JP2012156246A - 半導体ウェハ及び半導体デバイスウェハ - Google Patents

半導体ウェハ及び半導体デバイスウェハ Download PDF

Info

Publication number
JP2012156246A
JP2012156246A JP2011013071A JP2011013071A JP2012156246A JP 2012156246 A JP2012156246 A JP 2012156246A JP 2011013071 A JP2011013071 A JP 2011013071A JP 2011013071 A JP2011013071 A JP 2011013071A JP 2012156246 A JP2012156246 A JP 2012156246A
Authority
JP
Japan
Prior art keywords
wafer
semiconductor
semiconductor wafer
chamfered
grinding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011013071A
Other languages
English (en)
Inventor
Hidesato Nemoto
秀聖 根本
Shoji Masuyama
尚司 増山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2011013071A priority Critical patent/JP2012156246A/ja
Priority to US13/356,799 priority patent/US8796820B2/en
Publication of JP2012156246A publication Critical patent/JP2012156246A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • H01L21/3043Making grooves, e.g. cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02021Edge treatment, chamfering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

【課題】デバイス作製時における裏面研削後のウェハ端面が理想的なR面取形状を成し、欠けや割れが発生しにくくなり、デバイス製造歩留を大幅に向上させることができる半導体ウェハを提供する。
【解決手段】外周縁部に面取加工を施した円盤状の半導体ウェハ10において、裏面研削の際にウェハ端面11における割れや欠けの発生を防止すべく、ウェハ端面11の周方向に1周に亘って1箇所以上の割れ欠け防止溝12を設けたものである。
【選択図】図1

Description

本発明は、外周縁部に面取加工を施した円盤状の半導体ウェハ及び半導体デバイスウェハに関するものである。
図22に示すように、一般的な半導体ウェハ220は、ウェハ表面側及びウェハ裏面側の外周縁部に面取加工を施した円盤状のものである。
以下に、GaAs等の半導体ウェハ220の一般的な作製手順を説明する。
先ず、成長させた半導体結晶の外面を研削して円筒状に加工し、内周刃やワイヤソーによって所定の厚さのウェハ形状にスライスし、円盤状のアズスライスウェハを得る。
その後、ウェハ端面の欠けや割れを防止すべく、ウェハ端面研削機(面取機)により、特にウェハサイズがφ125mm以下の場合はオリエンテーションフラット(OF)とインデックスフラット(IF)を含む外周縁部、φ150mm以上の場合はノッチを含む外周縁部を砥石等を用いて面取加工する。
次いで、ラップ又は平面研削で平坦性を高め、加工変質層の除去及び清浄化のためにエッチングを行う。エッチング後は、両面を高平坦性を有する鏡面とするために両面研磨を行う。この両面研磨では、通常不織布タイプの研磨布を用いて研磨を行う。
その後、ウェハ表面を鏡面仕上げ面とするために発泡ポリウレタンタイプの柔らかい研磨布を用いた片面研磨を行い、次いで洗浄を行い、最後に乾燥させ、半導体ウェハ220を得る。
前述の面取加工を行う目的は、その後の研磨工程からデバイス作製工程に至るプロセス中において、半導体ウェハ220のウェハ端面221の欠けや割れの発生を防止することである。
特に、図23に示すように、デバイス作製時において、デバイスサイズを小型化する目的で、半導体ウェハ220のウェハ表面に半導体エピタキシャル層などのデバイス構造層230を形成した後に、特性への影響のないウェハ裏面側を研削して半導体デバイスウェハ231を作製することがあり、最終的には100μm前後にまで薄くすることがある。
このとき、図22に示した面取形状の場合、半導体ウェハ220の厚さが薄くなるに連れて、ウェハ端面221の形状が鋭角になり、ウェハ端面221において無理な応力が加わりやすくなり、欠けや割れが発生する原因となってしまう。
この点を考慮し、裏面研削(バックラップ)後のウェハ端面221の形状が鋭角とならないように工夫したものが提案されている。
例えば、特許文献1では、ウェハ端面を、ウェハ表面と鋭角を成し、且つウェハ裏面と鈍角を成すように傾斜付けをし、そのウェハ端面のウェハ表面側の外周縁部とウェハ裏面側の外周縁部に面取加工を施した半導体ウェハが提案されている。
こうすることで、デバイス作製時における裏面研削後のウェハ端面の形状を、あたかも面取したかのような疑似円弧状にすることができ、欠けや割れの発生を低減することができる。
特開2006−40994号公報 特開2008−156189号公報
しかしながら、特許文献1の半導体ウェハは、裏面研削を行う前までは、ウェハ表面側付近のウェハ端面はかなり鋭角な形状となっており、真空ピンセット等によるハンドリング時や、ウェハトレイなどとの接触時において、無理な応力が加わりやすく、欠けや割れが発生しやすい形状と言える。
また、欠けや割れが発生することなく、裏面研削まで実施できたとしても、裏面研削後のウェハ端面とウェハ表面側はR形状となっているが、ウェハ裏面側はC面取しかされていない状態となるため、欠けや割れが発生する可能性はまだ残っていると言える。
また、特許文献2では、ウェハ2枚分以上の厚さを有する厚膜ウェハの中央から分割する基点としてウェハ端面に溝を形成した半導体ウェハが提案されている。
これは、厚膜ウェハを径方向に2分割にスライスするためのツールを誘導するための溝であり、欠けや割れの発生を防止するものではない。また、溝の深さ、形状等に関する細かい規定もなく、スライス後のウェハ端面には未面取部が形成されるため、欠けや割れが発生しやすい形状になることが予想される。
本発明はかかる点に立って為されたものであって、その目的とするところは、前記した従来技術の欠点を解消し、デバイス作製時における裏面研削後のウェハ端面が理想的なR面取形状を成し、欠けや割れが発生しにくくなり、デバイス製造歩留を大幅に向上させることができる半導体ウェハ及び半導体デバイスウェハを提供することである。
前記目的を達成するために創案された本発明は、外周縁部に面取加工を施した円盤状の半導体ウェハにおいて、裏面研削の際にウェハ端面における割れや欠けの発生を防止すべく、ウェハ端面の周方向に1周に亘って1箇所以上の割れ欠け防止溝を設けた半導体ウェハである。
前記割れ欠け防止溝とウェハ端面との境界部に面取加工を施すと良い。
ウェハ表面側の外周縁部及び前記割れ欠け防止溝とウェハ端面との境界部における面取部にR面取部を含み、その曲率半径が20μm以上100μm以下であると良い。
ウェハ裏面側の外周縁部における面取部にR面取部を含み、その曲率半径が20μm以上1000μm以下であると良い。
ウェハ表面から直近の割れ欠け防止溝は、該割れ欠け防止溝とウェハ端面とのウェハ表面側の境界部が裏面研削後にウェハ裏面側の外周縁部となる位置に形成されると良い。
ウェハ表面から直近の割れ欠け防止溝は、裏面研削後のウェハ厚さが40μm以上200μm以下となる位置に形成されると良い。
前記割れ欠け防止溝の深さが、20μm以上200μm以下であると良い。
また、本発明は、裏面研削が施された半導体ウェハと、前記裏面研削が施された半導体ウェハのウェハ表面側に形成されたデバイス構造層とを有する半導体デバイスウェハにおいて、前記裏面研削が施された半導体ウェハの側面に曲率半径Rd(μm)の面取部が形成され、前記裏面研削が施された半導体ウェハの厚さをt(μm)としたとき、(1/2)t≦Rd≦(3/5)tである半導体デバイスウェハである。
また、本発明は、裏面研削が施された半導体ウェハと、前記裏面研削が施された半導体ウェハのウェハ表面側に形成されたデバイス構造層とを有する半導体デバイスウェハにおいて、前記裏面研削が施された半導体ウェハの側面は、第1の面取部を有する表面側境界部と、第2の面取部を有する裏面側境界部と、前記表面側境界部と前記裏面側境界部との間に設けられる端部を有し、前記第1及び第2の面取部は、前記裏面研削が施された半導体ウェハの厚さをt(μm)としたとき、(1/10)t≦Rd≦(1/2)tを満たす曲率半径Rdを有し、且つ、前記端部は、前記Rdより大きい曲率半径を有する半導体デバイスウェハである。
本発明によれば、デバイス作製時における裏面研削後のウェハ端面が好適なR面取形状を成し、欠けや割れが発生しにくくなり、デバイス製造歩留を大幅に向上させることができる。
本発明に係る半導体ウェハの断面を示す模式図である。 本発明に係る半導体ウェハの断面を示す模式図である。 本発明に係る半導体ウェハの断面を示す模式図である。 図1〜3の半導体ウェハを用いて作製された半導体デバイスウェハの断面を示す模式図である。 実施例1において、面取を行う砥石の断面を示す模式図である。 実施例1において、面取を行った後の面取形成ウェハの断面を示す模式図である。 実施例1において、溝を形成するための砥石の断面を示す模式図である。 実施例1において、溝形成を行った後の溝形成ウェハの断面を示す模式図である。 実施例1において、両面を研磨した半導体ウェハの断面を示す模式図である。 実施例1において、デバイス作製時に裏面研削を行った半導体デバイスウェハの断面を示す模式図である。 実施例2において、面取と溝形成を行う砥石の断面を示す模式図である。 実施例2において、面取と溝形成を行った後の溝形成ウェハの断面を示す模式図である。 実施例2において、両面を研磨した半導体ウェハの断面を示す模式図である。 実施例2において、デバイス作製時に裏面研削を行った半導体デバイスウェハの断面を示す模式図である。 実施例3において、面取と溝形成を行う砥石の断面を示す模式図である。 実施例3において、両面を研磨した半導体ウェハの断面を示す模式図である。 実施例3において、デバイス作製時に裏面研削を行った半導体デバイスウェハの断面を示す模式図である。 比較例1において、面取を行う砥石の断面を示す模式図である。 比較例1において、面取を行った後の面取形成ウェハの断面を示す模式図である。 比較例1において、両面を研磨した半導体ウェハの断面を示す模式図である。 比較例1において、デバイス作製時に裏面研削を行った半導体デバイスウェハの断面を示す模式図である。 従来の一般的な半導体ウェハの断面を示す模式図である。 図22の半導体ウェハにおいて、デバイス作製時に裏面研削を行った半導体デバイスウェハの断面を示す模式図である。
以下、本発明の好適な実施の形態を添付図面にしたがって説明する。
図1〜3は、本発明に係る代表的な半導体ウェハの断面を示す模式図である。
図1〜3に示すように、本発明に係る代表的な半導体ウェハ10、20、30は、外周縁部に面取加工を施した円盤状のものであり、裏面研削の際にウェハ端面11、21、31における割れや欠けの発生を防止すべく、ウェハ端面11、21、31の周方向に1周に亘って1箇所以上の割れ欠け防止溝12、22、32を設けたことを特徴とする。
この半導体ウェハ10、20、30を作製するためには、先ず、成長させた半導体結晶の外面を研削して円筒状に加工し、内周刃やワイヤソーによって所定の厚さのウェハ形状にスライスし、円盤状のアズスライスウェハを作製する。
その後、アズスライスウェハの外周縁部に面取加工を施して面取形成ウェハを作製し、更に又は同時にウェハ端面11、21、31の周方向に1周に亘って1箇所以上の割れ欠け防止溝12、22、32を形成して溝形成ウェハを作製する。
最後に、溝形成ウェハのウェハ表面を研磨してミラー面にすると、半導体ウェハ10、20、30が得られる。
得られた半導体ウェハ10、20、30は、デバイス作製工程に供される。デバイス作製工程においては、半導体ウェハ10、20、30のウェハ表面に半導体エピタキシャル層などのデバイス構造層を形成した後、所定の裏面研削位置まで裏面研削を施して、裏面研削が施された半導体ウェハ(以下、裏面研削ウェハともいう)41上にデバイス構造層42が形成された半導体デバイスウェハ40を作製する(図4参照)。この半導体デバイスウェハ40の構成については後述する。その後、半導体デバイスウェハは各種工程を経て半導体デバイスとなる。
以下、本発明に係る半導体ウェハ10、20、30の具体的な構成を説明する。
半導体ウェハ10、20、30は、Si、GaAs、GaN、AlN、GaP、InP、InSb、InAs、SiC、サファイアのいずれかからなると良い。
割れ欠け防止溝12、22、32を1箇所以上としたのは、デバイス作製プロセスで、裏面研削を行うことが1回とは限らず、複数回に分けて実施される場合を想定し、その場合毎に、欠けや割れを防止するべく理想的な面取形状が得られるようにするためである。
裏面研削を複数回に分けて実施するデバイス作製プロセスの一例としては、例えば、ウェハ表面側から順に第1の割れ欠け防止溝、第2の割れ欠け防止溝が形成され、ウェハ表面をミラー面にした半導体ウェハに対し、半導体エピタキシャル層を成長させ、その後、仮の裏面研削により第2の割れ欠け防止溝まで研削を実施し、更に半導体エピタキシャル層上に、絶縁膜、電極、リセスなどのデバイス構造を加工・形成した後、裏面研削により第1の割れ欠け防止溝まで研削を実施する例が考えられる。
割れ欠け防止溝12、22、32とウェハ端面11、21、31との境界部13a,13b、23a,23b、33a,33bには面取加工が施される。また、ウェハ表面から直近の割れ欠け防止溝12、22、32は、その割れ欠け防止溝12、22、32とウェハ端面11、21、31とのウェハ表面側の境界部13a、23a、33aが裏面研削後に半導体デバイスウェハのウェハ裏面側の外周縁部となる位置に形成される。
このとき、ウェハ表面から直近の割れ欠け防止溝12、22、32は、裏面研削後の半導体デバイスウェハにおける裏面研削ウェハの厚さが40μm以上200μm以下となる位置に形成されることが好ましい。デバイス作製時に裏面研削後の半導体基板のウェハ厚さは、最も薄いもので10〜40μm未満のものもあるが、この場合、割れ欠け防止溝12、22、32を入れることが困難になるだけでなく、面取加工も難しくなり、また面取加工ができたとしても面取幅が小さくなるため、欠けや割れが発生する可能性が高くなってしまう。そのため、裏面研削後の半導体デバイスウェハにおける裏面研削ウェハの厚さの下限値を40μmとした。また、裏面研削後の半導体デバイスウェハにおける裏面研削ウェハの厚さの上限値は、裏面研削ウェハの厚さは厚いもので200μmという場合もあるため、その厚さに合わせて200μmとした。
ウェハ表面側の外周縁部及び割れ欠け防止溝12、22、32とウェハ端面11、21、31との境界部13a,13b、23a,23b、33a,33bにおける面取部にR面取部を含み、その曲率半径が20μm以上100μm以下であることが好ましい。これは、デバイス作製時の裏面研削後の半導体デバイスウェハにおける裏面研削ウェハの厚さが40μm以上200μm以下と想定し、且つ、欠けや割れに最も効果的と考えられるR面取にて面取を行った場合に、その曲率半径が裏面研削後の半導体デバイスウェハにおける裏面研削ウェハの厚さの半分となる20μm以上100μm以下としたためである。
割れ欠け防止溝12、22、32の深さが、20μm以上200μm以下であることが好ましい。20μm以上とするのは、前記のように裏面研削後の半導体デバイスウェハにおける裏面研削ウェハの厚さが最薄で40μmとなり、そのときのR面取の曲率半径が20μmとなる場合を想定し、割れ欠け防止溝12、22、32の深さも同様に最小で20μmとしたためである。また、200μmより深い場合、面取後から研磨プロセス、デバイス作製プロセスを経る間に、割れ欠け防止溝から上の部分が欠けるリスクが高くなってしまうことが分かったため、割れ欠け防止溝12、22、32の深さの上限値を200μmと規定した。
半導体ウェハ10、20、30のウェハ厚さをdとしたとき、割れ欠け防止溝12、22、32の底面部14、24、34の幅wは、(d−80μm)以下であることが好ましい。これは、前記のように裏面研削後の半導体デバイスウェハにおける裏面研削ウェハの厚さが薄いもので40μmのときを想定し、半導体ウェハのウェハ表面側で40μm、ウェハ裏面側で40μmで足して80μmを半導体ウェハのウェハ厚さdから引いた厚さを、割れ欠け防止溝12、22、32の底面部14、24、34の幅wの最大値とし、最小値は砥石の形状次第となるが、理想値としては0μm(例えば、図1の場合)までということで、w=(d−80μm)以下とした。なお、割れ欠け防止溝12、22、32の底面部14、24、34の形状は平坦形状に限らず、U字形状や凸形状など、割れ欠け防止溝12、22、32の深さや割れ欠け防止溝12、22、32とウェハ端面11、21、31との境界部13a,13b、23a,23b、33a,33bにおけるR面取部のR形状が、前記した条件に従っていれば、特にこだわらなくても良い。
半導体ウェハ10、20、30のウェハ裏面側の外周縁部における面取部15、25、35にR面取部を含み、その曲率半径が20μm以上1000μm以下であることが好ましい。これは、前記の面取の有効性が得られる最小面取幅を20μmと考え、且つ、最も効果的なR面取とした場合の曲率半径を20μm以上とし、また実用的なスライス後のアズスライスウェハの厚さの最大値は約1000μmであることが多いことから、全てR面取した場合を想定して曲率半径を1000μm以下と規定した。
以上説明した半導体ウェハ10、20、30は、半導体ウェハ10、20、30のウェハ裏面から最表面側の割れ欠け防止溝12、22、32の境界部13a、23a、33aまで、裏面研削を施して半導体デバイスウェハの作製に用いる。これにより、従来は鋭角となっていたデバイス作製時における裏面研削後の半導体デバイスウェハにおける裏面研削ウェハのウェハ端面が好適なR面取形状を成し、欠けや割れが発生しにくくなり、デバイス製造歩留を大幅に向上させることができる。
次に、本発明の半導体デバイスウェハについて説明する。
図4に示すように、本発明に係る半導体デバイスウェハ40は、裏面研削ウェハ41と、裏面研削ウェハ41のウェハ表面側に形成されたデバイス構造層42とを有する。
この半導体デバイスウェハ40は、前述した半導体ウェハ10、20、30を用いて作製され、裏面研削ウェハ41の側面43に曲率半径Rd(μm)の面取部が形成され、裏面研削ウェハ41の厚さをt(μm)としたとき、曲率半径Rdが(1/2)t≦Rd≦(3/5)tを満たすものである。
このような構成の半導体デバイスウェハ40によれば、割れや欠けの発生を抑制できる。
(実施例1)
φ103mmに円筒研削したGaAs単結晶インゴットを、マルチワイヤソーにて800μm厚にスライスし、円盤状のアズスライスウェハを得た。そのアズスライスウェハに対して、ウェハ端面研削機により面取加工を行った。面取では、先ず図5に示す砥石50を用いて、ウェハ径をφ100mmまで研削しながら、図6に示すように、アズスライスウェハのウェハ表面側の外周縁部60aを角度15°のC面取形状となるように、またその先端61を曲率半径50μmのR面取形状となるようにした。同時にウェハ裏面側の外周縁部60bを曲率半径800μmのR面取形状となるようにした。このとき、所定の面方位にOFと表裏を判別するためのIFも同時に形成した。この面取加工により面取形成ウェハ62を得た。
次いで、図7に示す高さ50μmの突起部70を有する砥石71を用いて、面取形成ウェハ62のウェハ表面側から(100μm+ウェハ表面側の研磨量相当分)の位置に砥石71の突起部70が当たるように高さを調整して、図8に示すように、面取形成ウェハ62のウェハ端面80の周方向に1周に亘って割れ欠け防止溝81を形成した。なお、砥石71は、同じ形状の3つの突起部70を有するものを示したが、突起部は1つであっても当然良い。また高さの異なる3つの突起部を設けても良く、例えば、異なる突起部により、徐々に溝を深く形成するようにしても良い。また、OF部とIF部においても同様に割れ欠け防止溝81を形成した。このとき、割れ欠け防止溝81とウェハ端面80との境界部82a、82bにおける面取部も曲率半径50μmのR面取形状とした。この溝加工により溝形成ウェハ83を得た。
その後、図9に示すように、一般的な研磨プロセスにて溝形成ウェハ83のウェハ表面側を100μm、ウェハ裏面側を75μm研磨し、厚さ625μmの半導体ウェハ90を完成させた。ここでは、両面をミラー面としたがウェハ裏面はラップ面/エッチ面でも良い。このとき、半導体ウェハ90のウェハ表面からウェハ端面80の周方向に設けた割れ欠け防止溝81とウェハ端面80とのウェハ表面側の境界部82aまでの垂直距離Lは100μmであった。
そして、図10に示すように、半導体ウェハ90のウェハ表面に半導体エピタキシャル層などのデバイス構造層100を形成するデバイス作製プロセスを経て、最後に半導体ウェハ90のウェハ表面から100μmの厚さになるまで裏面研削を行った。この結果、裏面研削が施された半導体ウェハ(裏面研削ウェハ)101上にデバイス構造層100が形成されてなり、裏面研削ウェハ101のウェハ表面側の外周縁部102aと裏面側の外周縁部102bに、曲率半径50μmのR面取形状を成す厚さ100μmの半導体デバイスウェハ103が完成し、欠けや割れなどの発生を抑制することに成功した。
同条件で10枚を裏面研削まで実施した結果、1枚も欠けや割れを発生させることはなかった。
(実施例2)
φ155mmに円筒研削したGaAs単結晶インゴットを、マルチワイヤソーにて900μm厚にスライスし、円盤状のアズスライスウェハを得た。そのアズスライスウェハに対して、ウェハ端面研削機により面取加工を行った。面取では、先ず図11に示す高さ80μmで平坦部110が280μmの突起部111を有する砥石112を用いて、ウェハ径をφ150mmまで研削しながら、図12に示すように、アズスライスウェハのウェハ表面側の外周縁部120aを角度15°のC面取形状となるように、またその先端121を曲率半径70μmのR面取形状となるようにした。同時にウェハ裏面側の外周縁部120bも角度15°のC面取形状となるように、またその先端122を曲率半径150μmのR面取形状となるようにし、同時に突起部111によりアズスライスウェハのウェハ端面123の周方向に1周に亘って割れ欠け防止溝124を形成した。このとき、所定の面方位にノッチを形成するが、ノッチ研削用砥石にも図11のような高さ80μmの突起部を有するものを用いて、アズスライスウェハの周方向に形成する割れ欠け防止溝124と同様の割れ欠け防止溝124を形成した。このとき、割れ欠け防止溝124とウェハ端面123との境界部125a、125bにおける面取部も曲率半径70μmのR面取形状とした。この面取加工及び溝加工により溝形成ウェハ126を得た。
その後、図13に示すように、一般的な研磨プロセスにて溝形成ウェハ126のウェハ表面側を100μm、ウェハ裏面側を75μm研磨し、厚さ725μmの半導体ウェハ130を完成させた。ここでは、両面をミラー面としたがウェハ裏面はラップ面/エッチ面でも良い。このとき、半導体ウェハ130のウェハ表面からウェハ端面123の周方向に設けた割れ欠け防止溝124とウェハ端面123とのウェハ表面側の境界部125aまでの垂直距離Lは140μmであり、割れ欠け防止溝124の底面部127の長さは280μmであった。
そして、図14に示すように、半導体ウェハ130のウェハ表面に半導体エピタキシャル層などのデバイス構造層140を形成するデバイス作製プロセスを経て、最後に半導体ウェハ130のウェハ表面から140μmの厚さになるまで裏面研削を行った。この結果、裏面研削が施された半導体ウェハ(裏面研削ウェハ)141上にデバイス構造層140が形成されてなり、裏面研削ウェハ141のウェハ表面側の外周縁部142aとウェハ裏面側の外周縁部142bに、曲率半径70μmのR面取形状を成す厚さ140μmの半導体ウェハ143が完成し、欠けや割れなどの発生を抑制することに成功した。
同条件で10枚を裏面研削まで実施した結果、1枚も欠けや割れを発生させることはなかった。
(実施例3)
HVPE法によって成長させた厚さ1000μmのGaNウェハをφ54mmに円筒研削し、円盤状のアズスライスウェハを得た。そのアズスライスウェハを、一般的な研磨プロセスにてウェハ表面側を300μm、ウェハ裏面側を300μm研磨し、厚さ400μmの両面ミラーウェハを完成させた。その後、ウェハ端面研削機により面取加工を行った。面取では、先ず図15に示す高さ50μmで平坦部150が190μmの突起部151を有する砥石152を用いて、ウェハ径をφ50.8mmまで研削しながら、図16に示すように、両面ミラーウェハのウェハ表面側の外周縁部160a及びウェハ裏面側の外周縁部160bをそれぞれ曲率半径50μmのR面取形状となるようにし、同時に突起部151により両面ミラーウェハのウェハ端面161の周方向に1周に亘って割れ欠け防止溝162を形成した。このとき、所定の面方位にOFと表裏を判別するためのIFも同時に形成し、同様の割れ欠け防止溝162を形成した。このとき、割れ欠け防止溝162とウェハ端面161との境界部163a、163bにおける面取部も曲率半径50μmのR面取形状とした。この面取加工及び溝加工により半導体ウェハ154を得た。
そして、図17に示すように、半導体ウェハ164のウェハ表面に半導体エピタキシャル層などのデバイス構造層170を形成するデバイス作製プロセスを経て、最後に半導体ウェハ164のウェハ表面から100μmの厚さになるまで裏面研削を行った。この結果、裏面研削が施された半導体ウェハ(裏面研削ウェハ)171上にデバイス構造層170が形成されてなり、裏面研削ウェハ171のウェハ表面側の外周縁部172aとウェハ裏面側の外周縁部172bに、曲率半径50μmのR面取形状を成す厚さ100μmの半導体ウェハ173が完成し、欠けや割れなどの発生を抑制することに成功した。
同条件で10枚を裏面研削まで実施した結果、1枚も欠けや割れを発生させることはなかった。
(比較例1)
φ103mmに円筒研削したGaAs単結晶インゴットを、マルチワイヤソーにて800μm厚にスライスし、円盤状のアズスライスウェハを得た。そのアズスライスウェハを、ウェハ端面研削機により面取加工を行った。面取では、先ず図18に示す砥石180を用いて、ウェハ径をφ100mmまで研削しながら、図19に示すように、アズスライスウェハのウェハ表面側の外周縁部190a及びウェハ裏面側の外周縁部190bを角度15°のC面取形状となるように、またそれぞれの先端191a、192aを曲率半径50μmのR面取形状となるようにした。このとき、所定の面方位にOFと表裏を判別するためのIFも同時に形成した。その後、実施例1〜3のような割れ欠け防止溝81、124、162を形成することなく、面取加工を終了させた。この面取加工により面取形成ウェハ192を得た。
その後、図20に示すように、一般的な研磨プロセスにて面取形成ウェハ192のウェハ表面側を100μm、ウェハ裏面側を75μm研磨し、厚さ625μmの半導体ウェハ200を完成させた。ここでは、両面をミラー面としたがウェハ裏面はラップ面/エッチ面でも良い。
そして、図21に示すように、半導体ウェハ200のウェハ表面に半導体エピタキシャル層などのデバイス構造層210を形成するデバイス作製プロセスを経て、最後に半導体ウェハ200のウェハ表面から100μmの厚さになるまで裏面研削を行った。この結果、裏面研削が施された半導体ウェハ(裏面研削ウェハ)211上にデバイス構造層210が形成されてなり、裏面研削ウェハ211のウェハ端面212が鋭角な形状を成し、その後のプロセス中に欠けが発生した。
同条件で10枚を裏面研削まで実施した結果、10枚中欠けが3枚、割れが1枚発生した。
以上より、本発明の効果が確認された。
ここでは、GaAs単結晶インゴット、或いはGaNウェハから作製した半導体ウェハ90、130、164、200について記載したが、Si、GaAs、GaN、AlN、GaP、InP、InSb、InAs、SiC、サファイアなど、デバイス作製時に裏面研削を行う半導体ウェハにおいても同様の効果が期待できる。
また、本発明の面取形状はR面取とすることが有効と考えるが、C面取を併用するか、又はC面取のみでも角度や面取の回数を調整することによって同様の効果が期待できる。
また、割れ欠け防止溝を形成する方法は、ウェハ端面研削機によって行ったが、例えば、レーザ加工機などでも代用できうると考える。また、デバイス構造層は、イオン注入等によって設ける場合もある。
(実施例4)
実施例1〜3に記載の方法を用いて、裏面研削ウェハの厚さをt(μm)、側面の曲率半径をRd(μm)として、これらのパラメータをそれぞれ変更して半導体デバイスウェハを作製した。
その結果、裏面研削ウェハの厚さtの範囲が40μm以上200μm以下、曲率半径が20μm以上100μm以下の範囲、且つ(1/2)t≦Rd≦(3/5)tを満たすように作製した半導体デバイスウェハ(図4参照)については、割れや欠けが発生することなく、半導体デバイスウェハを作製することができた。
これにより、裏面研削ウェハの側面に曲率半径Rdの面取部が形成され、裏面研削ウェハの厚さをt(μm)としたとき、(1/2)t≦Rd≦(3/5)tである半導体デバイスウェハとすることで、割れや欠けの発生を抑制できることが分かった。
(変形例)
実施例4では、裏面研削ウェハにおけるウェハ端面の形状が(1/2)t≦Rd≦(3/5)tを満たすよう、半導体デバイスウェハを作製したが、ウェハ端面の一部に平坦面(又は、面取加工を施した境界部より曲率半径の大きい端面)を採用することもできる。例えば、面取加工が施された表面側境界部と、面取加工が施された裏面側境界部との間に、平坦面を設けても良い。この場合、面取加工を施す境界面の曲率半径は(1/10)t≦Rd≦(1/2)tとすると良い。
10 半導体ウェハ
11 ウェハ端面
12 割れ欠け防止溝

Claims (9)

  1. 外周縁部に面取加工を施した円盤状の半導体ウェハにおいて、裏面研削の際にウェハ端面における割れや欠けの発生を防止すべく、ウェハ端面の周方向に1周に亘って1箇所以上の割れ欠け防止溝を設けたことを特徴とする半導体ウェハ。
  2. 前記割れ欠け防止溝とウェハ端面との境界部に面取加工を施した請求項1に記載の半導体ウェハ。
  3. ウェハ表面側の外周縁部及び前記割れ欠け防止溝とウェハ端面との境界部における面取部にR面取部を含み、その曲率半径が20μm以上100μm以下である請求項2に記載の半導体ウェハ。
  4. ウェハ裏面側の外周縁部における面取部にR面取部を含み、その曲率半径が20μm以上1000μm以下である請求項1〜3のいずれかに記載の半導体ウェハ。
  5. ウェハ表面から直近の割れ欠け防止溝は、該割れ欠け防止溝とウェハ端面とのウェハ表面側の境界部が裏面研削後にウェハ裏面側の外周縁部となる位置に形成される請求項1〜4のいずれかに記載の半導体ウェハ。
  6. ウェハ表面から直近の割れ欠け防止溝は、裏面研削後のウェハ厚さが40μm以上200μm以下となる位置に形成される請求項5に記載の半導体ウェハ。
  7. 前記割れ欠け防止溝の深さが、20μm以上200μm以下である請求項1〜6のいずれかに記載の半導体ウェハ。
  8. 裏面研削が施された半導体ウェハと、前記裏面研削が施された半導体ウェハのウェハ表面側に形成されたデバイス構造層とを有する半導体デバイスウェハにおいて、前記裏面研削が施された半導体ウェハの側面に曲率半径Rd(μm)の面取部が形成され、前記裏面研削が施された半導体ウェハの厚さをt(μm)としたとき、(1/2)t≦Rd≦(3/5)tであることを特徴とする半導体デバイスウェハ。
  9. 裏面研削が施された半導体ウェハと、前記裏面研削が施された半導体ウェハのウェハ表面側に形成されたデバイス構造層とを有する半導体デバイスウェハにおいて、前記裏面研削が施された半導体ウェハの側面は、第1の面取部を有する表面側境界部と、第2の面取部を有する裏面側境界部と、前記表面側境界部と前記裏面側境界部との間に設けられる端部を有し、前記第1及び第2の面取部は、前記裏面研削が施された半導体ウェハの厚さをt(μm)としたとき、(1/10)t≦Rd≦(1/2)tを満たす曲率半径Rdを有し、且つ、前記端部は、前記Rdより大きい曲率半径を有することを特徴とする半導体デバイスウェハ。
JP2011013071A 2011-01-25 2011-01-25 半導体ウェハ及び半導体デバイスウェハ Pending JP2012156246A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011013071A JP2012156246A (ja) 2011-01-25 2011-01-25 半導体ウェハ及び半導体デバイスウェハ
US13/356,799 US8796820B2 (en) 2011-01-25 2012-01-24 Semiconductor wafer and semiconductor device wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011013071A JP2012156246A (ja) 2011-01-25 2011-01-25 半導体ウェハ及び半導体デバイスウェハ

Publications (1)

Publication Number Publication Date
JP2012156246A true JP2012156246A (ja) 2012-08-16

Family

ID=46543581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011013071A Pending JP2012156246A (ja) 2011-01-25 2011-01-25 半導体ウェハ及び半導体デバイスウェハ

Country Status (2)

Country Link
US (1) US8796820B2 (ja)
JP (1) JP2012156246A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020031106A (ja) * 2018-08-21 2020-02-27 株式会社岡本工作機械製作所 半導体装置の製造方法及び製造装置
JP2022160660A (ja) * 2017-08-30 2022-10-19 昭和電工株式会社 4H-SiC単結晶基板
US11626301B2 (en) 2019-09-24 2023-04-11 Nichia Corporation Method for manufacturing semiconductor element

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014185010A1 (ja) * 2013-05-13 2014-11-20 パナソニックIpマネジメント株式会社 半導体素子およびその製造方法、半導体モジュールおよびその製造方法、並びに、半導体パッケージ
JP6261388B2 (ja) 2014-03-05 2018-01-17 信越半導体株式会社 半導体エピタキシャルウェーハの製造方法
JP6540430B2 (ja) * 2015-09-28 2019-07-10 東京エレクトロン株式会社 基板処理方法及び基板処理装置
US9721907B2 (en) 2015-11-18 2017-08-01 Infineon Technologies Ag Wafer edge shape for thin wafer processing
US11367462B1 (en) * 2019-01-28 2022-06-21 Seagate Technology Llc Method of laser cutting a hard disk drive substrate for an edge profile alignable to a registration support
CN113809149B (zh) * 2021-07-23 2023-12-12 上海先进半导体制造有限公司 晶圆、半导体元件及半导体元件处理方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006040994A (ja) 2004-07-23 2006-02-09 Hitachi Cable Ltd 半導体ウェハ
JP5125098B2 (ja) 2006-12-26 2013-01-23 信越半導体株式会社 窒化物半導体自立基板の製造方法
FR2953988B1 (fr) * 2009-12-11 2012-02-10 S O I Tec Silicon On Insulator Tech Procede de detourage d'un substrat chanfreine.

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022160660A (ja) * 2017-08-30 2022-10-19 昭和電工株式会社 4H-SiC単結晶基板
JP7338759B2 (ja) 2017-08-30 2023-09-05 株式会社レゾナック 4H-SiC単結晶基板
JP2020031106A (ja) * 2018-08-21 2020-02-27 株式会社岡本工作機械製作所 半導体装置の製造方法及び製造装置
JP7258489B2 (ja) 2018-08-21 2023-04-17 株式会社岡本工作機械製作所 半導体装置の製造方法及び製造装置
US11735411B2 (en) 2018-08-21 2023-08-22 Okamoto Machine Tool Works, Ltd. Method and apparatus for manufacturing semiconductor device
US11626301B2 (en) 2019-09-24 2023-04-11 Nichia Corporation Method for manufacturing semiconductor element

Also Published As

Publication number Publication date
US20120187547A1 (en) 2012-07-26
US8796820B2 (en) 2014-08-05

Similar Documents

Publication Publication Date Title
JP2012156246A (ja) 半導体ウェハ及び半導体デバイスウェハ
CN107623028B (zh) 半导体基板及其加工方法
JP2007042748A (ja) 化合物半導体ウェハ
TWI747695B (zh) 磷化銦基板
US10559471B2 (en) Method of manufacturing bonded wafer
TWI685030B (zh) 半導體晶圓的製造方法
EP1465242B1 (en) Semiconductor wafer and method for producing the same
JP2007081131A (ja) 単結晶ウエハ及びそれを用いたエピタキシャル成長用基板
JP2015225902A (ja) サファイア基板、サファイア基板の製造方法
JP4492293B2 (ja) 半導体基板の製造方法
JP2007266043A (ja) 化合物半導体ウェハ
JP5726061B2 (ja) ウェハの製造方法および半導体装置の製造方法
TW202226354A (zh) 磷化銦基板、磷化銦基板之製造方法及半導體磊晶晶圓
JP2015153999A (ja) 半導体ウェーハの製造方法
JP2010040549A (ja) 半導体ウェーハ及びその製造方法
JP6256576B1 (ja) エピタキシャルウェーハ及びその製造方法
JP2003142405A (ja) 半導体基板の製造方法
US20090286047A1 (en) Semiconductor wafer
JP2004281550A (ja) 半導体ウエハおよびその面取り加工方法
TWI818416B (zh) 晶圓
JP7055233B1 (ja) リン化インジウム基板
TWI807347B (zh) 半導體基底以及半導體裝置的製造方法
WO2022219955A1 (ja) 半導体ウェーハの製造方法
JP5886522B2 (ja) ウェーハ生産方法
JP4440810B2 (ja) 貼り合わせウエーハの製造方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20131202