JP2012146912A - Manufacturing method and manufacturing apparatus of thin film photoelectric conversion element, and deposit apparatus - Google Patents

Manufacturing method and manufacturing apparatus of thin film photoelectric conversion element, and deposit apparatus Download PDF

Info

Publication number
JP2012146912A
JP2012146912A JP2011005844A JP2011005844A JP2012146912A JP 2012146912 A JP2012146912 A JP 2012146912A JP 2011005844 A JP2011005844 A JP 2011005844A JP 2011005844 A JP2011005844 A JP 2011005844A JP 2012146912 A JP2012146912 A JP 2012146912A
Authority
JP
Japan
Prior art keywords
holding
flexible substrate
pulling mechanism
mechanism portion
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011005844A
Other languages
Japanese (ja)
Inventor
Hitoshi Shimizu
均 清水
Takenori Wada
剛典 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2011005844A priority Critical patent/JP2012146912A/en
Publication of JP2012146912A publication Critical patent/JP2012146912A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method and a manufacturing apparatus of a thin film photoelectric conversion element, and a deposition apparatus which can obtain a thin film having improved flatness on all over the surface and stabilized uniform film thickness distribution, even for a flexible substrate of large area, by inhibiting generation of wrinkles in a width direction and a length direction of a flexible substrate.SOLUTION: A manufacturing method of a thin film photoelectric conversion element using a deposit apparatus 100 comprises: stopping transportation of a flexible substrate 1 while applying a tensile force to the flexible substrate 1 in a width direction; heating the flexible substrate 1 by contact of a ground electrode 4 incorporating a heater 8 with a non-deposition face of a rear face of the flexible substrate 1; holding near an upper end of the flexible substrate 1 with a first hold and tension mechanism part 12A; holding near the upper end of the flexible substrate 1 with a third hold and tension mechanism part 12B opposite to the first hold and tension mechanism part 12A; and holding near a lower end of the flexible substrate 1 with a second hold and tension mechanism part 12C and a fourth hold and tension mechanism part 12D; and shifting the mechanism parts in a direction extending an opposing distance between the holding and tension mechanism parts to pull the flexible substrate 1; and performing deposition by fastening the flexible substrate 1 with pulling the flexible substrate 1.

Description

本発明は、特に薄膜光電変換素子並びにその他の可撓性基板上に複数の薄膜層を成膜するような成膜装置を用い、大面積で柔軟かつ薄い可撓性基板を対象として電圧制御を行う際に必要とされる、電界強度に関わる電極間距離を均一に維持して、薄膜を製造する製造方法及び製造装置、並びに成膜装置に関する。   In particular, the present invention uses a film forming apparatus that forms a plurality of thin film layers on a thin film photoelectric conversion element and other flexible substrates, and controls voltage for a flexible flexible thin substrate with a large area. The present invention relates to a manufacturing method, a manufacturing apparatus, and a film forming apparatus for manufacturing a thin film while maintaining a uniform inter-electrode distance related to electric field strength, which is required when performing the process.

薄膜太陽電池は、薄型で軽量、製造コストの安さ、大面積化が容易であることなどから、今後の太陽電池の主流となると考えられており、かかる薄膜太陽電池の薄膜を製造する装置として、プラズマ化学蒸着気相法(プラズマCVD)などを利用した成膜装置がある。
この成膜装置においては、巻出しロールと巻取りロールとの間に設置された成膜室内に可撓性基板を搬送し、当該成膜室内で高周波電圧の印加により作用する電界効果にて電極間にプラズマを生成し、原材料となる物質を分解、励起することで周辺雰囲気下に存在する可撓性基板上にアモルファスシリコン膜などの半導体薄膜を成膜している。
Thin film solar cells are considered to become the mainstream of future solar cells because they are thin and lightweight, inexpensive to manufacture, and easy to increase in area.As a device for manufacturing thin films of such thin film solar cells, There is a film forming apparatus using plasma chemical vapor deposition (plasma CVD) or the like.
In this film forming apparatus, a flexible substrate is transported into a film forming chamber installed between an unwinding roll and a winding roll, and an electrode is formed by an electric field effect that acts by applying a high frequency voltage in the film forming chamber. A semiconductor thin film such as an amorphous silicon film is formed on a flexible substrate existing in the surrounding atmosphere by generating plasma in between and decomposing and exciting a material as a raw material.

特に、a−Si(アモルファスシリコン)光電変換装置を用いた太陽電池の高品質な光電変換装置として、微結晶Si系の研究開発が推進されている。微結晶Si膜は光吸収係数が小さく、光電変換装置として膜を積層する場合は、通常2μm程度の膜厚が必要となり、プラズマCVD装置のタクトはI層の成膜速度により律速されることから、成膜速度の向上を図る必要がある。   In particular, research and development of a microcrystalline Si system has been promoted as a high-quality photoelectric conversion device for a solar cell using an a-Si (amorphous silicon) photoelectric conversion device. A microcrystalline Si film has a small light absorption coefficient, and when a film is stacked as a photoelectric conversion device, a film thickness of about 2 μm is usually required, and the tact of the plasma CVD device is limited by the deposition rate of the I layer. Therefore, it is necessary to improve the deposition rate.

また、薄膜光電変換素子の製造方法として、プラズマCVD装置の平行平板電極の電極間距離を1mm〜1cmとなるように狭間隔に制御して成膜する手法がある。フィルム等の可撓性基板に成膜する場合、フィルムには張力と加熱により皺が発生することになる。 このような皺は、狭間隔の電極間距離の条件をさらに不均一にする要因であり、結果として、薄膜特性が著しく低下したり、色むらが生じて外観上の製品価値が低下したりするといった問題を生ずることになる。   As a method for manufacturing a thin film photoelectric conversion element, there is a method of forming a film by controlling the distance between parallel plate electrodes of a plasma CVD apparatus so as to be 1 mm to 1 cm at a narrow interval. When a film is formed on a flexible substrate such as a film, wrinkles are generated in the film by tension and heating. Such wrinkles are factors that make the condition of the distance between the electrodes with a narrow gap even more uneven. As a result, the thin film characteristics are remarkably deteriorated, or color unevenness occurs and the product value in appearance is reduced. This causes the problem.

従来、かかる問題を解決するために、例えば、可撓性基板の幅両端部をそれぞれ保持機構により挟持し、この挟持した保持機構がその間の距離が離れる方向に移動して可撓性基板の幅方向に力を与えながら延伸することによって、可撓性基板に生じた皺を伸ばし、この状態で、薄膜を形成する方法が提案されている(特許文献1参照)。
この技術は、図7に示す可撓性基板の支持方式の平面図において、プラズマCVD室2の可撓性基板1の搬送方向両側で、第1保持機構部30によって可撓性基板1の幅方向における一端部を挟持し、第2保持機構部40によって可撓性基板1の幅方向における他端部を挟持し、この第2保持機構部40で挟持された他端部を引張機構部50によって可撓性基板1の幅方向に引っ張るように構成している。すなわち、かかる技術では、第1保持機構部30と第2保持機構部40のいずれか片方の距離を広げる2点引張りにより、可撓性基板1の皺を伸ばすようにしている。
これにより、可撓性基板1の皺が伸ばされ、その平坦性が向上し、膜厚分布の良好な薄膜を安定して形成することが可能となる。なお、図7において、100aは真空容器、2aは巻出しロール、2bは巻取りロールである。
Conventionally, in order to solve such a problem, for example, both end portions of the width of the flexible substrate are sandwiched by holding mechanisms, and the sandwiched holding mechanism is moved in a direction in which the distance between them is increased, so that the width of the flexible substrate is increased. A method has been proposed in which a wrinkle generated on a flexible substrate is stretched by stretching while applying a force in a direction, and a thin film is formed in this state (see Patent Document 1).
In this technique, in the plan view of the flexible substrate support method shown in FIG. 7, the width of the flexible substrate 1 is measured by the first holding mechanism 30 on both sides of the plasma CVD chamber 2 in the conveyance direction of the flexible substrate 1. One end portion in the direction is sandwiched, the other end portion in the width direction of the flexible substrate 1 is sandwiched by the second holding mechanism portion 40, and the other end portion sandwiched by the second holding mechanism portion 40 is held in the tension mechanism portion 50. Therefore, the flexible substrate 1 is pulled in the width direction. That is, in this technique, the folds of the flexible substrate 1 are extended by two-point tension that increases the distance between one of the first holding mechanism portion 30 and the second holding mechanism portion 40.
Thereby, the wrinkles of the flexible substrate 1 are extended, the flatness thereof is improved, and a thin film having a good film thickness distribution can be stably formed. In FIG. 7, 100a is a vacuum vessel, 2a is an unwinding roll, and 2b is a winding roll.

特開2005−72408号公報JP 2005-72408 A

ところで、プラズマCVD装置により成膜を行う際には、薄膜を高い精度での水平な平面に形成して維持することが必要であるが、成膜に必要な加熱による基板の伸縮が可撓性基板の形状を平面にすることを阻害している。その一方で、薄膜を製造することに関し、大面積の基板にて成膜を行うことにより生産性の向上を図るという要望がある。
しかしながら、上記従来の製造方法では、可撓性基板の幅方向の皺の除去は十分であるが、可撓性基板の長手方向の皺を確実に除去するのは困難である。このため、可撓性基板の長手方向の皺の発生による平坦性の低下及び、膜厚分布の安定化が阻害されている。
By the way, when a film is formed by a plasma CVD apparatus, it is necessary to form and maintain a thin film on a horizontal plane with high accuracy. However, the expansion and contraction of the substrate due to heating necessary for film formation is flexible. This obstructs the flat shape of the substrate. On the other hand, regarding the production of thin films, there is a demand for improving productivity by forming a film on a large-area substrate.
However, the conventional manufacturing method described above is sufficient to remove wrinkles in the width direction of the flexible substrate, but it is difficult to reliably remove wrinkles in the longitudinal direction of the flexible substrate. For this reason, deterioration of flatness due to generation of wrinkles in the longitudinal direction of the flexible substrate and stabilization of the film thickness distribution are hindered.

本発明は、このような実状に鑑みてなされたものであって、その目的は、可撓性基板の幅方向及び長手方向の皺の発生を防止して、大面積の可撓性基板でも、全面に亘って平坦性が向上し、均一な膜厚分布の安定化した薄膜が得られる薄膜光電変換素子の製造方法及び製造装置、並びに成膜装置を提供することにある。   The present invention has been made in view of such a situation, and the object thereof is to prevent generation of wrinkles in the width direction and the longitudinal direction of the flexible substrate, and even a flexible substrate having a large area, An object of the present invention is to provide a method and apparatus for manufacturing a thin film photoelectric conversion element, and a film forming apparatus, in which flatness is improved over the entire surface and a thin film having a uniform film thickness distribution is obtained.

上記従来技術の有する課題を解決するために、本発明は、可撓性基板を巻装した巻出しロールと前記可撓性基板を巻取る巻取りロールとの間で前記可撓性基板の搬送途中に設置される成膜室と、前記成膜室内において内部に加熱ヒータを有する接地電極と、前記成膜室内において高周波電源に接続される高周波電極とを備え、前記接地電極と前記高周波電極との間に前記可撓性基板を走行させて前記成膜室内で前記可撓性基板上に薄膜を成膜する薄膜光電変換素子の製造方法において、前記可撓性基板の搬送方向に対し前記接地電極の両側に、前記可撓性基板の搬送方向と直交する前記可撓性基板の幅方向の上部一端部を挟持する第1保持及び引張機構部と、前記可撓性基板の幅方向の下部一端部を挟持する第2保持及び引張機構部と、前記第1保持及び引張機構部に対向した前記可撓性基板の幅方向他端部を挟持する第3保持及び引張機構部と、前記第2保持及び引張機構部に対向した前記可撓性基板の幅方向他端部を挟持する第4保持及び引張機構部と、をそれぞれ配置し、前記可撓性基板の搬送を停止させ、張力を与えながら、前記可撓性基板の裏面に前記接地電極を接触させて加熱し、前記第1保持及び引張機構部と、前記第2保持及び引張機構部と、前記第3保持及び引張機構部と、前記第4保持及び引張機構部とにより前記可撓性基板の両端部近傍を挟持し、前記第1保持及び引張機構部、前記第2保持及び引張機構部、前記第3保持及び引張機構部、前記第4保持及び引張機構部のいずれか1点を固定点とし、この固定点と搬送方向に対向する部位に配置された前記保持及び引張機構部が前記可撓性基板の搬送方向と平行ないし一定角度以内になるように保持して引っ張り、他の前記保持及び引張機構部が互いの対向間の距離を広げる方向に可動して、前記可撓性基板を引っ張り、延伸しながら成膜を行っている。
また、本発明において、前記可撓性基板の対向した幅方向端部を挟持する2つの前記保持及び引張機構部のいずれかを固定とし、他の前記保持及び引張機構部は互いの対向間の距離を広げる方向に可動して、前記可撓性基板を引っ張り、延伸しながら成膜している。
In order to solve the above-described problems of the prior art, the present invention transports the flexible substrate between a winding roll wound with the flexible substrate and a winding roll that winds the flexible substrate. A film formation chamber installed in the middle; a ground electrode having a heater in the film formation chamber; and a high-frequency electrode connected to a high-frequency power source in the film formation chamber; the ground electrode and the high-frequency electrode; In the method of manufacturing a thin film photoelectric conversion element, in which the flexible substrate is caused to travel and a thin film is formed on the flexible substrate in the film formation chamber, the grounding with respect to the transport direction of the flexible substrate A first holding and pulling mechanism portion for sandwiching an upper end portion in the width direction of the flexible substrate perpendicular to the conveyance direction of the flexible substrate on both sides of the electrode, and a lower portion in the width direction of the flexible substrate A second holding and pulling mechanism for sandwiching one end, 1 width of the flexible substrate facing the 2nd holding | maintenance mechanism part, 3rd holding | maintenance and a tensioning mechanism part which clamps the width direction other end part of the said flexible substrate facing the 1 holding | maintenance and tensioning mechanism part A fourth holding mechanism and a tension mechanism that sandwich the other end in the direction, respectively, stop the conveyance of the flexible substrate, and contact the ground electrode with the back surface of the flexible substrate while applying tension. The flexible substrate is heated by the first holding and pulling mechanism, the second holding and pulling mechanism, the third holding and pulling mechanism, and the fourth holding and pulling mechanism. The first holding and pulling mechanism part, the second holding and pulling mechanism part, the third holding and pulling mechanism part, and the fourth holding and pulling mechanism part are fixed. It is said point, and it is arranged in the part which counters this fixed point in the conveyance direction The holding and pulling mechanism part is held and pulled so as to be parallel to or within a certain angle with the conveyance direction of the flexible substrate, and the other holding and pulling mechanism parts move in a direction to increase the distance between the opposing surfaces. The film is formed while the flexible substrate is pulled and stretched.
In the present invention, either one of the two holding and pulling mechanism portions that sandwich the opposing widthwise end portions of the flexible substrate is fixed, and the other holding and pulling mechanism portions are located between the opposing surfaces. The film is moved while extending the distance, and the flexible substrate is pulled and stretched.

そして、本発明は、可撓性基板を巻装した巻出しロールと前記可撓性基板を巻取る巻取りロールとの間で前記可撓性基板の搬送途中に設置される成膜室と、前記成膜室内において内部に加熱ヒータを有する接地電極と、前記成膜室内において高周波電源に接続される高周波電極とを備え、前記接地電極と前記高周波電極との間に前記可撓性基板を走行させて前記成膜室内で前記可撓性基板上に薄膜を成膜する薄膜光電変換素子の製造方法において、前記可撓性基板の搬送方向に対し前記接地電極の両側に、前記可撓性基板の搬送方向と直交する前記可撓性基板の幅方向の上部一端部を挟持する第1保持及び引張機構部と、前記可撓性基板の幅方向の下部一端部を挟持する第2保持及び引張機構部と、前記第1保持及び引張機構部に対向した前記可撓性基板の幅方向他端部を挟持する第3保持及び引張機構部と、前記第2保持及び引張機構部に対向した前記可撓性基板の幅方向他端部を挟持する第4保持及び引張機構部と、をそれぞれ配置し、前記可撓性基板の搬送を停止させ、張力を与えながら、前記可撓性基板の裏面に前記接地電極を接触させて加熱し、前記第1保持及び引張機構部と、前記第2保持及び引張機構部と、前記第3保持及び引張機構部と、前記第4保持及び引張機構部とにより前記可撓性基板の両端部近傍を挟持し、前記第1保持及び引張機構部、前記第2保持及び引張機構部、前記第3保持及び引張機構部、前記第4保持及び引張機構部の4点が前記可撓性基板の搬送方向と平行ないし一定角度以内に保持し、前記搬送方向と対向する前記保持及び引張機構部間の距離を広げる方向に可動して、前記可撓性基板を引っ張り、延伸しながら成膜を行っている。
また、本発明において、前記接地電極の前記可撓性基板の搬送方向両側に配置した、前記第1保持及び引張機構部、前記第2保持及び引張機構部、前記第3保持及び引張機構部、第4保持及び引張機構部の搬送方向に沿ったいずれかの2点を搬送方向と逆方向に引っ張り、他の前記保持及び引張機構部の2点は互いの対向間距離を広げる方向に可動して、前記可撓性基板を引っ張り、延伸しながら成膜している。
さらに、本発明において、前記第1保持及び引張機構部、前記第2保持及び引張機構部、前記第3保持及び引張機構部、第4保持及び引張機構部の搬送方向に沿ったいずれかの2点を搬送方向に平行ないし一定角度以内になるように保持して引っ張っている。
And this invention, the film-forming chamber installed in the middle of conveyance of the said flexible substrate between the unwinding roll which wound the flexible substrate, and the winding roll which winds up the said flexible substrate, A ground electrode having a heater in the film formation chamber and a high-frequency electrode connected to a high-frequency power source in the film formation chamber are provided, and the flexible substrate runs between the ground electrode and the high-frequency electrode. In the method of manufacturing a thin film photoelectric conversion element in which a thin film is formed on the flexible substrate in the film formation chamber, the flexible substrate is disposed on both sides of the ground electrode with respect to the transport direction of the flexible substrate. A first holding and pulling mechanism portion for sandwiching the upper end portion in the width direction of the flexible substrate orthogonal to the transport direction of the second substrate, and a second holding and tension mechanism for sandwiching the lower end portion in the width direction of the flexible substrate. Before the mechanism portion and the first holding and pulling mechanism portion A third holding and pulling mechanism portion for holding the other end portion in the width direction of the flexible substrate, and a fourth holding for holding the other end portion in the width direction of the flexible substrate facing the second holding and pulling mechanism portion. And a tension mechanism unit, respectively, stopping the conveyance of the flexible substrate, heating the ground electrode in contact with the back surface of the flexible substrate while applying tension, and the first holding and The vicinity of both ends of the flexible substrate is clamped by the tension mechanism, the second retention and tension mechanism, the third retention and tension mechanism, and the fourth retention and tension mechanism. Four points of 1 holding and pulling mechanism part, the second holding and pulling mechanism part, the third holding and pulling mechanism part, and the fourth holding and pulling mechanism part are parallel to the conveyance direction of the flexible substrate at a constant angle. Between the holding and pulling mechanism sections that are held within and opposite the transport direction Distance by moving in a direction to widen the pull on the flexible substrate, is performed film formation while stretching it.
Further, in the present invention, the first holding and pulling mechanism unit, the second holding and pulling mechanism unit, the third holding and pulling mechanism unit disposed on both sides of the ground electrode in the transport direction of the flexible substrate, Pull any two points along the transport direction of the fourth holding and pulling mechanism portion in the direction opposite to the transport direction, and the other two points of the holding and pulling mechanism portions move in a direction to increase the distance between the opposing surfaces. Then, the flexible substrate is pulled and formed while being stretched.
Furthermore, in the present invention, any two of the first holding and pulling mechanism sections, the second holding and pulling mechanism sections, the third holding and pulling mechanism sections, and the fourth holding and pulling mechanism sections along the transport direction. The point is held and pulled so as to be parallel to the transport direction or within a certain angle.

また、本発明において、前記第1保持及び引張機構部と前記第3保持及び引張機構部を上側に配置し、前記第2保持及び引張機構部と前記第4保持及び引張機構部を下側に配置した前記可撓性基板の垂直配置状態において、下側に配置した前記第2保持及び引張機構部または前記第4保持及び引張機構部の1点を固定点とし、他の前記保持及び引張機構部の引張り力及び引張り方向の釣り合いから、皺伸ばし張力を調整している。   In the present invention, the first holding and pulling mechanism part and the third holding and pulling mechanism part are arranged on the upper side, and the second holding and pulling mechanism part and the fourth holding and pulling mechanism part are on the lower side. In the vertical arrangement state of the arranged flexible substrate, one point of the second holding and pulling mechanism part or the fourth holding and pulling mechanism part arranged on the lower side is used as a fixed point, and the other holding and pulling mechanism is provided. The stretch tension is adjusted based on the balance of the tensile force and tension direction of the part.

一方、本発明は、可撓性基板を巻装した巻出しロールと前記可撓性基板を巻取る巻取りロールとの間で前記可撓性基板の搬送途中に設置される成膜室と、前記成膜室内において内部に加熱ヒータを有する接地電極と、前記成膜室内において高周波電源に接続される高周波電極とを備え、前記接地電極と前記高周波電極との間に前記可撓性基板を走行させて前記成膜室内で前記可撓性基板上に薄膜を成膜する薄膜光電変換素子の製造装置において、前記可撓性基板を走行及び停止する際に、前記可撓性基板に張力を与える張力制御手段と、前記可撓性基板の搬送方向に対し前記接地電極の両側に、前記可撓性基板の搬送方向と直交する前記可撓性基板の幅方向の上部一端部を挟持する第1保持及び引張機構部と、前記可撓性基板の幅方向の下部一端部を挟持する第2保持及び引張機構部と、前記第1保持及び引張機構部に対向した前記可撓性基板の幅方向他端部を挟持する第3保持及び引張機構部と、前記第2保持及び引張機構部に対向した前記可撓性基板の幅方向他端部を挟持する第4保持及び引張機構部とをそれぞれ配置し、前記可撓性基板の搬送を停止した状態で、前記張力制御手段により張力を与えながら、前記可撓性基板の裏面に前記接地電極を接触させて加熱し、前記第1保持及び引張機構部と、前記第2保持及び引張機構部と、前記第3保持及び引張機構部と、前記第4保持及び引張機構部とにより前記可撓性基板の両端部近傍を挟持するとともに、前記第1保持及び引張機構部、前記第2保持及び引張機構部、前記第3保持及び引張機構部、前記第4保持及び引張機構部を可動することにより、互いの対向間の距離を広げるように前記可撓性基板を引っ張り、延伸しながら成膜するように構成している。   On the other hand, the present invention provides a film forming chamber installed in the middle of transporting the flexible substrate between an unwinding roll on which the flexible substrate is wound and a winding roll for winding the flexible substrate, A ground electrode having a heater in the film formation chamber and a high-frequency electrode connected to a high-frequency power source in the film formation chamber are provided, and the flexible substrate runs between the ground electrode and the high-frequency electrode. In the thin film photoelectric conversion element manufacturing apparatus for forming a thin film on the flexible substrate in the film forming chamber, tension is applied to the flexible substrate when the flexible substrate is run and stopped. Tension control means and a first upper end portion in the width direction of the flexible substrate that is orthogonal to the conveyance direction of the flexible substrate on both sides of the ground electrode with respect to the conveyance direction of the flexible substrate. Holding and pulling mechanism, and lower portion of the flexible substrate in the width direction A second holding and pulling mechanism portion for holding the end portion; a third holding and pulling mechanism portion for holding the other widthwise end portion of the flexible substrate facing the first holding and pulling mechanism portion; 2 in the state where the fourth holding and tensioning mechanism part for sandwiching the other end in the width direction of the flexible substrate facing the holding and tensioning mechanism part is disposed, and the conveyance of the flexible substrate is stopped, While applying tension by a tension control means, the ground electrode is brought into contact with the back surface of the flexible substrate and heated, and the first holding and pulling mechanism unit, the second holding and pulling mechanism unit, and the third The holding and pulling mechanism part and the fourth holding and pulling mechanism part sandwich the vicinity of both ends of the flexible substrate, the first holding and pulling mechanism part, the second holding and pulling mechanism part, Third holding and pulling mechanism, fourth holding and pulling machine By moving the parts, pulling the flexible substrate so as to widen the distance between mutual opposed, it is configured so as to deposit while stretching.

上述の如く、本発明に係る薄膜光電変換素子の製造方法は、可撓性基板を巻装した巻出しロールと前記可撓性基板を巻取る巻取りロールとの間で前記可撓性基板の搬送途中に設置される成膜室と、前記成膜室内において内部に加熱ヒータを有する接地電極と、前記成膜室内において高周波電源に接続される高周波電極とを備え、前記接地電極と前記高周波電極との間に前記可撓性基板を走行させて前記成膜室内で前記可撓性基板上に薄膜を成膜する成膜装置を用いて、前記可撓性基板の搬送方向に対し前記接地電極の両側に、前記可撓性基板の搬送方向と直交する前記可撓性基板の幅方向の上部一端部を挟持する第1保持及び引張機構部と、前記可撓性基板の幅方向の下部一端部を挟持する第2保持及び引張機構部と、前記第1保持及び引張機構部に対向した前記可撓性基板の幅方向他端部を挟持する第3保持及び引張機構部と、前記第2保持及び引張機構部に対向した前記可撓性基板の幅方向他端部を挟持する第4保持及び引張機構部と、をそれぞれ配置し、前記可撓性基板の搬送を停止させ、張力を与えながら、前記可撓性基板の裏面に前記接地電極を接触させて加熱し、前記第1保持及び引張機構部と、前記第2保持及び引張機構部と、前記第3保持及び引張機構部と、前記第4保持及び引張機構部とにより前記可撓性基板の両端部近傍を挟持し、前記第1保持及び引張機構部、前記第2保持及び引張機構部、前記第3保持及び引張機構部、前記第4保持及び引張機構部のいずれか1点を固定点とし、この固定点と搬送方向に対向する部位に配置された前記保持及び引張機構部が前記可撓性基板の搬送方向と平行ないし一定角度以内になるように保持して引っ張り、他の前記保持及び引張機構部が互いの対向間の距離を広げる方向に可動して、前記可撓性基板を引っ張り、延伸しながら成膜し、あるいは、前記第1保持及び引張機構部、前記第2保持及び引張機構部、前記第3保持及び引張機構部、前記第4保持及び引張機構部の4点が前記可撓性基板の搬送方向と平行ないし一定角度以内に保持し、前記搬送方向と対向する前記保持及び引張機構部間の距離を広げる方向に可動して、前記可撓性基板を引っ張り、延伸しながら成膜しているので、4箇所の保持及び引張機構部にて囲まれた領域で、隈なく可撓性基板を延伸させることが可能となる。
したがって、本発明によれば、可撓性基板の大型化のため、加熱による可撓性基板の熱膨張に起因して伸縮量が増加しても、2個の引張機構部により張力を負荷することで張力負荷の不可能な位置が存在しないことになり、均一な平面が得られることで可撓性基板の平面性を向上させることができる。しかも、可撓性基板の熱膨張による伸びに対する延伸が可能となるため、可撓性基板の熱膨張による伸びによって発生していた当該可撓性基板の緩みが抑制され、当該可撓性基板に発生していた皺状の変位を抑えることができ、膜厚の均一性が良好な薄膜を形成することができる。
As described above, the method for manufacturing a thin film photoelectric conversion element according to the present invention includes a flexible substrate between an unwinding roll wound with a flexible substrate and a winding roll that winds the flexible substrate. A film forming chamber installed in the middle of conveyance; a ground electrode having a heater in the film forming chamber; and a high-frequency electrode connected to a high-frequency power source in the film forming chamber, the ground electrode and the high-frequency electrode The grounding electrode with respect to the transport direction of the flexible substrate, using a film forming apparatus for forming a thin film on the flexible substrate in the film forming chamber. A first holding and pulling mechanism portion for sandwiching an upper end portion in the width direction of the flexible substrate perpendicular to the conveyance direction of the flexible substrate, and a lower end in the width direction of the flexible substrate. Second holding and pulling mechanism portion for clamping the portion, and the first holding and pulling portion A third holding and pulling mechanism portion that sandwiches the other widthwise end portion of the flexible substrate facing the structural portion, and another widthwise other end portion of the flexible substrate facing the second holding and pulling mechanism portion A fourth holding mechanism and a tension mechanism section for holding the substrate, respectively, stopping the conveyance of the flexible substrate, and applying the tension while bringing the ground electrode into contact with the back surface of the flexible substrate and heating. The first holding and pulling mechanism part, the second holding and pulling mechanism part, the third holding and pulling mechanism part, and the fourth holding and pulling mechanism part near both ends of the flexible substrate. And holding any one of the first holding and pulling mechanism, the second holding and pulling mechanism, the third holding and pulling mechanism, and the fourth holding and pulling mechanism with a fixed point. The holding and pulling mechanism disposed at a portion facing the fixed point in the transport direction Is held and pulled so as to be parallel to or within a certain angle with respect to the conveyance direction of the flexible substrate, and the other holding and pulling mechanism portions are movable in a direction to increase the distance between the opposing surfaces, and the flexible substrate The substrate is pulled and stretched to form a film, or the first holding and pulling mechanism, the second holding and pulling mechanism, the third holding and pulling mechanism, the fourth holding and pulling mechanism The four points are held in parallel or within a certain angle with the conveyance direction of the flexible substrate, and are moved in a direction to widen the distance between the holding and pulling mechanism portions opposed to the conveyance direction, so that the flexible substrate is Since the film is formed while being pulled and stretched, the flexible substrate can be stretched without any wrinkles in the region surrounded by the four holding and pulling mechanism portions.
Therefore, according to the present invention, due to the increase in size of the flexible substrate, even if the expansion / contraction amount increases due to the thermal expansion of the flexible substrate due to heating, tension is applied by the two tension mechanism portions. Thus, there is no position where tension load is impossible, and the flatness of the flexible substrate can be improved by obtaining a uniform plane. In addition, since the flexible substrate can be stretched with respect to elongation due to thermal expansion, loosening of the flexible substrate caused by elongation due to thermal expansion of the flexible substrate is suppressed, and the flexible substrate is The generated wrinkle-like displacement can be suppressed, and a thin film with good film thickness uniformity can be formed.

また、本発明において、前記可撓性基板の対向した幅方向端部を挟持する2つの前記保持及び引張機構部のいずれかを固定とし、他の前記保持及び引張機構部は互いの対向間の距離を広げる方向に可動して、前記可撓性基板を引っ張り、延伸しながら成膜しているので、より一層、可撓性基板に発生した皺状の変位を抑えることができる。   In the present invention, either one of the two holding and pulling mechanism portions that sandwich the opposing widthwise end portions of the flexible substrate is fixed, and the other holding and pulling mechanism portions are located between the opposing surfaces. Since the film is formed while moving in the direction of increasing the distance and pulling and stretching the flexible substrate, it is possible to further suppress the saddle-like displacement generated in the flexible substrate.

さらに、本発明において、前記接地電極の前記可撓性基板の搬送方向両側に配置した、前記第1保持及び引張機構部、前記第2保持及び引張機構部、前記第3保持及び引張機構部、第4保持及び引張機構部の搬送方向に沿ったいずれかの2点を搬送方向と逆方向に引っ張り、他の前記保持及び引張機構部の2点は互いの対向間距離を広げる方向に可動して、前記可撓性基板を引っ張り、延伸しながら成膜し、また、前記第1保持及び引張機構部、前記第2保持及び引張機構部、前記第3保持及び引張機構部、第4保持及び引張機構部の搬送方向に沿ったいずれかの2点を搬送方向に平行ないし一定角度以内になるように保持して引っ張っているので、引張機構部の固定部が無くなり、可撓性基板の配置に関しては慎重な張力の釣り合いは要求されるが、高い引っ張り荷重の延伸効果が得られることになる。   Further, in the present invention, the first holding and pulling mechanism part, the second holding and pulling mechanism part, the third holding and pulling mechanism part, which are arranged on both sides of the flexible substrate in the transport direction of the ground electrode, Pull any two points along the transport direction of the fourth holding and pulling mechanism portion in the direction opposite to the transport direction, and the other two points of the holding and pulling mechanism portions move in a direction to increase the distance between the opposing surfaces. The flexible substrate is pulled and stretched to form a film, and the first holding and pulling mechanism unit, the second holding and pulling mechanism unit, the third holding and pulling mechanism unit, the fourth holding and Since any two points along the transport direction of the tension mechanism section are held and pulled so that they are parallel to the transport direction or within a certain angle, the fixing section of the tension mechanism section is eliminated, and the flexible substrate is disposed. With regard to careful tension balance is required It is, but so that the stretching effect of the high tensile load is obtained.

また、本発明において、前記第1保持及び引張機構部と前記第3保持及び引張機構部を上側に配置し、前記第2保持及び引張機構部と前記第4保持及び引張機構部を下側に配置した前記可撓性基板の垂直配置状態において、下側に配置した前記第2保持及び引張機構部または前記第4保持及び引張機構部の1点を固定点とし、他の前記保持及び引張機構部の引張り力及び引張り方向の釣り合いから、皺伸ばし張力を調整しているので、可撓性基板を垂直にして搬送した場合に、上部端部の手前に倒れが生じても、皺の伸ばし張力を調整することにより上部の倒れを抑制でき、修正した皺状変位の伸ばしを行うことができる。
さらに、本発明において、前記引張機構部により前記可撓性基板に延伸効果を与える前に、張力を与え停止している前記可撓性基板の裏面の非成膜面に前記接地電極を接触させて加熱し、前記可撓性基板に熱膨張分の伸びを発生した後、引っ張り荷重を与えて延伸することにより、熱膨張分にて発生していた皺状の変位を抑制する効果を得ることができる。
In the present invention, the first holding and pulling mechanism part and the third holding and pulling mechanism part are arranged on the upper side, and the second holding and pulling mechanism part and the fourth holding and pulling mechanism part are on the lower side. In the vertical arrangement state of the arranged flexible substrate, one point of the second holding and pulling mechanism part or the fourth holding and pulling mechanism part arranged on the lower side is used as a fixed point, and the other holding and pulling mechanism is provided. The tension stretching tension is adjusted based on the balance of the tensile force and tension direction of the section, so even if the flexible substrate is transported vertically, even if the top edge falls down, the tension stretching tension of the collar By adjusting the angle, the upper part can be prevented from being tilted and the corrected saddle-like displacement can be extended.
Furthermore, in the present invention, the ground electrode is brought into contact with a non-film-forming surface on the back surface of the flexible substrate that is stopped by applying tension before the stretching mechanism portion imparts a stretching effect to the flexible substrate. After heating and generating an elongation for the thermal expansion of the flexible substrate, by applying a tensile load and stretching, the effect of suppressing the saddle-like displacement generated by the thermal expansion is obtained. Can do.

本発明に係る薄膜光電変換素子の製造装置は、可撓性基板を巻装した巻出しロールと前記可撓性基板を巻取る巻取りロールとの間で前記可撓性基板の搬送途中に設置される成膜室と、前記成膜室内において内部に加熱ヒータを有する接地電極と、前記成膜室内において高周波電源に接続される高周波電極とを備え、前記接地電極と前記高周波電極との間に前記可撓性基板を走行させて前記成膜室内で前記可撓性基板上に薄膜を成膜するものであって、前記可撓性基板を走行及び停止する際に、前記可撓性基板に張力を与える張力制御手段と、前記可撓性基板の搬送方向に対し前記接地電極の両側に、前記可撓性基板の搬送方向と直交する前記可撓性基板の幅方向の上部一端部を挟持する第1保持及び引張機構部と、前記可撓性基板の幅方向の下部一端部を挟持する第2保持及び引張機構部と、前記第1保持及び引張機構部に対向した前記可撓性基板の幅方向他端部を挟持する第3保持及び引張機構部と、前記第2保持及び引張機構部に対向した前記可撓性基板の幅方向他端部を挟持する第4保持及び引張機構部とをそれぞれ配置し、前記可撓性基板の搬送を停止した状態で、前記張力制御手段により張力を与えながら、前記可撓性基板の裏面に前記接地電極を接触させて加熱し、前記第1保持及び引張機構部と、前記第2保持及び引張機構部と、前記第3保持及び引張機構部と、前記第4保持及び引張機構部とにより前記可撓性基板の両端部近傍を挟持するとともに、前記第1保持及び引張機構部、前記第2保持及び引張機構部、前記第3保持及び引張機構部、前記第4保持及び引張機構部を可動することにより、互いの対向間の距離を広げるように前記可撓性基板を引っ張り、延伸しながら成膜するように構成しているので、上記製造方法の発明と同様の効果を得ることができる。   The apparatus for manufacturing a thin film photoelectric conversion element according to the present invention is installed in the middle of transporting the flexible substrate between a winding roll wound with the flexible substrate and a winding roll winding the flexible substrate. A film-forming chamber, a ground electrode having a heater in the film-forming chamber, and a high-frequency electrode connected to a high-frequency power source in the film-forming chamber, between the ground electrode and the high-frequency electrode. The flexible substrate is run to form a thin film on the flexible substrate in the film forming chamber. When the flexible substrate is run and stopped, the flexible substrate is placed on the flexible substrate. Tension control means for applying tension, and upper end portions in the width direction of the flexible substrate perpendicular to the conveyance direction of the flexible substrate are sandwiched on both sides of the ground electrode with respect to the conveyance direction of the flexible substrate. A first holding and pulling mechanism portion, and a width direction of the flexible substrate A second holding and pulling mechanism portion for sandwiching one end of the portion, a third holding and pulling mechanism portion for sandwiching the other end in the width direction of the flexible substrate facing the first holding and pulling mechanism portion, In a state where the fourth holding and pulling mechanism part that sandwiches the other end in the width direction of the flexible substrate facing the second holding and pulling mechanism part is disposed, and the conveyance of the flexible substrate is stopped, While applying tension by the tension control means, the ground electrode is brought into contact with the back surface of the flexible substrate and heated, and the first holding and pulling mechanism part, the second holding and pulling mechanism part, and the first 3 holding and pulling mechanism portion and the fourth holding and pulling mechanism portion sandwich the vicinity of both ends of the flexible substrate, the first holding and pulling mechanism portion, the second holding and pulling mechanism portion, The third holding and pulling mechanism, the fourth holding and pulling; By moving the mechanism part, the flexible substrate is pulled so as to increase the distance between the opposing surfaces, and the film is formed while being stretched. Obtainable.

本発明の第1実施形態に係る成膜装置を示す概略構成配置図である。1 is a schematic configuration layout diagram showing a film forming apparatus according to a first embodiment of the present invention. (A)〜(C)は、上記第1実施形態の可撓性基板の成膜室における形成手順を示す概略断面図である。(A)-(C) are schematic sectional drawings which show the formation procedure in the film-forming chamber of the flexible substrate of the said 1st Embodiment. 可撓性基板の保持方式を比較して示すものであり、(A)は上記第1実施形態の平面図、(B)は比較例の平面図である。The holding methods of a flexible substrate are shown in comparison, (A) is a plan view of the first embodiment, and (B) is a plan view of a comparative example. (A)〜(D)は、本発明の第1実施形態における皺状変位を抑える手順を示す概略断面図である。(A)-(D) are schematic sectional drawings which show the procedure which suppresses the saddle-like displacement in 1st Embodiment of this invention. 可撓性基板の皺状変位を比較して示すものであり、(A)は上記第1実施形態の線図、(B)は比較例の線図である。FIG. 2 shows a comparison of the saddle-like displacement of a flexible substrate, in which (A) is a diagram of the first embodiment, and (B) is a diagram of a comparative example. 本発明の第2実施形態に係る可撓性基板の保持方式を示す平面配置図である。It is a plane arrangement view showing a holding system of a flexible substrate concerning a 2nd embodiment of the present invention. 従来技術における可撓性基板の保持方式を示す平面配置図である。It is a plane arrangement | positioning figure which shows the holding system of the flexible substrate in a prior art.

以下、本発明に係る薄膜光電変換素子の製造方法及び製造装置、並びに成膜装置について、その実施の形態に基づき図面を参照しながら詳細に説明する。   Hereinafter, the manufacturing method and manufacturing apparatus of a thin film photoelectric conversion element and a film forming apparatus according to the present invention will be described in detail with reference to the drawings based on the embodiments.

[第1実施形態]
図1は本発明の第1実施形態に係る成膜装置の概略構成配置図である。
図1において、可撓性基板1を巻装した巻出しロール2aと、可撓性基板1を巻取る巻取りロール2bとの間であって、可撓性基板1の搬送途中には、成膜装置100が設置されており、可撓性基板1は、2つのロール2a,2bの回転駆動により搬送されるようになっている。
成膜装置100の成膜室(反応室)10内には、可撓性基板1を支持し内部に基板への加熱ヒータ8を有する接地電極4と、高周波電源3aに電気的に接続される高周波電極3とが、走行させる可撓性基板1を挟んで所定の間隔を空けて対向して配置されている。しかも、可撓性基板1への加熱ヒータ8を有する接地電極4と高周波電極3とは、お互いが平行となるように配置されている。
[First Embodiment]
FIG. 1 is a schematic configuration layout diagram of a film forming apparatus according to a first embodiment of the present invention.
In FIG. 1, between the unwinding roll 2a around which the flexible substrate 1 is wound and the winding roll 2b around which the flexible substrate 1 is wound. A membrane device 100 is installed, and the flexible substrate 1 is conveyed by rotational driving of the two rolls 2a and 2b.
In the film forming chamber (reaction chamber) 10 of the film forming apparatus 100, the flexible substrate 1 is supported and a ground electrode 4 having a heater 8 for the substrate is electrically connected to the high frequency power source 3a. The high-frequency electrode 3 is disposed to face the flexible substrate 1 to be run with a predetermined interval therebetween. Moreover, the ground electrode 4 having the heater 8 for the flexible substrate 1 and the high-frequency electrode 3 are arranged so as to be parallel to each other.

また、成膜装置100は、接地電極4と高周波電極3を内部に収納して、成膜室10を形成する仕切りとなる一対の押さえ枠5,6を備えている。これら押さえ枠5,6は、互いの開口部が向き合う断面コ字状に形成され、少なくとも一方の接地電極側の押さえ枠6は移動可能に構成されており、これら押さえ枠5,6の周辺部を重ね合わせることによって可撓性基板1を挟み込み、成膜室10を分離している。
さらに、成膜装置100の成膜室10の外側に位置する内側壁面には、可撓性基板1の端部を挟持する端部保持機構部と、可撓性基板1を引っ張る引張機構部の機能を兼備している4個の保持及び引張機構部12が可撓性基板1の搬送方向の上下流の出入口付近で互いに対向して配置されている。
The film forming apparatus 100 also includes a pair of holding frames 5 and 6 that house the ground electrode 4 and the high-frequency electrode 3 and serve as partitions for forming the film forming chamber 10. These holding frames 5 and 6 are formed in a U-shaped cross section in which the openings of each other face each other, and the holding frame 6 on the side of at least one ground electrode is configured to be movable. Are stacked together to sandwich the flexible substrate 1 and separate the film formation chamber 10.
Further, an inner wall surface located outside the film forming chamber 10 of the film forming apparatus 100 has an end holding mechanism portion that holds the end portion of the flexible substrate 1 and a tension mechanism portion that pulls the flexible substrate 1. Four holding and pulling mechanism portions 12 having a function are arranged opposite to each other in the vicinity of the upstream and downstream entrances in the conveyance direction of the flexible substrate 1.

図2(A)〜(C)は、本発明の第1実施形態における可撓性基板1の成膜室10の形成手順を示す概略断面図である。
可撓性基板1を搬送するときには、図2(A)に示すように、接地電極4を反対側方向に引いて、接地電極4と高周波電極3とが接触しないようになっており、成膜室10内で薄膜を形成するときには、図2(B)に示すように、加熱ヒータ8を内蔵した接地電極4をY1方向へ移動させることにより可撓性基板1に押し付けて、可撓性基板1を加熱して設定の温度に昇温する。次いで、後述するように、保持及び引張機構部12により可撓性基板1に対する固定保持と張力の負荷の調整を行った後、図2(C)に示すように、押さえ枠5,6を互いに向き合うY2方向へ押し込めば、当該押さえ枠5,6に囲まれた成膜室10が形成されることになる。
2A to 2C are schematic cross-sectional views illustrating a procedure for forming the film forming chamber 10 of the flexible substrate 1 in the first embodiment of the present invention.
When the flexible substrate 1 is transported, as shown in FIG. 2A, the ground electrode 4 is pulled in the opposite direction so that the ground electrode 4 and the high-frequency electrode 3 do not come into contact with each other. When forming a thin film in the chamber 10, as shown in FIG. 2B, the ground electrode 4 incorporating the heater 8 is pressed against the flexible substrate 1 by moving it in the Y1 direction. 1 is heated to a set temperature. Next, as will be described later, after the holding and tensioning mechanism unit 12 fixes and holds the flexible substrate 1 and adjusts the load of tension, as shown in FIG. When pushed in the facing Y2 direction, the film forming chamber 10 surrounded by the pressing frames 5 and 6 is formed.

本発明の第1実施形態に係る成膜装置100は、以上のように構成されているが、本発明はさらに、かかる成膜装置100を用いた以下の薄膜光電変換素子の製造方法及びその製造装置に関するものである。   Although the film forming apparatus 100 according to the first embodiment of the present invention is configured as described above, the present invention further includes the following method for manufacturing a thin film photoelectric conversion element using the film forming apparatus 100 and the manufacturing thereof. It relates to the device.

図3は、可撓性基板の保持方式を比較して示すものであり、(A)は本発明の第1実施形態の平面図、(B)は比較例(例えば、特願2009−6352号)の平面図であり、図3(A)、(B)において、Xは可撓性基板1の運動方向、1aは可撓性基板1の表面変位測定方位である。
また、図3において、12A、12B、12C、12Dは可撓性基板1の保持及び引張機構部である。各保持及び引張機構部12A、12B、12C、12Dは、可撓性基板1の幅端部を挟持する保持部12A1、12B1、12C1、12D1と、引張機構部12A2、12B2、12C2、12D2とから成り、可撓性基板1を保持するととともに、可撓性基板1に引張り作用を行うことが可能に構成されている。
FIG. 3 shows a comparison of holding methods of flexible substrates, (A) is a plan view of the first embodiment of the present invention, and (B) is a comparative example (for example, Japanese Patent Application No. 2009-6352). 3A and 3B, X is the movement direction of the flexible substrate 1, and 1a is the surface displacement measurement direction of the flexible substrate 1.
In FIG. 3, 12 </ b> A, 12 </ b> B, 12 </ b> C, and 12 </ b> D are holding and pulling mechanism units for the flexible substrate 1. Each of the holding and pulling mechanism portions 12A, 12B, 12C, and 12D includes the holding portions 12A1, 12B1, 12C1, and 12D1 that sandwich the width end portion of the flexible substrate 1, and the pulling mechanism portions 12A2, 12B2, 12C2, and 12D2. Thus, the flexible substrate 1 can be held and the flexible substrate 1 can be pulled.

これら保持及び引張機構部12のうち、第1の保持及び引張機構部12Aは、第1の保持部12A1により可撓性基板1の幅方向一端部を挟持するものであって、第1の引張機構部12A2は可動せず可撓性基板1上に固定されている。
また、保持及び引張機構部12のうち、第2の保持及び引張機構部12Cは、第1の保持及び引張機構部12Aに対向して配置されており、第1の保持部12A1に対向した可撓性基板1の幅方向他端部を第2の保持部12C1により挟持するとともに、第2の引張機構部12C2により、図3の矢印方向の外向きの引張り荷重12C3を可撓性基板1に与えるように構成されている。
Of these holding and pulling mechanism parts 12, the first holding and pulling mechanism part 12A sandwiches one end in the width direction of the flexible substrate 1 with the first holding part 12A1, and the first pulling and pulling mechanism part 12A1 The mechanism portion 12A2 is not movable and is fixed on the flexible substrate 1.
Of the holding and pulling mechanism parts 12, the second holding and pulling mechanism part 12C is arranged to face the first holding and pulling mechanism part 12A and can be opposed to the first holding part 12A1. The other end in the width direction of the flexible substrate 1 is held by the second holding portion 12C1, and an outward tensile load 12C3 in the direction of the arrow in FIG. 3 is applied to the flexible substrate 1 by the second tension mechanism portion 12C2. Is configured to give.

さらに、保持及び引張機構部12のうち、第3の保持及び引張機構部12Bは、第1の保持及び引張機構部12Aから可撓性基板1の長手方向に距離S1の間隔を空けて設けられ、第3の保持部12B1により可撓性基板1を挟持し、かつ、第3の引張機構部12B2により、図3(A)の矢印方向の引張り荷重12B3、つまり可撓性基板1の搬送方向(矢印X方向)またはやや垂直方向に角度αを付けて、可撓性基板1を引張り、該可撓性基板1に張力を与えるように構成されている。この角度αは、後述するように±15°以内が好適である。
そして、保持及び引張機構部12のうち、第4の保持及び引張機構部12Dは、第2の保持及び引張機構部12Cから可撓性基板1の長手方向に距離S2の間隔を空けて設けられ、第4の保持部12D1により可撓性基板1を挟持し、かつ、第4の引張機構部12D2により、図3の矢印方向の外向きの引張り荷重12D3を可撓性基板1に与えるように構成されている。
Further, among the holding and pulling mechanism portions 12, the third holding and pulling mechanism portion 12B is provided at a distance S1 from the first holding and pulling mechanism portion 12A in the longitudinal direction of the flexible substrate 1. The flexible substrate 1 is sandwiched by the third holding portion 12B1, and the tensile load 12B3 in the direction of the arrow in FIG. 3A, that is, the conveyance direction of the flexible substrate 1 is secured by the third tension mechanism portion 12B2. It is configured to pull the flexible substrate 1 and give a tension to the flexible substrate 1 with an angle α (in the direction of the arrow X) or slightly perpendicular. The angle α is preferably within ± 15 ° as will be described later.
Of the holding and pulling mechanism portion 12, the fourth holding and pulling mechanism portion 12D is provided at a distance S2 from the second holding and pulling mechanism portion 12C in the longitudinal direction of the flexible substrate 1. The flexible substrate 1 is clamped by the fourth holding portion 12D1, and an outward tensile load 12D3 in the direction of the arrow in FIG. 3 is applied to the flexible substrate 1 by the fourth tension mechanism portion 12D2. It is configured.

なお、本発明の第1実施形態において、第1及び第2の保持及び引張機構部12A,12Cと、第3及び第4の保持及び引張機構部12B,12Dの具体的な構成は、図7に示した特許文献1の第1保持機構部30、第2保持機構部40及び引張機構部50と(30,40,50は、特許文献1の符号)同様な構成を有している。   In the first embodiment of the present invention, the specific configurations of the first and second holding and pulling mechanism portions 12A and 12C and the third and fourth holding and pulling mechanism portions 12B and 12D are shown in FIG. The first holding mechanism section 30, the second holding mechanism section 40, and the pulling mechanism section 50 of Patent Document 1 shown in (1) have the same configuration (30, 40, 50 are the codes of Patent Document 1).

次に、前記第1実施形態に係る成膜装置100を用いた薄膜光電変換素子の製造方法及びその製造装置の作用効果について説明する。
図3(A)は本発明の第1実施形態の基板変位を示し、図3(B)は比較例(特願2009−6352号)の基板変位を示している。図3(A)及び(B)のどちらにおいても、A点は固定点であり、可撓性基板1の位置が固定されている。
図3(B)に示す比較例(特願2009−6352号)の成膜工程では、接地電極のみが可撓性基板1の非成膜面に移動して接触しながら可撓性基板1を加熱し、特許文献1(特開2005−72408号公報)と同様に、第1保持機構部と第2保持機構部とにより可撓性基板1の両端部を挟持し、挟持しながら第1保持機構部と第2保持機構部をお互いの距離が広がる方向へ引張機構部によって移動させて可撓性基板1の両端部を基板長手方向に引っ張る。そして、押さえ枠を移動して可撓性基板1を押さえ込んで挟み、成膜室の開口部を閉じて放電空間を形成した状態で、可撓性基板1に対して成膜している。
Next, the manufacturing method of the thin film photoelectric conversion element using the film forming apparatus 100 according to the first embodiment and the operation effect of the manufacturing apparatus will be described.
FIG. 3A shows the substrate displacement of the first embodiment of the present invention, and FIG. 3B shows the substrate displacement of the comparative example (Japanese Patent Application No. 2009-6352). 3A and 3B, the point A is a fixed point, and the position of the flexible substrate 1 is fixed.
In the film forming process of the comparative example (Japanese Patent Application No. 2009-6352) shown in FIG. 3B, only the ground electrode moves to the non-film forming surface of the flexible substrate 1 and contacts the flexible substrate 1. As in Patent Document 1 (Japanese Patent Application Laid-Open No. 2005-72408), both ends of the flexible substrate 1 are sandwiched between the first holding mechanism and the second holding mechanism, and the first holding is performed while sandwiching. The mechanism portion and the second holding mechanism portion are moved by the pulling mechanism portion in a direction in which the distance between them increases, and both end portions of the flexible substrate 1 are pulled in the substrate longitudinal direction. Then, a film is formed on the flexible substrate 1 in a state where the holding frame is moved and the flexible substrate 1 is pressed and sandwiched, and the opening of the film forming chamber is closed to form a discharge space.

図3(B)の比較例では、第1の保持及び引張機構部12Aにより挟持される可撓性基板1の位置が固定点であることから、第1の保持及び引張機構部12Aと第3の保持及び引張機構部12Bとの距離S3は固定されるため、これら第1の保持及び引張機構部12A〜第3の保持及び引張機構部12B間(距離S3)における可撓性基板1の熱伸びを延伸することはできなかった。
このため、可撓性基板1の第1の保持及び引張機構部12Aと第3の保持及び引張機構部12B間の熱による伸びが長くなり、第1の保持及び引張機構部12Aと第3の保持及び引張機構部12B間の距離が長くなると、可撓性基板1の熱伸びによる皺が発生することになる。この皺は、第2の保持及び引張機構部12Cと第4の保持及び引張機構部12Dとの間(距離S4)においても同様に、張力が負荷された方位に皺が伝播して広がり、その結果、可撓性基板1の平面性を低下させることになった。
In the comparative example of FIG. 3B, since the position of the flexible substrate 1 sandwiched by the first holding and pulling mechanism portion 12A is a fixed point, the first holding and pulling mechanism portion 12A and the third Since the distance S3 to the holding and pulling mechanism portion 12B is fixed, the heat of the flexible substrate 1 between the first holding and pulling mechanism portion 12A to the third holding and pulling mechanism portion 12B (distance S3). It was not possible to stretch the elongation.
For this reason, the elongation by the heat | fever between the 1st holding | maintenance and tension | tensile_strength mechanism part 12A and the 3rd holding | maintenance / tensioning mechanism part 12B of the flexible substrate 1 becomes long, and the 1st holding | maintenance and tension | pulling mechanism part 12A and 3rd When the distance between the holding and pulling mechanism portions 12B is increased, wrinkles due to thermal expansion of the flexible substrate 1 are generated. In the same manner, the wrinkles spread between the second holding and pulling mechanism portion 12C and the fourth holding and pulling mechanism portion 12D (distance S4) and spread in the direction in which the tension is loaded. As a result, the flatness of the flexible substrate 1 was reduced.

一方、本発明の第1実施形態では、図3(A)に示すように、第3の保持及び引張機構部12Bは、第1の保持及び引張機構部12Aから可撓性基板1の長手方向に距離S1の間隔を空けて設けられ、可撓性基板1を挟持し、かつ図中矢印方向の引張り荷重12B3を可撓性基板1に与えている。
すなわち、第3の保持及び引張機構部12Bによる可撓性基板1の保持点Bにおいて、基板1の搬送方向(矢印X方向)またはやや垂直方向に角度αを付けて、第3の保持及び引張機構部12Bによって可撓性基板1に張力を与えている。この角度αは、±15°以内が好適である。
On the other hand, in the first embodiment of the present invention, as shown in FIG. 3A, the third holding and pulling mechanism portion 12B extends from the first holding and pulling mechanism portion 12A in the longitudinal direction of the flexible substrate 1. Are spaced apart by a distance S1, sandwiching the flexible substrate 1, and applying a tensile load 12B3 in the direction of the arrow in the drawing to the flexible substrate 1.
That is, at the holding point B of the flexible substrate 1 by the third holding and pulling mechanism unit 12B, the third holding and pulling is performed with an angle α in the transport direction (arrow X direction) or a slightly vertical direction of the substrate 1. Tension is applied to the flexible substrate 1 by the mechanism portion 12B. This angle α is preferably within ± 15 °.

この張力により、可撓性基板1の両端部近傍の2箇所(第1の保持及び引張機構部12Aと第2の保持及び引張機構部12C)を挟持しながら、第1の保持及び引張機構部12Aと第2の保持及び引張機構部12Cから長手方向に距離S1、S2の間隔を空けて設けた第3の保持及び引張機構部12Bと第4の保持及び引張機構部12Dにより、可撓性基板1の互いの距離を広げる方向に保持しながら引っ張るので、4箇所の保持及び引張機構部12A〜12Dに囲まれた領域で、隈なく可撓性基板1を延伸させることが可能となる。
本発明の第1実施形態は、図3(A)の可撓性基板1の保持方式によって、可撓性基板1の皺状変位を抑制する手段を提供するものである。
With this tension, the first holding and tensioning mechanism part is sandwiched between the two locations (the first holding and tensioning mechanism part 12A and the second holding and tensioning mechanism part 12C) in the vicinity of both ends of the flexible substrate 1. The third holding and pulling mechanism portion 12B and the fourth holding and pulling mechanism portion 12D that are spaced apart from each other by 12A and the second holding and pulling mechanism portion 12C in the longitudinal direction are flexible. Since the substrate 1 is pulled while being held in the direction in which the distance between the substrates 1 is increased, the flexible substrate 1 can be stretched without any wrinkles in the region surrounded by the four holding and tensioning mechanisms 12A to 12D.
1st Embodiment of this invention provides the means which suppresses the saddle-like displacement of the flexible substrate 1 with the holding system of the flexible substrate 1 of FIG. 3 (A).

図4(A)〜(D)は、本発明の第1実施形態における皺状変位を抑える手順を示す概略断面図である。
図3に示されるような可撓性基板1の保持方式において、熱膨張により発生する可撓性基板1の皺状の変位を抑える効果を十分に得るには、既に説明した引張り荷重を可撓性基板1に与える以前に、搬送停止している可撓性基板1の長手方向に搬送張力を与えながら、加熱ヒータ8を内蔵した接地電極4を可撓性基板1の裏面の非成膜面に接触させ、熱膨張による皺状変位を発生させる加熱工程を行う手順を踏む必要がある。本発明の第1実施形態では、図3(A)の可撓性基板1の保持方式において、搬送張力30N〜100Nを与えながら、加熱を行った。
4A to 4D are schematic cross-sectional views showing a procedure for suppressing saddle-like displacement in the first embodiment of the present invention.
In the holding method of the flexible substrate 1 as shown in FIG. 3, in order to sufficiently obtain the effect of suppressing the hook-like displacement of the flexible substrate 1 generated by thermal expansion, the tensile load described above is flexibly applied. The non-film-forming surface on the back surface of the flexible substrate 1 is provided with the ground electrode 4 with the built-in heater 8 while applying conveyance tension in the longitudinal direction of the flexible substrate 1 that is stopped conveyance before being applied to the flexible substrate 1. It is necessary to follow the procedure of performing the heating process which makes it contact with and generate | occur | produces the saddle-like displacement by thermal expansion. In the first embodiment of the present invention, in the holding method of the flexible substrate 1 in FIG. 3A, heating is performed while applying a transport tension of 30N to 100N.

図4(A)〜(D)においては、図1及び図3(A)と同様に、成膜装置100や保持及び引張機構部12A,12B,12C,12Dが配置構成されている。
図4(A)は、可撓性基板1が成膜室10に搬送され、張力を与えながら停止した状態を示している。この状態において、第1〜第4の保持及び引張機構部12A〜12Dを構成する保持部12A1〜12D1と引張機構部12A2〜12D2は、可撓性基板1から離間して配置されている。
この状態で可撓性基板1の裏面の非成膜面に、加熱ヒータ8を内蔵した接地電極4を押し当て、図4(B)に示すように、接触させて加熱する。この加熱により、可撓性基板1は熱膨張して伸びが生じ、当該可撓性基板1の幅方向には、伸びを引っ張る力が作用されておらず、図4(B)に示すように、皺13が発生する。この状態において、第1〜第4の保持及び引張機構部12A〜12Dを構成する引張機構部12A2〜12D2は、可撓性基板1に接触して配置されている。
4A to 4D, the film forming apparatus 100 and the holding and pulling mechanism sections 12A, 12B, 12C, and 12D are arranged and configured as in FIGS. 1 and 3A.
FIG. 4A shows a state where the flexible substrate 1 is transported to the film formation chamber 10 and stopped while applying tension. In this state, the holding portions 12A1 to 12D1 and the pulling mechanism portions 12A2 to 12D2 constituting the first to fourth holding and pulling mechanism portions 12A to 12D are arranged apart from the flexible substrate 1.
In this state, the ground electrode 4 incorporating the heater 8 is pressed against the non-film-forming surface on the back surface of the flexible substrate 1, and is heated by contact as shown in FIG. By this heating, the flexible substrate 1 expands due to thermal expansion, and no force pulling the extension is applied in the width direction of the flexible substrate 1, as shown in FIG. , Soot 13 is generated. In this state, the tension mechanism portions 12A2 to 12D2 constituting the first to fourth holding and tension mechanism portions 12A to 12D are arranged in contact with the flexible substrate 1.

この発生した皺13を伸ばすため、図4(C)に示すように、可撓性基板1の幅端を第1〜第4の保持部12A1,12B1,12C1,12D1により挟持し、最終的には図4(D)に示すように、第2の引張機構部12C2、第3の引張機構部12B2、第4の引張機構部12D2により幅方向(矢印Z方向)の引張り力を与えて、可撓性基板1の幅方向に発生した皺13を伸ばし、膜厚の均一性が良好な成膜形成を可能とする。   In order to extend the generated collar 13, as shown in FIG. 4C, the width end of the flexible substrate 1 is sandwiched by the first to fourth holding portions 12A1, 12B1, 12C1, and 12D1, and finally As shown in FIG. 4 (D), the second tension mechanism 12C2, the third tension mechanism 12B2, and the fourth tension mechanism 12D2 can be applied by applying a tensile force in the width direction (arrow Z direction). The wrinkles 13 generated in the width direction of the flexible substrate 1 are extended to enable film formation with good film thickness uniformity.

なお、本発明の第1実施形態において、第1の保持及び引張機構部12Aは、第1の保持部12A1が可撓性基板1を挟持した状態で第1の引張機構部12A2が作動して引っ張ったりせず固定としているが、他の保持及び引張機構部12B〜12Dの引張機構部、すなわち第2の引張機構部12C2、第3の引張機構部12B2、第4の引張機構部12D2との引張り力とバランスを取ることにより、第1の引張機構部12A2に引張り力を与えることは可能である。   In the first embodiment of the present invention, the first holding and pulling mechanism portion 12A is operated when the first pulling mechanism portion 12A2 is operated with the first holding portion 12A1 sandwiching the flexible substrate 1. Although it is fixed without being pulled, it is fixed with other holding and pulling mechanism portions 12B to 12D, that is, with the second pulling mechanism portion 12C2, the third pulling mechanism portion 12B2, and the fourth pulling mechanism portion 12D2. By taking a balance with the tensile force, it is possible to apply a tensile force to the first tensile mechanism portion 12A2.

このような手順を踏まずに、引張り工程を実施した後、加熱した場合は、可撓性基板1に与えている引張り荷重に沿う皺13が発生することになり、皺状の変位を抑える効果は得られない。   When heating is performed after performing the pulling step without following such a procedure, the scissors 13 along the tensile load applied to the flexible substrate 1 are generated, and the effect of suppressing the scissor-like displacement is generated. Cannot be obtained.

また、可撓性基板1を垂直の状態、例えば、第1の保持及び引張機構部12Aと第3の保持及び引張機構部12Bを上側に配置し、第2の保持及び引張機構部12Cと第4の保持及び引張機構部12Dを下側に配置して、垂直に搬送した場合は、可撓性基板1の自重による垂れ下がりが生じて基板自体の形状強度により下部で変形が拘束され、可撓性基板1の上部端部は手前に倒れが生じる。
この倒れは、可撓性基板1の4点の挟持点、すなわち第1の保持部12A1、第2の保持部12C1、第3の保持部12B1、第4の保持部12D1のうち、固定点を1点配置する場合は下部に設置し(例えば、第2の保持部12C1を垂直の下側に設置する)、他の3点の挟持点すなわち第1の引張機構部12A2、第3の引張機構部12B2、第4の引張機構部12D2の、引張り力及び引張り方向の釣り合いを取り、皺13の伸ばし張力を調整して、上部の倒れを修正した皺13の伸ばしを行うことが可能である。
Further, the flexible substrate 1 is placed in a vertical state, for example, the first holding and pulling mechanism portion 12A and the third holding and pulling mechanism portion 12B are arranged on the upper side, and the second holding and pulling mechanism portion 12C and 4 is arranged on the lower side and conveyed vertically, the flexible substrate 1 hangs down due to its own weight, and the deformation of the substrate itself is constrained by the shape strength of the flexible substrate 1. The upper end portion of the conductive substrate 1 falls forward.
This collapse is caused by the four holding points of the flexible substrate 1, that is, among the first holding portion 12A1, the second holding portion 12C1, the third holding portion 12B1, and the fourth holding portion 12D1. When one point is arranged, it is installed in the lower part (for example, the second holding part 12C1 is installed on the lower side in the vertical direction), and the other three holding points, that is, the first tension mechanism part 12A2 and the third tension mechanism. It is possible to stretch the ridge 13 with the upper portion being corrected by adjusting the stretching tension of the ridge 13 by balancing the tensile force and the tensile direction of the portion 12B2 and the fourth tension mechanism portion 12D2.

したがって、本発明の第1実施形態の製造方法及び製造装置によれば、皺状変位の計測及び皺伸ばしを行っているから、可撓性基板1の大型化のため、加熱による可撓性基板1の熱膨張に起因して伸縮量が増加しても、2個(第3及び第4)の保持及び引張機構部12B,12Dの引張機構部12B2,12D2により、可撓性基板1の幅端に幅方向(矢印Z方向)の張力を負荷することで張力負荷の不可能な位置が存在しないことになり、平面性の向上を図ることができて、可撓性基板1の熱膨張による伸びが延伸可能となる。これにより、可撓性基板1の熱膨張による伸びによって発生していた当該可撓性基板1の緩みが抑制され、当該可撓性基板1に発生していた皺状の変位を抑えることができる。また、可撓性基板1の幅方向に発生した皺13を伸ばすことにより、膜厚の均一性が良好な成膜を形成することができる。   Therefore, according to the manufacturing method and the manufacturing apparatus of the first embodiment of the present invention, the hook-shaped displacement is measured and the hook is stretched, so that the flexible board 1 is heated to increase the size of the flexible board 1. Even if the amount of expansion and contraction increases due to the thermal expansion of 1, the width of the flexible substrate 1 is maintained by the two holding mechanisms (third and fourth) and the pulling mechanism portions 12B2 and 12D2 of the pulling mechanism portions 12B and 12D. By applying tension in the width direction (arrow Z direction) to the end, there is no position where tension load is impossible, and planarity can be improved, and thermal expansion of the flexible substrate 1 can be achieved. The elongation becomes stretchable. Thereby, the looseness of the flexible substrate 1 that has occurred due to the expansion due to the thermal expansion of the flexible substrate 1 is suppressed, and the saddle-like displacement that has occurred in the flexible substrate 1 can be suppressed. . Further, by extending the ridge 13 generated in the width direction of the flexible substrate 1, it is possible to form a film with good film thickness uniformity.

図5は、1m幅の可撓性基板1を用い、第1実施形態の基板表面の皺状変位と上記比較例の基板表面の皺状変位とを比較した線図である。すなわち、図5(A)は、第1実施形態における可撓性基板1の皺状変位の実測値、図5(B)は、比較例における可撓性基板1の皺状変位の実測値である。
図5から明らかなように、(A)で示す本発明の第1実施形態においては、前述の方法を行ったことにより、(B)で示す比較例に比べて可撓性基板1の皺状変位が大幅に減少し、小さな変位に収まっていることが分かる。
FIG. 5 is a diagram comparing the saddle-like displacement of the substrate surface of the first embodiment and the saddle-like displacement of the substrate surface of the comparative example using the flexible substrate 1 having a width of 1 m. 5A is an actual measurement value of the saddle-like displacement of the flexible substrate 1 in the first embodiment, and FIG. 5B is an actual measurement value of the saddle-like displacement of the flexible substrate 1 in the comparative example. is there.
As apparent from FIG. 5, in the first embodiment of the present invention shown in FIG. 5A, the flexible substrate 1 has a bowl-like shape as compared with the comparative example shown in FIG. It can be seen that the displacement is greatly reduced and is within a small displacement.

[第2実施形態]
図6は、本発明の第2実施形態における可撓性基板の保持方式を示す平面配置図である。
この第2実施形態においては、可撓性基板1の第2の保持及び引張機構部12Cと第4の保持及び引張機構部12Dを構成する、第2の引張機構部12C2と第4の引張機構部12D2を上記第1実施形態と同様に外向きに対称に配置している。また、可撓性基板1の第1の保持及び引張機構部12Aと第3の保持及び引張機構部12Bを構成する、第1の引張機構部12A2と第3の引張機構部12B2の引張り荷重の作用方向を、可撓性基板1の幅方向線1cを基準に対称に配置して、該幅方向線1cに対称な逆方向に作用させている。すなわち、第3の引張機構部12B2は、可撓性基板1の搬送方向(矢印X方向)またはやや垂直方向に角度αを付けて、可撓性基板1を保持して引っ張るとともに、第1の引張機構部12A2は、可撓性基板1の搬送方向(矢印X方向)と逆方向またはやや垂直方向に角度αを付けて、可撓性基板1を保持して引っ張っている。その他の構成及び配置は、上記第1実施形態と同様である。
このように、第1〜第4の保持及び引張機構部12A,12B,12C,12Dを遊動的に配置すれば、保持及び引張機構部の固定部が無くなるため、可撓性基板1の配置に関しては慎重な張力の釣り合いを要求するが、高い引張り荷重の延伸効果が得られることになる。その他の作用効果は、上記第1実施形態と同様である。
[Second Embodiment]
FIG. 6 is a plan layout view showing a flexible substrate holding method according to the second embodiment of the present invention.
In the second embodiment, the second tension mechanism 12C2 and the fourth tension mechanism constituting the second retention and tension mechanism 12C and the fourth retention and tension mechanism 12D of the flexible substrate 1 are provided. The parts 12D2 are symmetrically arranged outward as in the first embodiment. Further, the tensile load of the first tension mechanism portion 12A2 and the third tension mechanism portion 12B2 constituting the first holding and tension mechanism portion 12A and the third holding and tension mechanism portion 12B of the flexible substrate 1 is determined. The action direction is arranged symmetrically with respect to the width direction line 1c of the flexible substrate 1, and acts in the opposite direction symmetrical to the width direction line 1c. That is, the third pulling mechanism portion 12B2 holds and pulls the flexible substrate 1 with an angle α in the conveyance direction (arrow X direction) of the flexible substrate 1 or in a slightly vertical direction. The pulling mechanism portion 12A2 holds and pulls the flexible substrate 1 with an angle α in the direction opposite to or slightly perpendicular to the conveyance direction (arrow X direction) of the flexible substrate 1. Other configurations and arrangements are the same as those in the first embodiment.
As described above, if the first to fourth holding and pulling mechanism portions 12A, 12B, 12C, and 12D are arranged in a floating manner, the holding and pulling mechanism portions are not fixed. Requires a careful balance of tension, but a stretch effect with a high tensile load can be obtained. Other functions and effects are the same as those of the first embodiment.

また、可撓性基板1を垂直の状態で搬送した場合の倒れについても同様であり、可撓性基板1の4点の挟持点のうち、1点を固定点として下部に設置し、他の3点の挟持点の引張り力及び引張り方向の釣り合いを取り、皺13の伸ばし張力を調整して、上部の倒れを修正した皺13の伸ばしを行うことができる。   The same applies to the fall when the flexible substrate 1 is transported in a vertical state. Of the four holding points of the flexible substrate 1, one point is set as a fixed point at the lower part, and the other The tension of the three clamping points and the balance in the direction of the tension can be balanced, and the tension of the collar 13 can be adjusted to extend the collar 13 with the upper tilt corrected.

以上、本発明の実施の形態につき述べたが、本発明は既述の実施の形態に限定されるものではなく、本発明の技術的思想に基づいて各種の変更及び変形が可能である。   While the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various changes and modifications can be made based on the technical idea of the present invention.

1 可撓性基板
2a 巻出しロール
2b 巻取りロール
3 高周波電極
3a 高周波電源
4 接地電極
5,6 押さえ枠
8 加熱ヒータ
10 成膜室
12A 第1の保持及び引張機構部
12B 第3の保持及び引張機構部
12C 第2の保持及び引張機構部
12D 第4の保持及び引張機構部
12A1 第1の保持部
12B1 第3の保持部
12C1 第2の保持部
12D1 第4の保持部
12A2 第1の引張機構部
12B2 第3の引張機構部
12C2 第2の引張機構部
12D2 第4の引張機構部
100 成膜装置
X 可撓性基板の運動方向
DESCRIPTION OF SYMBOLS 1 Flexible board | substrate 2a Unwinding roll 2b Winding roll 3 High frequency electrode 3a High frequency power supply 4 Ground electrode 5,6 Holding frame 8 Heater 10 Deposition chamber 12A 1st holding | maintenance and tension mechanism part 12B 3rd holding | maintenance and tension | tensile_strength Mechanism part 12C Second holding and tensioning mechanism part 12D Fourth holding and tensioning mechanism part 12A1 First holding part 12B1 Third holding part 12C1 Second holding part 12D1 Fourth holding part 12A2 First tensioning mechanism Part 12B2 Third tension mechanism part 12C2 Second tension mechanism part 12D2 Fourth tension mechanism part
100 Deposition apparatus X Direction of movement of flexible substrate

Claims (7)

可撓性基板を巻装した巻出しロールと前記可撓性基板を巻取る巻取りロールとの間で前記可撓性基板の搬送途中に設置される成膜室と、前記成膜室内において内部に加熱ヒータを有する接地電極と、前記成膜室内において高周波電源に接続される高周波電極とを備え、前記接地電極と前記高周波電極との間に前記可撓性基板を走行させて前記成膜室内で前記可撓性基板上に薄膜を成膜する薄膜光電変換素子の製造方法において、
前記可撓性基板の搬送方向に対し前記接地電極の両側に、前記可撓性基板の搬送方向と直交する前記可撓性基板の幅方向の上部一端部を挟持する第1保持及び引張機構部と、
前記可撓性基板の幅方向の下部一端部を挟持する第2保持及び引張機構部と、
前記第1保持及び引張機構部に対向した前記可撓性基板の幅方向他端部を挟持する第3保持及び引張機構部と、
前記第2保持及び引張機構部に対向した前記可撓性基板の幅方向他端部を挟持する第4保持及び引張機構部と、をそれぞれ配置し、
前記可撓性基板の搬送を停止させ、張力を与えながら、前記可撓性基板の裏面に前記接地電極を接触させて加熱し、
前記第1保持及び引張機構部と、前記第2保持及び引張機構部と、前記第3保持及び引張機構部と、前記第4保持及び引張機構部とにより前記可撓性基板の両端部近傍を挟持し、
前記第1保持及び引張機構部、前記第2保持及び引張機構部、前記第3保持及び引張機構部、前記第4保持及び引張機構部のいずれか1点を固定点とし、
この固定点と搬送方向に対向する部位に配置された前記保持及び引張機構部が前記可撓性基板の搬送方向と平行ないし一定角度以内になるように保持して引っ張り、他の前記保持及び引張機構部が互いの対向間の距離を広げる方向に可動して、前記可撓性基板を引っ張り、延伸しながら成膜することを特徴とする薄膜光電変換素子の製造方法。
A film forming chamber installed in the middle of transporting the flexible substrate between a winding roll wound with the flexible substrate and a winding roll winding the flexible substrate; And a high-frequency electrode connected to a high-frequency power source in the film-forming chamber, and the flexible substrate is allowed to travel between the ground electrode and the high-frequency electrode. In the method of manufacturing a thin film photoelectric conversion element in which a thin film is formed on the flexible substrate,
A first holding and pulling mechanism portion that sandwiches upper end portions in the width direction of the flexible substrate perpendicular to the conveyance direction of the flexible substrate on both sides of the ground electrode with respect to the conveyance direction of the flexible substrate. When,
A second holding and pulling mechanism portion for sandwiching a lower end portion in the width direction of the flexible substrate;
A third holding and pulling mechanism portion for sandwiching the other end in the width direction of the flexible substrate facing the first holding and pulling mechanism portion;
A fourth holding and pulling mechanism portion that sandwiches the other end in the width direction of the flexible substrate facing the second holding and pulling mechanism portion, respectively.
While stopping the conveyance of the flexible substrate and applying tension, the ground electrode is brought into contact with the back surface of the flexible substrate and heated,
The first holding and pulling mechanism portion, the second holding and pulling mechanism portion, the third holding and pulling mechanism portion, and the fourth holding and pulling mechanism portion near the both ends of the flexible substrate. Pinching,
One point of the first holding and pulling mechanism part, the second holding and pulling mechanism part, the third holding and pulling mechanism part, the fourth holding and pulling mechanism part is a fixed point,
The holding and pulling mechanism portion disposed at a portion facing the fixing point in the transport direction is held and pulled so as to be parallel to or within a certain angle with respect to the transport direction of the flexible substrate, and the other holding and pulling is performed. A method of manufacturing a thin film photoelectric conversion element, wherein the mechanism part moves in a direction to increase the distance between the opposing parts, and the flexible substrate is pulled and stretched to form a film.
前記可撓性基板の対向した幅方向端部を挟持する2つの前記保持及び引張機構部のいずれかを固定とし、他の前記保持及び引張機構部は互いの対向間の距離を広げる方向に可動して、前記可撓性基板を引っ張り、延伸しながら成膜することを特徴とする請求項1に記載の薄膜光電変換素子の製造方法。   One of the two holding and pulling mechanism portions that sandwich the opposing widthwise end portions of the flexible substrate is fixed, and the other holding and pulling mechanism portions are movable in a direction that increases the distance between the facing portions. The thin film photoelectric conversion element manufacturing method according to claim 1, wherein the film is formed while the flexible substrate is pulled and stretched. 可撓性基板を巻装した巻出しロールと前記可撓性基板を巻取る巻取りロールとの間で前記可撓性基板の搬送途中に設置される成膜室と、前記成膜室内において内部に加熱ヒータを有する接地電極と、前記成膜室内において高周波電源に接続される高周波電極とを備え、前記接地電極と前記高周波電極との間に前記可撓性基板を走行させて前記成膜室内で前記可撓性基板上に薄膜を成膜する薄膜光電変換素子の製造方法において、
前記可撓性基板の搬送方向に対し前記接地電極の両側に、前記可撓性基板の搬送方向と直交する前記可撓性基板の幅方向の上部一端部を挟持する第1保持及び引張機構部と、
前記可撓性基板の幅方向の下部一端部を挟持する第2保持及び引張機構部と、
前記第1保持及び引張機構部に対向した前記可撓性基板の幅方向他端部を挟持する第3保持及び引張機構部と、
前記第2保持及び引張機構部に対向した前記可撓性基板の幅方向他端部を挟持する第4保持及び引張機構部と、をそれぞれ配置し、
前記可撓性基板の搬送を停止させ、張力を与えながら、前記可撓性基板の裏面に前記接地電極を接触させて加熱し、
前記第1保持及び引張機構部と、前記第2保持及び引張機構部と、前記第3保持及び引張機構部と、前記第4保持及び引張機構部とにより前記可撓性基板の両端部近傍を挟持し、
前記第1保持及び引張機構部、前記第2保持及び引張機構部、前記第3保持及び引張機構部、前記第4保持及び引張機構部の4点が前記可撓性基板の搬送方向と平行ないし一定角度以内に保持し、前記搬送方向と対向する前記保持及び引張機構部間の距離を広げる方向に可動して、前記可撓性基板を引っ張り、延伸しながら成膜することを特徴とする薄膜光電変換素子の製造方法。
A film forming chamber installed in the middle of transporting the flexible substrate between a winding roll wound with the flexible substrate and a winding roll winding the flexible substrate; And a high-frequency electrode connected to a high-frequency power source in the film-forming chamber, and the flexible substrate is allowed to travel between the ground electrode and the high-frequency electrode. In the method of manufacturing a thin film photoelectric conversion element in which a thin film is formed on the flexible substrate,
A first holding and pulling mechanism portion that sandwiches upper end portions in the width direction of the flexible substrate perpendicular to the conveyance direction of the flexible substrate on both sides of the ground electrode with respect to the conveyance direction of the flexible substrate. When,
A second holding and pulling mechanism portion for sandwiching a lower end portion in the width direction of the flexible substrate;
A third holding and pulling mechanism portion for sandwiching the other end in the width direction of the flexible substrate facing the first holding and pulling mechanism portion;
A fourth holding and pulling mechanism portion that sandwiches the other end in the width direction of the flexible substrate facing the second holding and pulling mechanism portion, respectively.
While stopping the conveyance of the flexible substrate and applying tension, the ground electrode is brought into contact with the back surface of the flexible substrate and heated,
The first holding and pulling mechanism portion, the second holding and pulling mechanism portion, the third holding and pulling mechanism portion, and the fourth holding and pulling mechanism portion near the both ends of the flexible substrate. Pinching,
The four points of the first holding and pulling mechanism unit, the second holding and pulling mechanism unit, the third holding and pulling mechanism unit, and the fourth holding and pulling mechanism unit are parallel to the conveyance direction of the flexible substrate. A thin film characterized in that it is held within a certain angle and is moved in a direction to increase the distance between the holding and tensioning mechanism portions facing the transport direction, and the flexible substrate is pulled and formed while being stretched. A method for producing a photoelectric conversion element.
前記接地電極の前記可撓性基板の搬送方向両側に配置した、前記第1保持及び引張機構部、前記第2保持及び引張機構部、前記第3保持及び引張機構部、第4保持及び引張機構部の搬送方向に沿ったいずれかの2点を搬送方向と逆方向に引っ張り、他の前記保持及び引張機構部の2点は互いの対向間距離を広げる方向に可動して、前記可撓性基板を引っ張り、延伸しながら成膜する特徴とする請求項3に記載の薄膜光電変換素子の製造方法。   The first holding and pulling mechanism unit, the second holding and pulling mechanism unit, the third holding and pulling mechanism unit, the fourth holding and pulling mechanism disposed on both sides of the ground electrode in the conveyance direction of the flexible substrate. Pull any two points along the conveying direction of the part in the direction opposite to the conveying direction, and the other two points of the holding and pulling mechanism part move in a direction to increase the distance between the opposing parts, and the flexibility The method for producing a thin film photoelectric conversion element according to claim 3, wherein the film is formed while pulling and stretching the substrate. 前記第1保持及び引張機構部、前記第2保持及び引張機構部、前記第3保持及び引張機構部、第4保持及び引張機構部の搬送方向に沿ったいずれかの2点を搬送方向に平行ないし一定角度以内になるように保持して引っ張ることを特徴とする請求項4に記載の薄膜光電変換素子の製造方法。   Two points along the transport direction of the first holding and pulling mechanism unit, the second holding and pulling mechanism unit, the third holding and pulling mechanism unit, and the fourth holding and pulling mechanism unit are parallel to the transport direction. The method for producing a thin film photoelectric conversion element according to claim 4, wherein the thin film photoelectric conversion element is held and pulled so as to be within a certain angle. 前記第1保持及び引張機構部と前記第3保持及び引張機構部を上側に配置し、前記第2保持及び引張機構部と前記第4保持及び引張機構部を下側に配置した前記可撓性基板の垂直配置状態において、下側に配置した前記第2保持及び引張機構部または前記第4保持及び引張機構部の1点を固定点とし、他の前記保持及び引張機構部の引張り力及び引張り方向の釣り合いから、皺伸ばし張力を調整することを特徴とする請求項1または3に記載の薄膜光電変換素子の製造方法。   The first holding and pulling mechanism part and the third holding and pulling mechanism part are arranged on the upper side, and the second holding and pulling mechanism part and the fourth holding and pulling mechanism part are arranged on the lower side. In the vertical arrangement state of the substrate, one point of the second holding and pulling mechanism portion or the fourth holding and pulling mechanism portion arranged on the lower side is a fixing point, and the pulling force and tension of the other holding and pulling mechanism portions are the same. The method for producing a thin film photoelectric conversion element according to claim 1, wherein the tension for stretching is adjusted from the balance of directions. 可撓性基板を巻装した巻出しロールと前記可撓性基板を巻取る巻取りロールとの間で前記可撓性基板の搬送途中に設置される成膜室と、前記成膜室内において内部に加熱ヒータを有する接地電極と、前記成膜室内において高周波電源に接続される高周波電極とを備え、前記接地電極と前記高周波電極との間に前記可撓性基板を走行させて前記成膜室内で前記可撓性基板上に薄膜を成膜する薄膜光電変換素子の製造装置において、
前記可撓性基板を走行及び停止する際に、前記可撓性基板に張力を与える張力制御手段と、
前記可撓性基板の搬送方向に対し前記接地電極の両側に、前記可撓性基板の搬送方向と直交する前記可撓性基板の幅方向の上部一端部を挟持する第1保持及び引張機構部と、
前記可撓性基板の幅方向の下部一端部を挟持する第2保持及び引張機構部と、
前記第1保持及び引張機構部に対向した前記可撓性基板の幅方向他端部を挟持する第3保持及び引張機構部と、
前記第2保持及び引張機構部に対向した前記可撓性基板の幅方向他端部を挟持する第4保持及び引張機構部とをそれぞれ配置し、
前記可撓性基板の搬送を停止した状態で、前記張力制御手段により張力を与えながら、前記可撓性基板の裏面に前記接地電極を接触させて加熱し、前記第1保持及び引張機構部と、前記第2保持及び引張機構部と、前記第3保持及び引張機構部と、前記第4保持及び引張機構部とにより前記可撓性基板の両端部近傍を挟持するとともに、前記第1保持及び引張機構部、前記第2保持及び引張機構部、前記第3保持及び引張機構部、前記第4保持及び引張機構部を可動することにより、互いの対向間の距離を広げるように前記可撓性基板を引っ張り、延伸しながら成膜するように構成したことを特徴とする薄膜光電変換素子の製造装置。
A film forming chamber installed in the middle of transporting the flexible substrate between a winding roll wound with the flexible substrate and a winding roll winding the flexible substrate; And a high-frequency electrode connected to a high-frequency power source in the film-forming chamber, and the flexible substrate is allowed to travel between the ground electrode and the high-frequency electrode. In the apparatus for manufacturing a thin film photoelectric conversion element for forming a thin film on the flexible substrate,
Tension control means for applying tension to the flexible substrate when the flexible substrate is run and stopped;
A first holding and pulling mechanism portion that sandwiches upper end portions in the width direction of the flexible substrate perpendicular to the conveyance direction of the flexible substrate on both sides of the ground electrode with respect to the conveyance direction of the flexible substrate. When,
A second holding and pulling mechanism portion for sandwiching a lower end portion in the width direction of the flexible substrate;
A third holding and pulling mechanism portion for sandwiching the other end in the width direction of the flexible substrate facing the first holding and pulling mechanism portion;
A fourth holding and pulling mechanism part for holding the other end in the width direction of the flexible substrate facing the second holding and pulling mechanism part, respectively;
In a state where conveyance of the flexible substrate is stopped, while applying tension by the tension control means, the ground electrode is brought into contact with the back surface of the flexible substrate and heated, and the first holding and pulling mechanism unit and The second holding and pulling mechanism portion, the third holding and pulling mechanism portion, and the fourth holding and pulling mechanism portion sandwich the vicinity of both ends of the flexible substrate, and the first holding and By moving the pulling mechanism part, the second holding and pulling mechanism part, the third holding and pulling mechanism part, and the fourth holding and pulling mechanism part, the flexibility so as to widen the distance between the opposing surfaces. An apparatus for manufacturing a thin film photoelectric conversion element, wherein a film is formed while a substrate is pulled and stretched.
JP2011005844A 2011-01-14 2011-01-14 Manufacturing method and manufacturing apparatus of thin film photoelectric conversion element, and deposit apparatus Withdrawn JP2012146912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011005844A JP2012146912A (en) 2011-01-14 2011-01-14 Manufacturing method and manufacturing apparatus of thin film photoelectric conversion element, and deposit apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011005844A JP2012146912A (en) 2011-01-14 2011-01-14 Manufacturing method and manufacturing apparatus of thin film photoelectric conversion element, and deposit apparatus

Publications (1)

Publication Number Publication Date
JP2012146912A true JP2012146912A (en) 2012-08-02

Family

ID=46790163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011005844A Withdrawn JP2012146912A (en) 2011-01-14 2011-01-14 Manufacturing method and manufacturing apparatus of thin film photoelectric conversion element, and deposit apparatus

Country Status (1)

Country Link
JP (1) JP2012146912A (en)

Similar Documents

Publication Publication Date Title
JP4841023B2 (en) Film forming apparatus and method for manufacturing solar cell
WO2010073955A1 (en) Flexible substrate processing device
JP2017502172A (en) Substrate spreading device for vacuum processing apparatus, vacuum processing apparatus having substrate spreading device, and method of operating the same
KR20150022782A (en) Rolled film formation device
JP2013049876A (en) Method and apparatus for treating long glass film
JP5385178B2 (en) Flexible film transport apparatus and barrier film manufacturing method
JP2008031505A (en) Film deposition apparatus and film deposition method
JP2009057632A (en) Apparatus for manufacturing thin-film laminated member
EP2466646A1 (en) Apparatus for manufacturing thin-film laminated body
WO2011016471A1 (en) Apparatus for producing a thin-film lamination
JP2012146912A (en) Manufacturing method and manufacturing apparatus of thin film photoelectric conversion element, and deposit apparatus
JP2000261015A (en) Solar battery film-forming apparatus
CN110629191A (en) Graphene film roll-to-roll production device and method
JP3560134B2 (en) Thin-film semiconductor manufacturing equipment
JP2012146818A (en) Thin film manufacturing method
WO2010032530A1 (en) Thin film structural body and method for manufacturing the same
CN211394617U (en) Graphene film roll-to-roll production device
JP5028044B2 (en) Manufacturing method of semiconductor thin film
JP6278241B2 (en) Manufacturing method of glass substrate with film
JP5315228B2 (en) Film forming apparatus and method for manufacturing solar cell
JP2001007367A (en) Method and device for manufacturing film solar cell
JP4257586B2 (en) Substrate processing method
JP2006045593A (en) Substrate treatment device and substrate treatment method
JP5169068B2 (en) Thin film solar cell manufacturing equipment
JP2010165818A (en) Method of manufacturing thin film photoelectric conversion element, and film-forming apparatus

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140401