JP2012149948A - Device for estimating state of charge of batteries - Google Patents

Device for estimating state of charge of batteries Download PDF

Info

Publication number
JP2012149948A
JP2012149948A JP2011007875A JP2011007875A JP2012149948A JP 2012149948 A JP2012149948 A JP 2012149948A JP 2011007875 A JP2011007875 A JP 2011007875A JP 2011007875 A JP2011007875 A JP 2011007875A JP 2012149948 A JP2012149948 A JP 2012149948A
Authority
JP
Japan
Prior art keywords
charging rate
charge
estimation
battery
open
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011007875A
Other languages
Japanese (ja)
Other versions
JP5432931B2 (en
Inventor
Atsushi Baba
厚志 馬場
Shuichi Adachi
修一 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp, Keio University filed Critical Calsonic Kansei Corp
Priority to JP2011007875A priority Critical patent/JP5432931B2/en
Publication of JP2012149948A publication Critical patent/JP2012149948A/en
Application granted granted Critical
Publication of JP5432931B2 publication Critical patent/JP5432931B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device for estimating the state of charge of batteries that is capable of accurately estimating the state of charge of batteries.SOLUTION: A device for estimating the state of charge of batteries comprises: charging/discharging current detection means 1; terminal voltage detection means 2; current integration-based state-of-charge estimation means 3 for estimating a current integration method-based state-of-charge; open voltage method-based state-of-charge estimation means 4 for estimating, using a battery equivalent circuit model, an open voltage method-based state-of-charge from an open voltage estimated based on charging/discharging current and a terminal voltage; state-of-charge difference calculation means 5 for obtaining the difference in the state-of-charge between the open voltage method-based state-of-charge and the current integration method-based state-of-charge; error estimation means 7 in which the difference in the state-of-charge is input and an estimation error of one of the current integration method-based state-of-charge and the open voltage method-based state-of-charge, at intervals which are longer than calculation intervals of the current integration-based state-of-charge estimation means and the open voltage method-based state-of-charge estimation means, is estimated; and state-of-charge calculation means 9 for obtaining the state of charge of a battery from the state-of-charge of the aforementioned one and the estimation error.

Description

本発明は、電気自動車等に用いるバッテリの充電率を推定するバッテリの充電率推定装置に関する。   The present invention relates to a battery charge rate estimation apparatus for estimating a charge rate of a battery used in an electric vehicle or the like.

たとえば、電気自動車やハイブリッド電気自動車などでは、これらの車両を駆動する電気モータへ電力を供給したり、制動時のエネルギを発電機として機能させる電気モータから、あるいは地上に設置した電源から、充電して電気エネルギを蓄積したりするため、リチャージャブル・バッテリ(二次電池)が用いられる。   For example, in an electric vehicle or a hybrid electric vehicle, charging is performed from an electric motor that supplies electric power to an electric motor that drives these vehicles, an electric motor that functions as a generator during braking, or a power supply installed on the ground. In order to store electrical energy, a rechargeable battery (secondary battery) is used.

この場合、長期にわたってバッテリを最適な状態に保つためには、バッテリの状態、とりわけ充電率(SOC: State of Charge)を常にモニタして、バッテリ・マネージメントを行う必要がある。
従来の充電率検出方法としては、バッテリの電圧や電流などの出入りを時系列データですべて記録し、これらのデータを用いて電流を時間積分して現時点での電荷量を求め、バッテリに充電された電荷の初期値と満充電容量を用いて充電率を求める電流積算法(クーロン・カウント法あるいは逐次状態記録法ともいう)や、バッテリの入力電流値と端子電圧値を入力し、バッテリ等価回路モデルを用いてモデルの状態量である開放電圧値を逐次推定し、この開放電圧値から充電率を推定する開放電圧法が知られている。
In this case, in order to keep the battery in an optimal state over a long period of time, it is necessary to constantly monitor the state of the battery, particularly the state of charge (SOC), and perform battery management.
As a conventional charge rate detection method, the battery voltage and current are all recorded in time-series data, and the current is time-integrated using these data to determine the current charge amount and the battery is charged. Current integration method (also called Coulomb count method or sequential state recording method) to obtain the charging rate using the initial charge value and full charge capacity, and the battery input current value and terminal voltage value are input, and the battery equivalent circuit An open-circuit voltage method is known in which an open-circuit voltage value, which is a model state quantity, is sequentially estimated using a model, and a charging rate is estimated from the open-circuit voltage value.

上記各方法には一長一短があり、前者の電流積算法は、短時間での充電率の推定にあっては、開放電圧値を用いて充電率を推測する後者の開放電圧法より精度が高いものの、常時観測が必要である上、時間が経つにつれ誤差が集積され精度が悪くなっていく。これに対し、後者の開放電圧法では、常時観測は必要ないものの、充電率の変化に対する開放電圧の変動が小さいため、短時間における充電量の変動量を推定するには、前者の電流積算法に劣っている。
そこで、これらの双方の充電率推定方法を用いて、充電率の推定誤差を補正していくことにより、充電率の推定精度を向上させようとする装置が知られている。
Each of the above methods has advantages and disadvantages. The former current integration method is more accurate than the latter open-circuit voltage method in which the charge rate is estimated using the open-circuit voltage value in estimating the charge rate in a short time. In addition, continuous observation is required, and over time, errors accumulate and accuracy decreases. On the other hand, the latter open-circuit voltage method does not always require observation, but the open-circuit voltage variation with respect to the change in the charging rate is small. Therefore, the former current integration method is used to estimate the amount of change in the charge amount in a short time. It is inferior to.
Thus, there is known an apparatus that improves the estimation accuracy of the charging rate by correcting the estimation error of the charging rate by using both of these charging rate estimation methods.

このような従来のバッテリの充電率推定装置としては、電流積算法でバッテリの充放電電流を時間積算して第1の残存容量を演算する第1の演算手段と、開放電圧法でバッテリの放電電流と端子電圧を基にバッテリの等価回路のインピーダンスから開放電圧を推定し、開放電圧から第2の残存容量を検出する第2の演算手段と、第1の残存容量と第2の残存容量とを、バッテリの使用状況に応じて設定したウェイトを用いて重み付け合成し、バッテリの残存容量を演算する第3の演算手段と、を備えたものが知られている(例えば、特許文献1参照)。   Such a conventional battery charge rate estimation device includes a first calculation means for calculating a first remaining capacity by time-integrating the charge / discharge current of the battery by a current integration method, and discharging the battery by an open voltage method. A second computing means for estimating an open circuit voltage from the impedance of an equivalent circuit of the battery based on the current and the terminal voltage, and detecting a second remaining capacity from the open circuit; a first remaining capacity and a second remaining capacity; And a third calculation means for calculating the remaining capacity of the battery by weighting and combining the weights using weights set according to the battery usage status (see, for example, Patent Document 1). .

特開2005−201743号公報JP 2005-201743 A

しかしながら、上記従来発明にあっては、第1の残存容量と第2の残存容量とを重み付け合成しているため、充電率推定の誤差を小さくしようとしているものの、以下の理由で十分とは言えない。
すなわち、電流積算法では、計算間隔をできるだけ短くした方が、推定精度が上がるのに対し、開放電圧法では、計算間隔を短くすると、高周波ノイズが多く含まれるようになる。したがって、同じ計算間隔で得た第1の残存容量と第2の残存容量とをたとえ重み付けして合成したとしても、その推定精度はあまり良くならない。
However, in the above-described conventional invention, since the first remaining capacity and the second remaining capacity are weighted and synthesized, an attempt is made to reduce the error of the charging rate estimation, but it is sufficient for the following reason. Absent.
That is, in the current integration method, estimation accuracy increases when the calculation interval is shortened as much as possible, whereas in the open-circuit voltage method, when the calculation interval is shortened, a lot of high-frequency noise is included. Therefore, even if the first remaining capacity and the second remaining capacity obtained at the same calculation interval are combined by weighting, the estimation accuracy is not so good.

本発明は、上記不具合に鑑みなされたもので、その目的は、より高精度でバッテリの充電率の推定ができるようにしたバッテリの充電率推定装置を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a battery charge rate estimation device capable of estimating the battery charge rate with higher accuracy.

この目的のため、本発明の請求項1のバッテリの充電率推定装置は、
バッテリの充放電電流値を検出する充放電電流検出手段と、
バッテリの端子電圧を検出する端子電圧検出手段と、
充放電電流検出手段から入力された充放電電流値を積算して得た充電率とこの前に得た充電率とからバッテリの電流積算法充電率を推定する電流積算充電率推定手段と、
充放電電流検出手段から入力された充放電電流値と端子電圧検出手段から入力された端子電圧値とに基づきバッテリ等価回路モデルを用いてバッテリの開放電圧値を推定し、この開放電圧値から開放電圧法充電率を推定する開放電圧法充電率推定手段と、
開放電圧法充電率と電流積算法充電率との充電率差を演算する充電率差演算手段と、
充電率差が入力されて、電流積算充電率推定手段と開放電圧法充電率推定手段の計算間隔より長い間隔で、電流積算法充電率および開放電圧法充電率のうちの一方の推定誤差を推定する誤差推定手段と、
電流積算法充電率および開放電圧法充電率のうちの一方と推定誤差とからバッテリの充電率を求める充電率算出手段と、
を有することを特徴とする。
For this purpose, the battery charge rate estimation apparatus according to claim 1 of the present invention comprises:
Charge / discharge current detection means for detecting a charge / discharge current value of the battery;
Terminal voltage detecting means for detecting the terminal voltage of the battery;
A current integration charge rate estimation means for estimating a current integration method charge rate of the battery from a charge rate obtained by integrating the charge / discharge current values input from the charge / discharge current detection means and a charge rate obtained previously;
Based on the charge / discharge current value input from the charge / discharge current detection means and the terminal voltage value input from the terminal voltage detection means, the open circuit voltage value of the battery is estimated using the battery equivalent circuit model, and the open circuit voltage value is released from this open voltage value. An open-circuit voltage method charging rate estimating means for estimating a voltage method charging rate;
Charging rate difference calculating means for calculating a charging rate difference between the open-circuit voltage method charging rate and the current integration method charging rate;
Estimate one estimation error of current integration method charge rate or open voltage method charge rate at an interval longer than the calculation interval of current integration charge rate estimation means and open circuit voltage method charge rate estimation means when the charge rate difference is input Error estimation means for
A charge rate calculating means for obtaining a charge rate of the battery from one of the current integration method charge rate and the open-circuit voltage method charge rate and an estimation error;
It is characterized by having.

本発明の請求項2に記載のバッテリの充電率推定装置は、上記請求項1に記載の装置にあって、
開放電圧法充電率推定手段および誤差推定手段は、それぞれカルマン・フィルタを用いる、
ことを特徴とする。
The battery charging rate estimation device according to claim 2 of the present invention is the device according to claim 1,
The open-circuit voltage method charging rate estimation means and the error estimation means each use a Kalman filter.
It is characterized by that.

本発明の請求項3に記載のバッテリの充電率推定装置は、上記請求項1又は2に記載の装置にあって、誤差推定手段への電流積算法充電率と開放電圧法充電率と充電率差との入力を、伝達、遮断間で切り替える第1切替手段と、充電率算出手段への推定誤差の入力を、伝達、遮断間で切り替える第2切替手段と、のうちの少なくとも1つの切替手段を有することを特徴とする。   The battery charging rate estimation device according to claim 3 of the present invention is the device according to claim 1 or 2, wherein the current estimation method charging rate, the open-circuit voltage method charging rate, and the charging rate to the error estimation means are provided. At least one switching unit of a first switching unit that switches an input of the difference between transmission and disconnection, and a second switching unit that switches an input of the estimation error to the charging rate calculation unit between transmission and cutoff. It is characterized by having.

本発明の請求項4に記載のバッテリの充電率推定装置は、上記請求項1乃至3のいずれか1項に記載の装置にあって、
電流積算充電率推定手段が、充放電電流検出手段の検出精度に関する情報をもとに電流積算法充電率の分散を算出して誤差推定手段へ入力可能であり、
開放電圧法充電率推定手段が、充放電電流検出手段および端子電圧検出手段の検出精度に関する情報をもとに開放電圧法充電率の分散を算出して誤差推定手段へ入力可能であり、
誤差推定手段は、充電率差に加えて、電流積算充電率推定手段からの分散と、開放電圧法充電率推定手段からの分散と、が入力されて一方の推定誤差を推定する、
ることを特徴とする。
The battery charging rate estimation device according to claim 4 of the present invention is the device according to any one of claims 1 to 3,
The current integration charging rate estimation means can calculate the variance of the current integration method charging rate based on the information on the detection accuracy of the charging / discharging current detection means and input it to the error estimation means,
The open-circuit voltage method charging rate estimation means can calculate the variance of the open-circuit voltage method charging rate based on the information on the detection accuracy of the charge / discharge current detection means and the terminal voltage detection means, and can input to the error estimation means,
In addition to the charging rate difference, the error estimating unit receives a variance from the current integrated charging rate estimating unit and a variance from the open-circuit voltage method charging rate estimating unit, and estimates one estimation error.
It is characterized by that.

本発明の請求項5に記載のバッテリの充電率推定装置は、上記請求項1乃至4のいずれか1項に記載の装置にあって、
電流積算法充電率推定手段は、充電率に充電率算出手段で前に得たバッテリの充電率を用いて電流積算法充電率を推定することを特徴とする。
The battery charging rate estimation device according to claim 5 of the present invention is the device according to any one of claims 1 to 4,
The current integration method charging rate estimation means estimates the current integration method charging rate by using the charging rate of the battery previously obtained by the charging rate calculation means as the charging rate.

本発明の請求項1のバッテリの充電率推定装置にあっては、充電率差演算手段が開放電圧法充電率と電流積算法充電率との充電率差を演算し、誤差推定手段が電流積算充電率推定手段と開放電圧法充電率推定手段の計算間隔より長い間隔で、充電率差を用いて電流積算法充電率の推定誤差を推定し、この推定誤差を用いて充電率算出手段でバッテリの充電率を推定するようにしたので、充電率算出手段が開放電圧法充電率と電流積算法充電率のそれぞれの特徴を生かすことで、従来発明のものより高い精度でバッテリBの充電率SOCを推定できるようになる。   In the battery charging rate estimation device according to claim 1 of the present invention, the charging rate difference calculating means calculates the charging rate difference between the open circuit voltage method charging rate and the current integrating method charging rate, and the error estimating means is the current integrating device. The estimation error of the current integration method charging rate is estimated using the charging rate difference at an interval longer than the calculation interval of the charging rate estimating unit and the open-circuit voltage method charging rate estimating unit, and the charging rate calculating unit uses this estimation error to estimate the battery Since the charging rate calculation means makes use of the respective characteristics of the open-circuit voltage method charging rate and the current integration method charging rate, the charging rate SOC of the battery B with higher accuracy than that of the conventional invention is estimated. Can be estimated.

本発明の請求項2のバッテリの充電率推定装置にあっては、開放電圧法充電率推定手段および誤差推定手段には、それぞれカルマン・フィルタを用いたので、バッテリの状態量を容易かつ高い精度で推測できるようになるとともに、カルマン・フィルタでもともと推定平均値と推定分散値を逐次的に推定算出していることから、これらの値を新たに別途算出する必要はなくなる。   In the battery charge rate estimation apparatus according to claim 2 of the present invention, the Kalman filter is used for each of the open-circuit voltage method charge rate estimation means and the error estimation means. Since the Kalman filter originally estimates and calculates the estimated average value and estimated variance value sequentially, it is not necessary to separately calculate these values.

本発明の請求項3のバッテリの充電率推定装置にあっては、第1切替手段と第2切替手段のうち少なくとも一方を用いているので、電流積算充電率推定手段と開放電圧法充電率推定手段の計算間隔より長い間隔における、誤差推定手段での誤差推定演算や充電率算出手段での演算を、簡単に行えるようになる。   In the battery charging rate estimation apparatus according to claim 3 of the present invention, since at least one of the first switching unit and the second switching unit is used, the current integration charging rate estimation unit and the open-circuit voltage method charging rate estimation are used. The error estimation calculation by the error estimation unit and the calculation by the charging rate calculation unit can be easily performed at an interval longer than the calculation interval of the unit.

本発明の請求項4のバッテリの充電率推定装置にあっては、電流積算充電率推定手段と開放電圧法充電率推定手段とが、充放電電流検出手段および端子電圧検出手段の検出精度に関する情報を元にして得た分散を用いて充電率の演算を行うので、充放電電流検出手段および端子電圧検出手段に特性の変動やばらつきがある場合にも、従来発明のものより高い精度でバッテリBの充電率SOCを推定できるようになる。   In the battery charge rate estimation apparatus according to claim 4 of the present invention, the current integrated charge rate estimation means and the open-circuit voltage method charge rate estimation means are information relating to the detection accuracy of the charge / discharge current detection means and the terminal voltage detection means. Since the charging rate is calculated using the variance obtained based on the battery B, the battery B has higher accuracy than that of the conventional invention even when the charging / discharging current detecting means and the terminal voltage detecting means have characteristic variations and variations. The charge rate SOC can be estimated.

本発明の請求項5のバッテリの充電率推定装置にあっては、
充電流積算法充電率推定手段が、充電率算出手段で得た充電率を用いて電流積算法充電率を推定するので、より高精度で電流積算法充電率を推定することが可能となる。
In the battery charging rate estimation apparatus according to claim 5 of the present invention,
Since the charging current integration method charging rate estimation means estimates the current integration method charging rate using the charging rate obtained by the charging rate calculation means, it is possible to estimate the current integration method charging rate with higher accuracy.

本発明に係る実施例1のバッテリの充電率推定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the charging rate estimation apparatus of the battery of Example 1 which concerns on this invention. 実施例1のバッテリの充電率推定装置で用いる電流積算法充電率算出部の構成を示すブロック図である。It is a block diagram which shows the structure of the electric current integration method charging rate calculation part used with the charging rate estimation apparatus of the battery of Example 1. FIG. バッテリの充電率推定装置で用いる開放電圧法充電率推定部の構成を示すブロック図である。It is a block diagram which shows the structure of the open circuit voltage method charging rate estimation part used with the charging rate estimation apparatus of a battery. 実施例1のバッテリの充電率推定装置で用いるカルマン・フィルタの構成を説明するブロック図である。It is a block diagram explaining the structure of the Kalman filter used with the charging rate estimation apparatus of the battery of Example 1. FIG. 実施例1のバッテリの充電率推定装置における第1切替部、第2切替部のON、OFF状態に応じた、充電率推定装置の等価ブロック図で、(a)は両切替部が同期作動し、両方ともOFFの時、(b)は両切替部が同期作動し、両方ともONの時、(c)は両切替部が非同期で作動し、第1切替部がON、第2切替部がOFFの時、(d)は両切替部が非同期で作動し、第1切替部がOFF、第2切替部がONの時、のそれぞれの等価ブロック図を示す。FIG. 6 is an equivalent block diagram of the charging rate estimation device according to the ON / OFF states of the first switching unit and the second switching unit in the battery charging rate estimation device of the first embodiment, and FIG. When both are OFF, both switching units are operated synchronously. When both are ON, (c) both switching units operate asynchronously, the first switching unit is ON and the second switching unit is ON. When OFF, (d) shows an equivalent block diagram when both switching units operate asynchronously, the first switching unit is OFF, and the second switching unit is ON. 実施例1の充電率推定装置やこの比較対象装置で実施したシミュレーション結果を示す図の半分であって、(a)は電流積算法で得られた充電率をそのときの真値と比較して示した図、(b)は開放電圧法充電率で得られた充電率をそのときの真値と比較して示した図、(c)は従来発明で得られた充電率をそのときの真値と比較して示した図である。It is a half of the figure which shows the simulation result implemented with the charging rate estimation apparatus of Example 1, or this comparison object apparatus, Comprising: (a) compares the charging rate obtained by the current integration method with the true value at that time. The figure shown, (b) is a figure showing the charging rate obtained by the open circuit voltage method charging rate compared with the true value at that time, (c) is the charging rate obtained by the conventional invention at that time It is the figure shown in comparison with the value. 実施例1の充電率推定装置やこの比較対象装置で実施したシミュレーション結果を示す図の残り半分であって、(d)は実施例1で第1切替部、第2切替部の両方をONに固定した状態で得られた充電率をそのときの真値と比較して示した図、(e)は実施例1で得られた充電率をそのときの真値と比較して示した図、(f)は分散を計算しない他の実施例で得られた充電率をそのときの真値と比較して示した図、(g)は発明の効果を理解しやすくするための参考例で得られた充電率をそのときの真値と比較して示した図である。It is the other half of the figure which shows the simulation result implemented with the charging rate estimation apparatus of Example 1, or this comparison object apparatus, Comprising: (d) turns ON both the 1st switching part and the 2nd switching part in Example 1. The figure which showed the charging rate obtained in the fixed state compared with the true value at that time, (e) is a figure showing the charging rate obtained in Example 1 compared with the true value at that time, (F) is a diagram showing the charging rate obtained in another example in which the variance is not calculated compared with the true value at that time, and (g) is obtained in a reference example for facilitating understanding of the effect of the invention. It is the figure which showed the obtained charging rate compared with the true value at that time. 本発明に係る実施例2のバッテリの充電率推定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the charging rate estimation apparatus of the battery of Example 2 which concerns on this invention. 本発明に係る実施例3のバッテリの充電率推定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the charging rate estimation apparatus of the battery of Example 3 which concerns on this invention. 本発明に係る実施例4のバッテリの充電率推定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the charging rate estimation apparatus of the battery of Example 4 which concerns on this invention. 参考例のバッテリの充電率推定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the charging rate estimation apparatus of the battery of a reference example.

以下、本発明の実施の形態を、図面に示す実施例に基づき詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail based on examples shown in the drawings.

実施例1のバッテリの充電率推定装置の構成を図1に示す。同図に示すように、バッテリBに接続された充電率推定装置は、充放電電流検出部1と、端子電圧検出部2と、電流積算法充電率推定部3と、開放電圧法充電率推定法4と、減算器5と、第1切替部6と、誤差推定部7と、第2切替部8と、減算器9と、を有する。   FIG. 1 shows the configuration of the battery charge rate estimation apparatus according to the first embodiment. As shown in the figure, the charging rate estimation device connected to the battery B includes a charging / discharging current detection unit 1, a terminal voltage detection unit 2, a current integration method charging rate estimation unit 3, and an open-circuit voltage method charging rate estimation. A modulo 4, a subtracter 5, a first switching unit 6, an error estimation unit 7, a second switching unit 8, and a subtractor 9 are included.

バッテリBは、本実施例にあっては、リチャージャブル・バッテリであり、たとえばリチウム・イオン・バッテリを用いるが、これに限られることはなく、ニッケル・水素バッテリ等、他の種類のバッテリを用いてもよいことは言うまでもない。   In this embodiment, the battery B is a rechargeable battery, for example, a lithium ion battery, but is not limited thereto, and other types of batteries such as a nickel hydrogen battery are used. Needless to say.

充放電電流検出部1は、バッテリBから図示しない電気モータ等へ電力を供給する場合の放電電流の大きさ、および制動時に電気モータを発電機として機能して制動エネルギの一部を回収したり地上の電源設備から充電したりする場合の充電電流の大きさを検出するもので、たとえば、シャント抵抗等を使ってバッテリBに流れる充放電電流値Iを検出する。検出した充放電電流値Iは、入力信号として電流積算法充電率推定部3と開放電圧法充電率推定法4との双方へ入力される。
なお、電流検出部1は、種々の構造・形式を有するものを適宜採用でき、本発明の充放電電流検出手段に相当する。
The charging / discharging current detection unit 1 collects a part of braking energy by using the electric motor as a generator during braking and the magnitude of the discharging current when power is supplied from the battery B to an electric motor (not shown) or the like. For example, the charging / discharging current value I flowing in the battery B is detected by using a shunt resistor or the like. The detected charging / discharging current value I is input as an input signal to both the current integration method charging rate estimation unit 3 and the open-circuit voltage method charging rate estimation method 4.
In addition, what has various structures and forms can be employ | adopted for the current detection part 1 suitably, and is equivalent to the charging / discharging current detection means of this invention.

端子電圧検出部2は、バッテリBの端子間の電圧を検出するものであり、ここで検出した端子電圧値Vは開放電圧法充電率推定法4へ入力される。
なお、電圧検出部2は、種々の構造・形式を有するものを適宜採用でき、本発明の端子電圧検出手段に相当する。
The terminal voltage detection unit 2 detects the voltage between the terminals of the battery B, and the detected terminal voltage value V is input to the open circuit voltage method charging rate estimation method 4.
In addition, the voltage detection part 2 can employ | adopt suitably what has various structures and forms, and is equivalent to the terminal voltage detection means of this invention.

電流積算法充電率推定部3は、減算器9で最終的に得られるバッテリBの充電率SOCと充放電電流検出部1で検出された充放電電流値Iとが入力されて、この充放電電流値Iを積算して電流積算値を算出することでバッテリBに出入りした電荷量を求め、これと減算器7から入力された充電率SOCとから電流積算法充電率SOCを算出するとともに、あらかじめ得られている充放電電流検出部1の検出精度に関する情報q(図2を参照)に基づいて電流積算法分散Qを求めるものである。なお、電流積算法充電率SOCは、真の充電率SOCに誤差(ノイズ)nが重畳された値になっている。また、電流積算法充電率推定部3は、本発明の電流積算法充電率推定手段に相当する。 The current integration method charging rate estimation unit 3 receives the charging rate SOC of the battery B finally obtained by the subtractor 9 and the charging / discharging current value I detected by the charging / discharging current detection unit 1, and this charging / discharging. By calculating the current integrated value by integrating the current value I, the amount of charge flowing in and out of the battery B is obtained, and from this and the charge rate SOC input from the subtractor 7, the current integration method charge rate SOC i is calculated. The current integration method variance Q i is obtained based on information q (see FIG. 2) relating to the detection accuracy of the charge / discharge current detection unit 1 obtained in advance. The current integration method charging rate SOC i is a value in which an error (noise) ni is superimposed on the true charging rate SOC. The current integration method charging rate estimation unit 3 corresponds to the current integration method charging rate estimation means of the present invention.

図2に、この電流積算法充電率推定部3の具体的構成を示す。同図に示すように、電流積算法充電率推定部3は、乗算器31および積分器32からなる充電率算出部3Aと、電流積算法分散算出部3Bと、を備える。積分器32は、乗算器321と、遅延器322と、加算器323と、を有する。
乗算器31は、充放電電流検出部1から演算周期Tごとに得られた充放電電流値I(平均値)に、係数1/FCCを掛ける演算器である。ここで、FCCはバッテリBの満充電気量であり、バッテリBの公称値(新品時の値)でも、劣化度を考慮した値のいずれでも良い。
積分器32の乗算器321は、乗算器31からの出力値に演算周期Tを掛けるものであり、この出力値はそのとき(現在)の充電率となる。遅延器322は、減算器7で得た充電率SOCに1/z(zはz変換を示す)を掛けて現在より1つ前の充電率SOCを得るものである。加算器323は、乗算器321からの出力値と遅延器322からの出力値とを加算して、電流積算法充電率SOCを出力する。
FIG. 2 shows a specific configuration of the current integration method charging rate estimation unit 3. As shown in the figure, the current integration method charging rate estimation unit 3 includes a charging rate calculation unit 3A including a multiplier 31 and an integrator 32, and a current integration method dispersion calculation unit 3B. The integrator 32 includes a multiplier 321, a delay unit 322, and an adder 323.
The multiplier 31, the charging and discharging current calculation from detector 1 period T S discharge current value obtained for each I (average value), a calculator for multiplying the coefficient 1 / FCC. Here, FCC is the full charge amount of the battery B, and may be either a nominal value of the battery B (value at the time of a new product) or a value considering the deterioration degree.
Multiplier 321 of the integrator 32 is for the output value from the multiplier 31 multiplies the calculation period T S, the output value is the time the charging rate (current). The delay unit 322 multiplies the charging rate SOC obtained by the subtractor 7 by 1 / z (z indicates z conversion) to obtain a charging rate SOC one before the present time. Adder 323 adds the output value from multiplier 321 and the output value from delayer 322, and outputs current integration method charging rate SOC i .

一方、電流積算法分散算出部3Bは、あらかじめ得られている充放電電流検出部1の検出精度に関する情報qに基づき、電流積算法分散Qを求めるものであって、この算出には、以下の式を用いて再帰的行列演算を行う。
なお、以下の式において、Pは共分散行列、Fは状態遷移行列、Qはノイズ行列、Tは演算周期であり、添え字kは時刻、上付き添え字Tは転置を表す記号である。ここで、Qは共分散行列P中のP11として求まる。

Figure 2012149948
On the other hand, the current integration method variance calculation unit 3B obtains the current integration method variance Q i based on the information q regarding the detection accuracy of the charge / discharge current detection unit 1 obtained in advance. Perform a recursive matrix operation using
In the following equation, P is the covariance matrix, F is the state transition matrix, Q is the noise matrix, T S is the calculation cycle, the subscript k times, the superscript T is a symbol denoting a transposed . Here, Q i is obtained as P 11 in the covariance matrix P.

Figure 2012149948

開放電圧法充電率推定部4は、充放電電流検検出部1から演算周期Tごとに得られた充放電電流値Iと、端子電圧検出部2から演算周期Tごとに入力された端子電圧値Vと、に基づき、バッテリBのバッテリ等価回路モデルを用いて推定した開放電圧値VOCVから開放電圧法充電率SOCを求めるとともに、充放電電流検出部1および端子電圧検出部2のあらかじめ与えられた検出精度の情報を元に開放電圧値VOCVの分散POCVや開放電圧法充電率SOCの分散PSOCV(=Q)を算出するものである。本実施例では、開放電圧法充電率推定部4には、カルマン・フィルタを用いる。カルマン・フィルタについては後で説明する。なお、開放電圧法充電率推定部4は、本発明の開放電圧法充電率推定手段に相当する。 Open circuit voltage method charging rate estimating unit 4 has been input and the charge-discharge current value I obtained for each calculation period T S from the charge and discharge current detection detector 1, from the terminal voltage detection unit 2 for each calculation period T S terminal Based on the voltage value V, the open-circuit voltage method charging rate SOC V is obtained from the open-circuit voltage value V OCV estimated using the battery equivalent circuit model of the battery B, and the charge / discharge current detection unit 1 and the terminal voltage detection unit 2 and it calculates the variance P SOCV of dispersion P OCV and the open circuit voltage method charging rate SOC V open-circuit voltage value V OCV based (= Q v) information previously given detection accuracy. In this embodiment, a Kalman filter is used for the open-circuit voltage method charging rate estimation unit 4. The Kalman filter will be described later. The open-circuit voltage method charging rate estimation unit 4 corresponds to the open-circuit voltage method charging rate estimation means of the present invention.

図3に、開放電圧法充電率推定部4の具体的構成を示す。開放電圧法充電率推定部4は、同図に示すように、開放電圧推定部4Aと、充電率算出部4Bと、遅延器4Cと、開放電圧部コンデンサ容量算出部4Dと、を有する。   FIG. 3 shows a specific configuration of the open-circuit voltage method charging rate estimation unit 4. The open-circuit voltage method charging rate estimation unit 4 includes an open-circuit voltage estimation unit 4A, a charging rate calculation unit 4B, a delay device 4C, and an open-circuit voltage unit capacitor capacity calculation unit 4D, as shown in FIG.

開放電圧推定部4Aは、充放電電流検出部1から演算周期Tごとに得られた充放電電流値Iと、端子電圧検出部2から演算周期Tごとに得られた端子電圧値Vと、開放電圧部コンデンサ容量算出部4Dから入力された開放電圧部コンデンサ容量値COCVと、が入力され、カルマン・フィルタを用いてバッテリBの開放電圧値VOCVを推定するとともに、あらかじめ得られている充放電電流検出部1と端子電圧検出部2の検出精度に関する情報から、開放電圧の分散POCVを算出するものである。 Open circuit voltage estimating unit 4A includes a charge-discharge current value I obtained for each calculation period T S from the charge and discharge current detection unit 1, and the terminal voltage value V obtained from the terminal voltage detection unit 2 for each calculation period T S The open circuit voltage section capacitor capacity value C OCV input from the open circuit voltage section capacitor capacity calculation section 4D is input, and the open circuit voltage value V OCV of the battery B is estimated using a Kalman filter and obtained in advance. From the information regarding the detection accuracy of the charging / discharging current detection unit 1 and the terminal voltage detection unit 2, the variance P OCV of the open circuit voltage is calculated.

充電率算出部4Bは、開放電圧推定部4Aで推定した開放電圧値VOCVに基づき、あらかじめ計測して記憶している、開放電圧値と開放電圧法充電率との関係のデータを用いて開放電圧法充電率SOCを算出するとともに、開放電圧推定部4Aで算出した開放電圧の分散POCVに基づき、開放電圧法充電率SOCの分散PSOCVを算出するものである。なお、充電率算出部4Bで推定した開放電圧法充電率SOCは、図1に示すように、真の充電率SOCに誤差nを重畳した値となっている。 The charging rate calculation unit 4B uses the data on the relationship between the open voltage value and the open voltage method charging rate, which is measured and stored in advance, based on the open circuit voltage value V OCV estimated by the open circuit voltage estimation unit 4A. The voltage method charging rate SOC V is calculated, and the variance P SOCV of the open-circuit voltage method charging rate SOC V is calculated based on the variance P OCV of the open-circuit voltage calculated by the open-circuit voltage estimation unit 4A. Incidentally, the open voltage method charging rate SOC V estimated by the charging rate calculating section 4B, as shown in FIG. 1, has a value obtained by superimposing the error n v the true charging rate SOC.

遅延器4Cは、開放電圧推定部4Aで推定した開放電圧値VOCVが入力されて1/zが掛けられて現在の1つ前の開放電圧を算出するものである。
開放電圧部コンデンサ容量算出部4Dは、遅延器4Cで算出された開放電圧値に基づき、バッテリBの開放電圧コンデンサ容量値COCVを算出して開放電圧推定部4Aへ出力するものである。
なお、開放電圧コンデンサ容量値COCVは、COCV=FCC/{100×(1つ前のサンプリング時に得られた開放電圧値のときの開放電圧法充電率SOCに対する開放電圧の傾き)}の式を用いて得られる。
The delay device 4C receives the open-circuit voltage value V OCV estimated by the open-circuit voltage estimation unit 4A and multiplies it by 1 / z to calculate the current previous open-circuit voltage.
The open-circuit voltage unit capacitor capacity calculation unit 4D calculates an open-circuit voltage capacitor capacity value C OCV of the battery B based on the open-circuit voltage value calculated by the delay device 4C, and outputs it to the open-circuit voltage estimation unit 4A.
The open-circuit voltage capacitor capacitance value C OCV is COCV = FCC / {100 × (the slope of the open-circuit voltage with respect to the open-circuit voltage method charging rate SOC V at the open-circuit voltage value obtained at the previous sampling)} Is obtained.

減算器5は、開放電圧法充電率推定部4で得た開放電圧法充電率SOCから電流積算法充電率推定部3で得た電流積算法充電率SOCを減算して得た減算値yを誤差推定部6へ出力するものである。なお、減算器5は、は、本発明の充電率差演算手段に相当する。 The subtracter 5 is a subtraction value obtained by subtracting the current integration method charging rate SOC i obtained by the current integration method charging rate estimation unit 3 from the open circuit voltage method charging rate SOC V obtained by the open circuit voltage method charging rate estimation unit 4. y is output to the error estimation unit 6. The subtractor 5 corresponds to the charging rate difference calculating means of the present invention.

第1切替部6は、電流積算法充電率推定部3の出力値と開放電圧法充電率推定部4の出力値とが入力されて、電流積算法充電率推定部3と開放電圧法充電率推定部4の計算間隔より長い間隔で誤差推定部7での誤差推定を行うか否か、を決めるように、信号を伝達・遮断のいずれかに切り替えるものである。
一方、第2切替部8は、誤差推定部7で得られた誤差推定を用いて充電率SOCの演算を行うか否か、を決めるように、信号を伝達・遮断のいずれかに切り替えるものである。
これらの切り替えの詳細については、後で説明する。
なお、第1切替部6は本発明の第1切替手段に、また第2切替部8は本発明の第2切替手段にそれぞれ相当する。
The first switching unit 6 receives the output value of the current integration method charging rate estimation unit 3 and the output value of the open circuit voltage method charging rate estimation unit 4 to input the current integration method charging rate estimation unit 3 and the open voltage method charging rate. The signal is switched to either transmission or cutoff so as to determine whether or not to perform error estimation in the error estimation unit 7 at an interval longer than the calculation interval of the estimation unit 4.
On the other hand, the second switching unit 8 switches the signal to either transmission or cutoff so as to determine whether or not to calculate the charging rate SOC using the error estimation obtained by the error estimation unit 7. is there.
Details of these switching will be described later.
The first switching unit 6 corresponds to the first switching unit of the present invention, and the second switching unit 8 corresponds to the second switching unit of the present invention.

誤差推定部7は、電流積算法充電率推定部3で得た電流積算法分散Qと、減算器5で得た充電率の減算値yと、開放電圧法充電率推定部4で得た開放電圧法分散Qと、に基づき、カルマン・フィルタを用いて、電流積算法充電率SOCiの推定誤差nを推定するものである。なお、誤差推定部6では、開放電圧法充電率SOCの推定誤差nvも推定される。誤差推定部6は、本発明の誤差推定手段に相当する。 The error estimation unit 7 is obtained by the current integration method variance Q i obtained by the current integration method charging rate estimation unit 3, the subtraction value y of the charging rate obtained by the subtractor 5, and the open circuit voltage method charging rate estimation unit 4. and the open-circuit voltage method dispersion Q V, based on using a Kalman filter, and estimates the estimated error n i of the current integration method charging rate SOC i. The error estimation unit 6 also estimates an estimation error nv of the open circuit voltage method charging rate SOC V. The error estimation unit 6 corresponds to an error estimation unit of the present invention.

ここで、上記開放電圧法充電率推定部4や誤差推定部7で用いるカルマン・フィルタにつき、説明する。
開放電圧法充電率推定部4でのカルマン・フィルタは、バッテリBのバッテリ等価回路モデルに、実際のバッテリBと同じ入力(充放電電流、端子電流、バッテリ温度など)を入力し、これらの出力(端子電圧)を比較し、両者に差があれば、この差にカルマン・ゲインを掛けてフィードバックし、誤差が最小になるようにバッテリ等価回路モデルを修正していく。これを逐次繰り返して、真の内部状態量である開放電圧値などを推定する。
誤差推定部7でのカルマン・フィルタでは、誤差モデルで推定した誤差の差を減算器5で得た充電率の減算値と比較し、両者に差があれば、この差にカルマン・ゲインを掛けてフィードバックし、誤差が最小になるように推定誤差を修正していく。これを逐次繰り返して、真の充電率推定誤差を推定する。
Here, the Kalman filter used in the open-circuit voltage method charging rate estimation unit 4 and the error estimation unit 7 will be described.
The Kalman filter in the open-circuit voltage method charge rate estimation unit 4 inputs the same input (charge / discharge current, terminal current, battery temperature, etc.) as the actual battery B to the battery equivalent circuit model of the battery B, and outputs these (Terminal voltage) is compared, and if there is a difference between them, the difference is multiplied by Kalman gain and fed back, and the battery equivalent circuit model is corrected so that the error is minimized. This is repeated sequentially to estimate an open circuit voltage value that is a true internal state quantity.
In the Kalman filter in the error estimator 7, the difference in error estimated by the error model is compared with the subtraction value of the charging rate obtained in the subtractor 5, and if there is a difference, the difference is multiplied by the Kalman gain. Feedback to correct the estimation error so that the error is minimized. This is repeated sequentially to estimate a true charging rate estimation error.

開放電圧法充電率推定部4でのカルマン・フィルタでは、以下のような離散システムを考える。

Figure 2012149948

ただし、添え字kは時刻を表わしている。また、上記式で

Figure 2012149948

である。 In the Kalman filter in the open-circuit voltage method charging rate estimation unit 4, the following discrete system is considered.

Figure 2012149948

Note that the subscript k represents time. Also, in the above formula

Figure 2012149948

It is.

ここで、プロセスノイズと検出部ノイズは、平均値0、分散Q、Rの正規性白色ノイズであって、電流積算法充電率推定部3と開放電圧法充電率推定部4とでそれぞれ求めた充電率の分散Q、Qを用いて、以下の式で表される。

Figure 2012149948

本実施例では、電流積算法充電率推定部3と開放電圧法充電率推定部4とで算出された分散の値を用いるので、上記値は可変値となる。
したがって、誤差推定部6の上流側にある電流積算法充電率推定部3と開放電圧法充電率推定部4との逐次的な推定精度(分散の値)を考慮した誤差推定が可能となり、より高精度での充電率SOCの推定が可能となる。 Here, the process noise and the detection unit noise are normal white noises having an average value of 0 and variances Q and R, and are obtained by the current integration method charging rate estimation unit 3 and the open circuit voltage method charging rate estimation unit 4, respectively. Using the charging rate variances Q i and Q v , it is expressed by the following equation.

Figure 2012149948

In the present embodiment, since the dispersion value calculated by the current integration method charging rate estimation unit 3 and the open circuit voltage method charging rate estimation unit 4 is used, the above value is a variable value.
Therefore, it is possible to perform error estimation in consideration of sequential estimation accuracy (variance value) between the current integration method charging rate estimation unit 3 and the open circuit voltage method charging rate estimation unit 4 on the upstream side of the error estimation unit 6. The charge rate SOC can be estimated with high accuracy.

カルマン・フィルタは、以下の式を用いたアルゴリズムを利用する。

Figure 2012149948

ここで、Kはカルマン・ゲイン、Xは推定平均値、Pは推定分散値である。 The Kalman filter uses an algorithm using the following equation.

Figure 2012149948

Here, K k is a Kalman gain, X k is an estimated average value, and P k is an estimated variance value.

図4に示すように、カルマン・フィルタは、分散値算出部10と、カルマン・ゲイン算出11と、平均値算出部12と、を備えている。
分散値算出部8は、共分散行列Pと、ノイズ行列Qと、分散値算出部8からの出力値である分散値と、カルマン・ゲイン算出部9からのカルマン・ゲインKが入力され、上記式3を用いて推定分散値Pを算出するものである。
カルマン・ゲイン算出部11は、分散値算出部10から入力された推定分散値Pと正規白色ノイズRとが入力され、上記式1を用いてカルマン・ゲインKを算出するものである。
As shown in FIG. 4, the Kalman filter includes a variance value calculation unit 10, a Kalman gain calculation 11, and an average value calculation unit 12.
The variance value calculation unit 8 receives the covariance matrix P, the noise matrix Q, the variance value that is the output value from the variance value calculation unit 8, and the Kalman gain K from the Kalman gain calculation unit 9. The estimated variance value P k is calculated using Equation 3.
The Kalman gain calculation unit 11 receives the estimated variance value P k and the normal white noise R input from the variance value calculation unit 10, and calculates the Kalman gain K using Equation 1 above.

平均値算出部12は、減算器13と、乗算器14と、加算器15と、遅延器16と、乗算器17と、乗算器18と、を有し、減算器5から入力された観測値y(=SOCV−SOCi)とカルマン・ゲイン算出部11で得られたカルマン・ゲインKとに基づき、上記式2を用いて、状態変数xを演算するものである。 The average value calculation unit 12 includes a subtractor 13, a multiplier 14, an adder 15, a delay unit 16, a multiplier 17, and a multiplier 18, and the observed value input from the subtracter 5. Based on y (= SOC V −SOC i ) and the Kalman gain K obtained by the Kalman gain calculation unit 11, the state variable x is calculated using the above equation 2.

平均値算出部12の減算器13は、入力された観測値yから乗算器18の出力値を減算するものである。
乗算器14は、カルマン・ゲイン算出部11で得たカルマン・ゲインKに減算器13の出力値を掛けるものである。
加算器15は、乗算器14の出力値と乗算器17の出力値とを加算して得た加算値を遅延器16へ出力するものである。
遅延器16は、加算器15の加算値に1/zをかけて現在の1つ前の加算値を得てこの値を状態変数xとするものである。
乗算器17は、状態行列Fに遅延器16から入力されたに状態変数xを掛けて得た値を加算器15と乗算器18へ出力するものである。
乗算器18は、出力行列Hに乗算器17の出力値を掛けて得た値を減算器13へ出力するものである。
The subtractor 13 of the average value calculation unit 12 subtracts the output value of the multiplier 18 from the input observed value y.
The multiplier 14 multiplies the Kalman gain K obtained by the Kalman gain calculation unit 11 by the output value of the subtractor 13.
The adder 15 outputs an addition value obtained by adding the output value of the multiplier 14 and the output value of the multiplier 17 to the delay unit 16.
The delay unit 16 multiplies the addition value of the adder 15 by 1 / z to obtain the current previous addition value and sets this value as the state variable x.
The multiplier 17 outputs a value obtained by multiplying the state matrix F by the state variable x input from the delay unit 16 to the adder 15 and the multiplier 18.
The multiplier 18 outputs a value obtained by multiplying the output matrix H by the output value of the multiplier 17 to the subtractor 13.

なお、カルマン・フィルタでは、もともとバッテリBの状態量を推定するに際し、その推定の平均値と分散値を逐次的に推定算出しているので、これらの値を新たに別途算出する必要はない。   In the Kalman filter, when estimating the state quantity of the battery B, the average value and the variance value of the estimation are sequentially estimated and calculated, so there is no need to separately calculate these values.

減算器9は、電流積算法充電率推定部3で推定した電流積算法充電率SOCiから、誤差推定部7で得た推定誤差nを減算して、バッテリBの充電率SOCを得るものである。なお、後述のように、第1切替部5、第2切替部8の切替状態によっては、推定誤差nが入力されず減算しない場合がある。減算器9は、本発明の充電率算出手段に相当する。 Subtractor 9, a current integration method the SOC i estimated by the current integration method charging rate estimating unit 3 subtracts the estimated error n i obtained by the error estimating unit 7, to obtain a charge rate SOC of the battery B It is. As described later, the first switching unit 5, depending on the switching state of the second switching unit 8, there is a case where the estimated error n i does not subtract not entered. The subtractor 9 corresponds to the charging rate calculation means of the present invention.

ここで、上記第1切替部6および第2切替部8の機能につき、説明する。
第1切替部6および第2切替部8の切り替えは、同期して作動するようにしても、あるいは非同期で作動させるようにしてもよい。この両方の場合について、以下に説明する。
Here, functions of the first switching unit 6 and the second switching unit 8 will be described.
The switching between the first switching unit 6 and the second switching unit 8 may be operated synchronously or asynchronously. Both cases will be described below.

まず、第1切替部6および第2切替部8の切り替えを同期で作動させる場合には、下記(作動1)、(作動2)の間で切り替えられることになる。
(作動1)第1切替部6と第2切替部8の両方がOFFのとき、図1中に示す充電率推定装置のブロック図は、図5(a)に示すブロック図と実質同等になる。この場合、誤差推定部7では推定誤差nの演算が行われず、減算器9では推定誤差nの減算も行われないことから、電流積算法のみを使って充電率SOCを求めるものと同じになる。すなわち、バッテリBの充電率SOCは、電流積算法充電率SOCiに等しくなる。
First, when the switching of the first switching unit 6 and the second switching unit 8 is operated synchronously, the switching is performed between the following (operation 1) and (operation 2).
(Operation 1) When both the first switching unit 6 and the second switching unit 8 are OFF, the block diagram of the charging rate estimation device shown in FIG. 1 is substantially equivalent to the block diagram shown in FIG. . In this case, operation is not performed for the error estimation unit 7 estimates the error n i, since not performed subtraction of the subtractor 9, the estimation error n i, the same as for obtaining the charging rate SOC by using only the current integration method become. That is, the charging rate SOC of the battery B is equal to the current integration method the SOC i.

(作動2)第1切替部6および第2切替部8の両方がONのとき、図1中に示す充電率推定装置のブロック図は、図5(b)に示すブロック図と実質同等になる。この場合、誤差推定部7には、電流積算法充電率推定部3の出力値(分散)と開放電圧法充電率推定部4の出力値(分散)の両方と、減算器5からの充電率差とが入力され、ここで推定誤差nを算出した後、減算器9で、電流積算法充電率推定部3で得た電流積算法充電率SOCiから推定誤差nを減算補正し、この減算値をバッテリBの充電率SOCとする。 (Operation 2) When both the first switching unit 6 and the second switching unit 8 are ON, the block diagram of the charging rate estimation device shown in FIG. 1 is substantially equivalent to the block diagram shown in FIG. . In this case, the error estimator 7 includes both the output value (variance) of the current integration method charging rate estimator 3 and the output value (variance) of the open circuit voltage method charging rate estimator 4 and the charging rate from the subtractor 5. and the difference is input, wherein after calculating the estimation error n i, the subtractor 9 subtracts corrected estimation error n i from the current integration method charging rate SOC i obtained by the current integration method charging rate estimating unit 3, This subtracted value is used as the charging rate SOC of the battery B.

次に、第1切替部6および第2切替部8の切り替えを非同期で作動させる場合には、下記(作動3)、(作動4)の間で切り替えられることになる。
(作動3)第1切替部6がONで第2切替部8がOFFの場合には、図1中に示す充電率推定装置のブロック図は、図5(c)に示すブロック図と実質同等になる。この場合、誤差推定部7で、電流積算法充電率推定部3の出力値と開放電圧法充電率推定部4の出力値の両方が入力され、ここで推定誤差nを算出するものの、この推定誤差nは減算器9には入力されないので、結局、この場合は、電流積算法のみを使って充電率SOCを求めることとなり、バッテリBの充電率SOCは電流積算法充電率SOCiに等しくなる。
(作動4)第1切替部6がOFFで第2切替部8がONのとき、図1中に示す充電率推定装置のブロック図は、図5(d)に示すブロック図と実質同等になる。この場合、誤差推定部7には新たな入力は行われず新たな推定誤差nの演算は行われない。しかしながら、誤差推定部7には、(作動4)の前の上記(作動3)のときに得たがそのとき使用されなかった推定誤差nが記憶されていて、この値が減算器9に入力されるため、減算器9は、電流積算法充電率推定部3で得た電流積算法充電率SOCiから推定誤差nを減算補正し、この減算値をバッテリBの充電率SOCとする。
Next, when the switching of the first switching unit 6 and the second switching unit 8 is operated asynchronously, the switching is performed between the following (operation 3) and (operation 4).
(Operation 3) When the first switching unit 6 is ON and the second switching unit 8 is OFF, the block diagram of the charging rate estimation device shown in FIG. 1 is substantially equivalent to the block diagram shown in FIG. become. In this case, the error estimation unit 7, is both an input of the output value of the current integration method charging rate estimating section 3 of the output value and the open-circuit voltage method charging rate estimating unit 4, where although calculating the estimated error n i, this Since the estimation error ni is not input to the subtracter 9, in this case, the charging rate SOC is obtained by using only the current integration method, and the charging rate SOC of the battery B becomes the current integration method charging rate SOC i . Will be equal.
(Operation 4) When the first switching unit 6 is OFF and the second switching unit 8 is ON, the block diagram of the charging rate estimation device shown in FIG. 1 is substantially equivalent to the block diagram shown in FIG. . In this case, no new input is made to the error estimator 7 and no new estimation error ni is calculated. However, the error estimating unit 7 (operation 4) the estimation error n i that were not used at that time obtained when the front of the (operation 3) of are stored, this value is subtracter 9 for input, the subtractor 9 subtracts corrected estimation error n i from the current integration method the SOC i obtained by the current integration method charging rate estimating unit 3, to the subtraction value and the charging rate SOC of the battery B .

次に、上記のように構成した実施例1の充電率算出装置作用につき、以下に説明する。
バッテリBの充放電電流値Iと端子電圧値Vとは、充放電電流検出部1と端子電圧検出部2とにより充電率算出装置の起動中、逐次検出される。なお、これらの検出値は検出したアナログ値がデジタル値に変換されて、それらの後のデジタル演算に利用される。
Next, the operation of the charging rate calculation apparatus according to the first embodiment configured as described above will be described below.
The charge / discharge current value I and the terminal voltage value V of the battery B are sequentially detected by the charge / discharge current detection unit 1 and the terminal voltage detection unit 2 during activation of the charge rate calculation device. The detected analog values are converted into digital values and used for subsequent digital calculations.

電流積算法充電率推定部3では、充放電電流値と、あらかじめ与えておいた充放電電流検出部1の情報(分散)と、減算器7で得た充電率SOCと、に基づき、電流積算法充電率SOCiとこの分散Qとを算出する。
一方、開放電圧法充電率推定部4では、充放電電流値Iと、端子電圧値Vと、あらかじめ与えておいた充放電電流検出部1および端子電圧検出部2双方の情報(分散)と、に基づき、カルマン・フィルタを利用して、開放電圧法充電率SOCVとこの分散Qとを算出する。
The current integration method charging rate estimation unit 3 calculates the current integration based on the charging / discharging current value, the information (dispersion) of the charging / discharging current detection unit 1 given in advance, and the charging rate SOC obtained by the subtractor 7. The legal charging rate SOC i and the variance Q i are calculated.
On the other hand, in the open-circuit voltage method charging rate estimation unit 4, the charge / discharge current value I, the terminal voltage value V, and the information (dispersion) of both the charge / discharge current detection unit 1 and the terminal voltage detection unit 2 given in advance, Based on the above, the open-circuit voltage method charging rate SOC V and the variance Q v are calculated using a Kalman filter.

電流積算法充電率推定部3、開放電圧法充電率推定部4でそれぞれ得られた充電率の分散Q、Qと、減算器5で得られた観測値y(=SOCV−SOCi)とは、第1切替部6がONのときには、誤差推定部6に入力されて、ここでカルマン・フィルタを利用して電流積算法充電率SOCiの推定誤差nを推定する。一方、第1切替部6がOFFの時には、上記値は誤差推定部6に入力されず、誤差推定部6での推定誤差nの演算は行われない。 The charging rate variances Q i and Q v obtained by the current integration method charging rate estimation unit 3 and the open-circuit voltage method charging rate estimation unit 4, respectively, and the observation value y (= SOC V −SOC i obtained by the subtractor 5 ). ) and, when the first switching unit 6 is oN is input to the error estimating section 6, where using a Kalman filter to estimate the estimation error n i of the current integration method charging rate SOC i. On the other hand, when the first switching unit 6 is OFF, the value is not input to the error estimating section 6, calculation of the estimation error n i of the error estimating section 6 is not performed.

減算器9では、第2切替部8がONの時には、減算器8で、電流積算法充電率推定部3で得た電流積算法充電率SOCiからこのノイズとして誤差推定部6から得た推定誤差nを減算して、バッテリBの充電率SOCを得る。一方、第2切替部8がOFFの時には、減算器9には誤差推定部7で得た推定誤差nを入力せず、電流積算法充電率SOCiをバッテリBの充電率SOCとする。
すなわち、実施例1の充電率推定装置にあっては、バッテリBの充電率SOCは、基本的には短い計算間隔では精度が良い電流積算法充電率SOCiに等しくするものの、短い計算間隔では精度は悪いが長い計算間隔では精度が良い開放電圧法充電率SOCを用いて、誤差推定部7にて、電流積算法充電率推定部3と開放電圧法充電率推定部4の計算間隔より長い間隔での推定誤差nを求め、減算器9で電流積算法充電率SOCiから推定誤差nを減算してバッテリBの充電率SOCを得る。
In the subtracter 9, when the second switching unit 8 is ON, the estimation obtained from the error estimation unit 6 as this noise from the current integration method charging rate SOC i obtained by the current integration method charging rate estimation unit 3 in the subtractor 8. by subtracting the error n i, to obtain the charging rate SOC of the battery B. On the other hand, when the second switching unit 8 is OFF, the subtracter 9 will not enter the estimation error n i obtained by the error estimating unit 7, a current integration method charge SOC i to the charging rate SOC of the battery B.
That is, in the charging rate estimation apparatus of the first embodiment, the charging rate SOC of the battery B is basically equal to the current integration method charging rate SOC i with high accuracy at a short calculation interval, but at a short calculation interval. The error estimation unit 7 uses the open-circuit voltage method charging rate SOC V, which is poor in accuracy but high in accuracy at a long calculation interval. obtaining the estimated error n i at longer intervals to obtain the charging rate SOC of the battery B by subtracting the estimated error n i from the current integration method charge SOC i subtracter 9.

ここで、推定された充電率の時間的変化の結果につき、実施例1の充電率算出装置と従来発明(例えば、特許文献1)に記載された装置やその他の装置との間でそれぞれ比較したシミュレーション結果を図6、7に示す。
なお、図6において、(a)は電流積算法を用いて得られた充電率の時間的変化を示す図、(b)は開放電圧法を用いて得られた充電率の時間的変化を示す図、(c)は従来発明で得られた充電率の時間的変化を示す図、また図7において、(d)は実施例1の充電率推定装置で第1切替部6および第2切替部8の両方をONのまま固定した状態で得られた充電率の時間的変化を示す図、(e)は実施例1の充電率推定装置で得られた充電率の時間的変化を示す図である。
Here, the result of the estimated change in the charging rate over time was compared between the charging rate calculation device of Example 1 and the device described in the conventional invention (for example, Patent Document 1) and other devices, respectively. The simulation results are shown in FIGS.
In FIG. 6, (a) is a diagram showing a temporal change in the charging rate obtained using the current integration method, and (b) is a temporal change in the charging rate obtained using the open-circuit voltage method. FIG. 7 (c) is a diagram showing temporal changes in the charging rate obtained by the conventional invention. In FIG. 7, FIG. 7 (d) is the charging rate estimating device of the first embodiment, and the first switching unit 6 and the second switching unit. The figure which shows the time change of the charging rate obtained in the state which fixed both 8 to ON, (e) is a figure which shows the time change of the charging rate obtained with the charging rate estimation apparatus of Example 1. is there.

図6(a)に示すように、電流積算法による充電率の推定値は、時間が経過するにしたがって、充電率の真値から大きくずれて行くことが分かる。
また、図6(b)に示すように、開放電圧法を用いて充電率を得る場合には、この推定値と充電率真値との誤差が、時間が経つにつれ大きくなっていくということはないが、絶えず短い時間で充電率真値に対し、大きくなったり小さくなったりして、大きくずれていることが分かる。
As shown in FIG. 6A, it can be seen that the estimated value of the charging rate by the current integration method deviates greatly from the true value of the charging rate as time elapses.
Further, as shown in FIG. 6B, when the charging rate is obtained using the open-circuit voltage method, the error between the estimated value and the charging rate true value does not increase with time. However, it can be seen that the charging rate increases or decreases with respect to the true value of the charging rate constantly in a short time, and is greatly deviated.

また、図6(c)に示すように、上記従来発明(特許文献1に記載)のものでは、得られた充電率は重み付けを絶えず細かく変更されて補正されていくため、充電率の誤差は、上記電流積算法や開放電圧法の場合に比べると小さくなっている。しかしながら、開放電圧法の結果が大きくずれることの影響を避けることができず、充電率が所々で急激に大きくなってずれてしまうことがある。   Further, as shown in FIG. 6 (c), in the above-described conventional invention (described in Patent Document 1), the obtained charging rate is corrected by changing the weighting constantly and accordingly, the charging rate error is The current integration method and the open-circuit voltage method are smaller. However, the influence of a large deviation in the result of the open-circuit voltage method cannot be avoided, and the charging rate may suddenly increase in some places and deviate.

一方、実施例1の充電率推定装置で第1切替部6および第2切替部8の両方をONにしたままの状態にした場合には、図7(d)に示すように、上記従来発明の場合と同様な傾向を示し充電率が所々でやや急激にずれてしまうが、従来発明の場合よりそのずれ量は小さくなっていることが分かる。   On the other hand, when both the first switching unit 6 and the second switching unit 8 are kept ON in the charging rate estimation apparatus of the first embodiment, as shown in FIG. The same tendency as in the above case is shown, and the charging rate slightly deviates in some places.

実施例1の充電率推定装置では、第1切替部6および第2切替部8を切り替えていくことで、図7(e)に示すように、真値とのずれを小さく保ちながら、しかも図6(c)や図7(d)にみられるように所々で急に大きくずれることもない。
このように急で大きなずれがなくなっているのは、カルマン・フィルタが現在の時刻に得られた観測値と現在の1つ前の時刻における推定結果との2つの値を利用して推定値を算出するようにしたことによる。開放電圧法では急に大きくずれる推定値が問題になるが、これらは瞬間的なものであって、1つ前の時刻には正常な値であることがほとんどであるため、充電率を問題なく推定できる。
In the charging rate estimation apparatus according to the first embodiment, the first switching unit 6 and the second switching unit 8 are switched, so that the deviation from the true value is kept small as shown in FIG. As shown in FIG. 6 (c) and FIG. 7 (d), there is no sudden shift.
This sudden and large deviation disappears because the Kalman filter uses two values, the observed value obtained at the current time and the estimated result at the previous time. It depends on the calculation. In the open-circuit voltage method, the estimated value that suddenly deviates greatly becomes a problem, but these are instantaneous and are usually normal values at the previous time. Can be estimated.

以上のように、実施例1のバッテリの充電率推定装置にあっては、以下の効果を得ることができる。
(1)実施例1のバッテリの充電率推定装置にあっては、電流積算法充電率推定部3、開放電圧法充電率推定部4で電流積算法充電率SOCiと開放電圧法充電率SOCVを求めるとき、併せてこれらの平均値および分散も用いて統計的な処理を施すようにするとともに、第1切替部6と第2切替部8の切替作動により電流積算法による充電率SOCiの推定に、電流積算法充電率推定部3と開放電圧法充電率推定部4の計算間隔より長い間隔で求めた電流積算法充電率SOCiの推定誤差nを用いるようにしたので、従来発明のものよりも高い精度でバッテリBの充電率SOCを推定できるようになる。
As described above, the battery charging rate estimation apparatus according to the first embodiment can obtain the following effects.
(1) In the battery charging rate estimation device of the first embodiment, the current integration method charging rate SOC i and the open voltage method charging rate SOC are determined by the current integration method charging rate estimation unit 3 and the open circuit voltage method charging rate estimation unit 4. In addition, when V is obtained, statistical processing is also performed using these average values and variances, and the charging rate SOC i by the current integration method is switched by the switching operation of the first switching unit 6 and the second switching unit 8. the estimated. Thus using the estimated error n i of the current integration method charging rate SOC i obtained at longer intervals than the calculated distance of the current integration method charging rate estimating section 3 and the open-circuit voltage method charging rate estimating unit 4, a conventional The charge rate SOC of the battery B can be estimated with higher accuracy than that of the invention.

(2)また、開放電圧法充電率推定部4および誤差推定部7には、それぞれカルマン・フィルタを用いたので、バッテリBの状態量を容易かつ高い精度で推測できるようになるとともに、カルマン・フィルタでもともと推定平均値と推定分散値を逐次的に推定算出していることから、これらの値を新たに別途算出する必要がなくなる。 (2) Since the Kalman filter is used for each of the open-circuit voltage method charging rate estimation unit 4 and the error estimation unit 7, the state quantity of the battery B can be estimated easily and with high accuracy. Since the estimated average value and estimated variance value are sequentially estimated and calculated by the filter, it is not necessary to newly calculate these values separately.

(3)また、電流積算法充電率推定部3と開放電圧法充電率推定部4の計算間隔より長い間隔で、電流積算法充電率SOCiの推定誤差nを、推定する際、第1切換部6と第2切替部8を用いるので、演算構成を簡単なものにすることができる。 (3) When estimating the estimation error n i of the current integration method charging rate SOC i at an interval longer than the calculation interval of the current integration method charging rate estimation unit 3 and the open circuit voltage method charging rate estimation unit 4, Since the switching unit 6 and the second switching unit 8 are used, the calculation configuration can be simplified.

(4)また、誤差推定部7では、充電率差yに加え、電流積算法充電率推定部3で得た電流積算法充電率SOCiの分散Qと、開放電圧法充電率推定部4で得た開放電圧法充電率SOCVの分散Qと、が入力され、これらの統計値を用いて推定誤差nを得るようにしているので、充放電電流検出部1や端子電圧検出部2に特性の変動やばらつきがある場合にも、従来発明のものより高い精度でバッテリBの充電率SOCを推定できる。 (4) In addition, in addition to the charging rate difference y, the error estimation unit 7 includes the variance Q i of the current integration method charging rate SOC i obtained by the current integration method charging rate estimation unit 3 and the open-circuit voltage method charging rate estimation unit 4. in a dispersion Q v of the open voltage method charging rate SOC V obtained is input, since to obtain the estimation error n i using these statistics, the charge and discharge current detection unit 1 and the terminal voltage detecting section Even when there is a variation or variation in the characteristics of 2, the charge rate SOC of the battery B can be estimated with higher accuracy than that of the conventional invention.

(5)また、電流積算法充電率推定部3では、減算器9で得た充電率を用いて電流積算法充電率SOCiを推定するので、高精度で流積算法充電率SOCiを推定することが可能となる。 (5) In addition, the current integration method charging rate estimating unit 3, so to estimate the current integration method charging rate SOC i using the charging rate obtained by the subtracter 9, estimated accumulation method charging rate SOC i flow with high accuracy It becomes possible to do.

次に、本発明に係る実施例2のバッテリの充電率推定装置につき、図8に基づいて説明する。
なお、実施例2にあっては、実施例1と同様の構成部分には実施例1のものと同じ番号を付し、それらの説明は省略する。
実施例2の充電率推定装置では、図1の実施例1のものにおいて、電流積算法充電率推定部3と開放電圧法推定部4とを入れ替えたものである。その他の構成は、実施例1と同じである。
誤差推定部7で最終的に求められるのは、状態変数x,すなわち推定誤差nとnの両方なので、実施例2でも、実施例1と同様に作用し、同様の効果を得ることができる。
Next, a battery charge rate estimation apparatus according to a second embodiment of the present invention will be described with reference to FIG.
In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and description thereof is omitted.
In the charging rate estimation apparatus according to the second embodiment, the current integration method charging rate estimation unit 3 and the open-circuit voltage method estimation unit 4 are replaced with those of the first embodiment shown in FIG. Other configurations are the same as those in the first embodiment.
Since the error estimator 7 finally obtains both the state variable x, that is, the estimation errors n i and n v , the second embodiment operates in the same manner as the first embodiment and can obtain the same effect. it can.

次に、本発明に係る実施例3のバッテリの充電率推定装置につき、図9に基づいて説明する。
なお、実施例3にあっては、実施例1と同様の構成部分には実施例1のものと同じ番号を付し、それらの説明は省略する。
実施例3の充電率推定装置では、図1の実施例1のものにおいて、第1切替部6を省略して第2切換部8のみを用いるようにしたものであり、その他の構成は、実施例1と同じである。
したがって、誤差切替部7では、誤差推定部7が常に推定誤差nを推定するようになり、第2切替部8のONへの切り替えにより、間欠的に誤差切替部7で得た推定誤差nを用いて、減算器9が、電流積算法充電率推定部3で得た電流積算法充電率SOCiを補正してバッテリBの充電率SOCを得る。この場合、実施例1に比べ充電率SOCの推定精度は劣るものの、十分な推定精度を得ることができる。
Next, a battery charge rate estimation apparatus according to Embodiment 3 of the present invention will be described with reference to FIG.
In the third embodiment, the same components as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and description thereof is omitted.
In the charging rate estimation apparatus according to the third embodiment, the first switching unit 6 is omitted and only the second switching unit 8 is used in the first embodiment shown in FIG. Same as Example 1.
Therefore, the error switching section 7, is as error estimation section 7 is always estimates the estimation error n i, by switching to ON of the second switching unit 8, intermittently estimation error n obtained by the error switching section 7 Using i , the subtractor 9 corrects the current integration method charging rate SOC i obtained by the current integration method charging rate estimation unit 3 to obtain the charging rate SOC of the battery B. In this case, although the estimation accuracy of the charging rate SOC is inferior to that of the first embodiment, sufficient estimation accuracy can be obtained.

次に、本発明に係る実施例4のバッテリの充電率推定装置につき、図10に基づいて説明する。
なお、実施例4にあっては、実施例1と同様の構成部分には実施例1のものと同じ番号を付し、それらの説明は省略する。
実施例4の充電率推定装置では、図1の実施例1のものにおいて、第2切替部8を省略して第1切替部6のみを用いるようにしたものであり、その他の構成は、実施例1と同じである。
Next, a battery charge rate estimation apparatus according to Embodiment 4 of the present invention will be described with reference to FIG.
In the fourth embodiment, the same components as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and the description thereof is omitted.
In the charging rate estimation apparatus according to the fourth embodiment, the second switching unit 8 is omitted and only the first switching unit 6 is used in the first embodiment shown in FIG. Same as Example 1.

したがって、誤差切替部7では、第1切替部8のON、OFF切り替えにより間欠的に電流積算法充電率推定部3、開放電圧法充電率推定部4,減算器5からそれらの出力値が入力されて、これらに基づき推定誤差nを推定する。誤差推定部7で得られた推定誤差nは、第1切替部8のON時に得られた値を示し、常時、減算器9へ入力されて、ここで電流積算法充電率推定部3にて得られた電流積算法充電率SOCiを補正する。
この場合、実施例1に比べ充電率SOCの推定精度は劣るものの、実施例3と同様に十分な推定精度を得ることができる。
Therefore, the error switching unit 7 intermittently inputs the output values from the current integration method charging rate estimation unit 3, the open-circuit voltage method charging rate estimation unit 4, and the subtractor 5 by switching the first switching unit 8 ON and OFF. Based on these, the estimation error ni is estimated. The estimation error n i obtained by the error estimation unit 7 indicates a value obtained when the first switching unit 8 is ON, and is always input to the subtractor 9, where it is input to the current integration method charging rate estimation unit 3. to correct the current integration method charging rate SOC i obtained Te.
In this case, although the estimation accuracy of the charging rate SOC is inferior to that of the first embodiment, sufficient estimation accuracy can be obtained as in the third embodiment.

以上、本発明を上記各実施例に基づき説明してきたが、本発明はこれらの実施例に限られず、本発明の要旨を逸脱しない範囲で設計変更等があった場合でも、本発明に含まれる。   The present invention has been described based on the above embodiments. However, the present invention is not limited to these embodiments, and is included in the present invention even when there is a design change or the like without departing from the gist of the present invention. .

たとえば、本発明にあっては、実施例1、2ではノイズ行列Qを可変値としたが、通常のカルマン・フィルタのように固定値を用いることも可能である。この場合、可変値を用いた場合より若干推定精度は低下するものの、従来発明での推定精度より高い精度を得ることができることは言うまでもない。   For example, in the present invention, the noise matrix Q is a variable value in the first and second embodiments, but it is also possible to use a fixed value as in a normal Kalman filter. In this case, although the estimation accuracy is slightly lower than when the variable value is used, it goes without saying that a higher accuracy than the estimation accuracy in the conventional invention can be obtained.

また、誤差推定部7での推定にあっては、かならずしも上記のように分散Q、Qを計算する必要はない。
例えば、電流積算法充電率SOCiと開放電圧法充電率SOCVの推定誤差が単純にある特定の割合(ri:rの割合)で含まれていると仮定すると、電流積算法充電率SOCiとの推定誤差nは、次式で得られる。

Figure 2012149948

また、開放電圧法充電率SOCVの誤差nを推定するには、以下の式を用いる。

Figure 2012149948

これらの式を用いれば、複雑な計算をすることなく、従来発明に比べてより高い精度でバッテリBの充電率SOCを得ることができる。図7(f)に、ri:rv=1:1の割合にした場合の充電率SOCの推定値を真値と比較した場合を示す。2箇所で急激に立ち上がっているものの、この場合にも、急激に大きくなる部分がほぼ低減されていることが分かる。 Further, in the estimation by the error estimation unit 7, it is not always necessary to calculate the variances Q i and Q v as described above.
For example, assuming that the estimation error between the current integration method charging rate SOC i and the open-circuit voltage method charging rate SOC V is simply included at a certain ratio (r i : r v ratio), the current integration method charging rate estimation error n i of the SOC i is obtained by the following equation.

Figure 2012149948

Also, to estimate the error n v of the open voltage method charging rate SOC V uses the following equation.

Figure 2012149948

By using these equations, the charging rate SOC of the battery B can be obtained with higher accuracy than the conventional invention without performing complicated calculations. FIG. 7 (f) shows a case where the estimated value of the charging rate SOC when r i : r v = 1: 1 is compared with the true value. Although it has risen rapidly at two places, in this case as well, it can be seen that the portion that suddenly increases is substantially reduced.

なお、この分散を利用しないものを含め、本発明の効果を分かりやすくするための参考例として、上記式においてri:rv=0:1の割合にした図11のバッテリの充電率推定装置で得た充電率の推定値と真値を比較したものを、図7(g)に示す。
この参考例の充電率推定装置では、図1の実施例1において、減算器5、第1切替部6、誤差推定部7、第2切替部8を省略して、電流積算法充電率推定部3で得た電流積算法充電率SOCiと開放電圧法充電率推定部4で得た開放電圧法充電率SOCVとが入力されて、電流積算法充電率SOCiと開放電圧法充電率SOCVのうちの一方を選択し、間欠的に切り替えることで、その出力値をバッテリBの充電率SOCとする選択部50を備えている。なお、選択部50の出力値である充電率SOCは、電流積算法充電率推定部3に入力される。
この場合、誤差は全般的に低減されるものの、充電率の推定値の一部が急激にかなり大きくなる所が実施例4と同様に発生し、このずれが実施例4の場合よりも大きくなって、本発明の実施例のものに比べ充電率SOCの推定精度が劣ることが分かる。
In addition, as a reference example for making the effects of the present invention easy to understand, including those that do not use this variance, the battery charge rate estimation device of FIG. 11 in which the ratio of r i : r v = 0: 1 in the above equation is used. FIG. 7G shows a comparison between the estimated value of the charging rate obtained in step 1 and the true value.
In the charging rate estimation apparatus of this reference example, the subtracter 5, the first switching unit 6, the error estimation unit 7, and the second switching unit 8 are omitted in the first embodiment of FIG. The current integration method charging rate SOC i obtained in step 3 and the open circuit voltage method charging rate SOC V obtained in the open circuit voltage method charging rate estimation unit 4 are input, and the current integration method charging rate SOC i and the open voltage method charging rate SOC are input. A selection unit 50 is provided that selects one of V and switches it intermittently to set its output value to the charge rate SOC of the battery B. The charging rate SOC that is the output value of the selection unit 50 is input to the current integration method charging rate estimation unit 3.
In this case, although the error is reduced in general, a part of the estimated value of the charging rate is suddenly considerably increased in the same manner as in the fourth embodiment, and this deviation is larger than that in the fourth embodiment. Thus, it can be seen that the estimation accuracy of the charging rate SOC is inferior to that of the embodiment of the present invention.

1 充放電電流検出部(充放電電流検出手段)
2 端子電圧検出部(端子電圧検出手段)
3 電流積算法充電率推定部(電流積算法充電率推定手段)
3A 充電率算出部
3B 電流積算法分散算出部
4 開放電圧法推定部(開放線圧法法充電率推定手段)
4A 開放電圧推定部
4B 充電率算出部
4C 遅延器
4D 開放電圧部コンデンサ容量算出部
5 減算器(充電率差演算手段)
6 第1切替部(第1切替手段)
7 誤差推定部(誤差推定手段)
8 第2切替部(第2切替手段)
9 減算器(充電率算出手段)
10 分散値算出部
11 カルマン・ゲイン算出部
12 平均値算出部
50 選択部
B バッテリ
1 Charge / discharge current detector (charge / discharge current detector)
2 Terminal voltage detector (terminal voltage detector)
3 Current integration method charge rate estimation unit (current integration method charge rate estimation means)
3A Charging rate calculation unit 3B Current integration method dispersion calculation unit 4 Open circuit voltage method estimation unit (open line pressure method charging rate estimation means)
4A Open-circuit voltage estimation unit 4B Charging rate calculation unit 4C Delay device 4D Open-circuit voltage unit Capacitor capacity calculation unit 5 Subtractor (charging rate difference calculation means)
6 1st switching part (1st switching means)
7 Error estimation unit (error estimation means)
8 Second switching unit (second switching means)
9 Subtractor (charging rate calculation means)
DESCRIPTION OF SYMBOLS 10 Dispersion value calculation part 11 Kalman gain calculation part 12 Average value calculation part 50 Selection part B Battery

Claims (5)

バッテリの充放電電流値を検出する充放電電流検出手段と、
前記バッテリの端子電圧値を検出する端子電圧検出手段と、
前記充放電電流検出手段から入力された前記充放電電流値を積算して得た充電率とこの前に得た充電率とから前記バッテリの電流積算法充電率を推定する電流積算充電率推定手段と、
前記充放電電流検出手段から入力された前記充放電電流値と前記端子電圧検出手段から入力された前記端子電圧値とに基づきバッテリ等価回路モデルを用いて前記バッテリの開放電圧値を推定し、該開放電圧値から開放電圧法充電率を推定する開放電圧法充電率推定手段と、
前記開放電圧法充電率と前記電流積算法充電率との充電率差を演算する充電率差演算手段と、
前記充電率差が入力されて、前記流積算充電率推定手段と前記開放電圧法充電率推定手段の計算間隔より長い間隔で、前記電流積算法充電率および前記開放電圧法充電率のうちの一方の推定誤差を推定する誤差推定手段と、
前記電流積算法充電およびと前記開放電圧法充電率のうちの一方と前記推定誤差とから前記バッテリの充電率を求める充電率算出手段と、
ことを特徴とするバッテリの充電率推定装置。
Charge / discharge current detection means for detecting a charge / discharge current value of the battery;
Terminal voltage detection means for detecting a terminal voltage value of the battery;
Current integration charge rate estimation means for estimating the current integration method charge rate of the battery from the charge rate obtained by integrating the charge / discharge current values input from the charge / discharge current detection means and the charge rate obtained previously. When,
Estimating the open-circuit voltage value of the battery using a battery equivalent circuit model based on the charge / discharge current value input from the charge / discharge current detection means and the terminal voltage value input from the terminal voltage detection means, An open-circuit voltage method charge rate estimating means for estimating an open-circuit voltage method charge rate from an open-circuit voltage value;
Charging rate difference calculating means for calculating a charging rate difference between the open-circuit voltage method charging rate and the current integration method charging rate;
One of the current integration method charging rate and the open voltage method charging rate at an interval longer than the calculation interval of the current integration charging rate estimation unit and the open circuit voltage method charging rate estimation unit when the charging rate difference is input Error estimation means for estimating the estimation error of
A charge rate calculating means for determining a charge rate of the battery from one of the current integration method charge and the open-circuit voltage method charge rate and the estimation error;
An apparatus for estimating a charging rate of a battery.
請求項1に記載のバッテリの充電率推定装置において、
前記開放電圧法充電率推定手段および前記誤差推定手段は、それぞれカルマン・フィルタを用いる、
ことを特徴とするバッテリの充電率推定装置。
The battery charge rate estimation apparatus according to claim 1,
The open-circuit voltage method charging rate estimation means and the error estimation means each use a Kalman filter.
An apparatus for estimating a charging rate of a battery.
請求項1又は2に記載のバッテリの充電率推定装置において、
前記誤差推定手段への、前記電流積算法充電率と前記開放電圧法充電率と前記充電率差との入力を、伝達、遮断間で切り替える第1切替手段と、前記充電率算出手段への、前記推定誤差の入力を、伝達、遮断間で切り替える第2切替手段と、のうちの少なくとも1つの切替手段を有する、
ことを特徴とするバッテリの充電率推定装置。
In the battery charge rate estimation apparatus according to claim 1 or 2,
To the error estimation means, a first switching means for switching input between the current integration method charging rate, the open-circuit voltage method charging rate, and the charging rate difference between transmission and disconnection, and the charging rate calculation means, A second switching unit that switches between input and transmission of the estimation error, and at least one switching unit.
An apparatus for estimating a charging rate of a battery.
請求項1乃至3のいずれか1項に記載のバッテリの充電率推定装置において、
前記電流積算充電率推定手段は、前記充放電電流検出手段の検出精度に関する情報が入力され、前記電流積算法充電率の分散を算出して前記誤差推定手段へ入力可能であり、
前記開放電圧法充電率推定手段は、前記充放電電流検出手段および前記端子電圧検出手段の検出精度に関する情報が入力され、前記開放電圧法充電率の分散を算出して前記誤差推定手段へ入力可能であり、
該誤差推定手段は、前記充電率差に加えて、前記電流積算充電率推定手段からの分散と、前記開放電圧法充電率推定手段からの分散と、が入力されて前記一方の推定誤差を推定する、
ことを特徴とするバッテリの充電率推定装置。
The battery charge rate estimation apparatus according to any one of claims 1 to 3,
The current integration charge rate estimation means is inputted with information on the detection accuracy of the charge / discharge current detection means, can calculate the variance of the current integration method charge rate and input to the error estimation means,
The open-circuit voltage method charging rate estimation means receives information on the detection accuracy of the charge / discharge current detection means and the terminal voltage detection means, and can calculate the variance of the open-circuit voltage method charging rate and input it to the error estimation means And
In addition to the charging rate difference, the error estimating unit receives the variance from the current integrated charging rate estimating unit and the variance from the open-circuit voltage method charging rate estimating unit to estimate the one estimation error. To
An apparatus for estimating a charging rate of a battery.
請求項1乃至4のいずれか1項に記載のバッテリの充電率推定装置において、
前記電流積算法充電率推定手段は、前記前に得た充電率に前記充電率算出手段で得た充電率を用いて前記電流積算法充電率を推定する、
ことを特徴とするバッテリの充電率推定装置。
In the battery charge rate estimation device according to any one of claims 1 to 4,
The current integration method charging rate estimation means estimates the current integration method charging rate using the charging rate obtained by the charging rate calculation means to the previously obtained charging rate,
An apparatus for estimating a charging rate of a battery.
JP2011007875A 2011-01-18 2011-01-18 Battery charge rate estimation device Active JP5432931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011007875A JP5432931B2 (en) 2011-01-18 2011-01-18 Battery charge rate estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011007875A JP5432931B2 (en) 2011-01-18 2011-01-18 Battery charge rate estimation device

Publications (2)

Publication Number Publication Date
JP2012149948A true JP2012149948A (en) 2012-08-09
JP5432931B2 JP5432931B2 (en) 2014-03-05

Family

ID=46792332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011007875A Active JP5432931B2 (en) 2011-01-18 2011-01-18 Battery charge rate estimation device

Country Status (1)

Country Link
JP (1) JP5432931B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9983270B2 (en) 2013-04-03 2018-05-29 Gs Yuasa International Ltd. State of charge estimation device and method of estimating state of charge
CN110506216A (en) * 2017-03-31 2019-11-26 三菱电机株式会社 Accumulator status estimating device
CN112034366A (en) * 2020-08-25 2020-12-04 惠州市蓝微电子有限公司 SOC dynamic compensation method and electronic system
JP2021524127A (en) * 2019-01-23 2021-09-09 エルジー・ケム・リミテッド Battery management device, battery management method and battery pack

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005201743A (en) * 2004-01-14 2005-07-28 Fuji Heavy Ind Ltd Remaining capacity calculation device for electric power storage device
JP2006074852A (en) * 2004-08-31 2006-03-16 Nissan Motor Co Ltd Soc estimator, and electric vehicle mounting it
WO2010140233A1 (en) * 2009-06-03 2010-12-09 三菱重工業株式会社 Battery state of charge calculation device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005201743A (en) * 2004-01-14 2005-07-28 Fuji Heavy Ind Ltd Remaining capacity calculation device for electric power storage device
JP2006074852A (en) * 2004-08-31 2006-03-16 Nissan Motor Co Ltd Soc estimator, and electric vehicle mounting it
WO2010140233A1 (en) * 2009-06-03 2010-12-09 三菱重工業株式会社 Battery state of charge calculation device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9983270B2 (en) 2013-04-03 2018-05-29 Gs Yuasa International Ltd. State of charge estimation device and method of estimating state of charge
CN110506216A (en) * 2017-03-31 2019-11-26 三菱电机株式会社 Accumulator status estimating device
JP2021524127A (en) * 2019-01-23 2021-09-09 エルジー・ケム・リミテッド Battery management device, battery management method and battery pack
JP7062870B2 (en) 2019-01-23 2022-05-09 エルジー エナジー ソリューション リミテッド Battery management device, battery management method and battery pack
US11493557B2 (en) 2019-01-23 2022-11-08 Lg Energy Solution, Ltd. Battery management apparatus, battery management method, and battery pack
CN112034366A (en) * 2020-08-25 2020-12-04 惠州市蓝微电子有限公司 SOC dynamic compensation method and electronic system

Also Published As

Publication number Publication date
JP5432931B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
JP5318128B2 (en) Battery charge rate estimation device
JP5393837B2 (en) Battery charge rate estimation device
JP5404964B2 (en) Battery charging rate estimation device and charging rate estimation method
JP6182025B2 (en) Battery health estimation device and health estimation method
US10386418B2 (en) Battery state estimation device
JP5389136B2 (en) Charging rate estimation apparatus and method
EP2963434B1 (en) Battery state estimation method and system using dual extended kalman filter, and recording medium for performing the method
JP5393619B2 (en) Battery charge rate estimation device
JP5798067B2 (en) Secondary battery state estimation device
JP6312508B2 (en) Battery monitoring device, battery system, and electric vehicle drive device
JP5261828B2 (en) Battery state estimation device
JP5535968B2 (en) CHARGE RATE ESTIMATION DEVICE, CHARGE RATE ESTIMATION METHOD, AND PROGRAM
JP2010230469A (en) Device and method for determining state of health of secondary battery
JP2012057998A (en) Charge rate calculation apparatus for secondary battery and charge rate calculation method
JP5432931B2 (en) Battery charge rate estimation device
JP5389137B2 (en) Charging rate estimation apparatus and method
JP2012057964A (en) Charging rate estimation apparatus for battery
JP2018151176A (en) Estimation device, estimation method, and estimation program
JP5606933B2 (en) Battery charge rate estimation device
JP2018148720A (en) Battery control device and program
JP5307908B2 (en) Battery state estimation device
JP6194841B2 (en) Equalizing discharge device
JP2017161351A (en) Charging rate estimation method of secondary battery, charging rate estimation device, and charging rate estimation program
JPWO2019097938A1 (en) Battery state estimation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5432931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250