JP2012154709A - Three-dimensional shape measurement device - Google Patents

Three-dimensional shape measurement device Download PDF

Info

Publication number
JP2012154709A
JP2012154709A JP2011012579A JP2011012579A JP2012154709A JP 2012154709 A JP2012154709 A JP 2012154709A JP 2011012579 A JP2011012579 A JP 2011012579A JP 2011012579 A JP2011012579 A JP 2011012579A JP 2012154709 A JP2012154709 A JP 2012154709A
Authority
JP
Japan
Prior art keywords
light
light receiving
dimensional shape
side filter
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011012579A
Other languages
Japanese (ja)
Other versions
JP5508303B2 (en
Inventor
Masahito Amanaka
将人 甘中
Eiji Takahashi
英二 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011012579A priority Critical patent/JP5508303B2/en
Publication of JP2012154709A publication Critical patent/JP2012154709A/en
Application granted granted Critical
Publication of JP5508303B2 publication Critical patent/JP5508303B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately measure a three-dimensional shape of each stepped section without installing an individual imaging section for each stepped section.SOLUTION: A light receiving element 21P receives reflection from a sample SP. A lens 22L forms an image of reflection (with a light axis R1) from a stepped section WA1 at a center line side and brings the image to the light receiving element 21P. The lens 22L: also forms the image of the reflection (with the light axis R2) from a stepped section WA2 outside of the stepped section WA1 through mirrors 231 and 232; and brings the image to the light receiving element 21P. The light axis LA of an imaging section 21 is set to have an elevation angle and a bearing angle with respect to the sample SP so that an optical distance along the light axis R1 of the reflection from the stepped section WA1 to the light receiving element 21 is equal to the optical distance along the light axis R2 of the reflection from the stepped section WA2 to the light receiving element 21.

Description

本発明は複数の段差部を持つ測定対象物の段差部の三次元形状を計測する技術に関するものである。   The present invention relates to a technique for measuring a three-dimensional shape of a stepped portion of a measurement object having a plurality of stepped portions.

近年、金属や樹脂等を押し出し加工することで得られた押し出し形成品の3次元形状を計測する試みがなされている。このような、押し出し形成品には、一方向に長い段差を複数持つもの、すなわち、複数の段差部を持つものがある。このような押し出し形成品では、特に段差部の3次元形状を光切断法を用いて詳細に計測したいという要望がある。   In recent years, attempts have been made to measure the three-dimensional shape of an extruded product obtained by extruding metal, resin, or the like. Such extruded products include those having a plurality of long steps in one direction, that is, those having a plurality of step portions. In such an extrusion-formed product, there is a demand for measuring in particular the three-dimensional shape of the stepped portion in detail using an optical cutting method.

光切断法では、受光素子の画素数に応じて分解能が決まる為、受光素子の画素数が同じ場合、視野サイズの増大に比例して分解能は低下する。従って、測定対象物の表面において、観察したい箇所が離れて複数存在するような場合、図9に示すように全箇所を観察するために視野を広角に設定すると、観察したい箇所の微細な構造を捉えることができなくなる。逆に微細な構造を捉える為に視野を狭めてしまうと、観察した箇所のうち一部の箇所しか捉えることができなくなる。   In the light cutting method, since the resolution is determined according to the number of pixels of the light receiving element, when the number of pixels of the light receiving element is the same, the resolution decreases in proportion to the increase in the field size. Therefore, on the surface of the measurement object, when there are a plurality of locations to be observed apart, if the field of view is set to a wide angle in order to observe all locations as shown in FIG. 9, the fine structure of the location to be observed is It becomes impossible to catch. Conversely, if the field of view is narrowed in order to capture a fine structure, only a part of the observed locations can be captured.

この為、従来では、観察したい箇所ごとに1台のカメラを設置するのが一般的であった。図10は、複数の段差部WAを持つ押し出し形成品をサンプルSPとしたときに各段差部WAの三次元形状を、光切断法を用いて測定する場合のカメラCMの設置状況を示した図である。   For this reason, in the past, it was common to install one camera for each location to be observed. FIG. 10 is a diagram showing the installation state of the camera CM when the three-dimensional shape of each stepped portion WA is measured using the light cutting method when an extruded product having a plurality of stepped portions WA is used as the sample SP. It is.

図10に示すように測定対象物(以下、サンプルSPと記述する。)は、X方向(長さ方向)を長手方向とする4つの段差部WAを持つ。各段差部WAは、サンプルSPのY方向(幅方向)の中心OYを通り、かつ、X方向に平行な中心線MLを中心として左右対称に形成されている。このようなサンプルSPの各段差部WAの三次元形状を測定する場合、従来の手法では、各段差部WAを撮影する4台のカメラCMを設置し、各段差部WAの三次元形状を個別に測定するのが一般的であった。   As shown in FIG. 10, the measurement object (hereinafter referred to as sample SP) has four stepped portions WA whose longitudinal direction is the X direction (length direction). Each stepped portion WA is formed symmetrically about a center line ML that passes through the center OY in the Y direction (width direction) of the sample SP and is parallel to the X direction. When measuring the three-dimensional shape of each stepped portion WA of such a sample SP, in the conventional method, four cameras CM for photographing each stepped portion WA are installed, and the three-dimensional shape of each stepped portion WA is individually set. It was common to measure in

なお、本願発明に関連する特許文献として特許文献1、2がある。特許文献1では、測定対象物を二軸ステージ上に設置し、サンプル面を平行に走査して各箇所を測定した後、測定データを統合する事で、サンプル面の全体の立体形状を測定する非接触三次元計測方法が開示されている。   Patent documents 1 and 2 are patent documents related to the present invention. In Patent Document 1, an object to be measured is placed on a biaxial stage, the sample surface is scanned in parallel to measure each location, and then the measurement data is integrated to measure the entire three-dimensional shape of the sample surface. A non-contact three-dimensional measurement method is disclosed.

特許文献2では、対象平面上をレーザ光で走査し、反射光をPSDで受光し、PSDの検知信号から反射光の傾き角を算出し、平面異常を検査する光走査式平面外観検査装置が開示されている。   In Patent Document 2, an optical scanning planar appearance inspection apparatus that scans a target plane with a laser beam, receives reflected light with a PSD, calculates an inclination angle of the reflected light from a PSD detection signal, and inspects a plane abnormality. It is disclosed.

特開2009−122066号公報JP 2009-122066 A 特開2008−145162号公報JP 2008-145162 A

しかしながら、図10に示す従来の手法では、各段差部WAに対してカメラCMを設置する必要があるため、部品点数が増大することに加えてカメラCMが持つ光学系の構成が煩雑化するという問題があった。   However, in the conventional method shown in FIG. 10, since it is necessary to install a camera CM for each stepped portion WA, in addition to an increase in the number of parts, the configuration of the optical system of the camera CM is complicated. There was a problem.

また、特許文献1の手法では、非接触プローブを水平軸方向及び垂直軸方向との2軸に平行移動させるための平行移動式の2軸ステージが必要となるため、装置構成が煩雑となる。   In addition, the technique disclosed in Patent Document 1 requires a translational biaxial stage for translating the non-contact probe in two axes, ie, a horizontal axis direction and a vertical axis direction.

また、特許文献2の手法では、レーザ光を走査することで傾き角が検出されているため、全箇所を測定し終えるまでに一定の時間がかかり、リアルタイムに計測ができない。   Further, in the method of Patent Document 2, since the tilt angle is detected by scanning the laser beam, it takes a certain time to finish measuring all points, and measurement in real time is impossible.

本発明の目的は、段差部毎に撮像部を設置しなくても、各段差部の三次元形状を精度良く計測することができる三次元形状計測装置を提供することである。   An object of the present invention is to provide a three-dimensional shape measuring apparatus that can accurately measure the three-dimensional shape of each stepped portion without installing an imaging unit for each stepped portion.

(1)本発明による三次元形状計測装置は、一方向に長い段差を複数持つ測定対象物の各段差部の三次元形状を光切断法を用いて計測する三次元形状計測装置であって、前記測定対象物に対して前記一方向と交差する方向に光切断線を照射する光源と、前記光切断線が照射された前記測定対象物を撮像する撮像部とを備え、前記撮像部は、前記測定対象物からの反射光を受光する受光素子と、1つの段差部からの反射光を結像して前記受光素子に導くレンズと、前記1つの段差部以外の他の段差部からの反射光を反射して前記レンズに結像させて前記受光素子に導くミラーとを含み、前記撮像部の光軸は、前記1つの段差部からの反射光の光軸の前記受光素子までの光学距離と、前記他の段差部からの反射光の光軸の前記受光素子までの光学距離とが等しくなるように、前記測定対象物に対する仰角及び方位角が設定されている。   (1) A three-dimensional shape measuring apparatus according to the present invention is a three-dimensional shape measuring apparatus that measures the three-dimensional shape of each stepped portion of a measurement object having a plurality of steps that are long in one direction using an optical cutting method, A light source that irradiates a light cutting line in a direction intersecting the one direction with respect to the measurement object; and an imaging unit that images the measurement object irradiated with the light cutting line. A light receiving element that receives reflected light from the measurement object, a lens that forms an image of reflected light from one stepped portion and guides it to the light receiving element, and a reflection from other stepped portions other than the one stepped portion. A mirror that reflects light to form an image on the lens and guides the light to the light receiving element, and an optical axis of the imaging unit is an optical distance of an optical axis of reflected light from the one stepped part to the light receiving element And optical up to the light receiving element of the optical axis of the reflected light from the other stepped portion As away Metropolitan equal, elevation and azimuth with respect to the measurement target is set.

この構成によれば、1つの撮像部によって複数の段差部が撮像される。そして、撮像部は、一つの段差部からの反射光の受光素子までの光学距離と、他方の段差部からの反射光の受光素子までの光学距離とが等しくなるように、仰角及び方位角が設定されている。そのため、段差部毎に撮像部を設けなくても、1つの段差部の反射光による光像と他の段差部の反射光による光像とを受光素子に同時に結像させることができる。その結果、各段差部の三次元形状を精度良く計測することができる。   According to this configuration, a plurality of step portions are imaged by one imaging unit. The imaging unit has an elevation angle and an azimuth angle so that the optical distance of the reflected light from one step portion to the light receiving element is equal to the optical distance of the reflected light from the other step portion to the light receiving element. Is set. Therefore, it is possible to simultaneously form a light image by the reflected light of one stepped portion and a light image by the reflected light of the other stepped portion on the light receiving element without providing an imaging unit for each stepped portion. As a result, the three-dimensional shape of each step portion can be measured with high accuracy.

(2)前記仰角α及び方位角βは、2・sinβ−2・sinβ・sinα=1の関係を持つことが好ましい。 (2) The elevation angle α and the azimuth angle β preferably have a relationship of 2 · sin 2 β−2 · sin 2 β · sin 2 α = 1.

この構成によれば、上記の関係式を用いることで、光学距離を一定にすることができる撮像部の仰角及び方位角を正確に決定することができる。   According to this configuration, by using the above relational expression, it is possible to accurately determine the elevation angle and azimuth angle of the imaging unit that can make the optical distance constant.

(3)前記段差部は、前記一方向と直交する幅方向の一端側に斜面が露出した複数の第1段差部と、前記幅方向の他端側に斜面が露出した複数の第2段差部とからなり、前記第1段差部は、前記一端側から複数個ずつ区分されて1又は複数の第1段差群に分けられ、前記第2段差部は、前記他端側から複数個ずつ区分されて1又は複数の第2段差群に分けられ、一対の前記撮像部及び前記光源により構成され計測系を備え、前記計測系は各第1,第2段差群に対応して複数存在することが好ましい。   (3) The stepped portions include a plurality of first stepped portions having slopes exposed at one end side in the width direction orthogonal to the one direction, and a plurality of second stepped portions having slopes exposed at the other end side in the width direction. The first step portion is divided into a plurality of first step groups from the one end side, and the second step portion is divided into a plurality of first step portions from the other end side. Each of which is divided into one or a plurality of second step groups and includes a pair of the imaging unit and the light source and includes a measurement system, and a plurality of the measurement systems exist corresponding to each of the first and second step groups. preferable.

この構成によれば、第1、第2段差群毎に撮像部及び光源からなる計測系が設けられ、各段差部の3次元形状が個別に算出される。   According to this configuration, the measurement system including the imaging unit and the light source is provided for each of the first and second step groups, and the three-dimensional shape of each step unit is calculated individually.

(4)前記複数の段差部は、前記測定対象物の前記一方向の中心線に対して対称に配置され、前記計測系は、前記中心線に対して対象に配置されていることが好ましい。   (4) Preferably, the plurality of step portions are arranged symmetrically with respect to the center line in the one direction of the measurement object, and the measurement system is arranged on the object with respect to the center line.

この構成によれば、段差群が測定対象物の中心線に対して対称に配置されている場合、計測系が中心線に対して対称に配置されるため、計測系を整然と配列することができる。   According to this configuration, when the step group is arranged symmetrically with respect to the center line of the measurement object, the measurement system is arranged symmetrically with respect to the center line, so that the measurement system can be arranged in an orderly manner. .

(5)前記ミラーは、前記他の段差部からの反射光の光軸を45度の反射角で反射する第1ミラーと、前記第1ミラーにより反射された反射光の光軸を45度の反射角で反射する第2ミラーとを含むことが好ましい。   (5) The mirror includes a first mirror that reflects an optical axis of reflected light from the other stepped portion at a reflection angle of 45 degrees, and an optical axis of reflected light reflected by the first mirror of 45 degrees. It is preferable to include a second mirror that reflects at a reflection angle.

この構成によれば、他の段差部からの反射光は第1ミラーにより光軸が90度曲げられて第2ミラーへと導かれ、第1ミラーにより反射された反射光は第2ミラーにより光軸が90度曲げられてレンズへと導かれ、受光素子に結像される。そのため、他の段差部からの反射光を確実に受光素子まで導くことができる。   According to this configuration, the reflected light from the other stepped portion is guided to the second mirror with the optical axis bent by 90 degrees by the first mirror, and the reflected light reflected by the first mirror is reflected by the second mirror. The shaft is bent 90 degrees, guided to the lens, and imaged on the light receiving element. Therefore, it is possible to reliably guide the reflected light from other steps to the light receiving element.

(6)前記第1ミラーは、前記撮像部の光軸に対して直交する面において、前記1つの段差部からの反射光の光軸の前記受光素子までの光学距離と、前記他の段差部からの反射光の光軸の前記受光素子までの光学距離とが等しくなるように、移動可能に配置されていることが好ましい。   (6) The first mirror has an optical distance to the light receiving element on the optical axis of the reflected light from the one stepped portion and the other stepped portion on a plane orthogonal to the optical axis of the imaging unit. It is preferable that the optical axis of the reflected light from the light beam is arranged so as to be movable so that the optical distance to the light receiving element is equal.

この構成によれば、段差部の間隔が異なる種々の測定対象物であっても、他の段差部からの反射光の光軸が直交する位置に第1ミラーを配置することで、他の段差部の3次元形状を精度良く算出することができる。   According to this configuration, even for various measurement objects having different intervals between the stepped portions, the first mirror is arranged at a position where the optical axes of the reflected light from the other stepped portions are orthogonal to each other. The three-dimensional shape of the part can be calculated with high accuracy.

(7)前記第1ミラーは、前記撮像部の光軸に直交する面における前記一方向に対する角度をγ、前記撮像部の光軸の仰角をα、前記撮像部の光軸の方位角をβとすると、tanγ=sinα・sinβ/cosβの関係を満たす角度γの方向に移動可能に配置されていることが好ましい。   (7) The first mirror has an angle with respect to the one direction in a plane orthogonal to the optical axis of the imaging unit, γ an elevation angle of the optical axis of the imaging unit, and β an azimuth angle of the optical axis of the imaging unit. Then, it is preferable that they are arranged so as to be movable in the direction of the angle γ that satisfies the relationship of tan γ = sin α · sin β / cos β.

この構成によれば、第1ミラーを光軸に直交する面内で角度γに沿って移動させるだけで、他の段差部からの反射光と1つの段差部からの反射光との光学距離とを同じにすることができる。したがって、間隔の異なる段差部を持つ種々の測定対象物に対して柔軟に対応することができる。   According to this configuration, the optical distance between the reflected light from the other stepped portion and the reflected light from one stepped portion can be obtained by simply moving the first mirror along the angle γ within the plane orthogonal to the optical axis. Can be the same. Accordingly, it is possible to flexibly cope with various measurement objects having stepped portions having different intervals.

(8)前記撮像部は、前記受光素子、前記レンズ、及び前記ミラーを覆い、前記測定対象物側の面に開口部が設けられたカバーと、前記開口部に配置された開口側フィルタ群と、前記受光素子の直前に配置された受光側フィルタ群とを含み、前記開口側フィルタ群は、前記1つの段差部からの反射光を透過する第1開口側フィルタ及び前記他の段差部からの反射光を透過する第2開口側フィルタを備え、前記受光側フィルタ群は、第1開口側フィルタを透過した反射光を透過する第1受光側フィルタ及び前記第2開口側フィルタを透過した反射光を透過する第2受光側フィルタが配列され、前記第1開口側フィルタ及び前記第2開口側フィルタは、隣接するフィルタと異なるフィルタ特性を持ち、前記第1受光側フィルタ及び前記第2受光側フィルタは、対応する第1開口側フィルタ及び第2開口側フィルタと、同じフィルタ特性を持つことが好ましい。   (8) The imaging unit covers the light receiving element, the lens, and the mirror, a cover having an opening provided on the surface on the measurement object side, and an opening-side filter group disposed in the opening. A light receiving side filter group disposed immediately before the light receiving element, the opening side filter group from the first opening side filter that transmits the reflected light from the one stepped portion and the other stepped portion. A second opening-side filter that transmits reflected light, and the light-receiving-side filter group includes a first light-receiving side filter that transmits reflected light that has passed through the first opening-side filter and reflected light that has passed through the second opening-side filter. A second light receiving side filter that passes through the first light receiving side filter, the first opening side filter and the second opening side filter have different filter characteristics from adjacent filters, and the first light receiving side filter and the second light receiving side filter Filter has a corresponding first opening side filter and the second opening side filter, it is preferable to have the same filter characteristics.

この構成によれば、1つの段差部からの反射光は第1開口側フィルタと、第1開口側フィルタと同じフィルタ特性を持つ第1受光側フィルタとを介して受光素子に導かれる。また、他の段差部からの反射光は第2開口側フィルタと、第2開口側フィルタと同じフィルタ特性を持つ第2受光側フィルタとを介して受光素子に導かれる。よって、他の段差部からの反射光が1つの段差部の迷光となって受光素子に導かれることを防止し、かつ、1つの段差部からの反射光が他の段差部の迷光となって受光素子に導かれることを防止することができる。   According to this configuration, the reflected light from one step portion is guided to the light receiving element via the first opening side filter and the first light receiving side filter having the same filter characteristics as the first opening side filter. In addition, the reflected light from the other stepped portion is guided to the light receiving element via the second opening side filter and the second light receiving side filter having the same filter characteristics as the second opening side filter. Therefore, the reflected light from the other stepped portion is prevented from being guided to the light receiving element as stray light of one stepped portion, and the reflected light from one stepped portion becomes stray light of the other stepped portion. It is possible to prevent the light from being guided to the light receiving element.

(9)前記フィルタ特性は、偏光特性であり、前記第1開口側フィルタ及び前記第2開口側フィルタは、隣接するフィルタと偏光方向が直交する偏光フィルタであることが好ましい。   (9) It is preferable that the filter characteristic is a polarization characteristic, and the first aperture side filter and the second aperture side filter are polarization filters whose polarization directions are orthogonal to adjacent filters.

この構成によれば、第1開口側フィルタと第2開口側フィルタとは偏光方向が直交しているため、迷光をより確実に防止することができる。   According to this configuration, since the polarization direction of the first aperture side filter and the second aperture side filter are orthogonal, stray light can be more reliably prevented.

(10)前記フィルタ特性は、波長特性であり、前記第1開口側フィルタ及び前記第2開口側フィルタは、隣接するフィルタと波長特性が異なる波長フィルタであることが好ましい。   (10) Preferably, the filter characteristic is a wavelength characteristic, and the first aperture side filter and the second aperture side filter are wavelength filters having different wavelength characteristics from adjacent filters.

この構成によれば、第1開口側フィルタ及び第2開口側フィルタは波長特性が異なるフィルタにより構成されているため、迷光を確実に防止することができる。   According to this configuration, since the first aperture side filter and the second aperture side filter are configured by filters having different wavelength characteristics, stray light can be reliably prevented.

本発明によれば、段差部毎に撮像部を設置しなくても、各段差部の三次元形状を精度良く計測することができる。   According to the present invention, it is possible to accurately measure the three-dimensional shape of each stepped portion without installing an imaging unit for each stepped portion.

(A)、(B)は、本発明の実施の形態による三次元形状計測装置の全体構成図であり、(A)は斜視図であり、(B)は上面図である。(A), (B) is the whole block diagram of the three-dimensional shape measuring apparatus by embodiment of this invention, (A) is a perspective view, (B) is a top view. 図1(B)に示す三次元形状計測装置をA方向から見たときの左側計測系を示した図である。It is the figure which showed the left side measurement system when the three-dimensional shape measuring apparatus shown to FIG. 1 (B) is seen from A direction. 図1(B)に示す三次元形状計測装置をC方向から見たときの左側計測系を示した図である。It is the figure which showed the left side measurement system when the three-dimensional shape measuring apparatus shown to FIG. 1 (B) is seen from C direction. (A)は、図1(B)に示す三次元形状計測装置をB方向から見たときの左側計測系を示した図である。(A) is the figure which showed the left side measurement system when the three-dimensional shape measuring apparatus shown to FIG. 1 (B) is seen from the B direction. (B)は、受光素子の受光面に現れる光像を示した図である。(B) is the figure which showed the optical image which appears on the light-receiving surface of a light receiving element. 本発明の実施の形態による三次元形状計測装置のブロック図である。It is a block diagram of the three-dimensional shape measuring apparatus by embodiment of this invention. (A)は、本発明の実施の形態による三次元形状計測装置の具体的一例をB方向から見た図である。(B)は、図7(A)の具体的一例における受光素子の受光面に現れる光像を示した図である。(A) is the figure which looked at the specific example of the three-dimensional shape measuring apparatus by embodiment of this invention from the B direction. (B) is the figure which showed the optical image which appears on the light-receiving surface of the light receiving element in the specific example of FIG. 7 (A). (A)、(B)は本発明の実施の形態による三次元形状計測装置の変形例2において、受光素子の受光面に結像される光像を示した図である。(A), (B) is the figure which showed the optical image imaged on the light-receiving surface of a light receiving element in the modification 2 of the three-dimensional shape measuring apparatus by embodiment of this invention. 観察したい箇所の全域を視野に含めた場合の従来の三次元形状装置の視野を示した図である。It is the figure which showed the visual field of the conventional three-dimensional shape apparatus at the time of including the whole region of the location to observe in a visual field. 複数の段差部を持つ押し出し形成品を測定対象物としたときに各段差部の三次元形状を、光切断法を用いて測定する場合のカメラの設置状況を示した図である。It is the figure which showed the installation condition of the camera in the case of measuring the three-dimensional shape of each level | step-difference part using a light cutting method when the extrusion-formed product which has a several level | step difference part is made into a measuring object.

図1(A)、(B)は、本発明の実施の形態による三次元形状計測装置の全体構成図であり、(A)は斜視図であり、(B)は上面図である。本三次元形状計測装置は、光源10、撮像部20、搬送部30、及び制御部40(図5参照)を備えている。そして、本三次元形状計測装置は、一方向(X方向:長さ方向)に長い段差部を複数持つ測定対象物(以下、サンプルSPと記述)の各段差部WAの三次元形状を光切断法を用いて計測する。   1A and 1B are overall configuration diagrams of a three-dimensional shape measuring apparatus according to an embodiment of the present invention, FIG. 1A is a perspective view, and FIG. 1B is a top view. The three-dimensional shape measuring apparatus includes a light source 10, an imaging unit 20, a transport unit 30, and a control unit 40 (see FIG. 5). The three-dimensional shape measuring apparatus optically cuts the three-dimensional shape of each stepped portion WA of a measurement object (hereinafter referred to as sample SP) having a plurality of stepped portions that are long in one direction (X direction: length direction). Measure using the method.

なお、図1においてY方向はX方向と直交するサンプルSPの幅方向を示している。また、Z方向は、X方向及びY方向にそれぞれ直交する高さ方向を示している。図1の例ではサンプルSPは4つの段差部WAを持つ。ここで、サンプルSPは、金属や樹脂等の平板状の部材を押し出し加工することで得られた押し出し形成品である。各段差部WAは、サンプルSPのY方向の中心OYを通り、かつ、X方向に平行な中心線MLを中心として左右対称に形成されている。段差部WAの傾斜はほぼZ方向と平行、つまり、サンプルSPの主面に対してほぼ直交している。   In FIG. 1, the Y direction indicates the width direction of the sample SP orthogonal to the X direction. The Z direction indicates the height direction orthogonal to the X direction and the Y direction. In the example of FIG. 1, the sample SP has four step portions WA. Here, the sample SP is an extrusion-formed product obtained by extruding a flat plate member such as metal or resin. Each stepped portion WA is formed symmetrically about a center line ML passing through the center OY in the Y direction of the sample SP and parallel to the X direction. The inclination of the stepped portion WA is substantially parallel to the Z direction, that is, substantially orthogonal to the main surface of the sample SP.

ここで、段差部WAは、Y方向の左側に斜面が露出した複数の段差部WA(第1段差部)と、Y方向の右側に斜面が露出した複数の段差部WA(第2段差部)とからなる。図1の場合、段差部WA1,WA2が第1段差部となり、段差部WA3,WA4が第2段差部となる。   Here, the stepped portion WA includes a plurality of stepped portions WA (first stepped portions) whose slopes are exposed on the left side in the Y direction and a plurality of stepped portions WA (second stepped portions) whose slopes are exposed on the right side in the Y direction. It consists of. In the case of FIG. 1, the stepped portions WA1 and WA2 are first stepped portions, and the stepped portions WA3 and WA4 are second stepped portions.

段差部WA1は第1段差部のうち中心線ML側に位置する段差部WAであり、段差部WA2は第1段差部のうち左側に位置する段差部WAである。段差部WA3は第2段差部のうち中心線ML側に位置する段差部WAであり、段差部WA4は第2段差部のうち右側に位置する段差部WAである。   The stepped portion WA1 is a stepped portion WA located on the center line ML side of the first stepped portion, and the stepped portion WA2 is a stepped portion WA located on the left side of the first stepped portion. The stepped portion WA3 is a stepped portion WA located on the center line ML side of the second stepped portion, and the stepped portion WA4 is a stepped portion WA located on the right side of the second stepped portion.

光源10はサンプルSPに対して光切断線CLを照射する。以下、段差部WA1,WA2の三次元形状を計測するための光源10を光源11と記述する。また、段差部WA3,WA4の三次元形状を計測するための光源10を光源12と記述する。また、段差部WA1〜WA4を示す光切断線CLを区別する場合、光切断線CL1〜CL4と記述する。   The light source 10 irradiates the sample SP with a light cutting line CL. Hereinafter, the light source 10 for measuring the three-dimensional shape of the stepped portions WA1 and WA2 is described as a light source 11. Further, the light source 10 for measuring the three-dimensional shape of the stepped portions WA3 and WA4 is described as a light source 12. Moreover, when distinguishing the optical cutting line CL which shows level | step-difference part WA1-WA4, it describes as optical cutting line CL1-CL4.

光切断線CLは、大局的に長手方向がY方向を向く直線であるが、微視的にはサンプルSPの表面形状、つまり、高さに応じた凹凸を持つ線である。   The light cutting line CL is a straight line whose longitudinal direction is generally in the Y direction, but microscopically, it is a line having irregularities corresponding to the surface shape of the sample SP, that is, the height.

光源10は、図略のレーザ光源及びレンズを備えている。レーザ光源は、所定波長のレーザビームをサンプルに向けて照射する。レンズは、光源から照射されたレーザ光を扇状に拡散させ、サンプルSPに光切断線CLを描く。   The light source 10 includes a laser light source and a lens (not shown). The laser light source irradiates a sample with a laser beam having a predetermined wavelength. The lens diffuses the laser light emitted from the light source in a fan shape and draws a light cutting line CL on the sample SP.

撮像部20は、光切断線CLが照射されたサンプルSPを撮像する。図1の例では、2個の撮像部20が設けられている。以下、段差部WA1,WA2の三次元形状を計測するための撮像部20を撮像部21と記述する。また、段差部WA3,WA4の三次元形状を計測するための撮像部20を撮像部22と記述する。   The imaging unit 20 images the sample SP irradiated with the light cutting line CL. In the example of FIG. 1, two imaging units 20 are provided. Hereinafter, the imaging unit 20 for measuring the three-dimensional shape of the stepped portions WA1 and WA2 is referred to as an imaging unit 21. In addition, the imaging unit 20 for measuring the three-dimensional shape of the stepped portions WA3 and WA4 is described as an imaging unit 22.

撮像部21は、サンプルSPの搬送方向(X方向)に対し、光源11の上流側に配置され、図1(B)に示すように、上面視において光軸LAが右斜め上方向を向くように配置されている。撮像部22は、サンプルSPの搬送方向に対し、光源12の上流側に配置され、光軸LAが左斜め上方向を向くように配置されている。   The imaging unit 21 is arranged on the upstream side of the light source 11 with respect to the conveyance direction (X direction) of the sample SP, and as shown in FIG. 1B, the optical axis LA is directed obliquely upward to the right as viewed from above. Is arranged. The imaging unit 22 is arranged on the upstream side of the light source 12 with respect to the conveyance direction of the sample SP, and is arranged so that the optical axis LA is directed obliquely upward to the left.

以下、段差部WA1,WA2の三次元形状を計測するための光源11及び撮像部21を左側計測系LUと記述し、段差部WA3,WA4の三次元形状を計測するための光源12及び撮像部22を右側計測系RUと記述する。左側計測系LUと右側計測系RUとは中心線MLに対して、X方向の位置が上下にずらされて左右対称に設置されている。   Hereinafter, the light source 11 and the imaging unit 21 for measuring the three-dimensional shape of the stepped portions WA1 and WA2 will be described as the left measurement system LU, and the light source 12 and the imaging unit for measuring the three-dimensional shape of the stepped portions WA3 and WA4. 22 is described as a right measurement system RU. The left measurement system LU and the right measurement system RU are installed symmetrically with respect to the center line ML, with the position in the X direction being shifted up and down.

図1の例では、左側計測系LUは右側計測系RUよりも搬送方向の上流側に配置されている。但し、これは一例であり、右側計測系RUを左側計測系LUよりも搬送方向の上流側に配置してもよいし、右側計測系RUと左側計測系LUとをX方向上の同じ位置にY方向に並べて配置してもよい。後者の場合、一つの光源10をサンプルSPのY方向の中心線ML上に配置し、右側計測系RUと左側計測系LUとで一つの光源10を共用化してもよい。但し、右側計測系RUと左側計測系LUとで個別に光源10を設けると、左側の2個の段差部WA1,WA2と右側の2個の段差部WA3,WA4とに対して好ましい方向から光切断線CLを照射できるため、三次元形状の計測精度を高めるためには、光源10を個別に設ける方が好ましい。   In the example of FIG. 1, the left measurement system LU is disposed upstream of the right measurement system RU in the transport direction. However, this is only an example, and the right measurement system RU may be arranged upstream of the left measurement system LU in the transport direction, and the right measurement system RU and the left measurement system LU are at the same position in the X direction. They may be arranged side by side in the Y direction. In the latter case, one light source 10 may be arranged on the center line ML in the Y direction of the sample SP, and one light source 10 may be shared by the right measurement system RU and the left measurement system LU. However, if the light source 10 is individually provided for the right measurement system RU and the left measurement system LU, light is emitted from a preferable direction with respect to the left two stepped portions WA1 and WA2 and the right two stepped portions WA3 and WA4. Since the cutting line CL can be irradiated, it is preferable to provide the light source 10 individually in order to increase the measurement accuracy of the three-dimensional shape.

搬送部30は、搬送ベルト31及び複数の搬送ローラ32を備え、サンプルSPをX方向に向けて一定速度で搬送する。搬送ベルト31は、例えばX方向を長手方向とする無端ベルトにより構成され、上面にサンプルSPが載置される。搬送ローラ32は、図略のモータからの駆動力を受けて回転し、搬送ベルト31を例えば時計回りに回転させる。   The transport unit 30 includes a transport belt 31 and a plurality of transport rollers 32, and transports the sample SP at a constant speed in the X direction. The conveyor belt 31 is constituted by, for example, an endless belt whose longitudinal direction is the X direction, and the sample SP is placed on the upper surface. The transport roller 32 rotates in response to a driving force from a motor (not shown), and rotates the transport belt 31 clockwise, for example.

以下、説明の煩雑さを避ける為、左側計測系LUのみを抜き出して説明する。図2は、図1(B)に示す三次元形状計測装置をA方向から見たときの左側計測系LUを示した図である。ここで、A方向は、図1(B)に示すようにサンプルSPを真横から見た方向である。   Hereinafter, in order to avoid complexity of explanation, only the left measurement system LU will be extracted and described. FIG. 2 is a diagram illustrating the left measurement system LU when the three-dimensional shape measurement apparatus illustrated in FIG. 1B is viewed from the A direction. Here, the direction A is the direction of the sample SP viewed from the side as shown in FIG.

図1(B)、図2に示すように、光源11は光軸LBの方位角が中心線MLに対して直交するように配置されている。つまり、光源11は、A方向から見てサンプルSPに対して真上から光を照射する。これにより、サンプルSPの高さの変化によって光切断線CLが照射される位置が計測点からずれることを回避することができる。また、図2に示すように撮像部21は、A方向から見て、光軸LAがサンプルSPに対して右斜め下側を向くように配置されている。   As shown in FIGS. 1B and 2, the light source 11 is arranged so that the azimuth angle of the optical axis LB is orthogonal to the center line ML. That is, the light source 11 irradiates the sample SP with light from directly above as viewed from the A direction. Thereby, it can avoid that the position where the light cutting line CL is irradiated by the change in the height of the sample SP shifts from the measurement point. As shown in FIG. 2, the imaging unit 21 is arranged so that the optical axis LA faces obliquely downward to the right with respect to the sample SP when viewed from the A direction.

図3は、図1(B)に示す三次元形状計測装置をC方向から見たときの左側計測系LUを示した図である。C方向は、図1(B)に示すように撮像部20の光軸LAを真横から見た方向である。光軸LAを真横から見た方向とは、光軸LAのサンプルSPへの投影線と直交する方向である。ここで、光軸LAの方位角をβとする。光軸LAの方位角βは、光軸LAのサンプルSPへの投影線と中心線MLとがなす角度である。光軸LAの仰角をαとする。光軸LAの仰角αは、図3に示すように、光軸LAと光軸LAのサンプルSPへの投影線とがなす角度である。   FIG. 3 is a diagram illustrating the left measurement system LU when the three-dimensional shape measurement apparatus illustrated in FIG. 1B is viewed from the C direction. The C direction is a direction when the optical axis LA of the imaging unit 20 is viewed from the side as shown in FIG. The direction seen from the side of the optical axis LA is a direction orthogonal to the projection line of the optical axis LA onto the sample SP. Here, the azimuth angle of the optical axis LA is β. The azimuth angle β of the optical axis LA is an angle formed by the projection line of the optical axis LA on the sample SP and the center line ML. Let the elevation angle of the optical axis LA be α. As shown in FIG. 3, the elevation angle α of the optical axis LA is an angle formed by the optical axis LA and the projection line of the optical axis LA onto the sample SP.

図4(A)は、図1(B)に示す三次元形状計測装置をB方向から見たときの左側計測系LUを示した図である。B方向は、図1(B)に示すようにサンプルSPをX方向から見た方向である。   FIG. 4A is a diagram showing the left measurement system LU when the three-dimensional shape measurement apparatus shown in FIG. 1B is viewed from the B direction. The B direction is the direction when the sample SP is viewed from the X direction as shown in FIG.

通常の光切断法において、B方向から見て、光源11は光軸LBがサンプルSPと直交する方向に配置され、撮像部21は光軸LAがサンプルSPと直交する方向に配置される。しかしながら、本実施の形態では、段差部WAの傾斜がX−Y平面とほぼ直交するサンプルSPが測定対象である。そのため、光軸LAと光軸LBとが、B方向から見てサンプルSPに対して斜め方向を向くように、光源11及び撮像部21が設置されている。   In a normal light cutting method, the light source 11 is arranged in a direction in which the optical axis LB is orthogonal to the sample SP as viewed from the B direction, and the imaging unit 21 is arranged in a direction in which the optical axis LA is orthogonal to the sample SP. However, in the present embodiment, the sample SP whose inclination of the stepped portion WA is substantially orthogonal to the XY plane is the measurement target. Therefore, the light source 11 and the imaging unit 21 are installed so that the optical axis LA and the optical axis LB are inclined with respect to the sample SP when viewed from the B direction.

図1に示すように、左側計測系LUが測定対象とする段差部WAが段差部WA1,WA2の2箇所である場合、従来では、この2箇所の段差部WA1,WA2を共に含む測定画像を得る為に、撮像部21の視野が大きく設定されていた。そのため、段差部WA1,WA2の反射光の受光素子21Pに現れる光像の分解能が低下し、段差部WA1,WA2の三次元形状を精度良く測定することができなくなる。   As shown in FIG. 1, when there are two step portions WA1 and WA2 that are measured by the left measurement system LU, conventionally, a measurement image including both of the two step portions WA1 and WA2 is used. In order to obtain this, the field of view of the imaging unit 21 was set large. Therefore, the resolution of the light image that appears on the light receiving element 21P of the reflected light of the stepped portions WA1 and WA2 is reduced, and the three-dimensional shape of the stepped portions WA1 and WA2 cannot be accurately measured.

そこで、本実施の形態では、図4(A)に示すように撮像部21を構成した。具体的には、撮像部21は、受光素子21P、レンズ22L、及びミラー231(第1ミラーの一例),232(第2ミラーの一例)を備えている。   Therefore, in the present embodiment, the imaging unit 21 is configured as shown in FIG. Specifically, the imaging unit 21 includes a light receiving element 21P, a lens 22L, and mirrors 231 (an example of a first mirror) and 232 (an example of a second mirror).

受光素子21Pは、サンプルSPからの反射光を受光する。レンズ22Lは、中心線ML側の段差部WA1からの反射光(光軸がR1)を結像して受光素子21Pに導く。また、レンズ22Lは、段差部WA1よりも外側の段差部WA2からの反射光(光軸がR2)を、ミラー231,232を介して結像して受光素子21Pに導く。   The light receiving element 21P receives the reflected light from the sample SP. The lens 22L forms an image of reflected light (the optical axis is R1) from the stepped portion WA1 on the center line ML side and guides it to the light receiving element 21P. In addition, the lens 22L forms an image of the reflected light (the optical axis is R2) from the stepped portion WA2 outside the stepped portion WA1 through the mirrors 231 and 232 and guides it to the light receiving element 21P.

ミラー231,232は、段差部WA2からの反射光を順次に反射してレンズ22Lに導く。具体的には、ミラー231は、段差部WA2からの反射光の光軸R2を45度の反射角で反射する。これにより、段差部WA2からの反射光は、光軸R2がミラー231により90度曲げられる。ミラー232は、ミラー231により反射された反射光の光軸R2を45度の反射角で反射し、レンズ22Lに導く。これにより、ミラー231により反射された反射光は、光軸R2がミラー232によって90度曲げられてレンズ22Lに導かれる。   The mirrors 231 and 232 sequentially reflect the reflected light from the stepped portion WA2 and guide it to the lens 22L. Specifically, the mirror 231 reflects the optical axis R2 of the reflected light from the stepped portion WA2 at a reflection angle of 45 degrees. Thereby, the optical axis R2 of the reflected light from the stepped portion WA2 is bent 90 degrees by the mirror 231. The mirror 232 reflects the optical axis R2 of the reflected light reflected by the mirror 231 at a reflection angle of 45 degrees and guides it to the lens 22L. As a result, the reflected light reflected by the mirror 231 is guided to the lens 22L with the optical axis R2 bent by 90 degrees by the mirror 232.

また、ミラー231,232は下辺231a,232bがカバー26の下面26aと平行に配置されている。   The mirrors 231 and 232 have lower sides 231 a and 232 b arranged in parallel with the lower surface 26 a of the cover 26.

カバー26は直方体形状を有し、受光素子21P、レンズ22L、及びミラー231,232を覆う。カバー26は、サンプルSP側の面である下面26aに、段差部WA1,WA2からの反射光を受光素子21Pに導くための開口部が設けられている。   The cover 26 has a rectangular parallelepiped shape and covers the light receiving element 21 </ b> P, the lens 22 </ b> L, and the mirrors 231 and 232. The cover 26 is provided with an opening for guiding reflected light from the stepped portions WA1 and WA2 to the light receiving element 21P on a lower surface 26a that is a surface on the sample SP side.

撮像部21の光軸LAは、段差部WA1からの反射光の光軸R1の受光素子21Pまでの光学距離と、段差部WA2からの反射光の光軸R2の受光素子21Pまでの光学距離とが等しくなるように、サンプルSPに対する仰角α及び方位角βが設定されている。   The optical axis LA of the imaging unit 21 is the optical distance of the reflected light from the stepped portion WA1 to the light receiving element 21P of the optical axis R1, and the optical distance of the reflected light from the stepped portion WA2 to the light receiving element 21P of the optical axis R2 Are set to be equal to each other so that the elevation angle α and the azimuth angle β with respect to the sample SP are set.

具体的には、仰角α及び方位角βは式(1)の関係を持つ。   Specifically, the elevation angle α and the azimuth angle β have the relationship of Expression (1).

2・sinβ−2・sinβ・sinα=1 (1)
これにより、光軸R1と光軸R2との光学距離が等しくなり、段差部WA1の反射光による光像と段差部WA2の反射光による光像とを受光素子21Pに同時に結像させることができる。したがって、撮像部21の画角を広角に設定しなくても、段差部WA1のみを測定対象とする場合と同じ画角で段差部WA1,WA2を測定することができ、段差部WA1,WA2の三次元形状を精度良く測定することができる。
2 · sin 2 β-2 · sin 2 β · sin 2 α = 1 (1)
As a result, the optical distance between the optical axis R1 and the optical axis R2 becomes equal, and a light image by the reflected light of the stepped portion WA1 and a light image by the reflected light of the stepped portion WA2 can be simultaneously formed on the light receiving element 21P. . Accordingly, the stepped portions WA1 and WA2 can be measured at the same angle of view as when only the stepped portion WA1 is the measurement target without setting the angle of view of the imaging unit 21 to a wide angle, and the steps of the stepped portions WA1 and WA2 can be measured. The three-dimensional shape can be measured with high accuracy.

図4(B)は、受光素子21Pの受光面21Aに現れる光像を示した図である。図4(B)に示すように光像は、2分割された2つの領域D1,D2を持つ。領域D1,D2は矩形状であり、面積が同じである。領域D1には、段差部WA1からの反射光による光像が現れる。領域D1の中心O1が光軸R1と受光面21Aとの交点となるようにレンズ22Lが配置されている。そのため、領域D1には、段差部WA1を中心とする一定範囲の光切断線CL1が現れる。   FIG. 4B is a diagram showing a light image appearing on the light receiving surface 21A of the light receiving element 21P. As shown in FIG. 4B, the optical image has two regions D1 and D2 divided into two. The regions D1 and D2 are rectangular and have the same area. In the region D1, an optical image by reflected light from the stepped portion WA1 appears. The lens 22L is arranged so that the center O1 of the region D1 is the intersection of the optical axis R1 and the light receiving surface 21A. Therefore, a light cutting line CL1 with a certain range centering on the stepped portion WA1 appears in the region D1.

領域D2には、段差部WA2からの反射光による光像が現れる。領域D2の中心O2が光軸R2と受光面21Aとの交点となるようにミラー231が配置されている。そのため、領域D2には、段差部WA2を中心とする一定範囲の光切断線CL2が現れる。   In the region D2, an optical image by reflected light from the stepped portion WA2 appears. The mirror 231 is arranged so that the center O2 of the region D2 is an intersection of the optical axis R2 and the light receiving surface 21A. Therefore, a light cutting line CL2 with a certain range centering on the stepped portion WA2 appears in the region D2.

領域D1,D2に現れる2つの光像は、幾何学的には明確に分離しているが、実際には段差部WA2の反射光の一部が迷光となって領域D1に侵入し、段差部WA1の反射光の一部が迷光となって領域D2に侵入する。   The two optical images appearing in the regions D1 and D2 are clearly separated geometrically, but actually, part of the reflected light of the stepped portion WA2 enters the region D1 as stray light, and the stepped portion A part of the reflected light of WA1 becomes stray light and enters the region D2.

迷光の原因は、ミラー231,232のエッジ部での乱反射、段差部WA1,WA2の反射光が光路途中の物体により光学距離が不一致とされて結像されない光が迷光となって侵入する、などである。そこで、本実施の形態では、フィルタ241(第1開口側フィルタの一例)、フィルタ242(第2開口側フィルタの一例)、フィルタ251(第1受光側フィルタの一例)、及びフィルタ252(第2受光側フィルタの一例)を設け、迷光を防止している。   Causes of stray light include irregular reflection at the edge portions of the mirrors 231 and 232, reflected light of the stepped portions WA1 and WA2 due to objects in the optical path whose optical distances do not match and light that is not imaged enters as stray light, etc. It is. Therefore, in the present embodiment, the filter 241 (an example of the first opening side filter), the filter 242 (an example of the second opening side filter), the filter 251 (an example of the first light receiving side filter), and the filter 252 (the second filter) An example of a light-receiving side filter is provided to prevent stray light.

フィルタ241は、光軸R1がその中心を通過するように、下面26aに配置され、段差部WA1からの反射光を透過する。フィルタ242は、光軸R2がその中心を通過するように、下面26aに配置され、段差部WA2からの反射光を透過する。フィルタ241,242で開口側フィルタ群をなす。   The filter 241 is disposed on the lower surface 26a so that the optical axis R1 passes through the center thereof, and transmits the reflected light from the stepped portion WA1. The filter 242 is disposed on the lower surface 26a so that the optical axis R2 passes through the center thereof, and transmits the reflected light from the stepped portion WA2. The filters 241 and 242 form an opening side filter group.

フィルタ251は、その中心に光軸R1が通過するように受光素子21Pの手前に配置され、フィルタ241を透過した段差部WA1からの反射光を透過して受光素子21Pに導く。   The filter 251 is disposed in front of the light receiving element 21P so that the optical axis R1 passes through the center of the filter 251. The reflected light from the stepped portion WA1 that has passed through the filter 241 is transmitted to the light receiving element 21P.

フィルタ252は、その中心に光軸R2が通過するように受光素子21Pの手間に配置され、フィルタ242を透過した段差部WA2からの反射光を透過して受光素子21Pに導く。フィルタ251,252で受光側フィルタ群をなす。   The filter 252 is disposed in the hands of the light receiving element 21P so that the optical axis R2 passes through the center thereof, and transmits the reflected light from the stepped portion WA2 that has passed through the filter 242 and guides it to the light receiving element 21P. The filters 251 and 252 form a light receiving side filter group.

フィルタ241とフィルタ242とは偏光方向が直交するフィルタ特性を持つ偏光フィルタである。フィルタ241とフィルタ251とは偏光方向が同一のフィルタ特性を持つ偏光フィルタである。   The filters 241 and 242 are polarizing filters having filter characteristics in which the polarization directions are orthogonal. The filter 241 and the filter 251 are polarization filters having filter characteristics with the same polarization direction.

フィルタ251とフィルタ252とは偏光方向が直交するフィルタ特性を持つ偏光フィルタである。フィルタ252とフィルタ242とは偏光方向が同一のフィルタ特性を持つ偏光フィルタである。   The filters 251 and 252 are polarization filters having filter characteristics in which the polarization directions are orthogonal. The filter 252 and the filter 242 are polarization filters having filter characteristics with the same polarization direction.

したがって、フィルタ241を透過した段差部WA1からの反射光とフィルタ242を透過した段差部WA2からの反射光とは偏光方向が90度ずれる。また、フィルタ251は、フィルタ241により透過された反射光のみを透過して受光素子21Pに導く。また、フィルタ252は、フィルタ242により透過された反射光のみを透過して受光素子21Pに導く。   Therefore, the polarization direction of the reflected light from the stepped portion WA1 that has passed through the filter 241 and the reflected light from the stepped portion WA2 that has passed through the filter 242 are shifted by 90 degrees. The filter 251 transmits only the reflected light transmitted by the filter 241 and guides it to the light receiving element 21P. Further, the filter 252 transmits only the reflected light transmitted by the filter 242 and guides it to the light receiving element 21P.

その結果、段差部WA1からの反射光が迷光となって領域D2に侵入することを防止でき、かつ、段差部WA2からの反射光が迷光となって領域D1に侵入することが防止できる。   As a result, it is possible to prevent the reflected light from the stepped portion WA1 from entering the region D2 as stray light, and to prevent the reflected light from the stepped portion WA2 from entering the region D1 as stray light.

(ミラーの移動)
次に、ミラー231の詳細について説明する。図6は、ミラー231を移動させる様子を示した図であり、(A)は図1の三次元形状計測装置をB方向から見た図であり、(B)は撮像部21を下面26a側から見た図である。
(Move mirror)
Next, details of the mirror 231 will be described. 6A and 6B are diagrams illustrating how the mirror 231 is moved. FIG. 6A is a diagram of the three-dimensional shape measuring apparatus of FIG. 1 viewed from the B direction. FIG. 6B is a diagram illustrating the imaging unit 21 on the lower surface 26a side. It is the figure seen from.

実際の測定においては、段差部WA1,WA2の間隔はサンプルSPによって様々である。この場合、段差部WA1,WA2の間隔がサンプルSP毎に異なっても対応できるようにするため、ミラー231の移動条件を考える。   In actual measurement, the distance between the stepped portions WA1 and WA2 varies depending on the sample SP. In this case, the moving condition of the mirror 231 is considered in order to be able to cope with the case where the interval between the stepped portions WA1 and WA2 is different for each sample SP.

ミラー231,232のうち、ミラー232は固定であるが、ミラー231は撮像部21の光軸LAに対して垂直な面に沿って、つまり、下面26aに沿って平行移動する。この時、式(2)で表される条件を満たしていれば、ミラー232が平行移動しても、光軸R1,R2の光学的距離を同じにし、段差部WA1,WA2の反射光を受光素子21Pに同時に結像させることができる。   Of the mirrors 231 and 232, the mirror 232 is fixed, but the mirror 231 translates along a plane perpendicular to the optical axis LA of the imaging unit 21, that is, along the lower surface 26a. At this time, if the condition expressed by Expression (2) is satisfied, even if the mirror 232 moves in parallel, the optical distances of the optical axes R1 and R2 are made the same, and the reflected light of the stepped portions WA1 and WA2 is received. Images can be formed on the element 21P simultaneously.

tanγ=sinα・sinβ/cosβ (2)
ここで、角度γは図6(B)に示すように、下面26aにおける、下面26aの下辺26bに対する角度を示している。この角度γの方向にミラー232を平行移動させる。具体的には、段差部WA2の反射光の光軸R2が90度曲げて反射されるように、ミラー231を角度γの方向にスライドさせる。これにより、段差部WA1,WA2の反射光を受光素子21Pに同時に結像させることができる。
tan γ = sin α · sin β / cos β (2)
Here, as shown in FIG. 6B, the angle γ indicates an angle of the lower surface 26a with respect to the lower side 26b of the lower surface 26a. The mirror 232 is translated in the direction of the angle γ. Specifically, the mirror 231 is slid in the direction of the angle γ so that the optical axis R2 of the reflected light of the stepped portion WA2 is bent 90 degrees and reflected. Thereby, the reflected light of the stepped portions WA1 and WA2 can be imaged simultaneously on the light receiving element 21P.

そこで、ミラー232を平行移動させるための平行移動機構を撮像部21に設ける。ここで、平行移動機構としては、例えば調節つまみと、調節つまみに連動してミラー232を角度γの方向に平行移動させる移動部とを採用すればよい。あるいは、下面26aにおいて、角度γに沿ってミラー232を平行移動させ、所望の位置でミラー232をネジ止めできる構成を採用すればよい。   Therefore, the imaging unit 21 is provided with a translation mechanism for translating the mirror 232. Here, as the translation mechanism, for example, an adjustment knob and a moving unit that translates the mirror 232 in the direction of the angle γ in conjunction with the adjustment knob may be employed. Alternatively, a configuration may be employed in which the mirror 232 is translated along the angle γ on the lower surface 26a and the mirror 232 can be screwed at a desired position.

図5は、本発明の実施の形態による三次元形状計測装置のブロック図である。本三次元形状計測装置は、光源11,12、撮像部21,22、搬送部30、及び制御部40を備えている。光源11,12、撮像部21,22、及び搬送部30は上述したため、説明を省く。   FIG. 5 is a block diagram of the three-dimensional shape measuring apparatus according to the embodiment of the present invention. The three-dimensional shape measuring apparatus includes light sources 11 and 12, imaging units 21 and 22, a transport unit 30, and a control unit 40. Since the light sources 11 and 12, the imaging units 21 and 22, and the transport unit 30 have been described above, description thereof is omitted.

制御部40は、例えばCPU、ROM、RAM等を備えるマイクロコンピュータ等から構成され、光源制御部41、撮像制御部42、形状算出部43、及び搬送制御部44の機能を備えている。   The control unit 40 includes, for example, a microcomputer including a CPU, ROM, RAM, and the like, and includes functions of a light source control unit 41, an imaging control unit 42, a shape calculation unit 43, and a conveyance control unit 44.

光源制御部41は、光源11,12の点灯制御を行う。具体的には、計測開始の指示が図略の操作部を用いてユーザにより入力されると、光源11,12に電力を供給し、光源11,12を点灯させ、サンプルSPに光切断線CLを照射させる。   The light source control unit 41 performs lighting control of the light sources 11 and 12. Specifically, when an instruction to start measurement is input by the user using an operation unit (not shown), power is supplied to the light sources 11 and 12, the light sources 11 and 12 are turned on, and the light cutting line CL is applied to the sample SP. Is irradiated.

撮像制御部42は、撮像部21,22を制御し、撮像部21,22に所定のフレームレート(例えば1秒あたり250フレーム)で光切断線CLが照射されたサンプルSPを連続撮像させる。   The imaging control unit 42 controls the imaging units 21 and 22, and causes the imaging units 21 and 22 to continuously image the sample SP irradiated with the light section line CL at a predetermined frame rate (for example, 250 frames per second).

形状算出部43は、撮像部21,22により撮像された各段差部WAの画像データから各段差部WAの3次元形状を個別に算出する。段差部WA1,WA2を例に挙げて説明すると、形状算出部43は、撮像部21により所定のフレームレートで撮像された段差部WA1,WA2の光切断線CL1,CL2が現れた1枚の画像データを順次に取り込む。   The shape calculation unit 43 individually calculates the three-dimensional shape of each stepped portion WA from the image data of each stepped portion WA imaged by the imaging units 21 and 22. Explaining by taking the stepped portions WA1 and WA2 as an example, the shape calculating unit 43 is an image in which the optical cutting lines CL1 and CL2 of the stepped portions WA1 and WA2 captured by the imaging unit 21 at a predetermined frame rate appear. Capture data sequentially.

そして、取り込んだ1枚の画像データにおいて、領域D1の光切断線CL1の各位置の座標と、領域D2の光切断線CL2の各位置の座標とを抽出する。そして、抽出した光切断線CL1,CL2の各位置の垂直方向の座標と、光源11の光軸LBの仰角と、撮像部21の光軸LAの仰角αとを用いて光切断線CL1,CL2の各位置の高さデータを算出する。   Then, the coordinates of each position of the light cutting line CL1 in the region D1 and the coordinates of each position of the light cutting line CL2 in the region D2 are extracted from the captured image data. Then, using the extracted vertical coordinates of the positions of the light cutting lines CL1 and CL2, the elevation angle of the optical axis LB of the light source 11, and the elevation angle α of the optical axis LA of the imaging unit 21, the light cutting lines CL1 and CL2 are used. The height data of each position is calculated.

高さデータZの算出は、例えば式(3)を用いればよい。   The height data Z can be calculated using, for example, Equation (3).

Z=K・Pv/cosα (3)
但し、Kは受光素子21Pの画素分解能を示し既知である。Pvは光切断線CL1の各位置の垂直方向の座標を示す。ここで、垂直方向の座標は、図4(B)に示す縦方向の座標である。そして、各位置の高さデータを1列に配列し、段差部WA1の1ライン分の高さデータを算出する。
Z = K · Pv / cosα (3)
However, K indicates the pixel resolution of the light receiving element 21P and is known. Pv indicates the vertical coordinate of each position of the light cutting line CL1. Here, the vertical coordinate is a vertical coordinate shown in FIG. Then, the height data of each position is arranged in one row, and the height data for one line of the stepped portion WA1 is calculated.

形状算出部43は、光切断線CL2についても同様にして段差部WA2の1ライン分の高さデータを算出する。そして、各画像データから得られた段差部WA1,WA2の1ライン分の高さデータを図1に示すX方向に向けて配列していくことで、段差部WA1,WA2の全域の3次元形状を得る。また、形状算出部43は、撮像部22で撮像された画像データについても同じ処理を行い、段差部WA3,WA4の3次元形状を得る。   The shape calculation unit 43 calculates the height data for one line of the stepped portion WA2 in the same manner for the light section line CL2. Then, by arranging the height data for one line of the stepped portions WA1 and WA2 obtained from each image data in the X direction shown in FIG. 1, the three-dimensional shape of the entire stepped portions WA1 and WA2 is arranged. Get. In addition, the shape calculation unit 43 performs the same process on the image data captured by the imaging unit 22 to obtain the three-dimensional shapes of the stepped portions WA3 and WA4.

そして、形状算出部43は、例えば、各段差部WAの3次元形状を立体的に示す画像を図略の表示部に表示する。   And the shape calculation part 43 displays the image which shows the three-dimensional shape of each level | step-difference part WA in three dimensions on a display part not shown, for example.

搬送制御部44は、ユーザにより、計測開始の指示が入力されると、搬送部30を構成する搬送ローラ32を駆動させ、サンプルSPを図1に示すX方向に向けて一定の搬送速度で移動させる。光切断線CLのX方向の幅をwXとすると、撮像部20の周期が1/250=0.004sであるため、搬送速度をwX/0.004に設定すると、段差部WAを隙間無く走査することができる。そのため、搬送速度としては、例えばwX/0.004に設定すればよい。なお、サンプルSPは、段差部WAが搬送方向と平行になるように搬送ベルト31に載置されるものとする。したがって、サンプルSPは、段差部WAの長手方向に沿って搬送され、段差部WAの長手方向とほぼ直交する方向に光切断線CLが照射されることになる。   When a measurement start instruction is input by the user, the transport control unit 44 drives the transport roller 32 constituting the transport unit 30, and moves the sample SP in the X direction shown in FIG. 1 at a constant transport speed. Let If the width of the light cutting line CL in the X direction is wX, the period of the imaging unit 20 is 1/250 = 0.004 s. Therefore, when the conveyance speed is set to wX / 0.004, the stepped portion WA is scanned without a gap. can do. Therefore, the conveyance speed may be set to wX / 0.004, for example. The sample SP is placed on the transport belt 31 so that the stepped portion WA is parallel to the transport direction. Accordingly, the sample SP is transported along the longitudinal direction of the stepped portion WA, and the light cutting line CL is irradiated in a direction substantially orthogonal to the longitudinal direction of the stepped portion WA.

(具体例)
次に、本三次元形状計測装置の具体例について説明する。図7(A)は、本発明の実施の形態による三次元形状計測装置の具体例をB方向から見た図である。本具体例は、撮像部21の光軸LAの仰角αが54.7度、方位角βが60度である。これらの値は上記の式(1)の関係を満たしている。
(Concrete example)
Next, a specific example of the three-dimensional shape measuring apparatus will be described. FIG. 7A is a view of a specific example of the three-dimensional shape measuring apparatus according to the embodiment of the present invention as seen from the B direction. In this specific example, the elevation angle α of the optical axis LA of the imaging unit 21 is 54.7 degrees, and the azimuth angle β is 60 degrees. These values satisfy the relationship of the above formula (1).

そして、搬送ベルト31にサンプルSPを載置し、サンプルSPをX方向に移動させ、撮像部21でサンプルSPの段差部WA1,WA2の光切断線CL1,CL2を連続撮像し、撮像部22でサンプルSPの段差部WA3,WA4の光切断線CL3,CL4を連続撮像する。   Then, the sample SP is placed on the conveyor belt 31, the sample SP is moved in the X direction, the optical section lines WA 1 and WA 2 of the sample SP are sequentially imaged by the imaging unit 21, and the imaging unit 22 The optical cutting lines CL3 and CL4 of the step portions WA3 and WA4 of the sample SP are continuously imaged.

以下、撮像部21のみについて説明する。段差部WA1の反射光の光像は図7(B)に示すように領域D1に結像される。段差部WA2の反射光の光像はミラー231,232を介して領域D2に結像される。   Hereinafter, only the imaging unit 21 will be described. The optical image of the reflected light from the stepped portion WA1 is formed in the region D1 as shown in FIG. 7B. The optical image of the reflected light from the stepped portion WA2 is formed in the region D2 via the mirrors 231 and 232.

光源11は、偏光方向がP偏光の光を照射する。フィルタ241,251は、偏光方向がP偏光に対して+45度の偏光フィルタである。フィルタ242,252は、偏光方向がP偏光に対して−45度の偏光フィルタである。撮像部22についても同様に構成する。以上により段差部WA1〜WA4の三次元形状が得られる。   The light source 11 emits light whose polarization direction is P-polarized light. The filters 241 and 251 are polarization filters whose polarization direction is +45 degrees with respect to P-polarized light. The filters 242 and 252 are polarization filters whose polarization direction is −45 degrees with respect to P-polarized light. The imaging unit 22 is configured similarly. As described above, the three-dimensional shapes of the stepped portions WA1 to WA4 are obtained.

(変形例1)
次に、本三次元形状計測装置の変形例1について説明する。変形例1は、偏光フィルタに代えて波長フィルタを使用して迷光防止を図ったものである。この場合、フィルタ242,252を第1波長帯域を透過する波長フィルタにより構成し、フィルタ241,251を第1波長帯域とは異なる第2波長帯域を透過する波長フィルタにより構成する。この場合、光源11としては、第1波長帯域及び第2波長帯域を共に含む光を照射するものを採用すればよい。白色光源は、多数の波長帯域の全域を含むため、光源11としては、レーザ光源等の単色光源ではなく、ハロゲンランプ等の白色光源を採用することが好ましい。
(Modification 1)
Next, Modification 1 of the three-dimensional shape measuring apparatus will be described. In the first modification, stray light is prevented by using a wavelength filter instead of the polarizing filter. In this case, the filters 242 and 252 are configured by wavelength filters that transmit the first wavelength band, and the filters 241 and 251 are configured by wavelength filters that transmit the second wavelength band different from the first wavelength band. In this case, as the light source 11, what irradiates light including both the first wavelength band and the second wavelength band may be employed. Since the white light source includes the entire region of many wavelength bands, it is preferable to employ a white light source such as a halogen lamp as the light source 11 instead of a monochromatic light source such as a laser light source.

受光素子21Pの視野を三分割にする場合、下面26a側にフィルタ241〜243の3つのフィルタを配列し、受光素子21P側に3個のフィルタ251〜253を配列すればよい。ここで、視野を三分割する場合とは、受光素子21Pに3つの段差部WAの反射光を結像させる場合である。この場合、フィルタ241〜243を、それぞれ、第1〜第3の波長帯域を透過する波長フィルタにより構成し、かつ、フィルタ251〜253を、それぞれ、第1〜第3の波長帯域を透過する波長フィルタにより構成してもよい。或いは、フィルタ241,243及びフィルタ251,253を第1波長帯域を透過する波長フィルタで構成し、フィルタ242,252を第2波長帯域を透過する波長フィルタで構成するというように、下面26a側及び受光素子21P側のそれぞれにおいて、隣接するフィルタに対して透過する波長帯域が異なる2種類の波長フィルタを交互に配置してもよい。   When the field of view of the light receiving element 21P is divided into three, three filters 241 to 243 may be arranged on the lower surface 26a side, and three filters 251 to 253 may be arranged on the light receiving element 21P side. Here, the case where the field of view is divided into three is the case where the reflected light of the three step portions WA is imaged on the light receiving element 21P. In this case, the filters 241 to 243 are configured by wavelength filters that transmit the first to third wavelength bands, respectively, and the filters 251 to 253 are wavelengths that transmit the first to third wavelength bands, respectively. You may comprise by a filter. Alternatively, the filters 241 and 243 and the filters 251 and 253 are configured by wavelength filters that transmit the first wavelength band, and the filters 242 and 252 are configured by wavelength filters that transmit the second wavelength band. On each of the light receiving elements 21P side, two types of wavelength filters having different wavelength bands that transmit through adjacent filters may be alternately arranged.

また、受光素子21Pの視野を四分割以上する場合、つまり、受光素子21Pに4つ以上の段差部WAを計測させる場合も同様、3分割した場合と同様に波長フィルタを配置すればよい。具体的には、下面26a側に4つ以上の波長フィルタを配置し、受光素子21P側に4つ以上の波長フィルタを配置すればよい。そして、同一の段差部WAの反射光の光軸上に設けられたフィルタを同一の波長帯域を透過する波長フィルタで構成すればよい。   Also, when the field of view of the light receiving element 21P is divided into four or more, that is, when the light receiving element 21P measures four or more stepped portions WA, the wavelength filter may be arranged similarly to the case of dividing into three. Specifically, four or more wavelength filters may be arranged on the lower surface 26a side, and four or more wavelength filters may be arranged on the light receiving element 21P side. And the filter provided on the optical axis of the reflected light of the same level | step-difference part WA should just be comprised with the wavelength filter which permeate | transmits the same wavelength band.

(変形例2)
図8(A)、(B)は本発明の実施の形態の変形例2による三次元形状計測装置において、受光素子21Pの受光面21Aに結像される光像を示した図である。変形例2は、段差部WA1からの反射光と、段差部WA2からの反射光とが、受光素子21Pで結像される際のレイアウトが図7(B)とは異なる点を特徴としている。
(Modification 2)
FIGS. 8A and 8B are diagrams showing light images formed on the light receiving surface 21A of the light receiving element 21P in the three-dimensional shape measuring apparatus according to the second modification of the embodiment of the present invention. The modification 2 is characterized in that the layout when the reflected light from the stepped portion WA1 and the reflected light from the stepped portion WA2 are imaged by the light receiving element 21P is different from that in FIG. 7B.

図8(A)では、光切断線CL1,CL2との垂直方向(上下方向)へのずれ量が図7(B)に比べて増大している。こうすることで、段差部WA1からの反射光の迷光が領域D2に侵入したとしても光切断線CL2に影響を及ぼさず、かつ、段差部WA2からの反射光の迷光が領域D1に侵入したとしても領域D1に現れる光切断線CL1に影響を及ぼさなくなる。これを実現するために、光軸R1が領域D1の中心O1よりも垂直方向に下側の位置PS1に位置するようにレンズ22Lを位置決めすると共に、光軸R2が領域D2の中心O2よりも垂直方向に上側の位置PS2に位置するようにミラー231、レンズ22Lを位置決めすればよい。   In FIG. 8A, the shift amount in the vertical direction (vertical direction) with respect to the light cutting lines CL1 and CL2 is increased as compared with FIG. 7B. As a result, even if stray light reflected from the stepped portion WA1 enters the region D2, the light cutting line CL2 is not affected, and stray light reflected from the stepped portion WA2 enters the region D1. Also does not affect the light section line CL1 appearing in the region D1. In order to realize this, the lens 22L is positioned so that the optical axis R1 is positioned at a position PS1 that is vertically lower than the center O1 of the region D1, and the optical axis R2 is perpendicular to the center O2 of the region D2. The mirror 231 and the lens 22L may be positioned so as to be positioned at the upper position PS2 in the direction.

図8(B)では、領域D1,D2が上下に分割されている。この場合、光軸R1が領域D1の中心PS1´に位置するようにレンズ22Lを配置すると共に、光軸R2が領域D2の中心PS2´に位置するようにミラー231,232を配置すればよい。この場合、領域D1,D2の水平方向の幅が長くなり、光切断線CL1,CL2の幅をより長くすることができ、測定範囲を大きくできる。   In FIG. 8B, the regions D1 and D2 are divided vertically. In this case, the lens 22L may be arranged so that the optical axis R1 is located at the center PS1 ′ of the area D1, and the mirrors 231 and 232 may be arranged so that the optical axis R2 is located at the center PS2 ′ of the area D2. In this case, the horizontal widths of the regions D1 and D2 are increased, the widths of the light cutting lines CL1 and CL2 can be increased, and the measurement range can be increased.

(変形例3)
変形例3は環境光を除去するためのフィルタを撮像部21に設けたことを特徴としている。撮像部21の周辺の環境光(例えば部屋照明)が撮像部21の内部に侵入すると、計測に悪影響を及ぼす。そこで、図7(A)に示すように、迷光を除去するフィルタ241,242,251,252とは別に、段差部WA1の反射光と段差部WA2の反射光との全域を遮断する位置に環境光の透過を阻止する波長フィルタ27を設置する。これにより、環境光が撮像部21の内部に侵入することを防ぐ事ができる。図7(A)の例では、波長フィルタ27は下面26aの全域に設けられている。但し、これは一例であり、受光素子21Pの全面に設けてもよいし、受光素子21Pとレンズ22Lとの間、又は、下面26aとレンズ22Lとの間に設けてもよい。
(Modification 3)
The third modification is characterized in that a filter for removing ambient light is provided in the imaging unit 21. If ambient light (for example, room lighting) around the imaging unit 21 enters the imaging unit 21, the measurement is adversely affected. Therefore, as shown in FIG. 7A, in addition to the filters 241, 242, 251, and 252 that remove stray light, the environment is located at a position that blocks the entire reflected light of the stepped portion WA 1 and the reflected light of the stepped portion WA 2. A wavelength filter 27 for blocking light transmission is installed. Thereby, it is possible to prevent ambient light from entering the inside of the imaging unit 21. In the example of FIG. 7A, the wavelength filter 27 is provided over the entire lower surface 26a. However, this is only an example, and it may be provided on the entire surface of the light receiving element 21P, or between the light receiving element 21P and the lens 22L, or between the lower surface 26a and the lens 22L.

また、図7(A)に示すようにフィルタ241,242,251,252と波長フィルタ27とを共に配置することで、迷光と環境光との両方を除去することができる。なお、変形例3においては、変形例1と異なり、光源11としてはレーザ光源等の単色光源を採用することが好ましい。   Further, by arranging the filters 241, 242, 251, 252 and the wavelength filter 27 together as shown in FIG. 7A, both stray light and ambient light can be removed. In Modification 3, unlike Modification 1, it is preferable to employ a monochromatic light source such as a laser light source as the light source 11.

(変形例4)
変形例1において、受光素子21Pの視野を三分割する場合、又は4分割以上する場合、透過する波長帯域が交互に異なるようにフィルタを配列することについて記述したが、これは、フィルタとして波長フィルタではなく、偏光フィルタを用いた場合も同様に成り立つ。すなわち、下面26aに3個以上の偏光フィルタを配置する場合、偏光方向が90度異なる偏光フィルタを交互に配列すればよい。また、受光素子21P側の偏光フィルタも偏光方向が90度異なるように交互に配置すると共に、下面26a側の対応する同一光路の偏光フィルタと偏光方向が同じになるように配置すればよい。これにより、3以上の段差部WAの反射光を1つ受光素子21Pに結像させる場合であっても、2種類の偏光フィルタを用いて迷光の侵入を防止することができる。
(Modification 4)
In the first modification, when the field of view of the light receiving element 21P is divided into three parts, or when divided into four or more parts, it has been described that the filters are arranged so that the transmitted wavelength bands are alternately different. However, the same holds true when a polarizing filter is used. That is, when three or more polarizing filters are arranged on the lower surface 26a, polarizing filters having different polarization directions by 90 degrees may be alternately arranged. Further, the polarization filters on the light receiving element 21P side may be alternately arranged so that the polarization directions are different by 90 degrees, and the polarization direction may be the same as that of the corresponding polarization filter of the same optical path on the lower surface 26a side. Accordingly, even when the reflected light of three or more stepped portions WA is imaged on one light receiving element 21P, the invasion of stray light can be prevented by using two types of polarizing filters.

(変形例5)
図1では右側計測系RUと左側計測系LUとの2つの計測系によりサンプルSPを測定したが、3つ以上の計測系でサンプルSPを測定してもよい。例えば、サンプルSPが8つの段差部WAを持ち、斜面が左側に露出している第1段差部が4つ存在し、斜面が右側に露出している第2段差部が4つ存在する場合を考える。この場合、第1段差部を左端から2つずつ区分して2つの第1段差群に分ける。また、第2段差部を右端から2つずつ区分して2つの第2段差群に分ける。そして、2つの第1段差群ごとに2つの左側計測系LUを設け、かつ、2つの第2段差群ごとに2つの右側計測系RUを設ければよい。この場合、2つの左側計測系LUを中心線MLに対して左側に配置し、2つの右側計測系RUを中心線MLに対して右側に配置し、これら4つの計測系を中心線MLに対してX方向の位置をずらして左右対称に配置すればよい。
(Modification 5)
In FIG. 1, the sample SP is measured by the two measurement systems of the right measurement system RU and the left measurement system LU, but the sample SP may be measured by three or more measurement systems. For example, when the sample SP has eight stepped portions WA, there are four first stepped portions having slopes exposed on the left side, and four second stepped portions having slopes exposed on the right side. Think. In this case, the first step portion is divided into two first step groups by dividing each first step portion from the left end. Further, the second step portion is divided into two second step groups by dividing each second step portion from the right end. Then, two left measurement systems LU may be provided for each of the two first step groups, and two right measurement systems RU may be provided for each of the two second step groups. In this case, two left measurement systems LU are arranged on the left side with respect to the center line ML, two right measurement systems RU are arranged on the right side with respect to the center line ML, and these four measurement systems are arranged with respect to the center line ML. Thus, the positions in the X direction may be shifted and arranged symmetrically.

このように、本実施の形態による三次元形状計測装置によれば、段差部WA1,WA2に対して1つの左側計測系LUが設けられている。そして、左側計測系LUを構成する撮像部21は、段差部WA1からの反射光の受光素子21Pまでの光軸R1と、段差部WA1からの反射光の受光素子21Pまでの光軸R2との光学距離が等しくなるように、仰角α及び方位角βが設定されている。そのため、段差部WA1,WA2毎に計測系を設けなくても、段差部WA1の反射光による光像とWA2の反射光による光像とを受光素子21Pに同時に結像させることができ、三次元形状を精度良く計測することができる。   Thus, according to the three-dimensional shape measuring apparatus according to the present embodiment, one left measuring system LU is provided for the stepped portions WA1 and WA2. The imaging unit 21 constituting the left measurement system LU has an optical axis R1 to the light receiving element 21P for the reflected light from the stepped portion WA1 and an optical axis R2 to the light receiving element 21P for the reflected light from the stepped portion WA1. The elevation angle α and the azimuth angle β are set so that the optical distances are equal. Therefore, without providing a measurement system for each of the stepped portions WA1 and WA2, it is possible to simultaneously form a light image by the reflected light of the stepped portion WA1 and a light image by the reflected light of WA2 on the light receiving element 21P. The shape can be measured with high accuracy.

10,11,12 光源
20,21,22 撮像部
21P 受光素子
21A 受光面
22L レンズ
26 カバー
26b 下辺
26a 下面
231,232 ミラー
241,242,251,252 フィルタ
CL,CL1,CL2,CL3,CL4 光切断線
LA 光軸
LU 左側計測系
ML 中心線
R1,R2 光軸
RU 右側計測系
SP サンプル
WA,WA1,WA2,WA3,WA4 段差部
10, 11, 12 Light source 20, 21, 22 Imaging unit 21P Light receiving element 21A Light receiving surface 22L Lens 26 Cover 26b Lower side 26a Lower surface 231, 232 Mirror 241, 242, 251, 252 Filter CL, CL1, CL2, CL3, CL4 Light cutting Line LA Optical axis LU Left measurement system ML Center line R1, R2 Optical axis RU Right measurement system SP Sample WA, WA1, WA2, WA3, WA4 Stepped portion

Claims (10)

一方向に長い段差を複数持つ測定対象物の各段差部の三次元形状を光切断法を用いて計測する三次元形状計測装置であって、
前記測定対象物に対して前記一方向と交差する方向に光切断線を照射する光源と、
前記光切断線が照射された前記測定対象物を撮像する撮像部とを備え、
前記撮像部は、
前記測定対象物からの反射光を受光する受光素子と、
1つの段差部からの反射光を結像して前記受光素子に導くレンズと、
前記1つの段差部以外の他の段差部からの反射光を反射して前記レンズに結像させて前記受光素子に導くミラーとを含み、
前記撮像部の光軸は、前記1つの段差部からの反射光の光軸の前記受光素子までの光学距離と、前記他の段差部からの反射光の光軸の前記受光素子までの光学距離とが等しくなるように、前記測定対象物に対する仰角及び方位角が設定されている三次元形状計測装置。
A three-dimensional shape measuring apparatus that measures the three-dimensional shape of each step portion of a measurement object having a plurality of long steps in one direction using a light cutting method,
A light source that irradiates a light cutting line in a direction intersecting the one direction with respect to the measurement object;
An imaging unit that images the measurement object irradiated with the light cutting line,
The imaging unit
A light receiving element for receiving reflected light from the measurement object;
A lens that images reflected light from one step and guides it to the light receiving element;
A mirror that reflects the reflected light from other step portions other than the one step portion, forms an image on the lens, and guides it to the light receiving element;
The optical axis of the imaging unit is the optical distance of the optical axis of the reflected light from the one step part to the light receiving element, and the optical distance of the optical axis of the reflected light from the other step part to the light receiving element. Is a three-dimensional shape measurement apparatus in which an elevation angle and an azimuth angle with respect to the measurement object are set so that.
前記仰角α及び方位角βは、2・sinβ−2・sinβ・sinα=1の関係を持つ請求項1記載の三次元形状計測装置。 The three-dimensional shape measuring apparatus according to claim 1, wherein the elevation angle α and the azimuth angle β have a relationship of 2 · sin 2 β−2 · sin 2 β · sin 2 α = 1. 前記段差部は、前記一方向と直交する幅方向の一端側に斜面が露出した複数の第1段差部と、前記幅方向の他端側に斜面が露出した複数の第2段差部とからなり、
前記第1段差部は、前記一端側から複数個ずつ区分されて1又は複数の第1段差群に分けられ、
前記第2段差部は、前記他端側から複数個ずつ区分されて1又は複数の第2段差群に分けられ、
一対の前記撮像部及び前記光源により構成され計測系を備え、
前記計測系は各第1,第2段差群に対応して複数存在する請求項1又は2記載の三次元形状計測装置。
The step portion includes a plurality of first step portions having a slope exposed at one end in the width direction orthogonal to the one direction and a plurality of second step portions having a slope exposed at the other end in the width direction. ,
The first step portion is divided into a plurality of first step groups divided into a plurality of portions from the one end side,
The second step portion is divided into a plurality of second step groups divided into a plurality of portions from the other end side,
A measuring system comprising a pair of the imaging unit and the light source;
The three-dimensional shape measurement apparatus according to claim 1, wherein a plurality of the measurement systems exist corresponding to each of the first and second step groups.
前記複数の段差部は、前記測定対象物の前記一方向の中心線に対して対称に配置され、
前記計測系は、前記中心線に対して対象に配置されている請求項3記載の三次元形状計測装置。
The plurality of step portions are arranged symmetrically with respect to the one-direction center line of the measurement object,
The three-dimensional shape measurement apparatus according to claim 3, wherein the measurement system is disposed on a target with respect to the center line.
前記ミラーは、
前記他の段差部からの反射光の光軸を45度の反射角で反射する第1ミラーと、
前記第1ミラーにより反射された反射光の光軸を45度の反射角で反射する第2ミラーとを含む請求項1〜4のいずれかに記載の三次元形状計測装置。
The mirror is
A first mirror that reflects the optical axis of the reflected light from the other stepped portion at a reflection angle of 45 degrees;
The three-dimensional shape measuring apparatus according to claim 1, further comprising a second mirror that reflects an optical axis of reflected light reflected by the first mirror at a reflection angle of 45 degrees.
前記第1ミラーは、前記撮像部の光軸に対して直交する面において、前記1つの段差部からの反射光の光軸の前記受光素子までの光学距離と、前記他の段差部からの反射光の光軸の前記受光素子までの光学距離とが等しくなるように、移動可能に配置されている請求項3記載の三次元形状計測装置。   The first mirror has an optical distance of the optical axis of the reflected light from the one stepped portion to the light receiving element and reflection from the other stepped portion on a plane orthogonal to the optical axis of the imaging unit. The three-dimensional shape measuring apparatus according to claim 3, wherein the three-dimensional shape measuring apparatus is movably arranged so that an optical distance of an optical axis of light to the light receiving element is equal. 前記第1ミラーは、前記撮像部の光軸に直交する面における前記一方向に対する角度をγ、前記撮像部の光軸の仰角をα、前記撮像部の光軸の方位角をβとすると、tanγ=sinα・sinβ/cosβの関係を満たす角度γの方向に移動可能に配置されている請求項6記載の三次元形状計測装置。   The first mirror has an angle with respect to the one direction in a plane perpendicular to the optical axis of the imaging unit as γ, an elevation angle of the optical axis of the imaging unit as α, and an azimuth angle of the optical axis of the imaging unit as β, The three-dimensional shape measuring apparatus according to claim 6, wherein the three-dimensional shape measuring apparatus is arranged so as to be movable in the direction of an angle γ that satisfies a relationship of tan γ = sin α · sin β / cos β. 前記撮像部は、前記受光素子、前記レンズ、及び前記ミラーを覆い、前記測定対象物側の面に開口部が設けられたカバーと、
前記開口部に配置された開口側フィルタ群と、
前記受光素子の直前に配置された受光側フィルタ群とを含み、
前記開口側フィルタ群は、前記1つの段差部からの反射光を透過する第1開口側フィルタ及び前記他の段差部からの反射光を透過する第2開口側フィルタを備え、
前記受光側フィルタ群は、第1開口側フィルタを透過した反射光を透過する第1受光側フィルタ及び前記第2開口側フィルタを透過した反射光を透過する第2受光側フィルタを備え、
前記第1開口側フィルタ及び前記第2開口側フィルタは、隣接するフィルタと異なるフィルタ特性を持ち、
前記第1受光側フィルタ及び前記第2受光側フィルタは、対応する第1開口側フィルタ及び第2開口側フィルタと、同じフィルタ特性を持つ請求項1〜7のいずれかに記載の三次元形状計測装置。
The imaging unit covers the light receiving element, the lens, and the mirror, and a cover provided with an opening on the surface on the measurement object side;
An opening-side filter group disposed in the opening;
A light receiving side filter group disposed immediately before the light receiving element,
The aperture-side filter group includes a first aperture-side filter that transmits reflected light from the one step portion and a second aperture-side filter that transmits reflected light from the other step portion,
The light receiving side filter group includes a first light receiving side filter that transmits reflected light that has passed through the first aperture side filter, and a second light receiving side filter that transmits reflected light that has passed through the second aperture side filter,
The first opening side filter and the second opening side filter have different filter characteristics from adjacent filters,
The three-dimensional shape measurement according to claim 1, wherein the first light receiving side filter and the second light receiving side filter have the same filter characteristics as the corresponding first opening side filter and second opening side filter. apparatus.
前記フィルタ特性は、偏光特性であり、前記第1開口側フィルタ及び前記第2開口側フィルタは、隣接するフィルタと偏光方向が直交する偏光フィルタである請求項8記載の三次元形状計測装置。   The three-dimensional shape measuring apparatus according to claim 8, wherein the filter characteristic is a polarization characteristic, and the first aperture side filter and the second aperture side filter are polarization filters whose polarization directions are orthogonal to adjacent filters. 前記フィルタ特性は、波長特性であり、前記第1開口側フィルタ及び前記第2開口側フィルタは、隣接するフィルタと波長特性が波長フィルタである請求項8記載の三次元形状計測装置。   The three-dimensional shape measuring apparatus according to claim 8, wherein the filter characteristic is a wavelength characteristic, and the first aperture side filter and the second aperture side filter are adjacent filters and wavelength characteristics are wavelength filters.
JP2011012579A 2011-01-25 2011-01-25 3D shape measuring device Active JP5508303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011012579A JP5508303B2 (en) 2011-01-25 2011-01-25 3D shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011012579A JP5508303B2 (en) 2011-01-25 2011-01-25 3D shape measuring device

Publications (2)

Publication Number Publication Date
JP2012154709A true JP2012154709A (en) 2012-08-16
JP5508303B2 JP5508303B2 (en) 2014-05-28

Family

ID=46836597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011012579A Active JP5508303B2 (en) 2011-01-25 2011-01-25 3D shape measuring device

Country Status (1)

Country Link
JP (1) JP5508303B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015072016A1 (en) * 2013-11-15 2015-05-21 株式会社島津製作所 Surface shape measurement device
CN104930973A (en) * 2015-07-14 2015-09-23 芜湖德力自动化装备科技有限公司 Full-automatic measurement controller for dimension of plastic-wood co-extrusion composite board and application method thereof
JP2016173297A (en) * 2015-03-17 2016-09-29 日本碍子株式会社 Evaluation method of erosion of honeycomb structure
JP2021056077A (en) * 2019-09-30 2021-04-08 株式会社ニデック Eyeglasses frame shape measurement device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05322526A (en) * 1992-05-21 1993-12-07 Koyo Seiko Co Ltd Three dimensional form measuring apparatus
JPH07120217A (en) * 1993-10-28 1995-05-12 Sony Corp Distance measurement method and device
JPH07248212A (en) * 1994-03-10 1995-09-26 Fuji Electric Co Ltd Instrument for measuring three-dimensional shape
JP2001141427A (en) * 1999-11-16 2001-05-25 Tokimec Inc Rail cross section measuring device
JP2003121126A (en) * 2001-10-15 2003-04-23 Pentax Corp Three-dimensional image detector and adapter for three- dimensional image detection
JP2003254731A (en) * 2002-02-25 2003-09-10 Patentes Talgo Sa Rolling and lathing parameter measurement device by artificial viewing for railway vehicle wheel
JP2009250740A (en) * 2008-04-04 2009-10-29 Bridgestone Corp Image synthesizing method and visual inspecting device of tire

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05322526A (en) * 1992-05-21 1993-12-07 Koyo Seiko Co Ltd Three dimensional form measuring apparatus
JPH07120217A (en) * 1993-10-28 1995-05-12 Sony Corp Distance measurement method and device
JPH07248212A (en) * 1994-03-10 1995-09-26 Fuji Electric Co Ltd Instrument for measuring three-dimensional shape
JP2001141427A (en) * 1999-11-16 2001-05-25 Tokimec Inc Rail cross section measuring device
JP2003121126A (en) * 2001-10-15 2003-04-23 Pentax Corp Three-dimensional image detector and adapter for three- dimensional image detection
JP2003254731A (en) * 2002-02-25 2003-09-10 Patentes Talgo Sa Rolling and lathing parameter measurement device by artificial viewing for railway vehicle wheel
JP2009250740A (en) * 2008-04-04 2009-10-29 Bridgestone Corp Image synthesizing method and visual inspecting device of tire

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015072016A1 (en) * 2013-11-15 2015-05-21 株式会社島津製作所 Surface shape measurement device
JPWO2015072016A1 (en) * 2013-11-15 2017-03-09 株式会社島津製作所 Surface shape measuring device
JP2016173297A (en) * 2015-03-17 2016-09-29 日本碍子株式会社 Evaluation method of erosion of honeycomb structure
CN104930973A (en) * 2015-07-14 2015-09-23 芜湖德力自动化装备科技有限公司 Full-automatic measurement controller for dimension of plastic-wood co-extrusion composite board and application method thereof
JP2021056077A (en) * 2019-09-30 2021-04-08 株式会社ニデック Eyeglasses frame shape measurement device
JP7413697B2 (en) 2019-09-30 2024-01-16 株式会社ニデック Eyeglass frame shape measuring device

Also Published As

Publication number Publication date
JP5508303B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
US7355689B2 (en) Automatic optical inspection using multiple objectives
CN102023164B (en) For detecting the apparatus and method of the local defect of transparent plate
KR100996335B1 (en) Apparatus and methods for inspecting a composite structure for inconsistencies
US20110043808A1 (en) Measuring apparatus
US20110310244A1 (en) System and method for detecting a defect of a substrate
KR101576875B1 (en) Apparatus for detecting end portion position of strip-like body, and method for detecting end portion position of strip-like body
JP2012047482A (en) External appearance inspection system for sheet
KR102071451B1 (en) Imaging system for transparent plate surface inspection
JP5508303B2 (en) 3D shape measuring device
KR102246301B1 (en) Appearance inspection apparatus
KR101577119B1 (en) Pattern inspection apparatus and pattern inspection method
JP5034891B2 (en) Apparatus for measuring shape of transparent plate and method for producing plate glass
KR20170133113A (en) Method and apparatus of detecting particles on upper surface of glass, and method of irradiating incident light
WO2013051716A1 (en) Surface inspection system for semiconductor wafer
JP6030471B2 (en) Shape measuring device
JP6178138B2 (en) 3D shape measuring device
KR20230044505A (en) Methods and Apparatus for Inspecting Materials
JP2007170948A (en) Width measuring device, end position detection device, end thickness measuring device, and shape measuring device
JP6279907B2 (en) Image pickup head and three-dimensional shape measuring apparatus
KR20210050565A (en) Multimodality multiplexing illumination for optical inspection systems
KR102638769B1 (en) Optics apparatus For Inspecting Surface
KR101833611B1 (en) Measuring apparatus
JP2016138761A (en) Three-dimensional measurement method by optical cutting method and three-dimensional measuring instrument
JP2019093977A (en) Visual inspection apparatus of rolling stock and setting method of the same
US20090190824A1 (en) Inspection apparatus and inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140320

R150 Certificate of patent or registration of utility model

Ref document number: 5508303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150