroscopic optical element 4b have a transmission peak in the same desired narrow band within the wavelength band of white light in the narrow band light observation mode, and white light in the near infrared light observation mode. The distance and angle between the two opposing optical substrates are controlled via the control unit 7 so that the transmission peaks exist in different predetermined narrow bands where the transmission wavelengths do not overlap each other within the wavelength band. It may be.
Even in these cases, a special light image covering a wide range from a visible narrow-band light image to a near-infrared fluorescent image can be acquired, and noise components in the white light wavelength band are removed during near-infrared fluorescence observation. In addition, it is possible to acquire a near-infrared fluorescent image with sufficient brightness at a high SN.

あるいは、図1の内視鏡装置においては、近赤外励起波長をカットするフィルターを、第2の光路上に設けるとともに、可変分光光学素子4が、近赤外励起波長及び近赤外蛍光波長を透過させるとともに、少なくとも白色光の波長帯域を間に含む、近赤外励起光の波長帯域よりも短波長側の所定の波長帯域内において所定の波長幅で透過波長を変化させうる特性を有し、制御部7を介して対向する2枚の光学基板同士の距離及び角度が制御されることにより、狭帯域光観察モードでは白色光の波長帯域内における所望の狭帯域に透過ピークを存在させ、且つ、近赤外励起波長及び近赤外蛍光波長を透過させ、近赤外光観察モードでは紫外光の波長帯域と近赤外励起光の波長帯域との間の波長帯域内において透過ピークが消失し、且つ、近赤外励起波長及び近赤外蛍光波長を透過させるように、分光特性が切替わるように、制御部7を介して対向する2枚の光学基板同士の距離及び角度が制御されるようにしてもよい。
このようにすると、可視光の狭帯域光画像から近赤外蛍光画像の広い範囲にわたる特殊光画像を取得でき、且つ、近赤外蛍光観察時に白色光及び近赤外励起光の波長帯域のノイズ成分が除去された高SNで十分な明るさの近赤外蛍光画像を取得することができる上、所定の波長幅で透過波長を変化させる波長帯域を短くすることができる。
Alternatively, in the endoscope apparatus of FIG. 1, a filter that cuts the near-infrared excitation wavelength is provided on the second optical path, and the variable spectroscopic optical element 4 includes the near-infrared excitation wavelength and the near-infrared fluorescence wavelength. And has a characteristic that the transmission wavelength can be changed with a predetermined wavelength width within a predetermined wavelength band shorter than the wavelength band of near-infrared excitation light, including at least the wavelength band of white light. In addition, by controlling the distance and angle between the two optical substrates facing each other via the control unit 7, a transmission peak exists in a desired narrow band within the wavelength band of white light in the narrow band light observation mode. In addition, the near-infrared excitation wavelength and near-infrared fluorescence wavelength are transmitted, and in the near-infrared light observation mode, there is a transmission peak in the wavelength band between the wavelength band of ultraviolet light and the wavelength band of near-infrared excitation light. Disappearing and near infrared To transmit the force wave and near-infrared fluorescence wavelength, as the spectral characteristic is switched, the distance and angle between two optical substrates opposing each other via the control unit 7 may be controlled.
In this way, a special light image covering a wide range from a visible narrow-band light image to a near-infrared fluorescent image can be acquired, and noise in the wavelength band of white light and near-infrared excitation light during near-infrared fluorescence observation. A near-infrared fluorescent image with sufficient brightness can be acquired with a high SN from which components are removed, and the wavelength band for changing the transmission wavelength with a predetermined wavelength width can be shortened.

あるいは、図1の内視鏡装置においては、近赤外励起波長をカットするフィルターを、第2の光路上に設けるとともに、可変分光光学素子4が、近赤外励起波長及び近赤外蛍光波長を透過させるとともに、少なくとも白色光の波長帯域を間に含む、近赤外励起光の波長帯域よりも短波長側の所定の波長帯域内において所定の波長幅で透過波長を変化させうる特性を有し、制御部7を介して対向する2枚の光学基板同士の距離及び角度が制御されることにより、狭帯域光観察モードでは白色光の波長帯域内における所望の狭帯域に透過ピークを存在させ、且つ、近赤外励起波長及び近赤外蛍光波長を透過させ、近赤外光観察モードでは白色光の波長帯域よりも短波長側の所定の狭帯域に透過ピークがシフトし、且つ、近赤外励起波長及び近赤外蛍光波長を透過させるように、分光特性が切替わるように、制御部7を介して対向する2枚の光学基板同士の距離及び角度が制御されるようにしてもよい。   Alternatively, in the endoscope apparatus of FIG. 1, a filter that cuts the near-infrared excitation wavelength is provided on the second optical path, and the variable spectroscopic optical element 4 includes the near-infrared excitation wavelength and the near-infrared fluorescence wavelength. And has a characteristic that the transmission wavelength can be changed with a predetermined wavelength width within a predetermined wavelength band shorter than the wavelength band of near-infrared excitation light, including at least the wavelength band of white light. In addition, by controlling the distance and angle between the two optical substrates facing each other via the control unit 7, a transmission peak exists in a desired narrow band within the wavelength band of white light in the narrow band light observation mode. In addition, the near-infrared excitation wavelength and near-infrared fluorescence wavelength are transmitted, and in the near-infrared light observation mode, the transmission peak shifts to a predetermined narrow band shorter than the wavelength band of white light, and near Infrared excitation wavelength and near infrared To transmit light wavelength, so that the spectral characteristics are switched, the distance and angle between two optical substrates opposing each other via the control unit 7 may be controlled.

このようにしても、可視光の狭帯域光画像から近赤外蛍光画像の広い範囲にわたる特殊光画像を取得でき、且つ、近赤外蛍光観察時に白色光及び近赤外励起光の波長帯域のノイズ成分が除去された高SNで十分な明るさの近赤外蛍光画像を取得することができる上、所定の波長幅で透過波長を変化させる波長帯域を短くすることができる。   Even in this way, it is possible to acquire a special light image covering a wide range of a near-infrared fluorescence image from a narrow-band light image of visible light, and in the near-infrared fluorescence observation, the wavelength bands of white light and near-infrared excitation light It is possible to acquire a near-infrared fluorescent image with sufficient brightness at a high SN from which noise components have been removed, and to shorten the wavelength band for changing the transmission wavelength with a predetermined wavelength width.

なお、これらの場合においても、可変分光光学素子4が、制御部7を介して、狭帯域光観察モードでは対向する2枚の光学基板同士の角度が平行に保持された状態で所定の距離に制御され、近赤外光観察モードでは対向する2枚の光学基板同士が平行でない所定の角度に制御されるようにするのが好ましい。
あるいは、可変分光光学素子4が、近赤外光観察モードでは白色光の波長帯域よりも短波長側の所定の狭帯域に透過ピークがシフトするように、制御部7を介して対向する2枚の光学基板同士の距離及び角度が制御されるようにしてもよい。
Even in these cases, the variable spectroscopic optical element 4 is set to a predetermined distance via the control unit 7 in a state where the angles of the two optical substrates facing each other are held in parallel in the narrow-band light observation mode. In the near-infrared light observation mode, the two optical substrates facing each other are preferably controlled to a predetermined angle that is not parallel to each other.
Alternatively, the two variable spectroscopic optical elements 4 are opposed to each other via the control unit 7 so that the transmission peak shifts to a predetermined narrow band shorter than the wavelength band of white light in the near-infrared light observation mode. The distance and angle between the optical substrates may be controlled.

なお、図1の内視鏡装置においては、光路分岐部2は、第2の光路L2に導く白色光の光学濃度がOD=2となる光学特性を持つのが好ましい。
近赤外光観察モードにおいては、エタロン型の可変分光光学素子のみによる分光では、若干、可視光波長帯域で漏れ光が生じる。しかるに、光路分岐部2の光学特性を可視光波長帯域OD=2程度に抑えれば、近赤外光波長帯域では100%反射することと相俟って、近赤外蛍光のSNが向上する。なお、この場合、狭帯域光画像が暗くなるが、特殊光画像取得部5に備わる撮像素子に高感度のものを用いれば、狭帯域光画像の観察は可能である。
In the endoscope apparatus of FIG. 1, it is preferable that the optical path branching unit 2 has an optical characteristic in which the optical density of white light guided to the second optical path L2 is OD = 2.
In the near-infrared light observation mode, leakage light is slightly generated in the visible light wavelength band in the spectrum using only the etalon-type variable spectroscopic optical element. However, if the optical characteristic of the optical path branching unit 2 is suppressed to about the visible light wavelength band OD = 2, the SN of near infrared fluorescence is improved in combination with 100% reflection in the near infrared light wavelength band. . In this case, the narrow-band light image becomes dark, but if a high-sensitivity image sensor is used in the special light image acquisition unit 5, the narrow-band light image can be observed.

その他、図1の内視鏡装置では、観察モード切替部6は、上述したように、照明部1の近赤外励起光源と接続しており、観察モード入力部を介して選択されたモード情報(近赤外光観察モードまたは狭帯域光観察モード)に応じて、照明部1の近赤外励起光源のON・OFF制御を行うように構成されているが、照明部1の近赤外励起光源のON・OFF制御を行わない構成とし、常時、照明部1が生体組織10に白色光と近赤外励起光を照射するようにしてもよい。
このようにすると、狭帯域光観察モードでは生体組織10を反射する狭帯域光画像だけでなく、生体組織10を反射する近赤外励起画像や生体組織10から発生する近赤外蛍光画像も特殊光画像取得部5が取得することになるが、近赤外光は、可視波長帯域内の狭帯域光に比べて光量が格段に弱い。このため、狭帯域光画像の観察に際し、近赤外波長帯域の光がノイズ成分となっても狭帯域光画像のSNに大きな悪影響を及ぼすことはない。
In addition, in the endoscope apparatus of FIG. 1, the observation mode switching unit 6 is connected to the near-infrared excitation light source of the illumination unit 1 as described above, and mode information selected via the observation mode input unit. Although it is configured to perform ON / OFF control of the near-infrared excitation light source of the illuminating unit 1 according to the (near-infrared light observation mode or narrowband light observation mode), the near-infrared excitation of the illuminating unit 1 The illumination unit 1 may always irradiate the biological tissue 10 with white light and near-infrared excitation light without performing ON / OFF control of the light source.
In this way, in the narrow-band light observation mode, not only the narrow-band light image that reflects the biological tissue 10 but also the near-infrared excitation image that reflects the biological tissue 10 and the near-infrared fluorescence image that is generated from the biological tissue 10 are special. Although the optical image acquisition unit 5 acquires the near-infrared light, the light amount is much weaker than the narrow-band light in the visible wavelength band. For this reason, when observing a narrow-band light image, even if light in the near-infrared wavelength band becomes a noise component, the SN of the narrow-band light image is not adversely affected.

次に、本発明の内視鏡装置の実施例を説明する。
図2は本発明の各実施例に共通の内視鏡装置全体の構成を示すブロック図である。
Next, an embodiment of the endoscope apparatus of the present invention will be described.
FIG. 2 is a block diagram showing the configuration of the entire endoscope apparatus common to the embodiments of the present invention.

図2の内視鏡装置は、光源部11と、内視鏡先端挿入部12と、カメラアダプタ部13と、画像処理・制御部14と、モニタ15を有している。   The endoscope apparatus in FIG. 2 includes a light source unit 11, an endoscope distal end insertion unit 12, a camera adapter unit 13, an image processing / control unit 14, and a monitor 15.

光源部11は、可視波長帯域の光を発する白色光源11aと近赤外励起波長帯域の光を発する近赤外励起光源11bを備えている。また、図2の内視鏡装置では、光源部11は、ビームスプリッタ11cを備えており、白色光源11aからの白色光と、近赤外励起光源11bからの近赤外励起光とを合成する。なお、図2中、11dはビームスプリッタ11cを経た光を後述するライトガイド12に導くレンズである。   The light source unit 11 includes a white light source 11a that emits light in the visible wavelength band and a near-infrared excitation light source 11b that emits light in the near-infrared excitation wavelength band. In the endoscope apparatus of FIG. 2, the light source unit 11 includes a beam splitter 11c, and synthesizes the white light from the white light source 11a and the near infrared excitation light from the near infrared excitation light source 11b. . In FIG. 2, reference numeral 11d denotes a lens that guides light that has passed through the beam splitter 11c to a light guide 12 described later.

内視鏡先端挿入部12は、ライトガイド12aと、対物光学系12bを有している。
ライトガイド12aは、光源部11からの光を生体組織10に照射する。
そして、図2の内視鏡装置では、光源部11及びライトガイド12aが、図1の内視鏡装置における照明部1に相当する。
The endoscope distal end insertion portion 12 includes a light guide 12a and an objective optical system 12b.
The light guide 12 a irradiates the living tissue 10 with light from the light source unit 11.
In the endoscope apparatus of FIG. 2, the light source unit 11 and the light guide 12a correspond to the illumination unit 1 in the endoscope apparatus of FIG.

生体組織10は、770nm〜850nm程度の近赤外波長帯域の蛍光を発する蛍光色素としてインドシアニングリーン(ICG)が静脈注射によって標識されている。   In the living tissue 10, indocyanine green (ICG) is labeled by intravenous injection as a fluorescent dye emitting fluorescence in the near infrared wavelength band of about 770 nm to 850 nm.

カメラアダプタ部13は、結像光学系13aと、ビームスプリッタ13bと、白色光観察用CCD13cと、可変分光光学素子13dと、特殊光観察用CCD13eを備えている。
結像光学系13aは、対物光学系12bを経由した生体組織10からの光を白色光観察用CCD13c、特殊光観察用CCD13eの夫々の撮像面に結像する。
ビームスプリッタ13bは、図1の内視鏡装置における光路分岐部2に相当し、生体組織10で反射した光を所定の割合で第1及び第2の光路L1,L2に分けるとともに、生体組織10から発生した近赤外蛍光を第2の光路L2のみに導くように構成されている。図2の例では、ビームスプリッタ13bは、生体組織10で反射した光のうち90%の光を透過して第1の光路L1に導き、10%の光を反射して第2の光路L2に導く。また、ビームスプリッタ13bは、生体組織10から発生した近赤外蛍光を100%反射して第2の光路L2に導く。
白色光観察用CCD13cは、第1の光路L1上に配置され、生体組織10で反射した白色光の画像を撮像する。
The camera adapter unit 13 includes an imaging optical system 13a, a beam splitter 13b, a white light observation CCD 13c, a variable spectral optical element 13d, and a special light observation CCD 13e.
The imaging optical system 13a images light from the living tissue 10 via the objective optical system 12b on the imaging surfaces of the white light observation CCD 13c and the special light observation CCD 13e.
The beam splitter 13b corresponds to the optical path branching unit 2 in the endoscope apparatus of FIG. 1 and divides the light reflected by the biological tissue 10 into the first and second optical paths L1 and L2 at a predetermined ratio, and the biological tissue 10 The near-infrared fluorescence generated from the light is guided only to the second optical path L2. In the example of FIG. 2, the beam splitter 13b transmits 90% of the light reflected by the living tissue 10 and guides it to the first optical path L1, and reflects 10% of the light to the second optical path L2. Lead. The beam splitter 13b reflects 100% of near-infrared fluorescence generated from the living tissue 10 and guides it to the second optical path L2.
The CCD 13c for observing white light is arranged on the first optical path L1 and captures an image of white light reflected by the living tissue 10.

可変分光光学素子13dは、図1の内視鏡装置における可変分光光学素子4に相当し、第2の光路L2上に配置され、対向する表面に反射膜として誘電体多層膜13d11,13d21が設けられた対向する2枚の光学基板13d1,13d2を有してなり、対向する2枚の光学基板13d1,13d2同士の距離または角度を、後述する制御部を介して変更することにより分光特性が可変となる、エタロン型の可変分光光学素子として構成されている。
なお、エタロン型の可変分光光学素子とは、光の干渉を利用する分光光学素子であり、対向するように配置された一対のミラー面の間隔を変化させることによって、透過又は反射し得る光の波長を変化させることができる分光光学素子である。
特殊光観察用CCD13eは、可変分光光学素子13dを透過した光を受光し、狭帯域光画像または近赤外蛍光画像を撮像する。
The variable spectroscopic optical element 13d corresponds to the variable spectroscopic optical element 4 in the endoscope apparatus of FIG. 1, is disposed on the second optical path L2, and is provided with dielectric multilayer films 13d11 and 13d21 as reflective films on the opposing surfaces. Spectral characteristics are variable by changing the distance or angle between the two opposing optical substrates 13d1 and 13d2 via a control unit described later. It is configured as an etalon-type variable spectroscopic optical element.
Note that an etalon-type variable spectroscopic optical element is a spectroscopic optical element that utilizes interference of light. By changing the interval between a pair of mirror surfaces arranged to face each other, light that can be transmitted or reflected can be obtained. This is a spectroscopic optical element capable of changing the wavelength.
The special light observation CCD 13e receives the light transmitted through the variable spectroscopic optical element 13d and captures a narrow-band light image or a near-infrared fluorescent image.

画像処理・制御部14は、その内部に白色光画像生成部14aと、狭帯域光観察モード制御部14bと、近赤外光観察モード制御部14cと、特殊光画像生成部14dと、画像合成部14eと、観察モード切替部14fを備えるとともに、その外部に観察モード入力部14gを備えている。
白色光画像生成部14aは、白色光観察用CCD13cが撮像した信号に対して所定の画像変換処理を行い、白色光画像を生成する。
そして、図2の内視鏡装置では、白色光観察用CCD13c及び白色光画像生成部14aが、図1の内視鏡装置における白色光画像取得部3に相当する。
The image processing / control unit 14 includes a white light image generation unit 14a, a narrow band light observation mode control unit 14b, a near infrared light observation mode control unit 14c, a special light image generation unit 14d, and an image composition. 14e and an observation mode switching unit 14f, and an observation mode input unit 14g outside thereof.
The white light image generation unit 14a performs a predetermined image conversion process on the signal captured by the white light observation CCD 13c to generate a white light image.
In the endoscope apparatus of FIG. 2, the white light observation CCD 13c and the white light image generation unit 14a correspond to the white light image acquisition unit 3 in the endoscope apparatus of FIG.

狭帯域光観察モード制御部14bは、狭帯域光観察モード(即ち、白色光画像と共に狭帯域光画像を観察する観察モード)において駆動し、可変分光光学素子13dが、白色光の波長帯域内における所望の狭帯域に透過ピークを存在させ、且つ、少なくとも近赤外蛍光波長を透過させる分光特性を持つように、可変分光光学素子13dにおける対向する2枚の光学基板13d1,13d2同士の距離及び角度を制御する。
近赤外光観察モード制御部14cは、近赤外光観察モード(即ち、白色光画像と共に近赤外光画像を観察する観察モード)において駆動し、可変分光光学素子13dが、白色光の波長帯域内において透過ピークを存在させず、且つ、少なくとも近赤外蛍光波長を透過させる分光特性を持つように、可変分光光学素子13dにおける対向する2枚の光学基板13d1,13d2同士の距離及び角度を制御する。
そして、図2の内視鏡装置では、狭帯域光観察モード制御部14b及び近赤外光観察モード制御部14cが、図1の内視鏡装置における制御部7に相当する。
The narrow-band light observation mode control unit 14b is driven in a narrow-band light observation mode (that is, an observation mode for observing a narrow-band light image together with a white light image), and the variable spectroscopic optical element 13d is within the wavelength band of white light. Distance and angle between the two opposing optical substrates 13d1 and 13d2 in the variable spectroscopic optical element 13d so that a transmission peak exists in a desired narrow band and has a spectral characteristic that transmits at least the near-infrared fluorescence wavelength. To control.
The near-infrared light observation mode control unit 14c is driven in a near-infrared light observation mode (that is, an observation mode for observing a near-infrared light image together with a white light image), and the variable spectroscopic optical element 13d has a wavelength of white light. The distance and angle between the two optical substrates 13d1 and 13d2 facing each other in the variable spectroscopic optical element 13d are set so that there is no transmission peak in the band and at least spectral characteristics that allow transmission of near-infrared fluorescence wavelengths. Control.
In the endoscope apparatus of FIG. 2, the narrow-band light observation mode control unit 14b and the near-infrared light observation mode control unit 14c correspond to the control unit 7 in the endoscope apparatus of FIG.

観察モード切替部14fは、図1の内視鏡装置における観察モード切替部6に相当し、観察モード入力部14g、近赤外励起光源11b、狭帯域光観察モード制御部14b、近赤外光観察モード制御部14cと接続している。そして、観察モード切替部14fは、観察モード入力部14gを介して選択されたモード情報(近赤外光観察モードまたは狭帯域光観察モード)に応じて、光源部11の近赤外励起光源11bのON・OFF制御を行うとともに、近赤外光観察モード制御部14c及び狭帯域光観察モード制御部14bの駆動切替制御を行うようになっている。
詳しくは、観察モード切替部14fは、観察モード入力部14gを介して選択されたモード情報が近赤外光観察モードのときには、光源部11の近赤外励起光源11bをONにするとともに、近赤外光観察モード制御部14cをON、狭帯域光観察モード制御部14bをOFFにする。また、観察モード切替部14fは、観察モード入力部14gを介して選択されたモード情報が狭帯域光観察モードのときには、光源部11の近赤外励起光源11bをOFFにするとともに、近赤外光観察モード制御部14cをOFF、狭帯域光観察モード制御部14bをONにする。
The observation mode switching unit 14f corresponds to the observation mode switching unit 6 in the endoscope apparatus of FIG. 1, and includes an observation mode input unit 14g, a near infrared excitation light source 11b, a narrowband light observation mode control unit 14b, and a near infrared light. It is connected to the observation mode control unit 14c. The observation mode switching unit 14f then selects the near-infrared excitation light source 11b of the light source unit 11 according to the mode information (near infrared light observation mode or narrowband light observation mode) selected via the observation mode input unit 14g. ON / OFF control and drive switching control of the near-infrared light observation mode control unit 14c and the narrow-band light observation mode control unit 14b are performed.
Specifically, the observation mode switching unit 14f turns on the near-infrared excitation light source 11b of the light source unit 11 when the mode information selected via the observation mode input unit 14g is the near-infrared light observation mode. The infrared light observation mode control unit 14c is turned on and the narrow band light observation mode control unit 14b is turned off. The observation mode switching unit 14f turns off the near-infrared excitation light source 11b of the light source unit 11 and turns off the near-infrared light when the mode information selected via the observation mode input unit 14g is the narrow-band light observation mode. The light observation mode control unit 14c is turned off and the narrow band light observation mode control unit 14b is turned on.

特殊光画像生成部14dは、特殊光観察用CCD13eが撮像した信号に対して所定の画像変換処理を行い、特殊光画像を生成する。
そして、図2の内視鏡装置では、特殊光観察用CCD13e及び特殊光画像生成部14dが、図1の内視鏡装置における特殊光画像取得部5に相当する。
画像合成部14eは、図1の内視鏡装置における画像合成部8に相当し、白色光画像生成部14aが生成した白色光画像と特殊光画像生成部14dが生成した特殊光画像とを合成するように構成されている。なお、画像合成部14eによる画像合成の態様は、例えば、白色光画像と特殊光画像を並列配置した態様でもよいし、白色光画像に特殊光画像を重畳した態様でもよい。
モニタ15は、図1の内視鏡装置における表示部9に相当し、画像合成部14eが合成した白色光画像と特殊光画像との合成画像を表示する。
The special light image generation unit 14d performs a predetermined image conversion process on the signal captured by the special light observation CCD 13e to generate a special light image.
In the endoscope apparatus of FIG. 2, the special light observation CCD 13e and the special light image generation unit 14d correspond to the special light image acquisition unit 5 in the endoscope apparatus of FIG.
The image synthesis unit 14e corresponds to the image synthesis unit 8 in the endoscope apparatus of FIG. 1, and synthesizes the white light image generated by the white light image generation unit 14a and the special light image generated by the special light image generation unit 14d. Is configured to do. In addition, the aspect of the image composition by the image composition unit 14e may be, for example, an aspect in which the white light image and the special light image are arranged in parallel, or an aspect in which the special light image is superimposed on the white light image.
The monitor 15 corresponds to the display unit 9 in the endoscope apparatus of FIG. 1 and displays a combined image of the white light image and the special light image combined by the image combining unit 14e.

実施例1
図3は本発明の実施例1の内視鏡装置を用いた特殊光観察における光学特性の一例を示す説明図で、(a)は照明光のスペクトルを示すグラフ、(b)は狭帯域光観察モードでの可変分光光学素子を構成する2枚の光学基板同士の距離及び角度を示す図、(c)は狭帯域光観察モードでの可変分光光学素子の分光透過率を示すグラフ、(d)は近赤外光観察モードでの可変分光光学素子を構成する2枚の光学基板同士の距離及び角度を示す図、(e)は近赤外光観察モードでの可変分光光学素子の分光透過率を示すグラフである。なお、上述したように、図2に示した基本構成は、以下の各実施例において共通である。
Example 1
FIG. 3 is an explanatory diagram showing an example of optical characteristics in special light observation using the endoscope apparatus according to the first embodiment of the present invention, where (a) is a graph showing the spectrum of illumination light, and (b) is narrow-band light. The figure which shows the distance and angle of two optical substrates which comprise the variable spectral optical element in observation mode, (c) is a graph which shows the spectral transmittance of the variable spectral optical element in narrow-band light observation mode, (d ) Is a diagram showing the distance and angle between two optical substrates constituting the variable spectral optical element in the near infrared light observation mode, and (e) is the spectral transmission of the variable spectral optical element in the near infrared light observation mode. It is a graph which shows a rate. As described above, the basic configuration shown in FIG. 2 is common to the following embodiments.

実施例1の内視鏡装置では、図3(a)に示すように、白色光源11aは、400nm〜700nmの可視波長帯域の光を発する。また、近赤外励起光源11bは、750nmの近赤外励起波長帯域の光を発する。
狭帯域光観察モード制御部14bは、狭帯域光観察モード(即ち、白色光画像と共に狭帯域光画像を観察する観察モード)において、可変分光光学素子13dが、図3(c)に示すように、生体組織10で反射した白色光の波長帯域(400nm〜700nm)内における所定の狭帯域に例えば20nmの半値幅で透過ピークを持つように、図3(b)に示すように、可変分光光学素子13dにおける対向する2枚の光学基板13d1,13d2同士を平行に保持しながら所定の距離に制御する。
また、近赤外光観察モード制御部14cは、近赤外光観察モード(即ち、白色光画像と共に近赤外光画像を観察する観察モード)において、可変分光光学素子13dが、図3(e)に示すように、生体組織10で反射した白色光の波長帯域(400nm〜700nm)内における透過ピークを消失させるように、図3(d)に示すように、可変分光光学素子13dにおける対向する2枚の光学基板13d1,13d2同士が平行でない所定の角度(図3(d)では約30秒程度)に制御する。
なお、可変分光光学素子13dは、狭帯域光観察モード、近赤外光観察モードのいずれにおいても、770nm以上の近赤外波長帯域の光を透過する光学特性を有している。
In the endoscope apparatus according to the first embodiment, as illustrated in FIG. 3A, the white light source 11a emits light in a visible wavelength band of 400 nm to 700 nm. The near-infrared excitation light source 11b emits light in the near-infrared excitation wavelength band of 750 nm.
As shown in FIG. 3C, the narrow-band light observation mode control unit 14b is configured so that the variable spectral optical element 13d in the narrow-band light observation mode (that is, the observation mode for observing the narrow-band light image together with the white light image) As shown in FIG. 3B, the variable spectroscopic optics has a transmission peak with a half-value width of, for example, 20 nm in a predetermined narrow band within the wavelength band (400 nm to 700 nm) of white light reflected by the biological tissue 10. The two optical substrates 13d1 and 13d2 facing each other in the element 13d are controlled to a predetermined distance while being held in parallel.
Further, the near-infrared light observation mode control unit 14c is configured so that the variable spectroscopic optical element 13d in the near-infrared light observation mode (that is, the observation mode in which the near-infrared light image is observed together with the white light image) As shown in FIG. 3 (d), as shown in FIG. 3 (d), the variable spectroscopic optical element 13d is opposed so that the transmission peak in the wavelength band (400 nm to 700 nm) of the white light reflected by the biological tissue 10 disappears. The two optical substrates 13d1 and 13d2 are controlled to a predetermined angle that is not parallel (about 30 seconds in FIG. 3D).
The variable spectroscopic optical element 13d has an optical characteristic of transmitting light in the near-infrared wavelength band of 770 nm or more in both the narrow-band light observation mode and the near-infrared light observation mode.

実施例1の内視鏡装置によれば、可変分光光学素子13dが、生体組織10から発生した770nm以上の近赤外蛍光波長帯域の光を透過させるとともに、少なくとも白色光の波長帯域を間に含む、近赤外蛍光の波長帯域よりも短波長側の所定の波長帯域内において所定の波長幅で透過波長を変化させうる特性を有し、狭帯域光観察モード制御部14b、近赤外光観察モード制御部14cを介して対向する2枚の光学基板13d1,13d2同士の距離及び角度が制御されることにより、狭帯域光観察モードと近赤外光観察モードに応じて、分光特性を切り替えることができるように構成され、近赤外光観察モード制御部14cが、近赤外光観察モードで駆動し、生体組織10で反射した白色光の波長帯域内における透過ピークを消失させ、且つ、生体組織10から発生した近赤外蛍光波長を透過させるように、可変分光光学素子13dの分光特性を切替えるので、可視光の狭帯域光画像から近赤外蛍光画像の広い範囲にわたる特殊光画像を取得でき、且つ、近赤外蛍光観察時に白色光のノイズ成分が除去された高SNで十分な明るさの近赤外蛍光画像を取得することができる。   According to the endoscope apparatus of the first embodiment, the variable spectroscopic optical element 13d transmits light in the near-infrared fluorescence wavelength band of 770 nm or more generated from the living tissue 10, and at least the white light wavelength band in between. Including a narrow band light observation mode control unit 14b, having a characteristic capable of changing a transmission wavelength with a predetermined wavelength width within a predetermined wavelength band shorter than the wavelength band of near infrared fluorescence. By controlling the distance and angle between the two optical substrates 13d1, 13d2 facing each other via the observation mode control unit 14c, the spectral characteristics are switched according to the narrow-band light observation mode and the near-infrared light observation mode. The near-infrared light observation mode control unit 14c is driven in the near-infrared light observation mode, and the transmission peak in the wavelength band of the white light reflected by the biological tissue 10 is eliminated. In addition, since the spectral characteristics of the variable spectral optical element 13d are switched so that the near-infrared fluorescence wavelength generated from the living tissue 10 is transmitted, special light covering a wide range from a visible narrow-band light image to a near-infrared fluorescence image. An image can be acquired, and a near-infrared fluorescent image with sufficient brightness can be acquired with a high SN from which a noise component of white light is removed during near-infrared fluorescence observation.

なお、実施例1の内視鏡装置における近赤外光観察モード制御部14cによる近赤外光観察モードでの可変分光光学素子13dに対して行う、白色光の波長帯域内において透過ピークを存在させないようにするための制御は、図3の例に限定されるものではなく、例えば、次に説明する実施例1の変形例1、2のようにしてもよい。   A transmission peak exists in the wavelength band of white light, which is performed on the variable spectral optical element 13d in the near-infrared light observation mode by the near-infrared light observation mode control unit 14c in the endoscope apparatus of the first embodiment. The control for avoiding this is not limited to the example of FIG. 3, and may be, for example, modified examples 1 and 2 of the first embodiment described below.

図4は実施例1の変形例1にかかる内視鏡装置を用いた特殊光観察における光学特性の一例を示す説明図で、(a)は照明光のスペクトルを示すグラフ、(b)は狭帯域光観察モードでの可変分光光学素子を構成する2枚の光学基板同士の距離及び角度を示す図、(c)は狭帯域光観察モードでの可変分光光学素子の分光透過率を示すグラフ、(d)は近赤外光観察モードでの可変分光光学素子を構成する2枚の光学基板同士の距離及び角度を示す図、(e)は近赤外光観察モードでの可変分光光学素子の分光透過率を示すグラフである。   4A and 4B are explanatory views showing an example of optical characteristics in special light observation using the endoscope apparatus according to the first modification of the first embodiment. FIG. 4A is a graph showing the spectrum of illumination light, and FIG. The figure which shows the distance and angle of two optical substrates which comprise the variable spectral optical element in band light observation mode, (c) is a graph which shows the spectral transmittance of the variable spectral optical element in narrow band light observation mode, (d) is a diagram showing the distance and angle between two optical substrates constituting the variable spectral optical element in the near infrared light observation mode, and (e) is a diagram of the variable spectral optical element in the near infrared light observation mode. It is a graph which shows a spectral transmittance.

実施例1の変形例1
実施例1の変形例1の内視鏡装置では、図4(d)に示すように、可変分光光学素子13dは、近赤外光観察モード制御部14cを介して、近赤外光観察モードでは対向する2枚の光学基板13d1,13d2同士が紫外光の波長帯域と近赤外蛍光の波長帯域との間の波長帯域内において透過ピークが消失する程度離れた所定の距離(例えば、10nm)に制御されるように構成されている。
紫外光の波長帯域と近赤外蛍光の波長帯域との間の波長帯域内において透過ピークを消失させるには、対向する2枚の光学基板13d1,13d2同士を平行に保持しながら、対向する2枚の光学基板13d1,13d2同士の面間隔を紫外光の波長帯域と近赤外蛍光の波長帯域との間の波長帯域の光のコヒーレンス長(可干渉距離)よりも大きく離せばよい。生体からの反射光および蛍光は、共に様々な位相の光からなり、位相が揃ってなくコヒーレンス長が短い。このため、2枚の光学基板13d1,13d2同士の面間隔を数μmから数10μm程度離すと、紫外光の波長帯域と近赤外蛍光の波長帯域との間の波長帯域の光が共振できなくなり、透過ピークが存在しなくなる。このため、近赤外光観察モードにおいて、白色光源11aに加えて近赤外励起光源11bがONされたときに、可変分光光学素子13dに入射した光のうち、近赤外蛍光のみを透過させることができる。
その他の構成及び作用効果は、実施例1の内視鏡装置と略同じである。
Modification 1 of Example 1
In the endoscope apparatus according to the first modification of the first embodiment, as shown in FIG. 4D, the variable spectral optical element 13d is connected to the near infrared light observation mode via the near infrared light observation mode control unit 14c. Then, two optical substrates 13d1 and 13d2 facing each other are separated by a predetermined distance (for example, 10 nm) so that the transmission peak disappears in the wavelength band between the wavelength band of ultraviolet light and the wavelength band of near infrared fluorescence. It is comprised so that it may be controlled.
In order to eliminate the transmission peak in the wavelength band between the wavelength band of the ultraviolet light and the wavelength band of the near-infrared fluorescence, the two facing optical substrates 13d1, 13d2 are held in parallel while being opposed to each other. The distance between the optical substrates 13d1 and 13d2 may be larger than the coherence length (coherence distance) of light in the wavelength band between the wavelength band of ultraviolet light and the wavelength band of near-infrared fluorescence. Reflected light and fluorescence from a living body are both composed of light of various phases, and the phases are not aligned and the coherence length is short. For this reason, if the surface interval between the two optical substrates 13d1 and 13d2 is separated by several μm to several tens of μm, light in the wavelength band between the wavelength band of ultraviolet light and the wavelength band of near-infrared fluorescence cannot resonate. , No transmission peak exists. Therefore, in the near-infrared light observation mode, when the near-infrared excitation light source 11b is turned on in addition to the white light source 11a, only near-infrared fluorescence is transmitted among the light incident on the variable spectroscopic optical element 13d. be able to.
Other configurations and operational effects are substantially the same as those of the endoscope apparatus according to the first embodiment.

実施例1の変形例2
図5は実施例1の変形例2にかかる内視鏡装置を用いた特殊光観察における光学特性の一例を示す説明図で、(a)は照明光のスペクトルを示すグラフ、(b)は狭帯域光観察モードでの可変分光光学素子を構成する2枚の光学基板同士の距離及び角度を示す図、(c)は狭帯域光観察モードでの可変分光光学素子の分光透過率を示すグラフ、(d)は近赤外光観察モードでの可変分光光学素子を構成する2枚の光学基板同士の距離及び角度を示す図、(e)は近赤外光観察モードでの可変分光光学素子の分光透過率を示すグラフである。
Modification 2 of Example 1
FIG. 5 is an explanatory diagram illustrating an example of optical characteristics in special light observation using the endoscope apparatus according to the second modification of the first embodiment, where (a) is a graph showing the spectrum of illumination light, and (b) is a narrow view. The figure which shows the distance and angle of two optical substrates which comprise the variable spectral optical element in band light observation mode, (c) is a graph which shows the spectral transmittance of the variable spectral optical element in narrow band light observation mode, (d) is a diagram showing the distance and angle between two optical substrates constituting the variable spectral optical element in the near infrared light observation mode, and (e) is a diagram of the variable spectral optical element in the near infrared light observation mode. It is a graph which shows a spectral transmittance.

実施例1の変形例2の内視鏡装置では、可変分光光学素子13dは、近赤外光観察モード制御部14cを介して、近赤外光観察モードでは白色光の波長帯域よりも短波長側の所定の狭帯域(例えば、図5では380nm)に透過ピークがシフトするように、対向する2枚の光学基板13d1,13d2同士を平行に保持しながらその間隔を狭めるように制御される構成となっている。   In the endoscope apparatus according to the second modification of the first embodiment, the variable spectral optical element 13d is shorter in wavelength than the wavelength band of white light in the near infrared light observation mode via the near infrared light observation mode control unit 14c. A configuration in which the two optical substrates 13d1 and 13d2 facing each other are controlled to be narrowed while being held in parallel so that the transmission peak shifts to a predetermined narrow band on the side (for example, 380 nm in FIG. 5). It has become.

実施例1の変形例2の内視鏡装置によれば、近赤外光観察モード(近赤外光観察モード)において、可変分光光学素子13dは、白色光の波長帯域よりも短波長側の所定の狭帯域(例えば、図5では380nm)に透過ピークが存在するが、近赤外光観察モードにおいて白色光源11aに加えて近赤外励起光源11bがONされたときに、可変分光光学素子13dに入射する光は、生体組織10で反射した400nm〜700nmの白色光の波長帯域の光と、750nmの近赤外励起波長帯域の光と、生体組織10から発生する770nm以上の近赤外蛍光波長帯域の光であり、白色光の波長帯域よりも短波長側の所定の狭帯域(例えば、図5では380nm)の光は存在しない。
このため、実施例1の変形例2の内視鏡装置によっても、可変分光光学素子13dに入射した光のうち、近赤外蛍光のみを透過させることができる。
その他の構成及び作用効果は、実施例1の内視鏡装置と略同じである。
According to the endoscope apparatus of Modification 2 of Example 1, in the near-infrared light observation mode (near-infrared light observation mode), the variable spectroscopic optical element 13d has a wavelength shorter than the wavelength band of white light. Although a transmission peak exists in a predetermined narrow band (for example, 380 nm in FIG. 5), when the near-infrared excitation light source 11b is turned on in addition to the white light source 11a in the near-infrared light observation mode, the variable spectral optical element Light incident on 13d includes light in the wavelength band of white light of 400 nm to 700 nm reflected by the biological tissue 10, light in the near infrared excitation wavelength band of 750 nm, and near infrared of 770 nm or more generated from the biological tissue 10. There is no light in a predetermined narrow band (for example, 380 nm in FIG. 5) that is in the fluorescence wavelength band and shorter than the wavelength band of white light.
For this reason, only the near-infrared fluorescence of the light incident on the variable spectroscopic optical element 13d can be transmitted also by the endoscope apparatus of the second modification of the first embodiment.
Other configurations and operational effects are substantially the same as those of the endoscope apparatus according to the first embodiment.

なお、実施例1及びその変形例1,2の内視鏡装置においては、生体組織10で反射した近赤外励起光の波長帯域の光をカットする特性を持つ近赤外励起光カットフィルタ13fを第2の光路L2上に設けてもよい。
近赤外光観察モードにおいては、可変分光光学素子13dのみによる分光では、若干の漏れ光が生じうる。特に、実施例1の変形例1,2においては、対向する2枚の光学基板13d1,13d2同士の面間隔を離していく、あるいは近づけていく過程において、透過ピークが紫外光の波長帯域と近赤外蛍光の波長帯域との間の波長帯域で移動し、そのときに漏れた近赤外蛍光波長帯域以外の波長帯域の光が、ノイズ成分となって近赤外蛍光のSNに悪影響を与えるおそれがある。しかるに、第2の光路L2上に近赤外励起光カットフィルタ13fを設ければ、近赤外蛍光波長帯域の近傍のノイズ成分を除去できるので、近赤外蛍光のSNがさらに向上する。
In the endoscope apparatus of the first embodiment and the modifications 1 and 2 thereof, the near-infrared excitation light cut filter 13f having the characteristic of cutting light in the wavelength band of the near-infrared excitation light reflected by the biological tissue 10 is used. May be provided on the second optical path L2.
In the near-infrared light observation mode, a slight amount of leakage light may occur in the spectroscopy using only the variable spectral optical element 13d. In particular, in the first and second modifications of the first embodiment, the transmission peak is close to the wavelength band of ultraviolet light in the process of separating or bringing the surface distance between the two optical substrates 13d1 and 13d2 facing each other. Light in a wavelength band other than the near-infrared fluorescence wavelength band that has moved in the wavelength band between the infrared fluorescence wavelength band and leaked at that time acts as a noise component and adversely affects the near-infrared fluorescence SN. There is a fear. However, if the near-infrared excitation light cut filter 13f is provided on the second optical path L2, noise components in the vicinity of the near-infrared fluorescence wavelength band can be removed, so that the SN of near-infrared fluorescence is further improved.

実施例2
図6は本発明の実施例2の内視鏡装置全体の構成を示すブロック図、図7は実施例2の内視鏡装置を用いた特殊光観察における光学特性の一例を示す説明図で、(a)は照明光のスペクトルを示すグラフ、(b)は近赤外励起光カットフィルタの分光透過率を示すグラフ、(c)は近赤外光観察モードでの可変分光光学素子を構成する2枚の光学基板同士の距離及び角度を示す図、(d)は近赤外光観察モードでの可変分光光学素子の分光透過率を示すグラフ、(e)は近赤外光観察モードにおいて近赤外励起光カットフィルタの光学特性と可変分光光学素子の光学特性とを合わせた光学特性を示すグラフである。
Example 2
FIG. 6 is a block diagram showing the overall configuration of the endoscope apparatus according to the second embodiment of the present invention, and FIG. 7 is an explanatory diagram showing an example of optical characteristics in special light observation using the endoscope apparatus according to the second embodiment. (a) is a graph showing the spectrum of illumination light, (b) is a graph showing the spectral transmittance of the near-infrared excitation light cut filter, and (c) is a variable spectral optical element in the near-infrared light observation mode. The figure which shows the distance and angle between two optical substrates, (d) is a graph showing the spectral transmittance of the variable spectroscopic optical element in the near-infrared light observation mode, and (e) is the near-infrared light observation mode. It is a graph which shows the optical characteristic which combined the optical characteristic of the infrared excitation light cut filter, and the optical characteristic of a variable spectral optical element.

実施例2の内視鏡装置は、図6に示すように、図7(b)に示す生体組織10で反射した近赤外励起光の波長帯域(例えば、図7(b)では700nm〜780nm)の光をカットする特性を持つ近赤外励起光カットフィルタ13fを第2の光路L2上に備えている。
また、近赤外光観察モード制御部14cは、近赤外光観察モード(即ち、白色光画像と共に近赤外光画像を観察する観察モード)において、可変分光光学素子13dが、図7(d)に示すように、透過ピークを生体組織10で反射した白色光の波長帯域よりも長波長側の近赤外励起光の波長帯域(例えば、図7(d)では740nm)にシフトさせるように、可変分光光学素子13dにおける対向する2枚の光学基板13d1,13d2同士を平行に保持しながらその間隔を拡げて所定の距離に制御する。
このように、実施例2の内視鏡装置は、近赤外光観察モード制御部14cを介して、近赤外光観察モードにおいて、可変分光光学素子13dの透過ピークが近赤外励起光カットフィルタ13fの遮蔽波長帯域にシフトするように構成されている。
As shown in FIG. 6, the endoscope apparatus of Example 2 is a wavelength band of near-infrared excitation light reflected by the biological tissue 10 shown in FIG. 7B (for example, 700 nm to 780 nm in FIG. 7B). ) Is provided on the second optical path L2.
Further, the near-infrared light observation mode control unit 14c is configured so that the variable spectroscopic optical element 13d in the near-infrared light observation mode (that is, the observation mode for observing the near-infrared light image together with the white light image) is the ), The transmission peak is shifted to the wavelength band of near-infrared excitation light that is longer than the wavelength band of white light reflected by the biological tissue 10 (for example, 740 nm in FIG. 7D). The two optical substrates 13d1 and 13d2 facing each other in the variable spectroscopic optical element 13d are held in parallel with each other and the distance between them is controlled to a predetermined distance.
Thus, in the endoscope apparatus of Example 2, the transmission peak of the variable spectroscopic optical element 13d is cut in the near infrared excitation light in the near infrared light observation mode via the near infrared light observation mode control unit 14c. The filter 13f is configured to shift to the shielding wavelength band.

実施例2の内視鏡装置では、第2の光路L2上に、生体組織10で反射した近赤外励起光の波長をカットする近赤外励起光カットフィルタ13fを備え、近赤外光観察モード制御部14cが、近赤外光観察モードにおいて、可変分光光学素子13dを、対向する2枚の光学基板13d1,13d2同士を平行に保持しながら間隔を拡げて、透過ピークを生体組織10で反射した白色光の波長帯域よりも長波長側の近赤外励起光の波長帯域にシフトさせるようにしたので、可変分光光学素子13dは、近赤外光観察モードにおいて、近赤外蛍光の他に近赤外励起光を透過させることになる。しかし、第2の光路L2上に備えた、近赤外励起光カットフィルタ13fが近赤外励起光をカットする。その結果、可変分光光学素子13d、近赤外励起光カットフィルタ13fを経て特殊光画像取得部5の撮像面に入射する光は近赤外蛍光のみとなる。
このため、実施例2の内視鏡装置によれば、近赤外蛍光観察時に白色光及び近赤外励起光のノイズ成分が除去された高SNで十分な明るさの近赤外蛍光画像を取得することができる。
その他の構成及び作用効果は、実施例1の内視鏡装置と略同じである。
The endoscope apparatus according to the second embodiment includes the near-infrared excitation light cut filter 13f that cuts the wavelength of the near-infrared excitation light reflected by the biological tissue 10 on the second optical path L2, and observes near-infrared light. In the near-infrared light observation mode, the mode control unit 14c widens the interval while holding the two optical substrates 13d1 and 13d2 facing each other in parallel in the near-infrared light observation mode, and sets the transmission peak in the biological tissue 10. Since it is shifted to the wavelength band of near-infrared excitation light that is longer than the wavelength band of reflected white light, the variable spectroscopic optical element 13d is capable of performing near-infrared fluorescence in the near-infrared light observation mode. Will transmit near-infrared excitation light. However, the near infrared excitation light cut filter 13f provided on the second optical path L2 cuts near infrared excitation light. As a result, only the near-infrared fluorescence is incident on the imaging surface of the special light image acquisition unit 5 via the variable spectroscopic optical element 13d and the near-infrared excitation light cut filter 13f.
For this reason, according to the endoscope apparatus of Example 2, a near-infrared fluorescent image having sufficient brightness at a high SN from which noise components of white light and near-infrared excitation light are removed during near-infrared fluorescence observation. Can be acquired.
Other configurations and operational effects are substantially the same as those of the endoscope apparatus according to the first embodiment.

なお、実施例2の内視鏡装置における近赤外光観察モード制御部14cによる近赤外光観察モードでの可変分光光学素子13dに対して行う、白色光の波長帯域内において透過ピークを存在させないようにするための制御は、図7の例に限定されるものではなく、例えば、次に説明する実施例2の変形例1、2のようにしてもよい。   Note that there is a transmission peak in the wavelength band of white light, which is performed on the variable spectral optical element 13d in the near infrared light observation mode by the near infrared light observation mode control unit 14c in the endoscope apparatus of the second embodiment. The control for avoiding this is not limited to the example of FIG. 7, and may be modified examples 1 and 2 of Example 2 described below, for example.

実施例2の変形例1
図8は実施例2の変形例1にかかる内視鏡装置を用いた特殊光観察における光学特性の一例を示す説明図で、(a)は照明光のスペクトルを示すグラフ、(b)は近赤外励起光カットフィルタの分光透過率を示すグラフ、(c)は近赤外光観察モードでの可変分光光学素子を構成する2枚の光学基板同士の距離及び角度を示す図、(d)は近赤外光観察モードでの可変分光光学素子の分光透過率を示すグラフ、(e)は近赤外光観察モードにおいて近赤外励起光カットフィルタの光学特性と可変分光光学素子の光学特性とを合わせた光学特性を示すグラフである。
Modification 1 of Example 2
FIG. 8 is an explanatory diagram illustrating an example of optical characteristics in special light observation using the endoscope apparatus according to the first modification of the second embodiment. FIG. 8A is a graph illustrating the spectrum of illumination light, and FIG. Graph showing the spectral transmittance of the infrared excitation light cut filter, (c) is a diagram showing the distance and angle between the two optical substrates constituting the variable spectral optical element in the near infrared light observation mode, (d) Is a graph showing the spectral transmittance of the variable spectroscopic optical element in the near infrared light observation mode, and (e) is the optical characteristic of the near infrared excitation light cut filter and the optical characteristic of the variable spectroscopic optical element in the near infrared light observation mode. It is a graph which shows the optical characteristic combining these.

実施例2の変形例1の内視鏡装置では、可変分光光学素子13dは、近赤外光観察モード制御部14cを介して、近赤外光観察モードでは白色光の波長帯域よりも短波長側の狭帯域(例えば、図8(d)では370nm)と、白色光の波長帯域よりも長波長側の近赤外励起光の波長帯域(例えば、図8(d)では740nm)とに、透過ピークがシフトするように、対向する2枚の光学基板13d1,13d2同士を平行に保持しながらその間隔を拡げるように制御される構成となっている。   In the endoscope apparatus according to the first modification of the second embodiment, the variable spectroscopic optical element 13d is shorter in wavelength than the wavelength band of white light in the near infrared light observation mode via the near infrared light observation mode control unit 14c. Side narrow band (eg, 370 nm in FIG. 8 (d)) and near-infrared excitation light wavelength band longer than the wavelength band of white light (eg, 740 nm in FIG. 8 (d)), In order to shift the transmission peak, the two optical substrates 13d1, 13d2 facing each other are controlled to be widened while being held in parallel.

実施例2の変形例1の内視鏡装置では、第2の光路L2上に、生体組織10で反射した近赤外励起光の波長をカットする近赤外励起光カットフィルタ13fを備え、近赤外光観察モード制御部14cが、近赤外光観察モードにおいて、可変分光光学素子13dを、対向する2枚の光学基板13d1,13d2同士を平行に保持しながらその間隔を拡げて、透過ピークを生体組織10で反射した白色光の波長帯域よりも短波長側の狭帯域及び長波長側の近赤外励起光の波長帯域にシフトさせるようにしたので、可変分光光学素子13dは、近赤外光観察モードにおいて、白色光の波長帯域よりも短波長側の狭帯域に透過ピークが存在するとともに、近赤外蛍光の他に近赤外励起光を透過させることになる。しかし、近赤外光観察モードにおいて白色光源11aに加えて近赤外励起光源11bがONされたときに、可変分光光学素子13dに入射する光は、生体組織10で反射した400nm〜700nmの白色光の波長帯域の光と、750nmの近赤外励起波長帯域の光と、生体組織10から発生する770nm以上の近赤外蛍光波長帯域の光であり、白色光の波長帯域よりも短波長側の所定の狭帯域(例えば、図8では370nm)の光は存在しない。また、第2の光路L2上に備えた、近赤外励起光カットフィルタ13fが近赤外励起光をカットする。その結果、可変分光光学素子13d、近赤外励起光カットフィルタ13fを経て特殊光画像取得部5の撮像面に入射する光は近赤外蛍光のみとなる。
このため、実施例2の変形例1の内視鏡装置によれば、近赤外蛍光観察時に白色光及び近赤外励起光のノイズ成分が除去された高SNで十分な明るさの近赤外蛍光画像を取得することができる。
その他の構成及び作用効果は、実施例2の内視鏡装置と略同じである。
The endoscope apparatus according to the first modification of the second embodiment includes the near-infrared excitation light cut filter 13f that cuts the wavelength of the near-infrared excitation light reflected by the biological tissue 10 on the second optical path L2, In the near-infrared light observation mode, the infrared light observation mode control unit 14c increases the distance between the two optical substrates 13d1 and 13d2 facing each other while holding the variable spectroscopic optical element 13d in parallel. Is shifted to a narrow band on the short wavelength side and a wavelength band of near-infrared excitation light on the long wavelength side from the wavelength band of white light reflected by the biological tissue 10, so that the variable spectral optical element 13d In the external light observation mode, a transmission peak exists in a narrow band shorter than the wavelength band of white light, and near infrared excitation light is transmitted in addition to near infrared fluorescence. However, when the near-infrared excitation light source 11b is turned on in addition to the white light source 11a in the near-infrared light observation mode, the light incident on the variable spectroscopic optical element 13d is white of 400 nm to 700 nm reflected by the living tissue 10. Light in the wavelength band of light, light in the near-infrared excitation wavelength band of 750 nm, and light in the near-infrared fluorescence wavelength band of 770 nm or more generated from the biological tissue 10, and shorter than the wavelength band of white light There is no light of a predetermined narrow band (for example, 370 nm in FIG. 8). Further, the near-infrared excitation light cut filter 13f provided on the second optical path L2 cuts the near-infrared excitation light. As a result, only the near-infrared fluorescence is incident on the imaging surface of the special light image acquisition unit 5 via the variable spectroscopic optical element 13d and the near-infrared excitation light cut filter 13f.
For this reason, according to the endoscope apparatus of the modification 1 of Example 2, the near red of sufficient brightness with high SN from which the noise component of white light and near-infrared excitation light was removed at the time of near-infrared fluorescence observation An external fluorescence image can be acquired.
Other configurations and operational effects are substantially the same as those of the endoscope apparatus according to the second embodiment.

実施例2の変形例2
図9は実施例2の変形例2にかかる内視鏡装置を用いた特殊光観察における光学特性の一例を示す説明図で、(a)は照明光のスペクトルを示すグラフ、(b)は近赤外励起光カットフィルタの分光透過率を示すグラフ、(c)は近赤外光観察モードでの可変分光光学素子を構成する2枚の光学基板同士の距離及び角度を示す図、(d)は近赤外光観察モードでの可変分光光学素子の分光透過率を示すグラフ、(e)は近赤外光観察モードにおいて近赤外励起光カットフィルタの光学特性と可変分光光学素子の光学特性とを合わせた光学特性を示すグラフである。
Variation 2 of Embodiment 2
FIG. 9 is an explanatory diagram illustrating an example of optical characteristics in special light observation using the endoscope apparatus according to the second modification of the second embodiment. FIG. 9A is a graph illustrating the spectrum of illumination light, and FIG. Graph showing the spectral transmittance of the infrared excitation light cut filter, (c) is a diagram showing the distance and angle between the two optical substrates constituting the variable spectral optical element in the near infrared light observation mode, (d) Is a graph showing the spectral transmittance of the variable spectroscopic optical element in the near infrared light observation mode, and (e) is the optical characteristic of the near infrared excitation light cut filter and the optical characteristic of the variable spectroscopic optical element in the near infrared light observation mode. It is a graph which shows the optical characteristic combining these.

実施例2の変形例2の内視鏡装置では、可変分光光学素子13dは、近赤外励起波長及び近赤外蛍光波長を透過させるとともに、少なくとも白色光の波長帯域を間に含む、近赤外励起光の波長帯域よりも短波長側の所定の波長帯域内において所定の波長幅で透過波長を変化させうる特性を有する。また、近赤外光観察モード制御部14cを介して、狭帯域光観察モードでは対向する2枚の光学基板13d1,13d2同士を平行に保持しながら所定の距離に制御されることにより、白色光の波長帯域内(400nm〜700nm)における所望の狭帯域に透過ピークを存在させ、且つ、近赤外励起波長及び近赤外蛍光波長を透過させ、近赤外光観察モードでは図9(d)に示すように、対向する2枚の光学基板13d1,13d2同士が平行でない所定の角度(図9(d)では約30秒程度)に制御されることにより、紫外光の波長帯域と近赤外励起光の波長帯域との間の波長帯域内(380nm〜700nm)において透過ピークが消失し、且つ、近赤外励起波長及び近赤外蛍光波長を透過させるように、分光特性が切替わるように構成されている。   In the endoscope apparatus according to the second modification of the second embodiment, the variable spectroscopic optical element 13d transmits the near-infrared excitation wavelength and the near-infrared fluorescence wavelength and includes at least the wavelength band of white light in between. The transmission wavelength can be changed with a predetermined wavelength width within a predetermined wavelength band shorter than the wavelength band of the external excitation light. In the narrow-band light observation mode, white light is controlled through the near-infrared light observation mode control unit 14c while the two optical substrates 13d1 and 13d2 facing each other are held in parallel and controlled to a predetermined distance. In the near-infrared light observation mode, a transmission peak is present in a desired narrow band within the wavelength band (400 nm to 700 nm), and the near-infrared excitation wavelength and near-infrared fluorescence wavelength are transmitted. As shown in FIG. 9, the two optical substrates 13d1 and 13d2 facing each other are controlled to a predetermined angle that is not parallel (about 30 seconds in FIG. 9D), so that the wavelength band of the ultraviolet light and the near-infrared Spectral characteristics are switched so that the transmission peak disappears in the wavelength band (380 nm to 700 nm) between the excitation light wavelength band and the near-infrared excitation wavelength and near-infrared fluorescence wavelength are transmitted. Composed That.

実施例2の変形例2の内視鏡装置では、近赤外光観察モードにおいて、可変分光光学素子13dは、近赤外励起波長の他に近赤外蛍光波長を透過させることになる。しかし、第2の光路L2上に備えた、近赤外励起光カットフィルタ13fが近赤外励起光をカットする。その結果、可変分光光学素子13d、近赤外励起光カットフィルタ13fを経て特殊光画像取得部5の撮像面に入射する光は近赤外蛍光のみとなる。
このため、実施例2の変形例2の内視鏡装置によれば、近赤外蛍光観察時に白色光及び近赤外励起光のノイズ成分が除去された高SNで十分な明るさの近赤外蛍光画像を取得することができる。
In the endoscope apparatus according to the second modification of the second embodiment, in the near infrared light observation mode, the variable spectroscopic optical element 13d transmits the near infrared fluorescence wavelength in addition to the near infrared excitation wavelength. However, the near infrared excitation light cut filter 13f provided on the second optical path L2 cuts near infrared excitation light. As a result, only the near-infrared fluorescence is incident on the imaging surface of the special light image acquisition unit 5 via the variable spectroscopic optical element 13d and the near-infrared excitation light cut filter 13f.
For this reason, according to the endoscope apparatus of the modification 2 of Example 2, the near red of sufficient brightness with high SN from which the noise component of white light and near-infrared excitation light was removed at the time of near-infrared fluorescence observation An external fluorescence image can be acquired.

また、実施例2の変形例2の内視鏡装置によれば、少なくとも白色光の波長帯域を間に含む、所定の波長幅で透過波長を変化させうる特性を有する範囲を、近赤外励起光の波長帯域よりも短波長側に狭めたので、その分、可変分光光学素子13dにおける対向する2枚の光学基板13d1,13d2の表面に設ける反射膜として蒸着する誘電体物質13d11,13d21の屈折率差を大きくとらずに済み、製造し易くなる。   Further, according to the endoscope apparatus of the second modification of the second embodiment, the range having the characteristic that the transmission wavelength can be changed with a predetermined wavelength width including at least the wavelength band of white light is excited in the near infrared. Since it is narrowed to the shorter wavelength side than the wavelength band of light, the refraction of the dielectric materials 13d11 and 13d21 deposited as a reflection film provided on the surfaces of the two opposing optical substrates 13d1 and 13d2 in the variable spectroscopic optical element 13d accordingly. It is not necessary to increase the rate difference and it is easy to manufacture.

なお、図9の例では、可変分光光学素子13dは、近赤外光観察モードにおいて、近赤外光観察モード制御部14cを介して、対向する2枚の光学基板13d1,13d2同士が平行でない所定の角度(例えば、図9(d)では約30秒程度)に制御されることにより、紫外光の波長帯域と近赤外励起光の波長帯域との間の波長帯域内(380nm〜700nm)において透過ピークが消失するように構成されているが、紫外光の波長帯域と近赤外励起光の波長帯域との間の波長帯域内(380nm〜700nm)において透過ピークが存在しない状態にすることができればよい。例えば、図5(d)に示したように、近赤外光観察モード制御部14cを介して、近赤外光観察モードでは白色光の波長帯域よりも短波長側の所定の狭帯域に透過ピークがシフトするように、対向する2枚の光学基板13d1,13d2同士を平行に保持しながらその間隔を狭めるように制御されるようにしてもよい。
その他の構成及び作用効果は、実施例2の内視鏡装置と略同じである。
In the example of FIG. 9, in the variable spectral optical element 13d, in the near-infrared light observation mode, the two optical substrates 13d1 and 13d2 facing each other are not parallel via the near-infrared light observation mode control unit 14c. By controlling to a predetermined angle (for example, about 30 seconds in FIG. 9D), within a wavelength band (380 nm to 700 nm) between the wavelength band of ultraviolet light and the wavelength band of near-infrared excitation light. Is configured such that the transmission peak disappears in the wavelength band between the wavelength band of the ultraviolet light and the wavelength band of the near-infrared excitation light (380 nm to 700 nm). If you can. For example, as shown in FIG. 5 (d), in the near-infrared light observation mode, the light is transmitted through a near-infrared light observation mode control unit 14c in a predetermined narrow band shorter than the wavelength band of white light. The two optical substrates 13d1 and 13d2 facing each other may be controlled so as to narrow the interval so that the peak shifts.
Other configurations and operational effects are substantially the same as those of the endoscope apparatus according to the second embodiment.

実施例3
図10は本発明の実施例3の内視鏡装置全体の構成を示すブロック図、図11は実施例3の内視鏡装置を用いた特殊光観察における光学特性の一例を示す説明図で、(a)は照明光のスペクトルを示すグラフ、(b)は近赤外光観察モードでの第1の可変分光光学素子を構成する2枚の光学基板同士の距離及び角度を示す図、(c)は近赤外光観察モードでの第1の可変分光光学素子の分光透過率を示すグラフ、(d)は近赤外光観察モードでの第2の可変分光光学素子を構成する2枚の光学基板同士の距離及び角度を示す図、(e)は近赤外光観察モードでの第1の可変分光光学素子の分光透過率を示すグラフ、(f)は近赤外光観察モードにおける第1の可変分光光学素子の分光特性と第2の可変分光光学素子の分光特性とを合わせた分光特性を示すグラフである。
Example 3
FIG. 10 is a block diagram illustrating a configuration of the entire endoscope apparatus according to the third embodiment of the present invention, and FIG. 11 is an explanatory diagram illustrating an example of optical characteristics in special light observation using the endoscope apparatus according to the third embodiment. (a) is a graph showing the spectrum of illumination light, (b) is a diagram showing the distance and angle between two optical substrates constituting the first variable spectroscopic optical element in the near-infrared light observation mode, (c) ) Is a graph showing the spectral transmittance of the first variable spectroscopic optical element in the near-infrared light observation mode, and (d) is a graph showing two sheets constituting the second variable spectroscopic optical element in the near-infrared light observation mode. The figure which shows the distance and angle between optical substrates, (e) is a graph which shows the spectral transmittance of the 1st variable spectroscopy optical element in near infrared light observation mode, (f) is the graph in near infrared light observation mode. It is a graph which shows the spectral characteristic which combined the spectral characteristic of 1 variable spectral optical element, and the spectral characteristic of 2nd variable spectral optical element.

実施例3の内視鏡装置は、可変分光光学素子13dが、直列に配置された第1の可変分光光学素子13d’と第2の可変分光光学素子13d”とで構成されている。第1の可変分光光学素子13d’は、対向する表面に反射膜として誘電体多層膜13d11’,13d21’が設けられた対向する2枚の光学基板13d1’,13d2’を有してなり、対向する2枚の光学基板13d1’,13d2’同士の距離または角度を変えることにより分光特性が可変となる、エタロン型の可変分光光学素子として構成されている。第2の可変分光光学素子13d”は、対向する表面に反射膜として誘電体多層膜13d11”,13d21”が設けられた対向する2枚の光学基板13d1”,13d2”を有してなり、対向する2枚の光学基板13d1”,13d2”同士の距離または角度を変えることにより分光特性が可変となる、エタロン型の可変分光光学素子として構成されている。   In the endoscope apparatus according to the third embodiment, the variable spectral optical element 13d includes a first variable spectral optical element 13d ′ and a second variable spectral optical element 13d ″ arranged in series. The variable spectroscopic optical element 13d ′ includes two opposing optical substrates 13d1 ′ and 13d2 ′ provided with dielectric multilayer films 13d11 ′ and 13d21 ′ as reflective films on the opposing surfaces, and are opposed to each other. It is configured as an etalon-type variable spectroscopic optical element whose spectral characteristics are variable by changing the distance or angle between the optical substrates 13d1 ′ and 13d2 ′. The second variable spectroscopic optical element 13d ″ is opposed to each other. And two opposing optical substrates 13d1 ″ and 13d2 ″ provided with dielectric multilayer films 13d11 ″ and 13d21 ″ as reflecting films on the surface to be opposed. ", 13d2" a variable spectral characteristics by varying the distance or angle between, is configured as a variable spectral optical element of the etalon type.

また、第1の可変分光光学素子13d’と第2の可変分光光学素子13d”は、狭帯域光観察モードでは狭帯域光観察モード制御部14bを介して、白色光の波長帯域内において互いに同じ所望の狭帯域に透過ピークを存在させ、近赤外光観察モードでは近赤外光観察モード制御部14cを介して、図11(c)、図11(e)に示すように、白色光の波長帯域内において互いの透過波長が重ならない異なる所定の狭帯域に透過ピークを存在させるように、夫々の対向する2枚の光学基板同士(図11(b)に示す光学基板13d1’,13d2’同士、及び図9(d)に示す光学基板13d1”,13d2”同士)の距離及び角度が制御されるようになっている。   The first variable spectroscopic optical element 13d ′ and the second variable spectroscopic optical element 13d ″ are the same in the wavelength band of white light via the narrow band light observation mode control unit 14b in the narrow band light observation mode. A transmission peak is present in a desired narrow band, and in the near-infrared light observation mode, as shown in FIGS. 11 (c) and 11 (e), the white light is transmitted via the near-infrared light observation mode control unit 14c. Two opposing optical substrates (optical substrates 13d1 ′ and 13d2 ′ shown in FIG. 11B) are arranged so that transmission peaks exist in different predetermined narrow bands where the transmission wavelengths do not overlap each other within the wavelength band. And the distances and angles between the optical substrates 13d1 ″ and 13d2 ″ shown in FIG. 9D are controlled.

より詳しくは、図11の例では、第1の可変分光光学素子13d’は、近赤外光観察モード制御部14cを介して、近赤外光観察モードでは、図11(c)に示すように、白色光の波長帯域内における第1の狭帯域A1を透過するように、図11(b)に示すように、対向する2枚の光学基板13d1’,13d2’同士を平行に保持しながらその間隔が第1の距離D1離れるように制御される構成となっている。また、第2の可変分光光学素子13d”は、近赤外光観察モード制御部14cを介して、近赤外光観察モードでは、図11(e)に示すように、白色光の波長帯域内における第1の狭帯域A1とは重ならない第2の狭帯域A2(図11(e)の例では、図11(c)に示すピーク波長の波長帯域から、ピーク波長の半値幅の2倍以上である50nm離れた波長帯域としてある)を透過するように、図11(b)に示すように、対向する2枚の光学基板13d1’,13d2’同士を平行に保持しながらその間隔が第1の所定距離D1とは異なる第2の距離D2離れるように制御される構成となっている。
その他の構成は、図2に示したとおりである。
More specifically, in the example of FIG. 11, the first variable spectroscopic optical element 13 d ′ is shown in FIG. 11C in the near infrared light observation mode via the near infrared light observation mode control unit 14 c. In addition, as shown in FIG. 11 (b), the two optical substrates 13d1 ′ and 13d2 ′ facing each other are held in parallel so as to transmit the first narrow band A1 within the wavelength band of white light. The interval is controlled so as to be separated from the first distance D1. In addition, the second variable spectroscopic optical element 13d ″ passes through the near-infrared light observation mode control unit 14c in the near-infrared light observation mode, as shown in FIG. The second narrow band A2 that does not overlap with the first narrow band A1 in FIG. 11 (in the example of FIG. 11 (e), from the wavelength band of the peak wavelength shown in FIG. 11 (c), more than twice the half width of the peak wavelength As shown in FIG. 11 (b), the two optical substrates 13d1 ′ and 13d2 ′ facing each other are held in parallel while the distance between them is first. The second distance D2 is controlled to be different from the predetermined distance D1.
The other configuration is as shown in FIG.

実施例3の内視鏡装置では、近赤外光観察モードでは、可変分光光学素子13dに入射する光のうち、白色光の波長帯域の光が、直列に配置された第1の可変分光光学素子13d’と第2の可変分光光学素子13d”のいずれかでカットされる。その結果、第1の可変分光光学素子13d’と第2の可変分光光学素子13d”を経て特殊光画像取得部5の撮像面に入射する光は近赤外蛍光のみとなる。
このため、実施例3の内視鏡装置によれば、近赤外蛍光観察時に白色光のノイズ成分が除去された高SNで十分な明るさの近赤外蛍光画像を取得することができる。
その他の構成及び作用効果は、実施例1の内視鏡装置と略同じである。
In the endoscope apparatus according to the third embodiment, in the near-infrared light observation mode, the first variable spectroscopic optical device in which the light in the wavelength band of white light out of the light incident on the variable spectroscopic optical element 13d is arranged in series. It is cut by either the element 13d ′ or the second variable spectral optical element 13d ″. As a result, the special light image acquisition unit passes through the first variable spectral optical element 13d ′ and the second variable spectral optical element 13d ″. The light incident on the imaging surface 5 is only near-infrared fluorescence.
For this reason, according to the endoscope apparatus of Example 3, it is possible to acquire a near-infrared fluorescent image with sufficient brightness at a high SN from which a noise component of white light is removed during near-infrared fluorescent observation.
Other configurations and operational effects are substantially the same as those of the endoscope apparatus according to the first embodiment.

なお、上記各実施例の内視鏡装置の説明においては、生体組織10に近赤外蛍光観察用の蛍光成分として、インドシアニングリーン(ICG)を用いたが、ICGの代わりに、例えば、腫瘍部に蓄積する蛍光薬剤を用いて、腫瘍部を発光させて強調表示させる特殊光観察を行うようにしてもよい。   In the description of the endoscope apparatus of each of the above embodiments, indocyanine green (ICG) is used as the fluorescent component for near-infrared fluorescence observation in the living tissue 10, but instead of ICG, for example, a tumor Using the fluorescent agent accumulated in the part, special light observation may be performed in which the tumor part is emitted and highlighted.

また、上記各実施例の内視鏡装置では、特殊光観察において、観察モード入力部14gが狭帯域光観察モードと近赤外光観察モードのいずれかを入力できる構成としたが、さらに、白色光画像と共に狭帯域光画像観察と近赤外蛍光画像観察などの複数の特殊光画像を観察するモードを第3のモードとして選択できるようにするとともに、第3の観察モードにおいて、観察モード切替部14fが狭帯域光観察モードと近赤外光観察モードなどの複数の特殊光観察モードを時分割で切り替えて、複数の特殊光観察画像を時分割で取得できるようにし、白色光画像上に時分割で取得した複数の特殊光画像を重畳させるようにするとよい。
詳しくは、観察モード入力部14gを介して第3のモードが選択された場合、観察モード切替部14fが、光源部11の近赤外励起光源11bのON・OFF制御を例えば1ms未満の時間的な間隔でもって連続して行うとともに、近赤外光観察モード制御部14c、狭帯域光観察モード制御部14bの駆動切替制御を行う。
可変分光光学素子は、電気的な制御により狭帯域光観察モードや近赤外光観察モードを1ms未満の時間的な間隔で高速に切り替えることができる。このため、観察モード切替部14fが狭帯域光観察モードと近赤外光観察モードなどの複数の特殊光観察モードを時分割で切り替えるようにすれば、白色光画像と共に取得する特殊光画像として、高フレームレートな狭帯域光画像及び近赤外蛍光画像などの複数の特殊光画像を取得できる。
In the endoscope apparatus of each of the above embodiments, in the special light observation, the observation mode input unit 14g is configured to be able to input either the narrow band light observation mode or the near infrared light observation mode. A mode for observing a plurality of special light images such as narrow-band light image observation and near-infrared fluorescence image observation together with an optical image can be selected as the third mode, and an observation mode switching unit in the third observation mode 14f can switch a plurality of special light observation modes such as a narrow-band light observation mode and a near-infrared light observation mode in a time division manner so that a plurality of special light observation images can be acquired in a time division manner. It is preferable to superimpose a plurality of special light images acquired by division.
Specifically, when the third mode is selected via the observation mode input unit 14g, the observation mode switching unit 14f performs ON / OFF control of the near-infrared excitation light source 11b of the light source unit 11 for a time period of, for example, less than 1 ms. This is performed continuously with a certain interval, and drive switching control of the near-infrared light observation mode control unit 14c and the narrow-band light observation mode control unit 14b is performed.
The variable spectroscopic optical element can switch the narrow-band light observation mode and the near-infrared light observation mode at high speed at a time interval of less than 1 ms by electrical control. For this reason, if the observation mode switching unit 14f switches a plurality of special light observation modes such as a narrow-band light observation mode and a near-infrared light observation mode in a time-sharing manner, as a special light image acquired together with a white light image, A plurality of special light images such as a narrow-band light image and a near-infrared fluorescent image with a high frame rate can be acquired.

その他、上記各実施例の内視鏡装置は、光路分岐部が、第2の光路L2に導く白色光の光学濃度がOD=2となる光学特性を持つようにしてもよい。
詳しくは、ビームスプリッタ13bは、例えば、可視光領域での反射率が10%、近赤外領域での反射率が100%の反射率特性を持つようにするとよい。
近赤外光観察モードにおいては、可変分光光学素子のみによる分光では、若干、可視光領域で漏れ光が生じる。しかるに、ビームスプリッタ13bの光学特性を可視光領域OD=2程度に抑え、近赤外領域では100%反射するようにすれば、近赤外蛍光のSNが向上する。なお、この場合、狭帯域光画像が暗くなるが、特殊光観察用CCD13eに高感度のものを用いれば、狭帯域光画像の観察は可能である。
In addition, in the endoscope apparatus according to each of the above embodiments, the optical path branching unit may have an optical characteristic in which the optical density of white light guided to the second optical path L2 is OD = 2.
Specifically, for example, the beam splitter 13b may have reflectance characteristics such that the reflectance in the visible light region is 10% and the reflectance in the near infrared region is 100%.
In the near-infrared light observation mode, leakage light slightly occurs in the visible light region in the spectrum using only the variable spectral optical element. However, if the optical characteristic of the beam splitter 13b is suppressed to about visible light region OD = 2 and 100% is reflected in the near infrared region, the SN of near infrared fluorescence is improved. In this case, the narrow-band light image becomes dark, but if a special light observation CCD 13e is used with high sensitivity, the narrow-band light image can be observed.

以上、本発明の内視鏡装置の実施形態及び実施例を説明したが、本発明の内視鏡装置は、これらに限定されるものではなく、各実施形態及び実施例における特徴的な構成を組み合わせたものであってもよい。   As mentioned above, although embodiment and the Example of the endoscope apparatus of this invention were described, the endoscope apparatus of this invention is not limited to these, The characteristic structure in each embodiment and Example is shown. It may be a combination.

本発明の内視鏡装置は、生体組織に励起光及び可視光を照射し、前記生体組織の白色光画像を常時表示させ、且つ、狭帯域光画像や近赤外蛍光画像などの特殊光画像を同時に表示させる内視鏡装置に有用である。   The endoscope apparatus of the present invention irradiates a living tissue with excitation light and visible light, always displays a white light image of the living tissue, and special light images such as a narrow-band light image and a near-infrared fluorescent image. This is useful for an endoscope apparatus that simultaneously displays.

1 照明部
2 光路分岐部
3 白色光画像取得部
4 可変分光光学素子
5 特殊光画像取得部
6 制御部
7 画像合成部
8 表示部
10 生体組織
11 光源部
11a 白色光源
11b 近赤外励起光源
11c ビームスプリッタ
11d レンズ
12 内視鏡先端挿入部
12a ライトガイド
12b 対物光学系
13 カメラアダプタ部
13a 結像光学系
13b ビームスプリッタ
13c 白色光観察用CCD
13d,13d’,13d” 可変分光光学素子
13d1,13d2,13d1’,13d2’,13d1”,13d2” 光学基板
13d11,13d21,13d11’,13d21’,13d11”,13d21”
誘電体多層膜
13e 特殊光観察用CCD
13f 近赤外励起光カットフィルタ
14 画像処理・制御部
14a 白色光画像生成部
14b 狭帯域光観察モード制御部
14c 近赤外光観察モード制御部
14d 特殊光画像生成部
14e 画像合成部
14f 観察モード切替部
14g 観察モード入力部
15 モニタ
DESCRIPTION OF SYMBOLS 1 Illumination part 2 Optical path branching part 3 White light image acquisition part 4 Variable spectral optical element 5 Special light image acquisition part 6 Control part 7 Image composition part 8 Display part 10 Biological tissue 11 Light source part 11a White light source 11b Near-infrared excitation light source 11c Beam splitter 11d Lens 12 End endoscope insertion portion 12a Light guide 12b Objective optical system 13 Camera adapter portion 13a Imaging optical system 13b Beam splitter 13c White light observation CCD
13d, 13d ′, 13d ″ Variable spectral optical elements 13d1, 13d2, 13d1 ′, 13d2 ′, 13d1 ″, 13d2 ″ Optical substrates 13d11, 13d21, 13d11 ′, 13d21 ′, 13d11 ″, 13d21 ″
Dielectric multilayer 13e Special light observation CCD
13f Near-infrared excitation light cut filter 14 Image processing / control unit 14a White light image generation unit 14b Narrow-band light observation mode control unit 14c Near-infrared light observation mode control unit 14d Special light image generation unit 14e Image composition unit 14f Observation mode Switching unit 14g Observation mode input unit 15 Monitor

Claims (14)

被写体に白色光と近赤外励起光を照射する照明部と、
前記被写体で反射した光を第1及び第2の光路に分岐し、且つ、前記被写体から発生した近赤外蛍光を前記第2の光路のみに導く光路分岐部と、
前記第1の光路上に配置され、前記被写体で反射した白色光画像を取得する白色光画像取得部と、
前記第2の光路上に配置され、対向する表面に誘電体多層膜が設けられた対向する2枚の光学基板を有してなり、前記対向する2枚の光学基板同士の距離または角度を変えることにより分光特性が可変となる、少なくとも1つの可変分光光学素子と、
前記可変分光光学素子を透過した光を受光し、狭帯域光画像または近赤外蛍光画像を取得する特殊光画像取得部と、
白色光画像と共に狭帯域光画像を観察する狭帯域光観察モードと白色光画像と共に近赤外光画像を観察する近赤外蛍光観察モードとのいずれかに観察モードを切替える観察モード切替部と、
観察モード切替部による観察モードの切替えに応じて、前記可変分光光学素子における前記対向する2枚の光学基板同士の距離及び角度を制御する制御部を有し、
前記可変分光素子は、少なくとも近赤外蛍光波長を透過させるとともに、少なくとも白色光の波長帯域を間に含む、近赤外蛍光の波長帯域よりも短波長側の所定の波長帯域内において所定の波長幅で透過波長を変化させうる特性を有し、前記制御部を介して前記対向する2枚の光学基板同士の距離及び角度が制御されることにより、前記狭帯域光観察モードでは白色光の波長帯域内における所望の狭帯域に透過ピークを存在させ、且つ、少なくとも近赤外蛍光波長を透過させ、前記近赤外蛍光観察モードでは白色光の波長帯域内において透過ピークを存在させず、且つ、少なくとも近赤外蛍光波長を透過させるように、分光特性が切替わることを特徴とする内視鏡装置。
An illumination unit that irradiates the subject with white light and near-infrared excitation light; and
An optical path branching unit for branching light reflected by the subject into first and second optical paths and guiding near-infrared fluorescence generated from the subject only to the second optical path;
A white light image acquisition unit that is disposed on the first optical path and acquires a white light image reflected by the subject;
There are two opposing optical substrates disposed on the second optical path and provided with a dielectric multilayer film on the opposing surfaces, and the distance or angle between the two opposing optical substrates is changed. At least one variable spectroscopic optical element whose spectral characteristics are variable,
A special light image acquisition unit that receives light transmitted through the variable spectroscopic optical element and acquires a narrow-band light image or a near-infrared fluorescence image;
An observation mode switching unit that switches an observation mode to either a narrow-band light observation mode for observing a narrow-band light image together with a white light image or a near-infrared fluorescence observation mode for observing a near-infrared light image together with a white light image;
In accordance with switching of the observation mode by the observation mode switching unit, a control unit that controls the distance and angle between the two optical substrates facing each other in the variable spectral optical element,
The variable spectroscopic element transmits at least the near-infrared fluorescence wavelength and includes at least a predetermined wavelength within a predetermined wavelength band shorter than the near-infrared fluorescence wavelength band, including at least the wavelength band of white light. The wavelength of white light in the narrow-band light observation mode has the property that the transmission wavelength can be changed by the width, and the distance and angle between the two optical substrates facing each other are controlled via the control unit. A transmission peak is present in a desired narrow band within the band, and at least the near-infrared fluorescence wavelength is transmitted; in the near-infrared fluorescence observation mode, no transmission peak is present in the wavelength band of white light; and An endoscope apparatus characterized by switching spectral characteristics so as to transmit at least near-infrared fluorescence wavelengths.
前記可変分光光学素子は、前記近赤外蛍光観察モードでは紫外光の波長帯域と近赤外蛍光の波長帯域との間の波長帯域内において透過ピークが消失するように、前記制御部を介して前記対向する2枚の光学基板同士の距離及び角度が制御されることを特徴とする請求項1に記載の内視鏡装置。   The variable spectroscopic optical element is connected to the control unit so that a transmission peak disappears in the wavelength band between the wavelength band of ultraviolet light and the wavelength band of near infrared fluorescence in the near infrared fluorescence observation mode. The endoscope apparatus according to claim 1, wherein a distance and an angle between the two optical substrates facing each other are controlled. 前記可変分光光学素子は、前記近赤外蛍光観察モードでは白色光の波長帯域外の所定の狭帯域に透過ピークを存在させるように、前記制御部を介して前記対向する2枚の光学基板同士の距離及び角度が制御されることを特徴とする請求項1に記載の内視鏡装置。   In the near-infrared fluorescence observation mode, the variable spectroscopic optical element is configured such that a transmission peak is present in a predetermined narrow band outside the wavelength band of white light, and the two optical substrates facing each other through the control unit. The endoscope apparatus according to claim 1, wherein the distance and the angle are controlled. 前記可変分光光学素子は、前記制御部を介して、前記狭帯域光観察モードでは前記対向する2枚の光学基板同士の角度が平行に保持された状態で所定の距離に制御され、前記近赤外蛍光観察モードでは前記対向する2枚の光学基板同士が平行でない所定の角度に制御されることを特徴とする請求項2に記載の内視鏡装置。   The variable spectroscopic optical element is controlled to a predetermined distance via the control unit in a state where the angles of the two optical substrates facing each other are held in parallel in the narrowband light observation mode, The endoscope apparatus according to claim 2, wherein in the external fluorescence observation mode, the two optical substrates facing each other are controlled to a predetermined angle that is not parallel to each other. 前記可変分光光学素子は、前記近赤外蛍光観察モードでは白色光の波長帯域よりも短波長側の所定の狭帯域に透過ピークがシフトするように、前記制御部を介して前記対向する2枚の光学基板同士の距離及び角度が制御されることを特徴とする請求項3に記載の内視鏡装置。   In the near-infrared fluorescence observation mode, the two variable spectroscopic optical elements are opposed to each other via the control unit so that a transmission peak is shifted to a predetermined narrow band shorter than the wavelength band of white light. The endoscope apparatus according to claim 3, wherein a distance and an angle between the optical substrates are controlled. 近赤外励起波長をカットするフィルターが、前記第2の光路上に設けられ、
前記可変分光光学素子は、前記近赤外蛍光観察モードでは白色光の波長帯域よりも長波長側の所定の狭帯域に透過ピークがシフトするように、前記制御部を介して前記対向する2枚の光学基板同士の距離及び角度が制御されることを特徴とする請求項3に記載の内視鏡装置。
A filter for cutting near infrared excitation wavelength is provided on the second optical path;
In the near-infrared fluorescence observation mode, the two variable spectroscopic optical elements are opposed to each other via the control unit so that a transmission peak is shifted to a predetermined narrow band longer than the wavelength band of white light. The endoscope apparatus according to claim 3, wherein a distance and an angle between the optical substrates are controlled.
近赤外励起波長をカットするフィルターが、前記第2の光路上に設けられ、
前記可変分光光学素子は、前記近赤外蛍光観察モードでは白色光の波長帯域よりも短波長側の第1の所定の狭帯域及び白色光の波長帯域よりも長波長側の第2の所定の狭帯域に透過ピークがシフトするように、前記制御部を介して前記対向する2枚の光学基板同士の距離及び角度が制御されることを特徴とする請求項3に記載の内視鏡装置。
A filter for cutting near infrared excitation wavelength is provided on the second optical path;
In the near-infrared fluorescence observation mode, the variable spectroscopic optical element has a first predetermined narrow band shorter than the wavelength band of white light and a second predetermined wavelength longer than the wavelength band of white light. The endoscope apparatus according to claim 3, wherein a distance and an angle between the two optical substrates facing each other are controlled via the control unit so that a transmission peak shifts to a narrow band.
前記可変分光光学素子は、前記制御部を介して、前記狭帯域光観察モードでは前記対向する2枚の光学基板同士の角度が平行に保持された状態で所定の距離に制御され、前記近赤外蛍光観察モードでは前記対向する2枚の光学基板同士が紫外光の波長帯域と近赤外蛍光の波長帯域との間の波長帯域内において透過ピークが消失する程度離れた所定の距離に制御されることを特徴とする請求項2に記載の内視鏡装置。   The variable spectroscopic optical element is controlled to a predetermined distance via the control unit in a state where the angles of the two optical substrates facing each other are held in parallel in the narrowband light observation mode, In the external fluorescence observation mode, the two optical substrates facing each other are controlled to a predetermined distance so that the transmission peak disappears in the wavelength band between the wavelength band of ultraviolet light and the wavelength band of near infrared fluorescence. The endoscope apparatus according to claim 2, wherein: 前記可変分光光学素子は、直列に配置された第1の可変分光光学素子と第2の可変分光光学素子からなり、
前記第1の可変分光光学素子と前記第2の可変分光光学素子は、前記狭帯域光観察モードでは白色光の波長帯域内において互いに同じ所望の狭帯域に透過ピークを存在させ、前記近赤外蛍光観察モードでは白色光の波長帯域内において互いの透過波長が重ならない異なる所定の狭帯域に透過ピークを存在させるように、前記制御部を介して夫々の前記対向する2枚の光学基板同士の距離及び角度が制御されることを特徴とする請求項2に記載の内視鏡装置。
The variable spectroscopic optical element comprises a first variable spectroscopic optical element and a second variable spectroscopic optical element arranged in series,
In the narrow band light observation mode, the first variable spectral optical element and the second variable spectral optical element have transmission peaks in the same desired narrow band within the wavelength band of white light, and the near infrared In the fluorescence observation mode, between the two optical substrates facing each other through the control unit, the transmission peak is present in different predetermined narrow bands in which the transmission wavelengths do not overlap each other in the wavelength band of white light. The endoscope apparatus according to claim 2, wherein the distance and the angle are controlled.
近赤外励起波長をカットするフィルターが、前記第2の光路上に設けられ、
前記可変分光光学素子は、近赤外励起波長及び近赤外蛍光波長を透過させるとともに、少なくとも白色光の波長帯域を間に含む、近赤外励起光の波長帯域よりも短波長側の所定の波長帯域内において所定の波長幅で透過波長を変化させうる特性を有し、前記制御部を介して前記対向する2枚の光学基板同士の距離及び角度が制御されることにより、前記狭帯域光観察モードでは白色光の波長帯域内における所望の狭帯域に透過ピークを存在させ、且つ、近赤外励起波長及び近赤外蛍光波長を透過させ、前記近赤外蛍光観察モードでは紫外光の波長帯域と近赤外励起光の波長帯域との間の波長帯域内において透過ピークが消失し、且つ、近赤外励起波長及び近赤外蛍光波長を透過させるように、分光特性が切替わることを特徴とする請求項1に記載の内視鏡装置。
A filter for cutting near infrared excitation wavelength is provided on the second optical path;
The variable spectroscopic optical element transmits a near-infrared excitation wavelength and a near-infrared fluorescence wavelength, and includes at least a wavelength band of white light therebetween, and a predetermined wavelength side shorter than the wavelength band of near-infrared excitation light. The narrow-band light has a characteristic capable of changing a transmission wavelength within a wavelength band with a predetermined wavelength width, and the distance and angle between the two optical substrates facing each other are controlled via the control unit. In the observation mode, a transmission peak exists in a desired narrow band within the wavelength band of white light, and the near infrared excitation wavelength and near infrared fluorescence wavelength are transmitted. In the near infrared fluorescence observation mode, the wavelength of ultraviolet light is transmitted. The spectral characteristics are switched so that the transmission peak disappears in the wavelength band between the band and the wavelength band of the near-infrared excitation light, and the near-infrared excitation wavelength and near-infrared fluorescence wavelength are transmitted. Characterized in claim 1 Placing the endoscope apparatus.
近赤外励起波長をカットするフィルターが、前記第2の光路上に設けられ、
前記可変分光光学素子は、近赤外励起波長及び近赤外蛍光波長を透過させるとともに、少なくとも白色光の波長帯域を間に含む、近赤外励起光の波長帯域よりも短波長側の所定の波長帯域内において所定の波長幅で透過波長を変化させうる特性を有し、前記制御部を介して前記対向する2枚の光学基板同士の距離及び角度が制御されることにより、前記狭帯域光観察モードでは白色光の波長帯域内における所望の狭帯域に透過ピークを存在させ、且つ、近赤外励起波長及び近赤外蛍光波長を透過させ、前記近赤外蛍光観察モードでは白色光の波長帯域よりも短波長側の所定の狭帯域に透過ピークがシフトし、且つ、近赤外励起波長及び近赤外蛍光波長を透過させるように、分光特性が切替わることを特徴とする請求項1に記載の内視鏡装置。
A filter for cutting near infrared excitation wavelength is provided on the second optical path;
The variable spectroscopic optical element transmits a near-infrared excitation wavelength and a near-infrared fluorescence wavelength, and includes at least a wavelength band of white light therebetween, and a predetermined wavelength side shorter than the wavelength band of near-infrared excitation light. The narrow-band light has a characteristic capable of changing a transmission wavelength within a wavelength band with a predetermined wavelength width, and the distance and angle between the two optical substrates facing each other are controlled via the control unit. In the observation mode, a transmission peak exists in a desired narrow band within the wavelength band of white light, and the near-infrared excitation wavelength and near-infrared fluorescence wavelength are transmitted. In the near-infrared fluorescence observation mode, the wavelength of white light is transmitted. 2. The spectral characteristics are switched so that the transmission peak shifts to a predetermined narrow band shorter than the band, and the near-infrared excitation wavelength and near-infrared fluorescence wavelength are transmitted. The endoscope apparatus described in 1.
前記可変分光光学素子は、前記制御部を介して、前記狭帯域光観察モードでは前記対向する2枚の光学基板同士の角度が平行に保持された状態で所定の距離に制御され、前記近赤外蛍光観察モードでは前記対向する2枚の光学基板同士が平行でない所定の角度に制御されることを特徴とする請求項10に記載の内視鏡装置。   The variable spectroscopic optical element is controlled to a predetermined distance via the control unit in a state where the angles of the two optical substrates facing each other are held in parallel in the narrowband light observation mode, The endoscope apparatus according to claim 10, wherein in the external fluorescence observation mode, the two optical substrates facing each other are controlled to a predetermined angle that is not parallel to each other. 前記可変分光光学素子は、前記制御部を介して、前記狭帯域光観察モードでは前記対向する2枚の光学基板同士の角度が平行に保持された状態で所定の距離に制御され、前記近赤外蛍光観察モードでは前記対向する2枚の光学基板同士が紫外光の波長帯域と近赤外励起光の波長帯域との間の波長帯域内において透過ピークが消失する程度離れた所定の距離に制御されることを特徴とする請求項10に記載の内視鏡装置。   The variable spectroscopic optical element is controlled to a predetermined distance via the control unit in a state where the angles of the two optical substrates facing each other are held in parallel in the narrowband light observation mode, In the external fluorescence observation mode, the two optical substrates facing each other are controlled to a predetermined distance that is such that the transmission peak disappears in the wavelength band between the ultraviolet wavelength band and the near-infrared excitation light wavelength band. The endoscope apparatus according to claim 10, wherein the endoscope apparatus is provided. 前記観察モード切替部が、前記狭帯域光観察モードと前記近赤外蛍光観察モードとを時分割で切替えるように構成されていることを特徴とする請求項1〜13のいずれかに記載の内視鏡装置。   The said observation mode switching part is comprised so that the said narrow-band light observation mode and the said near-infrared fluorescence observation mode may be switched by a time division, The inside in any one of Claims 1-13 characterized by the above-mentioned. Endoscopic device.
JP2011017085A 2011-01-28 2011-01-28 Endoscope apparatus Withdrawn JP2012157383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011017085A JP2012157383A (en) 2011-01-28 2011-01-28 Endoscope apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011017085A JP2012157383A (en) 2011-01-28 2011-01-28 Endoscope apparatus

Publications (1)

Publication Number Publication Date
JP2012157383A true JP2012157383A (en) 2012-08-23

Family

ID=46838453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011017085A Withdrawn JP2012157383A (en) 2011-01-28 2011-01-28 Endoscope apparatus

Country Status (1)

Country Link
JP (1) JP2012157383A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015080215A1 (en) * 2013-11-28 2015-06-04 オリンパス株式会社 Fluorescent observation device
JP2016120105A (en) * 2014-12-25 2016-07-07 ソニー株式会社 Lighting device, lighting method, and observation device
JP2016120104A (en) * 2014-12-25 2016-07-07 ソニー株式会社 Lighting device, lighting method, and observation device
WO2016117036A1 (en) * 2015-01-20 2016-07-28 オリンパス株式会社 Image processing device, image processing device operation method, image processing device operation program and endoscope device
JP2019013767A (en) * 2018-08-28 2019-01-31 ソニー株式会社 Illumination device, illumination method, and observation device
JP2019030669A (en) * 2018-08-27 2019-02-28 ソニー株式会社 Illuminating device, illumination method and observation device
CN109475270A (en) * 2016-11-01 2019-03-15 奥林巴斯株式会社 Somatoscopy system
EP3614902A4 (en) * 2017-04-27 2020-12-09 Curadel, LLC Range-finding in optical imaging
US10908430B2 (en) 2014-12-25 2021-02-02 Sony Corporation Medical imaging system, illumination device, and method
CN113518910A (en) * 2019-01-17 2021-10-19 莫勒库莱特股份有限公司 Modular system for multi-modality imaging and analysis

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015080215A1 (en) * 2013-11-28 2017-03-16 オリンパス株式会社 Fluorescence observation equipment
WO2015080215A1 (en) * 2013-11-28 2015-06-04 オリンパス株式会社 Fluorescent observation device
US9901253B2 (en) 2013-11-28 2018-02-27 Olympus Corporation Fluorescence observation apparatus
CN105764401A (en) * 2013-11-28 2016-07-13 奥林巴斯株式会社 Fluorescent observation device
US10908430B2 (en) 2014-12-25 2021-02-02 Sony Corporation Medical imaging system, illumination device, and method
JP2016120105A (en) * 2014-12-25 2016-07-07 ソニー株式会社 Lighting device, lighting method, and observation device
JP2016120104A (en) * 2014-12-25 2016-07-07 ソニー株式会社 Lighting device, lighting method, and observation device
US11647900B2 (en) 2014-12-25 2023-05-16 Sony Corporation Medical imaging system, illumination device, and method
CN107113405A (en) * 2015-01-20 2017-08-29 奥林巴斯株式会社 Image processing apparatus, the method for work of image processing apparatus, the working procedure of image processing apparatus and endoscope apparatus
JPWO2016117036A1 (en) * 2015-01-20 2017-10-26 オリンパス株式会社 Image processing apparatus, operation method of image processing apparatus, operation program for image processing apparatus, and endoscope apparatus
CN107113405B (en) * 2015-01-20 2019-01-15 奥林巴斯株式会社 Image processing apparatus, the working method of image processing apparatus, recording medium and endoscope apparatus
US10765295B2 (en) 2015-01-20 2020-09-08 Olympus Corporation Image processing apparatus for detecting motion between two generated motion detection images based on images captured at different times, method for operating such image processing apparatus, computer-readable recording medium, and endoscope device
WO2016117036A1 (en) * 2015-01-20 2016-07-28 オリンパス株式会社 Image processing device, image processing device operation method, image processing device operation program and endoscope device
CN109475270B (en) * 2016-11-01 2021-04-27 奥林巴斯株式会社 Living body observation system
CN109475270A (en) * 2016-11-01 2019-03-15 奥林巴斯株式会社 Somatoscopy system
EP3614902A4 (en) * 2017-04-27 2020-12-09 Curadel, LLC Range-finding in optical imaging
US10986999B2 (en) 2017-04-27 2021-04-27 Curadel, LLC Range-finding in optical imaging
JP2019030669A (en) * 2018-08-27 2019-02-28 ソニー株式会社 Illuminating device, illumination method and observation device
JP2019013767A (en) * 2018-08-28 2019-01-31 ソニー株式会社 Illumination device, illumination method, and observation device
CN113518910A (en) * 2019-01-17 2021-10-19 莫勒库莱特股份有限公司 Modular system for multi-modality imaging and analysis

Similar Documents

Publication Publication Date Title
JP2012157383A (en) Endoscope apparatus
JP6728070B2 (en) Method and means for multispectral imaging
JP6340424B2 (en) Endoscope system and light source device for endoscope
JP4818753B2 (en) Endoscope system
US20160262602A1 (en) Laparoscopic Cholecystectomy With Fluorescence Cholangiography
WO2011074448A1 (en) Light control device, control device, optical scope and optical scanning device
JP6615959B2 (en) Endoscope system
US8039816B2 (en) Fluorescence observation apparatus
US20070270652A1 (en) Endoscope system
JP5506472B2 (en) Fluorescence endoscope device
JP6412709B2 (en) Observation image acquisition system
EP3009098A1 (en) Microscope system for surgery
WO2007083437A1 (en) Imaging system
JP2007313171A (en) Endoscopic system
JP2018089109A (en) Endoscope apparatus and method of operating endoscope apparatus
JP5489785B2 (en) Fluorescence endoscope device
JP4919780B2 (en) Fluorescence observation equipment
WO2013001994A1 (en) Spectral-image-acquiring device and spectral-image-acquiring method
WO2015025595A1 (en) Endoscope system and operation method
US20180092519A1 (en) Infrared fluorescence observation device
EP2283766A1 (en) Fluorescence observation device
US20220142568A1 (en) Optical device and endoscope system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140401