JP2012154726A - Humidity sensor - Google Patents

Humidity sensor Download PDF

Info

Publication number
JP2012154726A
JP2012154726A JP2011013055A JP2011013055A JP2012154726A JP 2012154726 A JP2012154726 A JP 2012154726A JP 2011013055 A JP2011013055 A JP 2011013055A JP 2011013055 A JP2011013055 A JP 2011013055A JP 2012154726 A JP2012154726 A JP 2012154726A
Authority
JP
Japan
Prior art keywords
wave
pressure wave
humidity
medium
transmitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011013055A
Other languages
Japanese (ja)
Other versions
JP5796205B2 (en
Inventor
Yoshifumi Watabe
祥文 渡部
Yoshiaki Honda
由明 本多
Masanori Hayashi
雅則 林
Atsushi Okita
篤志 沖田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011013055A priority Critical patent/JP5796205B2/en
Publication of JP2012154726A publication Critical patent/JP2012154726A/en
Application granted granted Critical
Publication of JP5796205B2 publication Critical patent/JP5796205B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a humidity sensor capable of measuring humidity with good responsiveness and low energy consumption.SOLUTION: A wave transmitting element 1 is thermal inductive and generates pressure wave by applying a localized thermal shock, generated when current is applied, to a medium. A wave receiving element 2 is positioned with a prescribed distance from the wave transmitting element 1, receives the pressure wave from the same and converts the pressure wave into an electric signal. A temperature detection element 8 measures temperature of the medium where the pressure wave propagates therethrough. The wave transmitting element 1 is driven by a unimodal pulse output by a control section 6. A processing section 7 calculates humidity of the medium using propagation time of the pressure wave between the wave transmitting element 1 and the wave receiving element 2 as well as the temperature measured by the temperature detection element 8.

Description

本発明は、媒質中を伝播される圧力波を利用して湿度を計測する湿度センサに関するものである。   The present invention relates to a humidity sensor that measures humidity using a pressure wave propagated through a medium.

この種の湿度センサとして、対向させて配置した一対の振動子の一方から超音波(圧力波)を送出させ、他方で超音波を受波することにより、両振動子の間で伝播された超音波の音速に基づいて、空気の湿度を求める構成が知られている(たとえば、特許文献1参照)。特許文献1に記載された湿度センサは、1組の音波発信子と音波受信子を備えた2つの中空体を備え、一方は既知の湿度の空気を封入した中空体(参照部)で、他方は通気用の小孔を設けた中空体であり、両者の中空体の空気の湿度差によって生じる音波の到達時間差によって湿度を算出している。   As this type of humidity sensor, an ultrasonic wave (pressure wave) is transmitted from one of a pair of vibrators arranged opposite to each other, and an ultrasonic wave is received on the other side. A configuration for determining the humidity of air based on the speed of sound waves is known (see, for example, Patent Document 1). The humidity sensor described in Patent Document 1 includes two hollow bodies each including a pair of sound wave transmitters and sound wave receivers, one of which is a hollow body (reference portion) enclosing air of a known humidity, and the other. Is a hollow body provided with small holes for ventilation, and the humidity is calculated from the difference in the arrival time of sound waves generated by the humidity difference between the air in the two hollow bodies.

特開平5−312667号公報(特許請求の範囲、段落[0004][0005]、第1図参照)Japanese Patent Laid-Open No. 5-312667 (see claims, paragraphs [0004] and [0005], FIG. 1)

特許文献1に記載された技術では、湿度による小さな音速の変化を捉えるため、実質的に同一形状の2つの中空体と、各々2つの音波発信素子と音波受波素子とからなり、各々の中空体には一組の音波発信素子と音波受波素子とを一定の距離を隔てて対向せしめ、一方の中空体(参照部)には既知の湿度量を有する空気(たとえば、乾燥空気)を封入し、他方の中空体は通気用小孔をあけ、両方の中空体を近接せしめた構成としている。   In the technique described in Patent Document 1, in order to capture a small change in sound velocity due to humidity, the hollow body is composed of two hollow bodies having substantially the same shape, two sound wave transmitting elements and sound wave receiving elements, each of which is hollow. A pair of sound wave transmitting elements and sound wave receiving elements are opposed to each other at a certain distance, and one hollow body (reference part) is filled with air having a known humidity (for example, dry air). The other hollow body has a small ventilation hole, and the two hollow bodies are close to each other.

しかし、特許文献1に記載の技術では、以下の問題を有している。
・2つの中空体を設けているためサイズが大きくなる。
・一方の中空体に既知の湿度量を有している空気を封入しているが、長期間に渡って湿度量を維持することが困難である。
・2つの中空体のうちの一方が密閉されているため内部空気の温度追従性が異なるから、温度差による湿度誤差が大きくなる。
However, the technique described in Patent Document 1 has the following problems.
・ Since two hollow bodies are provided, the size increases.
Although air having a known amount of humidity is sealed in one hollow body, it is difficult to maintain the amount of humidity over a long period of time.
-Since one of the two hollow bodies is hermetically sealed, the temperature followability of the internal air is different, resulting in a large humidity error due to the temperature difference.

本発明は、サイズが小さく、長期間に渡って湿度を安定に計測でき、応答性よく湿度を計測することを可能とし、さらに、音速計測から導く湿度の精度を高め、計測のために消費するエネルギーが少ない湿度センサを提供することを目的とする。   The present invention is small in size, can stably measure humidity over a long period of time, makes it possible to measure humidity with high responsiveness, further improves the accuracy of humidity derived from sound speed measurement, and consumes for measurement An object is to provide a humidity sensor with low energy.

本発明は、上記目的を達成するために、通電に伴って媒質に局所的な熱衝撃を与えて圧力波を発生させる熱誘起型の送波素子と、送波素子とは規定の距離だけ離れた位置に配置され送波素子からの圧力波を受波して電気信号に変換する受波素子と、圧力波が伝播される媒質の温度を計測する温度検出素子と、単峰性のパルスにより送波素子を駆動する制御部と、送波素子と受波素子との間で伝送される圧力波の伝播時間と温度検出素子が計測した温度とを用いて媒質の湿度を算出する処理部とを備えることを特徴とする。   In order to achieve the above object, the present invention provides a heat-induced wave transmitting element that generates a pressure wave by applying a local thermal shock to a medium when energized, and the wave transmitting element is separated by a specified distance. A receiving element that receives the pressure wave from the transmitting element and converts it into an electrical signal, a temperature detecting element that measures the temperature of the medium through which the pressure wave propagates, and a unimodal pulse A control unit that drives the transmitting element; a processing unit that calculates the humidity of the medium using the propagation time of the pressure wave transmitted between the transmitting element and the receiving element and the temperature measured by the temperature detecting element; It is characterized by providing.

送波素子と受波素子との間の空間を周囲空間と分離し、塵埃の通過を阻止するエアフィルタを付加した構成が好ましい。   A structure in which an air filter that separates the space between the transmitting element and the receiving element from the surrounding space and prevents the passage of dust is preferable.

処理部は、送波素子に通電する前にコンデンサに規定量の電荷を充電し制御部が送波素子に通電した後にコンデンサの放電を開始する充放電部と、受波素子が圧力波を受波した時点におけるコンデンサの電荷量を送波素子と受波素子との間での圧力波の伝播時間に換算する換算部とを備えるのが好ましい。   The processing unit includes a charging / discharging unit that charges the capacitor with a specified amount before energizing the transmitting element, and starts discharging the capacitor after the control unit energizes the transmitting element, and the receiving element receives the pressure wave. It is preferable to provide a conversion unit that converts the charge amount of the capacitor at the time of wave generation into the propagation time of the pressure wave between the transmission element and the reception element.

この場合、充放電部は、送波素子に通電した時点から規定の遅れ時間後にコンデンサの放電を開始し、遅れ時間は、媒質の温度および湿度の計測範囲に応じて上限値が設定されていることが好ましい。   In this case, the charging / discharging unit starts discharging the capacitor after a specified delay time from the time when the transmission element is energized, and the delay time has an upper limit set according to the measurement range of the temperature and humidity of the medium. It is preferable.

また、充放電部は、送波素子に通電した時点から規定の遅れ時間後にコンデンサの放電を開始し、遅れ時間は、温度検出素子で検出された媒質の温度と湿度の計測範囲とに応じて設定されることが好ましい。   In addition, the charging / discharging unit starts discharging the capacitor after a specified delay time from when the wave transmission element is energized, and the delay time depends on the temperature and humidity measurement ranges of the medium detected by the temperature detection element. It is preferably set.

本発明の構成によれば、単峰性のパルスで熱誘起型の送波素子を駆動することにより圧力波を送波し、送波素子と受波素子との間の圧力波の伝播時間と、温度検出素子により計測した媒質の温度とを用いて媒質の湿度を算出しており、発生する単峰性のパルス音波は急伸に音圧変化するため、音波到来時間を高精度に計測でき、これに基づく音速から算出した湿度も高精度に換算できるため湿度精度が向上する。さらに、基準となる既知の湿度量の中空体(参照部)を設ける必要がなくなりサイズが小さくでき、単峰性のパルス1波で計測できるので、湿度を計測する最小の時間間隔をパルスを送波する時間間隔にすることができる。すなわち、応答性よく湿度を計測することがができるという利点がある。しかも、送波素子が熱誘起型であって、送波素子を単峰性のパルスで駆動するから、連続的な音波(超音波など)によって位相差を用いる場合に比較すると計測のために送波素子に与えるエネルギーが少なく、計測のために消費するエネルギーが少なくなるという利点がある。   According to the configuration of the present invention, a pressure wave is transmitted by driving a heat-induced transmission element with a unimodal pulse, and the propagation time of the pressure wave between the transmission element and the reception element is The humidity of the medium is calculated using the temperature of the medium measured by the temperature detection element, and the generated unimodal pulse sound wave changes rapidly in sound pressure, so the sound wave arrival time can be measured with high accuracy, Since the humidity calculated from the sound speed based on this can also be converted with high accuracy, the humidity accuracy is improved. Furthermore, since it is not necessary to provide a hollow body (reference part) with a known humidity amount as a standard, the size can be reduced, and measurement can be performed with a single unimodal pulse, so that the pulse is sent at the minimum time interval for measuring humidity. It can be a time interval to wave. That is, there is an advantage that humidity can be measured with high responsiveness. In addition, since the transmission element is a heat-induced type, and the transmission element is driven by a unimodal pulse, it is transmitted for measurement compared to the case of using a phase difference by continuous sound waves (ultrasonic waves, etc.). There is an advantage that less energy is given to the wave element and less energy is consumed for measurement.

実施形態を示すブロック図である。It is a block diagram which shows embodiment. 同上に用いる送波素子の構成例を示す断面図である。It is sectional drawing which shows the structural example of the wave transmission element used for the same as the above. 同上に用いる受波素子の構成例を示し、(a)は一部破断した斜視図、(b)は断面図である。The structural example of the wave receiving element used for the same as the above is shown, (a) is a partially broken perspective view, (b) is a sectional view. 同上の要部の外観を示す斜視図である。It is a perspective view which shows the external appearance of the principal part same as the above. 同上の要部回路図である。It is a principal part circuit diagram same as the above. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above.

本実施形態は、湿度を計測する媒質で満たされた空間において、送波素子から圧力波を送出し、送波素子からの圧力波を受波素子で受波することにより、圧力波の伝播時間(実際には、伝播速度)を計測している。媒質の湿度は、媒質中での圧力波の伝播時間と媒質の温度とをパラメータとして以下の関係がある。具体的には、送波素子と受波素子との間で圧力波が伝播される距離をL[m]、伝播時間をt[s]、媒質の温度をT[°K]、媒質の水蒸気圧をP[Pa]、大気圧をPA[Pa]としたときに、以下の関係が得られる。
L/t=k1{T(1+k2・P/PA)}1/2
ここで、温度Tにおける飽和水蒸気圧をPs[Pa]とし、相対湿度をRH[%]とすると、以下の関係が得られる。
RH=P/Ps×100
k1,k2は適宜に定められる係数であり、たとえば、媒質を空気とすると、k1=20.067、k2=0.3192を用いることができる。
In this embodiment, in a space filled with a medium for measuring humidity, a pressure wave is transmitted from the transmitting element, and the pressure wave from the transmitting element is received by the receiving element, so that the propagation time of the pressure wave (Actually, the propagation speed) is measured. The humidity of the medium has the following relationship with the propagation time of the pressure wave in the medium and the temperature of the medium as parameters. Specifically, the distance over which the pressure wave propagates between the transmitting element and the receiving element is L [m], the propagation time is t [s], the temperature of the medium is T [° K], and the water vapor of the medium When the pressure is P [Pa] and the atmospheric pressure is PA [Pa], the following relationship is obtained.
L / t = k1 {T (1 + k2 · P / PA)} 1/2
Here, when the saturated water vapor pressure at the temperature T is Ps [Pa] and the relative humidity is RH [%], the following relationship is obtained.
RH = P / Ps × 100
k1 and k2 are coefficients determined as appropriate. For example, when the medium is air, k1 = 20.067 and k2 = 0.3192 can be used.

上式において、L/tは媒質中の圧力波の伝播速度であるから、圧力波の伝播速度(つまり、伝播時間)を正確に求めると、湿度を求める精度が高められることになる。また、媒質は空気を例として説明するが、他の気体であってもよい。空気以外の媒質では、係数k1,k2を変える必要がある。   In the above equation, L / t is the propagation velocity of the pressure wave in the medium. Therefore, if the propagation velocity (that is, propagation time) of the pressure wave is accurately obtained, the accuracy of obtaining the humidity is increased. The medium will be described by taking air as an example, but other gases may be used. In a medium other than air, it is necessary to change the coefficients k1 and k2.

本実施形態では、図1に示すように、送波素子1と受波素子2とを規定の距離だけ離れた位置に対向させて配置している。送波素子1と受波素子2との距離を保つために、送波素子1と受波素子2とは適宜のフレーム3に取り付けられる。また、フレーム3は、送波素子1と受波素子2との間の計測空間5を周囲空間と分離するエアフィルタ4を保持する。   In the present embodiment, as shown in FIG. 1, the transmitting element 1 and the receiving element 2 are arranged to face each other at a position separated by a specified distance. In order to keep the distance between the transmitting element 1 and the receiving element 2, the transmitting element 1 and the receiving element 2 are attached to an appropriate frame 3. The frame 3 holds an air filter 4 that separates the measurement space 5 between the transmission element 1 and the reception element 2 from the surrounding space.

エアフィルタ4は湿度を計測する対象である媒質を計測空間5に取り込むことができるが、周囲空間に浮遊する塵埃の通過は阻止する。   The air filter 4 can take in a medium that is a target for measuring humidity into the measurement space 5, but prevents passage of dust floating in the surrounding space.

エアフィルタ4は、円筒状や角筒状に形成することにより、湿度の計測対象である媒質を計測空間5に取り込む際の方向による選択性を低減させることが好ましい。ただし、媒質を計測空間5に取り込む方向が定まっている場合は、エアフィルタ4を他の形状に形成してもよい。図4に示す例では、送波素子1および受波素子2とフレーム3とにより左右両側面が開放された箱状に形成してあり、エアフィルタ4をフレーム3の左右両面にそれぞれ設けている。   It is preferable that the air filter 4 is formed in a cylindrical shape or a rectangular tube shape, thereby reducing the selectivity depending on the direction when the medium to be measured for humidity is taken into the measurement space 5. However, when the direction in which the medium is taken into the measurement space 5 is fixed, the air filter 4 may be formed in another shape. In the example shown in FIG. 4, the transmission element 1, the reception element 2, and the frame 3 are formed in a box shape whose left and right side surfaces are open, and the air filters 4 are provided on both the left and right sides of the frame 3. .

上述のように計測空間5と周囲空間とを分離するエアフィルタ4を設けることにより、送波素子1と受波素子2との間の計測空間5への塵埃(つまり、湿度成分以外の浮遊粒子)の侵入を防止できる。言い換えると、塵埃が存在することによる圧力波の伝播速度の変化が防止され、湿度の計測精度が高められる。   By providing the air filter 4 that separates the measurement space 5 and the surrounding space as described above, dust (that is, suspended particles other than humidity components) to the measurement space 5 between the transmission element 1 and the reception element 2 is provided. ) Can be prevented. In other words, the change in the propagation speed of the pressure wave due to the presence of dust is prevented, and the humidity measurement accuracy is improved.

送波素子1は、たとえば、図2に示す構成を備える。図示する送波素子1は、単結晶半導体であってp形の導電形を付与したベース基板11を備え、ベース基板11の一表面(図2の上面)側に、多孔質半導体からなる熱絶縁層12を介して金属薄膜からなる発熱体層13を設けてある。さらに、送波素子1は、ベース基板11の前記一表面側に、発熱体層13とオーミックに接続された一対の電極パッド14を備える。ベース基板11は平面視(図2の上面視)において長方形状に形成され、ベース基板11の前記一表面のうち熱絶縁層12を形成していない部位には半導体酸化膜からなる絶縁膜(図示せず)が形成されている。   The wave transmitting element 1 has a configuration shown in FIG. 2, for example. A wave transmitting element 1 shown in the figure includes a base substrate 11 which is a single crystal semiconductor and has a p-type conductivity, and is thermally insulated from a porous semiconductor on one surface (upper surface in FIG. 2) side of the base substrate 11. A heating element layer 13 made of a metal thin film is provided through the layer 12. Furthermore, the wave transmitting element 1 includes a pair of electrode pads 14 that are ohmically connected to the heating element layer 13 on the one surface side of the base substrate 11. The base substrate 11 is formed in a rectangular shape in plan view (the top view in FIG. 2), and an insulating film made of a semiconductor oxide film is formed on the portion of the one surface of the base substrate 11 where the thermal insulating layer 12 is not formed (see FIG. (Not shown) is formed.

両電極パッド14の間には発熱体層13が設けられているから、両電極パッド14の間に通電すると発熱体層13が発熱する。ここで、発熱体層13に短時間だけ通電すると、発熱体層13の周囲の媒質が急激に加熱され媒質に局所的な熱衝撃が与えられ、発熱体層13の周囲の媒質が瞬間的に膨張と収縮とを行うことによって圧力波が発生する。この圧力波の振幅は、発熱体層13の温度の変化率に対応し、発熱体層13に通電される電流が一定になり発熱体層13の周囲の媒質の加熱量と放熱量とが均衡するようになると圧力波は停止する。この種の送波素子1を熱誘起型と称している。   Since the heating element layer 13 is provided between the electrode pads 14, the heating element layer 13 generates heat when energized between the electrode pads 14. Here, when the heating element layer 13 is energized for a short time, the medium around the heating element layer 13 is suddenly heated and a local thermal shock is applied to the medium, and the medium around the heating element layer 13 is instantaneously applied. A pressure wave is generated by performing expansion and contraction. The amplitude of the pressure wave corresponds to the rate of change of the temperature of the heating element layer 13, the current supplied to the heating element layer 13 is constant, and the heating amount and the heat dissipation amount of the medium around the heating element layer 13 are balanced. When this happens, the pressure wave stops. This type of transmission element 1 is referred to as a thermally induced type.

熱絶縁層12は、熱伝導率および熱容量を小さくするために、多孔度を60〜70%程度に設定してある。この構成により、発熱体層13への通電時に媒質との熱交換の効率が高められ、少ないエネルギーで振幅の大きい圧力波を発生させることができる。すなわち、エネルギーの利用効率が高くなる。また、熱絶縁層12は、熱伝導率と熱容量との積をベース基板11よりも小さくしてあり、熱絶縁層12からベース基板11に熱を逃がしやすくして、熱絶縁層12に熱が蓄積されないようにしてある。   The thermal insulating layer 12 has a porosity set to about 60 to 70% in order to reduce the thermal conductivity and the heat capacity. With this configuration, the efficiency of heat exchange with the medium is increased when the heating element layer 13 is energized, and a pressure wave having a large amplitude can be generated with a small amount of energy. That is, energy use efficiency is increased. In addition, the thermal insulating layer 12 has a product of thermal conductivity and thermal capacity smaller than that of the base substrate 11, and it is easy for heat to escape from the thermal insulating layer 12 to the base substrate 11, so that heat is transmitted to the thermal insulating layer 12. It doesn't accumulate.

ベース基板11および熱絶縁層12には、シリコンのほか、ゲルマニウム、炭化ケイ素、ガリウムヒ素などの半導体材料を用いてもよい。これらの半導体材料は、陽極酸化処理による多孔質化が可能である。   For the base substrate 11 and the thermal insulating layer 12, in addition to silicon, a semiconductor material such as germanium, silicon carbide, or gallium arsenide may be used. These semiconductor materials can be made porous by anodizing treatment.

また、発熱体層13を形成する金属は、高融点の金属材料であるタングステン、モリブデン、タンタル、イリジウムなどから選択するのが好ましいが、アルミニウムなどを用いてもよい。この種の送波素子1の設計条件および製造方法は周知であるから詳述しない。なお、設計条件の一例を示すと、ベース基板11の厚み寸法を300〜700μm、熱絶縁層12の厚み寸法を1〜10μm、発熱体層13の厚み寸法を20〜100μm、電極パッド14の厚み寸法を0.5μmとすることができる。   The metal forming the heating element layer 13 is preferably selected from tungsten, molybdenum, tantalum, iridium, etc., which are high melting point metal materials, but aluminum or the like may be used. The design conditions and manufacturing method of this type of transmission element 1 are well known and will not be described in detail. As an example of design conditions, the thickness dimension of the base substrate 11 is 300 to 700 μm, the thickness dimension of the heat insulating layer 12 is 1 to 10 μm, the thickness dimension of the heating element layer 13 is 20 to 100 μm, and the thickness of the electrode pad 14. The dimension can be 0.5 μm.

上述した送波素子1は、強い共振を生じる実質的な共振点がなく、発熱体層13に通電した電流波形に応じた波形の圧力波が発生する。たとえば、電流波形をガウス波形とすればガウス波形の圧力波が発生し、電流波形が矩形波状であれば立ち上がりと立ち下がりとにおいて粗密を生じる圧力波が発生する。すなわち、多くの周波数成分を含んだ圧力波を発生させることができる。   The above-described transmission element 1 does not have a substantial resonance point that causes strong resonance, and a pressure wave having a waveform corresponding to the current waveform supplied to the heating element layer 13 is generated. For example, if the current waveform is a Gaussian waveform, a pressure wave having a Gaussian waveform is generated, and if the current waveform is a rectangular wave, a pressure wave is generated that causes a density at the rise and fall. That is, a pressure wave containing many frequency components can be generated.

受波素子2は、多くの周波数成分を含む圧力波(単峰性のパルス音波)を受波するために、共振点を持たない構成を採用することが望ましい。本実施形態では、この要求を満たすために、図3に示すような、静電容量型のマイクロホンを受波素子2に用いている。この受波素子2は、矩形状に開口する窓孔23が貫設されたフレーム21と、フレーム21の一表面側においてフレーム21の一辺に一端が片持ち支持された受圧板22とを備える。受圧板22の他端部はフレーム21の一表面に対向する。また、フレーム21と受圧板22には、互いに対向する部位に感知電極24,25が設けられる。   The receiving element 2 desirably employs a configuration having no resonance point in order to receive a pressure wave (single-peak pulsed sound wave) including many frequency components. In the present embodiment, in order to satisfy this requirement, a capacitive microphone as shown in FIG. The wave receiving element 2 includes a frame 21 through which a window hole 23 having a rectangular opening is formed, and a pressure receiving plate 22 having one end cantilevered on one side of the frame 21 on one surface side of the frame 21. The other end of the pressure receiving plate 22 faces one surface of the frame 21. The frame 21 and the pressure receiving plate 22 are provided with sensing electrodes 24 and 25 at portions facing each other.

フレーム21と受圧板22との接合部には、感知電極24,25の間に間隙が生じるように受圧板22を支持するとともに受圧板22に復帰力を与えるために、弾性支持部26を設けてある。したがって、受圧板22に圧力が作用すると、圧力の大きさに応じて感知電極24,25の距離が変化し、感知電極24,25の間の静電容量が変化する。すなわち、感知電極24,25の静電容量の変化を検出することにより、受圧板22に作用する圧力の変化を検出することができる。   An elastic support portion 26 is provided at the joint between the frame 21 and the pressure receiving plate 22 in order to support the pressure receiving plate 22 so that a gap is formed between the sensing electrodes 24 and 25 and to apply a restoring force to the pressure receiving plate 22. It is. Therefore, when pressure acts on the pressure receiving plate 22, the distance between the sensing electrodes 24 and 25 changes according to the magnitude of the pressure, and the capacitance between the sensing electrodes 24 and 25 changes. That is, a change in pressure acting on the pressure receiving plate 22 can be detected by detecting a change in capacitance of the sensing electrodes 24 and 25.

静電容量型のマイクロホンの構成は周知であって、上述のように、フレーム21と受圧板22とにそれぞれ感知電極24,25を設ける構成以外の構成を採用してもよい。たとえば、フレーム21に2個の感知電極を設け、感知電極間の静電容量が受圧板22との距離変化に応じて変化するのを利用する構成、この構成に加えて受圧板22にエレクトレットを設けた構成など種々構成を用いることができる。また、受波素子2として、受圧板22に作用する圧力を感知電極24,25の間の静電容量に変えて検出する静電容量型のマイクロホンではなく、受圧板22の変形を歪みゲージによって検出するマイクロホンを採用してもよい。   The configuration of the capacitance type microphone is well known, and as described above, a configuration other than the configuration in which the sensing electrodes 24 and 25 are provided on the frame 21 and the pressure receiving plate 22 may be employed. For example, a configuration in which two sensing electrodes are provided on the frame 21 and the capacitance between the sensing electrodes changes according to a change in the distance from the pressure receiving plate 22, an electret is added to the pressure receiving plate 22 in addition to this configuration. Various configurations such as a provided configuration can be used. Further, the wave receiving element 2 is not a capacitance type microphone that detects the pressure acting on the pressure receiving plate 22 by changing the capacitance between the sensing electrodes 24 and 25, but the deformation of the pressure receiving plate 22 is measured by a strain gauge. A microphone for detection may be employed.

図1に示すように、送波素子1は、制御部6から出力される駆動信号で駆動される。本実施形態で用いる駆動信号は、電流波形が矩形波状となる信号であり、所定の時間間隔で発熱体層13に通電される。したがって、送波素子1からは、矩形波の立ち上がりと立ち下がりとにおいて粗密を生じる圧力波が発生する。ここに、送波素子1を駆動する駆動信号は単峰性のパルスであれば、矩形波状に限らずガウス波形などであってもよい。なお、単峰性とはリンギング(波打ち)部分を持たない波形を意味している。   As shown in FIG. 1, the transmission element 1 is driven by a drive signal output from the control unit 6. The drive signal used in the present embodiment is a signal whose current waveform is a rectangular wave, and is supplied to the heating element layer 13 at a predetermined time interval. Therefore, a pressure wave is generated from the wave transmitting element 1 that causes density at the rising and falling edges of the rectangular wave. Here, as long as the driving signal for driving the transmission element 1 is a unimodal pulse, the driving signal is not limited to a rectangular wave shape but may be a Gaussian waveform. Note that unimodality means a waveform that does not have a ringing portion.

また、比較的短い時間間隔で複数個の圧力波をグループとして送出し、グループを単位とする圧力波を比較的長い時間間隔で送出することが望ましい。この動作では、グループとなる複数個の圧力波から得た結果を統計的に処理(異常値を除去して平均値を求めるなど)することによって、単発の圧力波から得た結果による誤差の発生を抑制することになる。また、圧力波のグループを比較的長い時間間隔で送出するから、短い時間間隔で圧力波を連続的に送出する場合よりも消費電力を低減することができる。すなわち、計測のために消費するエネルギーが低減される。   In addition, it is desirable to send a plurality of pressure waves as a group at a relatively short time interval, and to send a pressure wave as a unit at a relatively long time interval. In this operation, the results obtained from multiple pressure waves that form a group are statistically processed (the average value is obtained by removing abnormal values, etc.) to generate errors due to the results obtained from a single pressure wave. Will be suppressed. Further, since the group of pressure waves is sent out at a relatively long time interval, the power consumption can be reduced as compared with the case where pressure waves are sent out continuously at a short time interval. That is, energy consumed for measurement is reduced.

一方、受波素子2が圧力波を受波すると、圧力波の波形と相似になる波形を有した電気信号が受波素子2から出力される。受波素子2から出力された電気信号は処理部7に入力され、処理部7では、送波素子1が圧力波を送出してから受波素子2に圧力波が受波されるまでの時間(すなわち、圧力波の伝播時間)が求められる。処理部7には、温度検出素子8により計測された計測空間5の温度に相当する電気信号も入力される。温度検出素子8としては、サーミスタのような周知の温度センサを用いる。   On the other hand, when the wave receiving element 2 receives a pressure wave, an electric signal having a waveform similar to the waveform of the pressure wave is output from the wave receiving element 2. The electrical signal output from the wave receiving element 2 is input to the processing unit 7, and in the processing unit 7, the time until the pressure wave is received by the wave receiving element 2 after the wave transmitting element 1 sends the pressure wave. (That is, the propagation time of the pressure wave) is obtained. An electric signal corresponding to the temperature of the measurement space 5 measured by the temperature detection element 8 is also input to the processing unit 7. As the temperature detection element 8, a known temperature sensor such as a thermistor is used.

送波素子1と受波素子2との距離は既知であり、圧力波が伝播される媒質の温度は温度検出素子8により計測されているから、送波素子1と受波素子2との間を伝播される圧力波の伝播時間を求めることにより、上述した計算式から媒質の湿度が求められる。また、送波素子1は単峰性のパルスにより駆動されて圧力波を送出し、かつ圧力波の伝播時間に基づいて湿度を計測するから、連続波や間欠波を用いて減衰率により湿度を計測する従来構成に比較すると、湿度を応答性よく検出することができる。ここに、処理部7は、たとえばマイコンを主構成として構成され、アナログ−デジタル変換器(以下、「A/D変換器」という)を内蔵している。   Since the distance between the transmitting element 1 and the receiving element 2 is known and the temperature of the medium through which the pressure wave is propagated is measured by the temperature detecting element 8, the distance between the transmitting element 1 and the receiving element 2 is By obtaining the propagation time of the pressure wave propagating through the medium, the humidity of the medium can be obtained from the above formula. Further, the wave transmitting element 1 is driven by a unimodal pulse to send out a pressure wave and measure the humidity based on the propagation time of the pressure wave. Therefore, the humidity is controlled by a decay rate using a continuous wave or an intermittent wave. Compared to the conventional configuration to measure, the humidity can be detected with good responsiveness. Here, the processing unit 7 is configured with, for example, a microcomputer as a main component, and incorporates an analog-digital converter (hereinafter referred to as “A / D converter”).

ところで、送波素子1が圧力波を送出してから受波素子2が圧力波を受信するまでの時間は、本実施形態では、以下の構成によって計測している。図5に示すように、処理部7は、送波素子1に通電する前にコンデンサ31に規定量の電荷を充電しておき、送波素子1が圧力波を送出した時点からコンデンサ31の放電を開始する充放電部32を備える。また、処理部7は、受波素子2が圧力波を受波した時点のコンデンサ31の電荷量を送波素子1と受波素子2との間の圧力波の伝播時間に換算する換算部33を備える。   By the way, in this embodiment, the time from the transmission element 1 sending out the pressure wave to the reception element 2 receiving the pressure wave is measured by the following configuration. As shown in FIG. 5, the processing unit 7 charges the capacitor 31 with a specified amount before energizing the transmission element 1, and discharges the capacitor 31 from the time when the transmission element 1 sends out the pressure wave. The charging / discharging part 32 which starts is provided. Further, the processing unit 7 converts the charge amount of the capacitor 31 when the wave receiving element 2 receives the pressure wave into a propagation time of the pressure wave between the wave transmitting element 1 and the wave receiving element 2. Is provided.

充放電部32は、コンデンサ31に規定量の電荷を充電する充電部321と、コンデンサ31を定電流で放電させる放電部322とを備える。充電部321は、送波素子1から圧力波を送出するために通電する前に、コンデンサ31に規定量の電荷を充電する。したがって、送波素子1から圧力波を送出する直前におけるコンデンサ31の端子電圧は規定した電圧値になる。   The charging / discharging unit 32 includes a charging unit 321 that charges the capacitor 31 with a specified amount of charge, and a discharging unit 322 that discharges the capacitor 31 with a constant current. The charging unit 321 charges the capacitor 31 with a specified amount of charge before energizing to send a pressure wave from the wave transmitting element 1. Therefore, the terminal voltage of the capacitor 31 immediately before sending the pressure wave from the wave transmitting element 1 becomes a specified voltage value.

充電部321と放電部322とは、充放電部32に設けた切替部323により選択される。実際には、制御部6から送波素子1に駆動信号を与えた時点で、切替部323は放電部322を選択し、コンデンサ31の放電を開始させる。したがって、コンデンサ31の端子電圧は、図6に示すように、送波素子1から圧力波が送出された時点t1から時間経過に伴って低下する。   The charging unit 321 and the discharging unit 322 are selected by a switching unit 323 provided in the charging / discharging unit 32. Actually, when the drive signal is given from the control unit 6 to the transmission element 1, the switching unit 323 selects the discharge unit 322 and starts discharging the capacitor 31. Therefore, as shown in FIG. 6, the terminal voltage of the capacitor 31 decreases with the passage of time from the time point t <b> 1 when the pressure wave is transmitted from the transmission element 1.

充放電部32は、受波素子2から出力される電気信号を基準値と比較する比較部324を備えている。比較部324は、受波素子2から出力される電気信号(電圧値)が基準値を超えると切替部323に指示し(時刻t2)、コンデンサ31の放電を停止させる。この時点では、コンデンサ31の充放電は停止する。したがって、コンデンサ31の端子電圧は、送波素子1から圧力波が送出された後に、受波素子2により圧力波が受波されるまでの時間(t2−t1)に対応する。すなわち、コンデンサ31の端子電圧を用いて圧力波の伝播時間(t2−t1)を計測することができる。   The charging / discharging unit 32 includes a comparison unit 324 that compares the electric signal output from the wave receiving element 2 with a reference value. When the electric signal (voltage value) output from the wave receiving element 2 exceeds the reference value, the comparison unit 324 instructs the switching unit 323 (time t2) to stop discharging the capacitor 31. At this time, charging / discharging of the capacitor 31 is stopped. Therefore, the terminal voltage of the capacitor 31 corresponds to the time (t2−t1) until the pressure wave is received by the wave receiving element 2 after the pressure wave is sent from the wave transmitting element 1. That is, the propagation time (t2-t1) of the pressure wave can be measured using the terminal voltage of the capacitor 31.

コンデンサ31の端子電圧は、温度検出素子8から出力される電気信号とともに、換算部33に入力され、必要に応じて増幅された後、アナログ−デジタル変換(以下、「A/D変換」という)が施される。換算部33では、コンデンサ31の端子電圧から求められる圧力波の伝播時間と、温度検出素子8で計測された温度と、既知情報とを上式に当てはめることにより、媒質の湿度を算出する。   The terminal voltage of the capacitor 31 is input to the conversion unit 33 together with the electric signal output from the temperature detection element 8, amplified as necessary, and then analog-digital conversion (hereinafter referred to as “A / D conversion”). Is given. The conversion unit 33 calculates the humidity of the medium by applying the propagation time of the pressure wave obtained from the terminal voltage of the capacitor 31, the temperature measured by the temperature detection element 8, and known information to the above equation.

ここに、換算部33では、複数個の圧力波から求められる伝播時間を統計的に処理することにより、伝播時間の算出精度を高める。すなわち、伝播時間の計測値における異常値や変動成分を除去することによって、伝播時間の計測誤差を抑制する。   Here, the conversion unit 33 increases the calculation accuracy of the propagation time by statistically processing the propagation time obtained from the plurality of pressure waves. That is, the measurement error of the propagation time is suppressed by removing the abnormal value and the fluctuation component in the measurement value of the propagation time.

なお、送波素子1と受波素子2との間での圧力波の伝播時間を計測するには、コンデンサ31の充放電を利用する技術のほか、他の周知の時間計測の技術を用いてもよい。たとえば、一定周期で発生するクロック信号をカウンタで計数する技術を用い、送波素子1に駆動信号を与えた時点から受波素子2で圧力波が受波されるまでの時間をクロック信号の計数値として計測してもよい。   In addition, in order to measure the propagation time of the pressure wave between the transmitting element 1 and the receiving element 2, in addition to the technique using charging / discharging of the capacitor 31, other known time measuring techniques are used. Also good. For example, using a technique of counting a clock signal generated at a constant period with a counter, the time from when a drive signal is applied to the transmitting element 1 to when the pressure wave is received by the receiving element 2 is measured by the clock signal. It may be measured as a numerical value.

ところで、換算部33では、コンデンサ31の端子電圧を増幅した後にA/D変換を施しているから、伝播時間の分解能は増幅後の電圧の変化幅とA/D変換の際の分解能とに依存する。すなわち、A/D変換器の入力電圧の範囲と出力ビット数とに依存して伝播時間の分解能が決まることになる。一方、コンデンサ31は送波素子1が圧力波を送波した時点から受波素子2が圧力波を受波するまでの期間に放電されるから、コンデンサ31の端子電圧は伝播時間の計測範囲外の期間においても変化している。   Incidentally, since the conversion unit 33 performs A / D conversion after amplifying the terminal voltage of the capacitor 31, the resolution of the propagation time depends on the change width of the amplified voltage and the resolution at the time of A / D conversion. To do. That is, the resolution of the propagation time is determined depending on the input voltage range of the A / D converter and the number of output bits. On the other hand, since the capacitor 31 is discharged during the period from when the transmitting element 1 transmits the pressure wave to when the receiving element 2 receives the pressure wave, the terminal voltage of the capacitor 31 is out of the measurement range of the propagation time. The period has also changed.

たとえば、伝播時間の計測範囲が100〜500nsであるとすると、0〜100nsの期間は計測範囲外であるから、A/D変換器の入力電圧の範囲にこの期間の電圧を含むことは無駄である。図7(a)のように時刻t1において送波素子1から圧力波を送出し、図7(b)のように時刻t2において受波素子2において圧力波が受波されるとすると、上述した構成では、圧力波の伝播時間を時刻t1からの経過時間txとして計測していることになる。   For example, if the measurement range of the propagation time is 100 to 500 ns, the period of 0 to 100 ns is outside the measurement range, so it is useless to include the voltage of this period in the input voltage range of the A / D converter. is there. As shown in FIG. 7A, when the pressure wave is transmitted from the transmitting element 1 at time t1, and the pressure wave is received at the receiving element 2 at time t2 as shown in FIG. In the configuration, the propagation time of the pressure wave is measured as an elapsed time tx from time t1.

しかしながら、送波素子1が圧力波を送出してから受波素子2が圧力波を受波するまでの伝播時間が変化する範囲(計測範囲tv)は、計測しようとする媒質の温度および湿度に応じて決定され、変化する範囲の下限値より短い時間範囲では伝播時間は変化しない。つまり、伝播時間が変化しない範囲まで計測範囲tvに含めると、A/D変換器の限られたダイナミックレンジを有効に利用していないことになる。   However, the range (measurement range tv) in which the propagation time from when the transmitting element 1 sends out the pressure wave to when the receiving element 2 receives the pressure wave changes to the temperature and humidity of the medium to be measured. Accordingly, the propagation time does not change in a time range shorter than the lower limit value of the changing range. That is, if the measurement range tv includes the range in which the propagation time does not change, the limited dynamic range of the A / D converter is not effectively used.

ここでは、説明を簡単にするために、A/D変換器の入力電圧の範囲が0〜5Vであり、伝播時間の計測範囲が100〜500nsであって、A/D変換器の入力電圧と伝播時間とが線形関係である場合を想定する。つまり、入力電圧の5Vは伝播時間の0nsに対応し、入力電圧の0Vは伝播時間の500nsに対応する。   Here, for simplicity of explanation, the input voltage range of the A / D converter is 0 to 5 V, the propagation time measurement range is 100 to 500 ns, and the input voltage of the A / D converter is Assume that the propagation time has a linear relationship. That is, an input voltage of 5 V corresponds to a propagation time of 0 ns, and an input voltage of 0 V corresponds to a propagation time of 500 ns.

この場合、入力電圧の10mVの変化が伝播時間の1nsの変化に対応する。仮にA/D変換器の出力ビット数を8ビットとすれば、1ビット当たり5/255≒20mVになるから、伝播時間を約2nsの単位で検出することができる。ただし、伝播時間について0〜100nsは計測範囲外であるから、入力電圧について4〜5Vの範囲は利用されないことになる。   In this case, a change in input voltage of 10 mV corresponds to a change in propagation time of 1 ns. If the number of output bits of the A / D converter is 8 bits, 5 / 255≈20 mV per bit, so that the propagation time can be detected in units of about 2 ns. However, since 0 to 100 ns is out of the measurement range for the propagation time, the range of 4 to 5 V is not used for the input voltage.

そこで、A/D変換器の入力電圧の範囲のうち伝播時間の計測に利用されていない範囲を伝播時間の計測に利用すれば、伝播時間についての分解能を高めることができると考えられる。本実施形態では、以下に説明する技術を採用することにより、A/D変換器の性能を変更することなく伝播時間についての分解能を向上させている。   Therefore, it is considered that if the range of the input voltage of the A / D converter that is not used for the measurement of the propagation time is used for the measurement of the propagation time, the resolution for the propagation time can be increased. In the present embodiment, by adopting the technique described below, the resolution for the propagation time is improved without changing the performance of the A / D converter.

ここでは、充放電部32において、送波素子1に通電した時点から規定の遅れ時間後にコンデンサ31の放電を開始する構成を採用している。圧力波の伝播時間は媒質の温度および湿度に依存するから、遅れ時間は媒質の温度および湿度の計測範囲に応じて上限値を設定する。   Here, the charging / discharging unit 32 employs a configuration in which discharging of the capacitor 31 is started after a specified delay time from when the wave transmitting element 1 is energized. Since the propagation time of the pressure wave depends on the temperature and humidity of the medium, an upper limit value is set for the delay time according to the measurement range of the temperature and humidity of the medium.

すなわち、図8(a)のように時刻t1において送波素子1から圧力波を送出し、図8(b)のように時刻t2において受波素子2において圧力波が受波される場合、圧力波の伝播時間を時刻t1から遅れ時間tdが経過した後の経過時間tyとして計測するのである。言い換えると、実際の伝播時間は遅れ時間tdと経過時間tyとの和になる。この場合、伝播時間を実際に計測している期間は、時刻t1から遅れ時間tdが経過した後のみであり、遅れ時間tdは計測する必要がないから、経過時間tyを計測する期間と計測範囲tvとが重複する割合が多くなる。ここに、計測範囲tvは、計測の対象である媒質の温度および湿度の範囲により決まるから、計測範囲tvを開始する遅れ時間tdの上限値を、媒質の温度および湿度の範囲によって決めておく。   That is, when a pressure wave is transmitted from the transmitting element 1 at time t1 as shown in FIG. 8A and a pressure wave is received at the receiving element 2 at time t2 as shown in FIG. The wave propagation time is measured as the elapsed time ty after the delay time td has elapsed from time t1. In other words, the actual propagation time is the sum of the delay time td and the elapsed time ty. In this case, the period during which the propagation time is actually measured is only after the delay time td has elapsed from the time t1, and the delay time td need not be measured. The ratio that tv overlaps increases. Here, since the measurement range tv is determined by the temperature and humidity ranges of the medium to be measured, the upper limit value of the delay time td for starting the measurement range tv is determined by the temperature and humidity ranges of the medium.

たとえば、上述した条件であれば、遅れ時間の上限値を100nsに設定する。いま、遅れ時間を100nsに設定するだけで他の条件を変更しなければ、伝播時間の100〜500nsに対応するA/D変換器の入力電圧は1〜5Vになる。A/D変換器の入力電圧の範囲は0〜5Vであるから、伝播時間の計測範囲をA/D変換器の入力電圧の範囲に対応付けるように条件を変更する。具体的には、コンデンサ31の放電に際しての時定数を変更するか(放電部322の放電電流を変更する)、コンデンサ31の端子電圧の増幅率を変更し、伝播時間の100〜500nsを入力電圧の0〜5Vに対応付ける。   For example, under the above-described conditions, the upper limit value of the delay time is set to 100 ns. If the other conditions are not changed just by setting the delay time to 100 ns, the input voltage of the A / D converter corresponding to the propagation time of 100 to 500 ns becomes 1 to 5V. Since the input voltage range of the A / D converter is 0 to 5 V, the condition is changed so that the measurement range of the propagation time is associated with the input voltage range of the A / D converter. Specifically, the time constant at the time of discharging the capacitor 31 is changed (the discharge current of the discharge unit 322 is changed), or the amplification factor of the terminal voltage of the capacitor 31 is changed, and the propagation time of 100 to 500 ns is set as the input voltage. Corresponds to 0-5V.

この場合、入力電圧の10mVの変化は伝播時間の0.8nsの変化に対応することになる。すなわち、A/D変換器の出力ビット数が8ビットであるとすれば、伝播時間を約1.6nsの単位で検出することが可能になる。言い換えると、A/D変換器の入力電圧の範囲を伝播時間の計測に無駄なく利用して、伝播時間についての分解能を向上させることになる。   In this case, a change in input voltage of 10 mV corresponds to a change in propagation time of 0.8 ns. That is, if the number of output bits of the A / D converter is 8 bits, the propagation time can be detected in units of about 1.6 ns. In other words, the range of the input voltage of the A / D converter is used for measuring the propagation time without waste, and the resolution of the propagation time is improved.

上述した動作では、遅れ時間を固定的に設定しており遅れ時間に設定可能な上限値を定めているが、温度検出素子8で検出した媒質の温度を用いて遅れ時間を調整する構成としてもよい。すなわち、温度が上昇すれば、音速が大きくなり伝播時間が短くなるから、温度検出素子8により検出した温度が高いほど遅れ時間を短くするように調整する構成を採用してもよい。   In the above-described operation, the delay time is fixedly set and an upper limit value that can be set for the delay time is determined. However, the delay time may be adjusted using the temperature of the medium detected by the temperature detection element 8. Good. That is, if the temperature rises, the sound speed increases and the propagation time becomes shorter. Therefore, a configuration may be adopted in which the delay time is shortened as the temperature detected by the temperature detecting element 8 is higher.

この構成を採用する場合でも、遅れ時間には上限値を定めておくのが望ましい。すなわち、遅れ時間が大きすぎると遅れ時間の経過後に設定されている計測期間において、圧力波が検出されなくなる可能性があるから、遅れ時間には上限値を設定しておくのが望ましい。   Even when this configuration is adopted, it is desirable to set an upper limit value for the delay time. That is, if the delay time is too large, there is a possibility that the pressure wave will not be detected in the measurement period set after the delay time has elapsed, so it is desirable to set an upper limit value for the delay time.

1 送波素子
2 受波素子
4 エアフィルタ
6 制御部
7 処理部
8 温度検出素子
31 コンデンサ
32 充放電部
33 換算部
DESCRIPTION OF SYMBOLS 1 Transmission element 2 Reception element 4 Air filter 6 Control part 7 Processing part 8 Temperature detection element 31 Capacitor 32 Charging / discharging part 33 Conversion part

Claims (5)

通電に伴って媒質に局所的な熱衝撃を与えて圧力波を発生させる熱誘起型の送波素子と、前記送波素子とは規定の距離だけ離れた位置に配置され前記送波素子からの圧力波を受波して電気信号に変換する受波素子と、圧力波が伝播される媒質の温度を計測する温度検出素子と、単峰性のパルスにより前記送波素子を駆動する制御部と、前記送波素子と前記受波素子との間で伝送される圧力波の伝播時間と前記温度検出素子が計測した温度とを用いて媒質の湿度を算出する処理部とを備えることを特徴とする湿度センサ。   A heat-induced wave transmitting element that generates a pressure wave by applying a local thermal shock to the medium with energization, and the wave transmitting element are arranged at a position separated by a specified distance, and are separated from the wave transmitting element. A wave receiving element that receives a pressure wave and converts it into an electrical signal; a temperature detection element that measures the temperature of a medium through which the pressure wave propagates; and a control unit that drives the wave transmitting element with a unimodal pulse; A processing unit that calculates the humidity of the medium using a propagation time of a pressure wave transmitted between the transmitting element and the receiving element and a temperature measured by the temperature detecting element. Humidity sensor. 前記送波素子と前記受波素子との間の空間を周囲空間と分離し、塵埃の通過を阻止するエアフィルタを付加したことを特徴とする請求項1記載の湿度センサ。   The humidity sensor according to claim 1, further comprising an air filter that separates a space between the transmitting element and the receiving element from the surrounding space and prevents passage of dust. 前記処理部は、前記送波素子に通電する前にコンデンサに規定量の電荷を充電し前記制御部が前記送波素子に通電した後に前記コンデンサの放電を開始する充放電部と、前記受波素子が圧力波を受波した時点における前記コンデンサの電荷量を前記送波素子と前記受波素子との間での圧力波の伝播時間に換算する換算部とを備えることを特徴とする請求項1又は2記載の湿度センサ。   The processing unit charges a capacitor with a specified amount before energizing the transmission element, and starts charging and discharging the capacitor after the control unit energizes the transmission element; and the receiving unit A conversion unit that converts a charge amount of the capacitor at the time of receiving a pressure wave into a propagation time of a pressure wave between the transmitting element and the receiving element. The humidity sensor according to 1 or 2. 前記充放電部は、前記送波素子に通電した時点から規定の遅れ時間後に前記コンデンサの放電を開始し、遅れ時間は、媒質の温度および湿度の計測範囲に応じて上限値が設定されていることを特徴とする請求項3記載の湿度センサ。   The charging / discharging unit starts discharging the capacitor after a specified delay time from when the wave transmitting element is energized, and an upper limit value is set for the delay time according to the measurement range of the temperature and humidity of the medium. The humidity sensor according to claim 3. 前記充放電部は、前記送波素子に通電した時点から規定の遅れ時間後に前記コンデンサの放電を開始し、遅れ時間は、前記温度検出素子で検出された媒質の温度と湿度の計測範囲とに応じて設定されることを特徴とする請求項3記載の湿度センサ。   The charging / discharging unit starts discharging the capacitor after a specified delay time from the time when the wave transmission element is energized, and the delay time is within a measurement range of the temperature and humidity of the medium detected by the temperature detection element. 4. The humidity sensor according to claim 3, wherein the humidity sensor is set accordingly.
JP2011013055A 2011-01-25 2011-01-25 Humidity sensor Expired - Fee Related JP5796205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011013055A JP5796205B2 (en) 2011-01-25 2011-01-25 Humidity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011013055A JP5796205B2 (en) 2011-01-25 2011-01-25 Humidity sensor

Publications (2)

Publication Number Publication Date
JP2012154726A true JP2012154726A (en) 2012-08-16
JP5796205B2 JP5796205B2 (en) 2015-10-21

Family

ID=46836613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011013055A Expired - Fee Related JP5796205B2 (en) 2011-01-25 2011-01-25 Humidity sensor

Country Status (1)

Country Link
JP (1) JP5796205B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016206038A (en) * 2015-04-23 2016-12-08 東京瓦斯株式会社 Center device and method for specifying position of adding water

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189571A (en) * 1982-04-28 1983-11-05 West Electric Co Ltd Ultrasonic range finding device
JPS63151825A (en) * 1986-12-16 1988-06-24 Hitachi Constr Mach Co Ltd Ultrasonic measuring apparatus
JPH05312667A (en) * 1992-05-11 1993-11-22 Matsushita Electric Ind Co Ltd Moisture sensor and hygrometer
JPH10332616A (en) * 1997-05-31 1998-12-18 Yoshihide Naito Quick response convenient hygrometer
JP2007121046A (en) * 2005-10-26 2007-05-17 Matsushita Electric Works Ltd Sensor device and self-advancing robot using the same
JP2010033534A (en) * 2008-06-25 2010-02-12 Panasonic Electric Works Co Ltd Fire detector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189571A (en) * 1982-04-28 1983-11-05 West Electric Co Ltd Ultrasonic range finding device
JPS63151825A (en) * 1986-12-16 1988-06-24 Hitachi Constr Mach Co Ltd Ultrasonic measuring apparatus
JPH05312667A (en) * 1992-05-11 1993-11-22 Matsushita Electric Ind Co Ltd Moisture sensor and hygrometer
JPH10332616A (en) * 1997-05-31 1998-12-18 Yoshihide Naito Quick response convenient hygrometer
JP2007121046A (en) * 2005-10-26 2007-05-17 Matsushita Electric Works Ltd Sensor device and self-advancing robot using the same
JP2010033534A (en) * 2008-06-25 2010-02-12 Panasonic Electric Works Co Ltd Fire detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016206038A (en) * 2015-04-23 2016-12-08 東京瓦斯株式会社 Center device and method for specifying position of adding water

Also Published As

Publication number Publication date
JP5796205B2 (en) 2015-10-21

Similar Documents

Publication Publication Date Title
CN110012392B (en) MEMS element and mobile device having MEMS element
US8254209B2 (en) Acoustic wave sensor
JP2007024688A (en) Human body abnormality detection sensor, and information system using the same
JP4111236B2 (en) Driving method of ultrasonic transducer
JP5796205B2 (en) Humidity sensor
JP2012225756A (en) Humidity measuring apparatus
JP5658061B2 (en) Mechanical quantity sensor
JP2006319789A (en) Obstacle detection sensor for vehicle
JP4214551B2 (en) Ultrasonic sound pressure sensor
JP3979423B2 (en) Position detection system
JPH0894594A (en) Ultrasonic humidity sensor and ultrasonic temperature/ humidity sensor
JP5438596B2 (en) Fire detector
JP2012185737A (en) Fire sensor
JPH08313314A (en) Flow velocity measuring device
Abdelmejeed et al. A CMOS compatible GHz ultrasonic pulse phase shift based temperature sensor
JP4569599B2 (en) Position detection system
JP4569587B2 (en) Flow line measurement system
JP5049209B2 (en) Fire detector
JP2000298045A (en) Ultrasonic flowmeter
JP4042770B2 (en) Position detection system
JP2007147654A (en) Flow line measuring system
JP2007025910A (en) Security system
JP2006220637A (en) Sensor system
JP4729941B2 (en) Sonic sensor
JP7345117B2 (en) Temperature sensor and temperature measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140317

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150403

LAPS Cancellation because of no payment of annual fees