JP2012146928A - Method for manufacturing nanocomposite thermoelectric conversion material - Google Patents

Method for manufacturing nanocomposite thermoelectric conversion material Download PDF

Info

Publication number
JP2012146928A
JP2012146928A JP2011006106A JP2011006106A JP2012146928A JP 2012146928 A JP2012146928 A JP 2012146928A JP 2011006106 A JP2011006106 A JP 2011006106A JP 2011006106 A JP2011006106 A JP 2011006106A JP 2012146928 A JP2012146928 A JP 2012146928A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion material
nano
phonon scattering
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011006106A
Other languages
Japanese (ja)
Inventor
Tateya Murai
盾哉 村井
Takushi Kita
拓志 木太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011006106A priority Critical patent/JP2012146928A/en
Priority to PCT/IB2012/000027 priority patent/WO2012095727A2/en
Publication of JP2012146928A publication Critical patent/JP2012146928A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/002Compounds containing, besides selenium or tellurium, more than one other element, with -O- and -OH not being considered as anions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a nanocomposite thermoelectric conversion material by securing phonon scattering particles in nano size without complicated processes.SOLUTION: A method for manufacturing a nanocomposite thermoelectric conversion material having nano-sized phonon scattering particles dispersed in a thermoelectric conversion material matrix, comprises: a process of forming oxide particles as nano-sized phonon scattering particles by oxidizing part of an element most oxidizable among respective elements through hydrothermal treatment of mixture of nano particles of the respective elements composing the thermoelectric conversion material in an oxidizing atmosphere, and concurrently forming a thermoelectric conversion material matrix by alloying the remaining part of the element most oxidizable and other elements; and a process of sintering the obtained mixture of the thermoelectric conversion material matrix and the oxide particles. In accordance with the present invention, the composition of the thermoelectric conversion material matrix can be varied in the solid solution composition range.

Description

本発明は、熱電変換材料マトリクス中にナノサイズ(50nm以下程度)のフォノン散乱用の粒子が分散したナノコンポジット熱電変換材料の製造方法に関する。   The present invention relates to a method for producing a nanocomposite thermoelectric conversion material in which nano-sized (about 50 nm or less) phonon scattering particles are dispersed in a thermoelectric conversion material matrix.

熱電変換材料は、2つの基本的な熱電効果であるゼーベック(Seebeck)効果及びペルチェ(Peltier)効果に基づき、熱エネルギと電気エネルギとの直接変換を行なうエネルギ材料である。   The thermoelectric conversion material is an energy material that performs direct conversion between thermal energy and electric energy based on two basic thermoelectric effects, the Seebeck effect and the Peltier effect.

熱電変換材料を用いた熱電発電デバイスは、従来の発電技術に比べて、構造は簡単で、堅牢かつ耐久性が高く、可動部材は存在せず、マイクロ化が容易であり、メンテナンス不要で信頼性が高く、寿命が長く、騒音は発生せず、汚染も発生せず、低温の廃熱を利用可能であるといった多くの利点がある。   Thermoelectric power generation devices using thermoelectric conversion materials have a simple structure, robustness, high durability, no moving parts, easy microfabrication, no maintenance, and reliability compared to conventional power generation technology There are many advantages such as high life, long life, no noise, no pollution and low temperature waste heat can be used.

熱電変換材料を用いた熱電冷却デバイスも、従来の圧縮冷却技術に比べて、フロン不要で汚染は発生せず、小型化は容易で、可動部材は存在せず、騒音も発生しないなどの利点がある。   Compared to conventional compression cooling technology, thermoelectric cooling devices using thermoelectric conversion materials do not require chlorofluorocarbon, do not cause contamination, are easily downsized, have no moving parts, and do not generate noise. is there.

そのため、特に近年のエネルギ問題や環境問題の重大化に伴い、航空・宇宙、国防建設、地質及び気象観測、医療衛生、マイクロ電子などの領域や石油化工、冶金、電力工業における廃熱利用方面などの広範な用途への実用化が期待されている。   Therefore, especially in recent years, energy and environmental issues have become more serious, such as aviation / space, national defense construction, geological and meteorological observation, medical hygiene, microelectronics, etc. Is expected to be put to practical use for a wide range of applications.

熱電変換材料の性能を評価する指数として、パワーファクターP=S2σおよび無次元性能指数ZT=(S2σ/κ)Tが用いられている。ここで、S:ゼーベック係数、σ:導電率、κ:熱伝導率、T:絶対温度である。すなわち、良好な熱電特性を得るには、ゼーベック係数Sおよび導電率σが高く、熱伝導率κが低いことが必要である。 As an index for evaluating the performance of the thermoelectric conversion material, a power factor P = S 2 σ and a dimensionless performance index ZT = (S 2 σ / κ) T are used. Here, S: Seebeck coefficient, σ: conductivity, κ: thermal conductivity, T: absolute temperature. That is, in order to obtain good thermoelectric properties, it is necessary that the Seebeck coefficient S and the electrical conductivity σ are high and the thermal conductivity κ is low.

熱伝導率κを低減するためには、熱伝導の担い手の一つであるフォノンを散乱させることが有効であり、熱電変換材料マトリクス中にフォノン散乱用の粒子が分散したコンポジット熱電変換材料が提唱されている。フォノン散乱粒子はナノサイズ(50nm以下程度)であることが望ましい。   In order to reduce the thermal conductivity κ, it is effective to scatter phonons, one of the players in heat conduction, and a composite thermoelectric conversion material in which phonon scattering particles are dispersed in a thermoelectric conversion material matrix is proposed. Has been. The phonon scattering particles are preferably nano-sized (about 50 nm or less).

特許文献1には、ナノセラミックス粒子表面に熱電変換材料構成元素のナノ粒子を複合化し、水熱処理により熱電変換材料構成元素を合金化し、その後焼結を行なうナノコンポジット熱電変換材料の製造方法が開示されている。しかし、この方法は工程が複雑であるため、製造コストが高いという問題があった。更に、ナノセラミックス粒子は凝集し易いため製造時の取り扱いに種々の工夫が必要であった。   Patent Document 1 discloses a method for producing a nanocomposite thermoelectric conversion material in which nanoparticles of thermoelectric conversion material constituent elements are combined on the surface of nanoceramic particles, the thermoelectric conversion material constituent elements are alloyed by hydrothermal treatment, and then sintered. Has been. However, this method has a problem that the manufacturing cost is high because the process is complicated. Furthermore, since the nanoceramic particles tend to aggregate, various measures are required for handling during production.

特許文献2には、熱電変換材料構成元素であるBiTeとフォノン散乱粒子であるナノセラミックス粒子とを混合して焼結するナノコンポジット熱電変換材料の製造方法が開示されている。しかし、ナノセラミックス粒子が凝集してしまい、所望の熱電変換特性が得られないという問題があった。   Patent Document 2 discloses a method for producing a nanocomposite thermoelectric conversion material in which BiTe, which is a constituent element of thermoelectric conversion material, and nanoceramic particles, which are phonon scattering particles, are mixed and sintered. However, the nanoceramic particles are aggregated, and there is a problem that desired thermoelectric conversion characteristics cannot be obtained.

WO2007/066820WO2007 / 0666820 特開平03−148879号公報Japanese Patent Laid-Open No. 03-148879

本発明は、複雑な工程を経ることなく、フォノン散乱粒子をナノサイズに確保してナノコンポジット熱電変換材料を製造する方法を提供することを目的とする。   An object of the present invention is to provide a method for producing a nanocomposite thermoelectric conversion material by ensuring phonon scattering particles in a nano size without going through a complicated process.

上記の目的を達成するために、本発明によれば、熱電変換材料マトリクス中にナノサイズのフォノン散乱粒子が分散したナノコンポジット熱電変換材料の製造方法において、
熱電変換材料を構成する各元素のナノ粒子の混合物を酸化雰囲気中で水熱処理する(これにより、該各元素のうち最も酸化され易い元素の一部を酸化してナノサイズのフォノン散乱粒子としての酸化物粒子を形成し、並行して、該最も酸化され易い元素の残部と他の元素とを合金化して熱電変換材料マトリクスを形成する)工程、および
前記水熱処理後(得られた熱電変換材料マトリクスと酸化物粒子との混合物を)焼結する工程
を含むことを特徴とするナノコンポジット熱電変換材料の製造方法が提供される。
In order to achieve the above object, according to the present invention, in a method for producing a nanocomposite thermoelectric conversion material in which nano-sized phonon scattering particles are dispersed in a thermoelectric conversion material matrix,
A mixture of nanoparticles of each element constituting the thermoelectric conversion material is hydrothermally treated in an oxidizing atmosphere (by this, a part of the most easily oxidized element is oxidized to form nano-sized phonon scattering particles. Forming oxide particles, and in parallel, forming a thermoelectric conversion material matrix by alloying the remainder of the most easily oxidizable element with other elements, and after the hydrothermal treatment (obtained thermoelectric conversion material) There is provided a method for producing a nanocomposite thermoelectric conversion material comprising the step of sintering) a mixture of matrix and oxide particles.

本発明によれば、熱電変換材料を構成する各元素のナノ粒子の混合物を酸化雰囲気中で水熱処理する過程で、熱電変換材料の構成元素の一部を酸化することによりナノサイズの酸化物粒子を形成し、これと並行して、合金化により熱電変換材料のマトリクスを形成する。これにより熱電変換材料マトリクス中にナノサイズの酸化物粒子がフォノン散乱粒子として分散したナノコンポジット熱電変換材料が得られる。   According to the present invention, nano-sized oxide particles are obtained by oxidizing part of the constituent elements of the thermoelectric conversion material in the process of hydrothermally treating the mixture of nanoparticles of each element constituting the thermoelectric conversion material in an oxidizing atmosphere. In parallel with this, a matrix of thermoelectric conversion material is formed by alloying. Thereby, a nanocomposite thermoelectric conversion material in which nano-sized oxide particles are dispersed as phonon scattering particles in a thermoelectric conversion material matrix is obtained.

図1は、本発明の製造プロセスの典型例を模式的に示す。FIG. 1 schematically shows a typical example of the production process of the present invention. 図2は、本発明により(Bi、Sb)Te熱電変換材料の各構成元素Bi、Sb、Teの金属ナノ粒子の混合物を生成する処理を模式的に示す。FIG. 2 schematically shows a process for producing a mixture of metal nanoparticles of the constituent elements Bi, Sb, and Te of the (Bi, Sb) 2 Te 3 thermoelectric conversion material according to the present invention.

図1を参照して、本発明の典型的な製造プロセスを説明する。典型例として、(Bi、Sb)Te熱電変換材料マトリクス中にSb酸化物ナノ粒子が分散したナノコンポジット熱電変換材料を製造する場合を示す。 With reference to FIG. 1, an exemplary manufacturing process of the present invention will be described. As a typical example, a case where a nanocomposite thermoelectric conversion material in which Sb 2 O 3 oxide nanoparticles are dispersed in a (Bi, Sb) 2 Te 3 thermoelectric conversion material matrix is shown.

まず図1(1)に示したように、熱電変換材料を構成する各元素のナノ粒子を合成する。合成方法は特に限定する必要はないが、典型的には、各元素の化合物を水溶液中で還元して各金属元素のナノ粒子の混合物を得ることができる。   First, as shown in FIG. 1A, nanoparticles of each element constituting the thermoelectric conversion material are synthesized. The synthesis method is not particularly limited, but typically, a compound of each element can be obtained by reducing a compound of each element in an aqueous solution.

次に図1(2)に示すように、各元素のナノ粒子の混合物を水熱処理する。この水熱合成を酸化雰囲気中で行なうことにより、各元素の合金化より早く、構成3元素のうち最も酸化され易いSbの一部が酸化されてSbナノ粒子が生成して残留する。酸化されなかったSbと、他の元素Bi、Teとが水熱処理により合金化される。これにより、マトリクスとなる(Bi、Sb)Te熱電変換材料の粒子と、フォノン散乱粒子となるSbナノ粒子との混合粉末が得られる。 Next, as shown in FIG. 1 (2), the mixture of nanoparticles of each element is hydrothermally treated. By performing this hydrothermal synthesis in an oxidizing atmosphere, a part of Sb that is most easily oxidized among the three constituent elements is oxidized and Sb 2 O 3 nanoparticles are generated and remain faster than the alloying of each element. . Unoxidized Sb and other elements Bi and Te are alloyed by hydrothermal treatment. As a result, a mixed powder of (Bi, Sb) 2 Te 3 thermoelectric conversion material particles serving as a matrix and Sb 2 O 3 nanoparticles serving as phonon scattering particles is obtained.

次に図1(3)に示すように、上記で得られた混合粉末を成形して焼結することにより(Bi、Sb)Te/Sbナノコンポジット熱電変換材料が得られる。 Next, as shown in FIG. 1 (3), the (Bi, Sb) 2 Te 3 / Sb 2 O 3 nanocomposite thermoelectric conversion material is obtained by molding and sintering the mixed powder obtained above.

ここで、マトリクス組成を便宜上「(Bi、Sb)Te」と表示したが、本発明の大きな特徴の一つとして、実際のマトリクス組成は(Bi、Sb)Teを含む固溶体組成範囲で変動可能である。すなわち、最初に合成する各構成元素の配合量と、水熱処理時の酸化条件(酸化剤、処理温度・時間)との調製により、最も酸化され易い元素の酸化量を変更して、種々のマトリクス組成を実現できる。また、同時に、酸化量によってフォノン散乱粒子としての酸化物量を種々に調整できる。 Here, the matrix composition is indicated as “(Bi, Sb) 2 Te 3 ” for convenience, but as one of the major features of the present invention, the actual matrix composition is a solid solution composition range including (Bi, Sb) 2 Te 3. It is possible to change. That is, various matrixes can be obtained by changing the amount of the most easily oxidized element by adjusting the blending amount of each constituent element to be synthesized first and the oxidation conditions (oxidant, treatment temperature and time) during hydrothermal treatment. A composition can be realized. At the same time, the amount of oxide as phonon scattering particles can be variously adjusted by the amount of oxidation.

本発明の方法により、(Bi、Sb)Te熱電変換材料マトリクス中にSbナノ粒子が分散した(Bi、Sb)Te/Sbナノコンポジット熱電変換材料を製造した。手順および条件は下記のとおりであった。 The method of the present invention were prepared (Bi, Sb) 2 Te 3 Thermoelectric conversion material Sb 2 O 3 nanoparticles in the matrix is dispersed (Bi, Sb) 2 Te 3 / Sb 2 O 3 nanocomposite thermoelectric conversion material . Procedures and conditions were as follows.

<構成元素Bi、Sb、Teのナノ粒子を合成>
図2に示したように、熱電変換材料マトリクス構成元素をそれぞれ塩化物BiCl、TeCl、SbClとしてエタノール中に溶解し(但し、SbClはフォノン散乱粒子兼用)、還元剤として水素化ホウ素ナトリウムNaBHのエタノール溶液を滴下して、Bi、Te、Sbの金属ナノ粒子を合成した。
<Synthesis of Nanoparticles of Constituent Elements Bi, Sb, Te>
As shown in FIG. 2, thermoelectric conversion material matrix constituent elements are dissolved in ethanol as chlorides BiCl 3 , TeCl 4 , and SbCl 3 (where SbCl 3 is also used as phonon scattering particles), and boron hydride is used as a reducing agent. Sodium ethanol solution of NaBH 4 was dropped to synthesize Bi, Te, Sb metal nanoparticles.

得られたナノ粒子を含んだエタノールスラリーを、水500mL+エタノール300mLの溶液でろ過洗浄し、その後更にエタノール300mLでろ過洗浄した。   The obtained ethanol slurry containing nanoparticles was filtered and washed with a solution of 500 mL of water and 300 mL of ethanol, and then further filtered and washed with 300 mL of ethanol.

<水熱処理+酸化処理>
次に、密閉したオートクレーブ中に入れ、水熱処理を行い、マトリクスを合金化させた。このとき同時に、種々の酸化剤を添加して酸化処理を並行して行なった。条件は表1に示すように種々に変化させた。
<Hydrothermal treatment + oxidation treatment>
Next, it was placed in a closed autoclave and subjected to hydrothermal treatment to alloy the matrix. At the same time, various oxidizing agents were added and the oxidation treatment was performed in parallel. The conditions were variously changed as shown in Table 1.

上記水熱処理後に、Nガスフロー雰囲気で乾燥させ、混合粉末を回収した。このとき、約2.0gが回収された。 After the hydrothermal treatment, the mixed powder was recovered by drying in an N 2 gas flow atmosphere. At this time, about 2.0 g was recovered.

<焼結>
上記で回収された混合粉末を360℃でSPS焼結し、ナノコンポジット熱電変換材料のバルク体を得た。
<Sintering>
The mixed powder collected above was SPS sintered at 360 ° C. to obtain a bulk body of the nanocomposite thermoelectric conversion material.

Figure 2012146928
Figure 2012146928

表1に示したように、同一の原料ナノ粒子配合において、酸化剤の種類(空気、水+空気)および処理温度・処理時間(240℃または280℃・48時間または5時間)の組み合わせを調製することにより、試料2、3、4に示したようにSb生成量5vol%、13vol%、26vol%でSb粒径15nm、12nm、34nmが得られた。 As shown in Table 1, in the same raw material nanoparticle combination, the combination of the type of oxidizing agent (air, water + air) and processing temperature / processing time (240 ° C or 280 ° C · 48 hours or 5 hours) was prepared. As a result, Sb 2 O 3 particle sizes of 15 nm, 12 nm, and 34 nm were obtained with Sb 2 O 3 production amounts of 5 vol%, 13 vol%, and 26 vol% as shown in Samples 2, 3, and 4.

試料1においても、Sb生成量0.3vol%が得られた。ただし生成量が少ないため粒径測定はできなかった。 Also in the sample 1, an Sb 2 O 3 production amount of 0.3 vol% was obtained. However, the particle size could not be measured because the amount produced was small.

試料5においては、酸化条件(酸化剤・酸化温度・時間)が強すぎたため、SbのみではなくBiおよびTeも殆ど全て酸化した。   In Sample 5, the oxidation conditions (oxidant, oxidation temperature, and time) were too strong, so not only Sb but also Bi and Te were almost all oxidized.

試料6は、比較のため酸化剤なしで水熱処理を行なったもので、酸化は全く起きずSbは生成しなかった。 Sample 6 was hydrothermally treated without an oxidant for comparison, and no oxidation occurred and Sb 2 O 3 was not generated.

なお、本実施例においては、(Bi、Sb)Te熱電変換材料マトリクス中にフォノン散乱粒子としてSbナノ粒子が分散したP型の(Bi、Sb)Te/Sbナノコンポジット熱電変換材料を製造した例を示した。しかし本発明はこの組み合わせに限定する必要は無く、例えば下記の組み合わせが可能である。 In this example, P-type (Bi, Sb) 2 Te 3 / Sb 2 O in which Sb 2 O 3 nanoparticles are dispersed as phonon scattering particles in a (Bi, Sb) 2 Te 3 thermoelectric conversion material matrix. The example which manufactured 3 nanocomposite thermoelectric conversion material was shown. However, the present invention need not be limited to this combination, and for example, the following combinations are possible.

<マトリクスと粒子の組み合わせ例>
熱電変換材料マトリクス :フォノン散乱粒子
Bi(Te、Se)系(N型):SeOx
(Bi、Sn)Te系(P型):SnOx
(Co、Ni)Sb系(N型) :CoOx
(Co、Fe)Sb系(P型) :FeOx
PbTe系(P型、N型) :PbOx
SiGe系(P型、N型) :SiO
また、本実施例においては、酸化剤として空気、水を用いたが、本発明はこれらに限定する必要はない。下記のように弱い酸化剤を適度な濃度で用い、適当な処理温度・時間で酸化させることができる。
<Combination example of matrix and particles>
Thermoelectric conversion material matrix: Phonon scattering particles Bi 2 (Te, Se) 3 system (N type): SeOx
(Bi, Sn) 2 Te 3 system (P type): SnOx
(Co, Ni) Sb 3 system (N-type): CoOx
(Co, Fe) Sb 3 system (P type): FeOx
PbTe system (P type, N type): PbOx
SiGe-based (P type, N type): SiO 2
In this embodiment, air and water are used as the oxidizing agent, but the present invention is not limited to these. As described below, a weak oxidizing agent can be used at an appropriate concentration and oxidized at an appropriate treatment temperature and time.

<酸化剤の例>
ガス
過酸化水素水
過酸化物
オゾン
次亜塩素酸
<Example of oxidizing agent>
O 2 gas Hydrogen peroxide solution Peroxide Ozone Hypochlorous acid

本発明によれば、複雑な工程を経ることなく、フォノン散乱粒子をナノサイズに確保してナノコンポジット熱電変換材料を製造することができる。   According to the present invention, a nanocomposite thermoelectric conversion material can be manufactured by securing phonon scattering particles in a nano size without going through a complicated process.

本発明の大きな特徴の一つとして、熱電変換材料マトリクスの組成は固溶体組成範囲で変動可能である。すなわち、最初に合成する各構成元素の配合量と、水熱処理時の酸化条件(酸化剤、処理温度・時間)との調製により、最も酸化され易い元素の酸化量を変更して、種々のマトリクス組成を実現できる。また、同時に、酸化量によってフォノン散乱粒子としての酸化物量を種々に調整できる。   As one of the great features of the present invention, the composition of the thermoelectric conversion material matrix can be varied within the solid solution composition range. That is, various matrixes can be obtained by changing the amount of the most easily oxidized element by adjusting the blending amount of each constituent element to be synthesized first and the oxidation conditions (oxidant, treatment temperature and time) during hydrothermal treatment. A composition can be realized. At the same time, the amount of oxide as phonon scattering particles can be variously adjusted by the amount of oxidation.

Claims (1)

熱電変換材料マトリクス中にナノサイズのフォノン散乱粒子が分散したナノコンポジット熱電変換材料の製造方法において、
熱電変換材料を構成する各元素のナノ粒子の混合物を酸化雰囲気中で水熱処理する工程、および
前記水熱処理後に焼結する工程
を含むことを特徴とするナノコンポジット熱電変換材料の製造方法。
In a method for producing a nanocomposite thermoelectric conversion material in which nano-sized phonon scattering particles are dispersed in a thermoelectric conversion material matrix,
A method for producing a nanocomposite thermoelectric conversion material, comprising a step of hydrothermally treating a mixture of nanoparticles of each element constituting the thermoelectric conversion material in an oxidizing atmosphere, and a step of sintering after the hydrothermal treatment.
JP2011006106A 2011-01-14 2011-01-14 Method for manufacturing nanocomposite thermoelectric conversion material Pending JP2012146928A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011006106A JP2012146928A (en) 2011-01-14 2011-01-14 Method for manufacturing nanocomposite thermoelectric conversion material
PCT/IB2012/000027 WO2012095727A2 (en) 2011-01-14 2012-01-12 Method of producing nanocomposite thermoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011006106A JP2012146928A (en) 2011-01-14 2011-01-14 Method for manufacturing nanocomposite thermoelectric conversion material

Publications (1)

Publication Number Publication Date
JP2012146928A true JP2012146928A (en) 2012-08-02

Family

ID=45607300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011006106A Pending JP2012146928A (en) 2011-01-14 2011-01-14 Method for manufacturing nanocomposite thermoelectric conversion material

Country Status (2)

Country Link
JP (1) JP2012146928A (en)
WO (1) WO2012095727A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017157786A (en) * 2016-03-04 2017-09-07 トヨタ自動車株式会社 Thermoelectric conversion material and method for manufacturing the same
JP7390001B2 (en) 2017-02-16 2023-12-01 ウェイク フォレスト ユニバーシティ Composite nanoparticle compositions and assemblies

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003192353A (en) * 2001-12-20 2003-07-09 Ebara Corp Method and apparatus for synthesizing sodium cobalt oxide
JP2011003741A (en) * 2009-06-18 2011-01-06 Toyota Motor Corp Nano-composite thermoelectric conversion material, and method of manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03148879A (en) 1989-11-06 1991-06-25 Matsushita Electric Ind Co Ltd Thermoelement
US20090314324A1 (en) 2005-12-07 2009-12-24 Junya Murai Thermoelectric conversion material and method of producing the same
JP4900061B2 (en) * 2007-06-06 2012-03-21 トヨタ自動車株式会社 Thermoelectric conversion element and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003192353A (en) * 2001-12-20 2003-07-09 Ebara Corp Method and apparatus for synthesizing sodium cobalt oxide
JP2011003741A (en) * 2009-06-18 2011-01-06 Toyota Motor Corp Nano-composite thermoelectric conversion material, and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017157786A (en) * 2016-03-04 2017-09-07 トヨタ自動車株式会社 Thermoelectric conversion material and method for manufacturing the same
JP7390001B2 (en) 2017-02-16 2023-12-01 ウェイク フォレスト ユニバーシティ Composite nanoparticle compositions and assemblies

Also Published As

Publication number Publication date
WO2012095727A3 (en) 2012-12-27
WO2012095727A2 (en) 2012-07-19

Similar Documents

Publication Publication Date Title
CA2738771C (en) Nanocomposite thermoelectric conversion material, thermoelectric conversion element including the same, and method of producing nanocomposite thermoelectric conversion material
US8828277B2 (en) Nanocomposite thermoelectric conversion material and method of producing the same
JP4291842B2 (en) Compound thermoelectric material and method for producing the same
JP5024393B2 (en) Nanocomposite thermoelectric conversion material and method for producing the same
JP5149761B2 (en) BiTe / Ceramics / Nanocomposite Thermoelectric Material Manufacturing Method
JP6189582B2 (en) Method for producing nanocomposite thermoelectric conversion material
JP2013074051A (en) Method of manufacturing nano-composite thermoelectric conversion material, and nano-composite thermoelectric conversion material manufactured by the method
CN108242500B (en) Copper-selenium-based nano composite thermoelectric material and preparation method thereof
JP6110421B2 (en) Phonon scattering material, nanocomposite thermoelectric material and manufacturing method thereof
JP2012146928A (en) Method for manufacturing nanocomposite thermoelectric conversion material
JP5011949B2 (en) Thermoelectric conversion element and manufacturing method thereof
JP5387215B2 (en) Nanocomposite thermoelectric conversion material and method for producing the same
JP2014013869A (en) Nano-composite thermoelectric conversion material and manufacturing method thereof
JP2011096717A (en) Nano-composite thermoelectric conversion material, and method of manufacturing the same
JP2013219116A (en) Nanocomposite thermoelectric conversion material
Rowe et al. Improvement of the thermoelectric figure-of-merit of a doped telluride nanocomposite by combining phonon scattering with grain boundary-modifying Zn-containing nanostructures
JP6158755B2 (en) Thermoelectric conversion material and manufacturing method thereof
JP2014501036A (en) Tin oxide-based thermoelectric materials
JP2011129635A (en) Nano-composite thermoelectric conversion material and method of manufacturing the same
JP2016004816A (en) Method for producing thermoelectric conversion material
KR20180024689A (en) Preparing method of Copper doped Bi-Te based thermoelectric powder and Copper doped Bi-Te based thermoelectric powder made by the same
JP2014022565A (en) Thermoelectric material and production method therefor
JP2016127258A (en) Thermoelectric conversion material, production method therefor and thermoelectric conversion element using the same
CN117715497A (en) Antioxidant skutterudite-based thermoelectric composite material and preparation method thereof
JP2015142031A (en) Method of producing thermoelectric conversion material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130402