JP2012146789A - Rare-earth magnet - Google Patents

Rare-earth magnet Download PDF

Info

Publication number
JP2012146789A
JP2012146789A JP2011003372A JP2011003372A JP2012146789A JP 2012146789 A JP2012146789 A JP 2012146789A JP 2011003372 A JP2011003372 A JP 2011003372A JP 2011003372 A JP2011003372 A JP 2011003372A JP 2012146789 A JP2012146789 A JP 2012146789A
Authority
JP
Japan
Prior art keywords
rare earth
earth magnet
bond
distance
crystal structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011003372A
Other languages
Japanese (ja)
Other versions
JP5752425B2 (en
Inventor
Akira Nanbu
英 南部
Hiroyuki Suzuki
啓幸 鈴木
Matahiro Komuro
又洋 小室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011003372A priority Critical patent/JP5752425B2/en
Publication of JP2012146789A publication Critical patent/JP2012146789A/en
Application granted granted Critical
Publication of JP5752425B2 publication Critical patent/JP5752425B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic material for a rare-earth magnet in which the magnetic characteristics of the rare-earth magnet are enhanced without increasing the usage of rare elements.SOLUTION: In the magnetic material for a rare-earth magnet, a peak corresponding to Sm-Fe bond is given to the position of 0.295-0.325 nm on a radial distribution function, as a result of EXAFS measurement and analysis, by making an F element intrude substantially to the middle of the longer bond distance out of an Fe-Fe bond or an Fe-Z bond of a binary system Re-Fe or a ternary system R-Fe-Z. Consequently, magnetic moment is increased, or magnetic anisotropy is modified.

Description

本発明は、希土類磁石に係り、例えば、4f遷移金属−3d遷移金属合金−非金属元素の組み合わせからなる高性能永久磁石材料の構造に関する。   The present invention relates to a rare earth magnet, for example, a structure of a high-performance permanent magnet material made of a combination of a 4f transition metal-3d transition metal alloy-nonmetallic element.

4f遷移金属−3d遷移金属合金は高性能永久磁石材料として知られている。これら高性能永久磁石の指標には、キュリー温度、磁化、磁気異方性の3要素が挙げられる。これら3要素を飛躍的に向上させる方法の1つに母相の結晶に非磁性原子を挿入させる方法が知られている。例えば、現状で最高性能を持つ永久磁石材料として4f遷移金属のNdと3d遷移金属のFeからなるNdFe14合金と非磁性元素であるホウ素の組み合わせであるNdFe14Bが知られており(非特許文献1)、その他に4f遷移金属のSmと3d遷移金属のFeからなるSmFe17に非磁性元素Nを侵入させたSmFe17(特許文献1、非特許文献4)等も知られている。 4f transition metal-3d transition metal alloys are known as high performance permanent magnet materials. These high performance permanent magnet indicators include three elements of Curie temperature, magnetization, and magnetic anisotropy. As one of the methods for dramatically improving these three elements, a method of inserting a nonmagnetic atom into a parent phase crystal is known. For example, Nd 2 Fe 14 B, which is a combination of Nd 2 Fe 14 alloy composed of 4d transition metal Nd and 3d transition metal Fe and boron, which is a nonmagnetic element, is known as a permanent magnet material having the highest performance at present. In addition, Sm 2 Fe 17 N 3 in which a nonmagnetic element N is penetrated into Sm 2 Fe 17 composed of Sm of 4f transition metal and Fe of 3d transition metal (Non-patent Document 1) 4) etc. are also known.

特開2008−78610号公報JP 2008-78610 A

M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto and Y. Matsuura, J. Appl. Phys. 55, 2083 (1984)M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto and Y. Matsuura, J. Appl. Phys. 55, 2083 (1984) P. Ueble, K. Hummler and M. Fahnle, Phys. Rev. B53, 3296 (1996).P. Ueble, K. Hummler and M. Fahnle, Phys. Rev. B53, 3296 (1996). J. D. Ardisson,A. I. C. Persiano, L. O. Ladeira and F. A. Batista, J. Mat Sci. Lett. 16, 1658 (1997)J. D. Ardisson, A. I. C. Persiano, L. O. Ladeira and F. A. Batista, J. Mat Sci. Lett. 16, 1658 (1997) J. M. D Coey, J. F. Lawler, H. Sun, J. E. M. Allan, J. Appl. Phys. 69, 307 (1991)J. M. D Coey, J. F. Lawler, H. Sun, J. E. M. Allan, J. Appl. Phys. 69, 307 (1991) T. W. Capehart, R. K. Mishra and F. E. Pinkerton, Appl. Phys. Lett. 58, 1395 (1991)T. W. Capehart, R. K. Mishra and F. E. Pinkerton, Appl. Phys. Lett. 58, 1395 (1991) K. Kobayashi, M. Ohmura, Y. Uoshida, M. Sagawa, J. Magn. Magn. Mater 247, 42(2002)K. Kobayashi, M. Ohmura, Y. Uoshida, M. Sagawa, J. Magn. Magn. Mater 247, 42 (2002)

既存の永久磁石材料の母相としてはNdFe14Bが最高性能を持つものとして知られているが、希少資源である希土類元素(Nd)の使用量が依然として多い。よって、これよりも希土類元素が少ない組成で、磁気特性の高い材料の開発が課題となる。母材としてNdFe14を用いるとFeに対する希土類(Nd)の組成比は原子数比で12.5%であるが、SmFe17を母材に用いると、Feに対する希土類(Sm)の組成比を10.5%にまで減ずることができる。質量比で考えた場合組成式NdFe14中のNdが27%に対し、組成式SmFe17中のSmでは24%となる。 Nd 2 Fe 14 B is known to have the highest performance as the parent phase of existing permanent magnet materials, but the amount of rare earth element (Nd) that is a rare resource is still large. Therefore, the development of a material with less rare earth elements and higher magnetic properties is a challenge. When Nd 2 Fe 14 is used as a base material, the composition ratio of rare earth (Nd) to Fe is 12.5% in terms of atomic ratio, but when Sm 2 Fe 17 is used as a base material, the composition ratio of rare earth (Sm) to Fe is increased. The composition ratio can be reduced to 10.5%. When considered in terms of mass ratio, Nd in the composition formula Nd 2 Fe 14 is 27%, whereas Sm in the composition formula Sm 2 Fe 17 is 24%.

非特許文献2ではGdFe17について計算から磁気モーメント、磁気異方性エネルギーの増加を予想しているが、キュリー点については議論していない。更に、結晶構造の安定性も議論されておらず実際に安定物質として存在できるかは不明である。 Non-Patent Document 2 predicts an increase in magnetic moment and magnetic anisotropy energy from calculation for Gd 2 Fe 17 F 3 , but does not discuss the Curie point. Furthermore, the stability of the crystal structure is not discussed, and it is unclear whether it can actually exist as a stable substance.

非特許文献3ではRFe17Fxを測定しているが、F元素の元素分析等は行われておらず、F元素の効果であるか否かは不明であり、キュリー点の上昇が最大でも約40°と低いことが課題である。 In Non-Patent Document 3, R 2 Fe 17 Fx is measured, but elemental analysis of the F element is not performed, and it is unclear whether or not it is an effect of the F element, and the rise of the Curie point is maximum. However, the problem is that it is as low as about 40 °.

そこで、本発明の目的は、希少元素の使用量を増加させることなく、希土類磁石の磁気特性を高めることである。   Accordingly, an object of the present invention is to enhance the magnetic properties of rare earth magnets without increasing the amount of rare elements used.

4f遷移金属−3d遷移金属−非磁性元素の組み合わせからなる磁性材料では、これまで非磁性元素として、ホウ素(B)、窒素(N)、炭素(C)等が使われることが多かったが、本発明では非磁性元素として、フッ素(F)を用いることを特徴とする新規強磁性材料を用いる。   In a magnetic material comprising a combination of 4f transition metal-3d transition metal-nonmagnetic element, boron (B), nitrogen (N), carbon (C), etc. have been often used as nonmagnetic elements. In the present invention, a novel ferromagnetic material characterized by using fluorine (F) as a nonmagnetic element is used.

上記の強磁性材料は、図1に示すような、ThZn17型結晶構造を有し、R‐Feの2元系またはR−Fe−Zの3元系の結晶構造内にF元素を侵入させる。EXAFS(X−ray Absorption Fine Structure)の解析結果から、F元素の侵入位置は、図1に示した9e位置であり、その位置に全てのFが入った場合の組成式はRFe17になる。 The above-mentioned ferromagnetic material has a Th 2 Zn 17 type crystal structure as shown in FIG. 1, and an F element is included in the R—Fe binary system or the R—Fe—Z ternary crystal structure. Invade. From the analysis result of EXAFS (X-ray Absorption Fine Structure), the intrusion position of the F element is the 9e position shown in FIG. 1, and the composition formula when all F is contained in the position is R 2 Fe 17 Z It becomes 3 .

本発明の構造の磁性材料を用いることにより、主相の磁性が飛躍的に改善され、磁化の増加、更に磁気異方性が改質することを特徴とする、強磁性フッ素化合物磁性材料を提供することができる。   By using a magnetic material having the structure of the present invention, there is provided a ferromagnetic fluorine compound magnetic material characterized in that the magnetism of the main phase is dramatically improved, the magnetization is increased, and the magnetic anisotropy is further modified. can do.

ThZn17型結晶構造(侵入原子ありの場合)を示す図。It shows the Th 2 Zn 17 type crystal structure (With intrusion atoms). 侵入原子無しでの4f遷移金属(Sm)と3d遷移金属(Fe)の位置関係を示す図。The figure which shows the positional relationship of 4f transition metal (Sm) and 3d transition metal (Fe) without an intrusion atom. 侵入したF原子と4f遷移金属と3d遷移金属の位置関係を示す図。The figure which shows the positional relationship of the penetrated F atom, 4f transition metal, and 3d transition metal. EXAFS測定結果を示す図。The figure which shows an EXAFS measurement result. EXAFS解析結果に基づいて算出された動径分布関数を示す図。The figure which shows the radial distribution function calculated based on the EXAFS analysis result. SmFe17とフッ素侵入SmFe17のそれぞれの磁化の磁場依存性を示す図。It shows the magnetic field dependence of the respective magnetizations of Sm 2 Fe 17 and fluorine penetration Sm 2 Fe 17.

物質の磁気的性質は結晶構造、結晶内の原子位置によって決まる。本発明においては、基本結晶構造は母材のSmFe17によって決まり、それは図1に示すようなThZn17型であり、SmとFeからなる層とFeだけからなる層が交互に積み重なった構造をしている。この基本結晶格子内にF原子が侵入している。よって、このF原子の侵入位置が決めることが重要となる。結晶構造内に侵入した原子位置を決める方法としては、単結晶X線回折が優れた方法であるが、侵入型希土類磁石においては大きな単結晶を作ることが難しく、単結晶X線回折法の適応が難しい。 The magnetic properties of a substance are determined by the crystal structure and atomic position within the crystal. In the present invention, the basic crystal structure is determined by the base material Sm 2 Fe 17 , which is a Th 2 Zn 17 type as shown in FIG. 1, in which layers composed of Sm and Fe and layers composed only of Fe are alternately stacked. Have a structure. F atoms enter the basic crystal lattice. Therefore, it is important to determine the entry position of this F atom. Single crystal X-ray diffraction is an excellent method for determining the position of an atom that has penetrated into a crystal structure. However, it is difficult to form a large single crystal in an intrusion-type rare earth magnet. Is difficult.

それに対し、X線吸収微細構造法(X−ray Absorption Fine Structure;XAFS)法は大きな結晶が必要なく、粉末しか得られないような材料にでも適応出来る利点がある。特に、元素固有の吸収端エネルギーから数100〜1000eVにわたって現れるEXAFS(Extended X−ray Absorption Fine Structure)と呼ばれる構造を解析することで目的元素近傍の原子間距離を与えることが出来る。
<測定>
XAFSの測定は、広いエネルギー領域に渡って明るいX線を試料に照射する必要があり、殆どの場合放射光施設と呼ばれる大型の加速器を光源とする測定を必要とし、日本国内では大型放射光施設SPring8等がこれに相当する。
On the other hand, the X-ray absorption fine structure method (XAFS) method has an advantage that it can be applied to a material in which only a powder is obtained without requiring a large crystal. In particular, an interatomic distance near the target element can be given by analyzing a structure called EXAFS (Extended X-ray Absorption Fine Structure) that appears over several hundred to 1000 eV from the absorption edge energy unique to the element.
<Measurement>
XAFS measurement requires that the sample be irradiated with bright X-rays over a wide energy range, and in most cases, requires measurement using a large accelerator called a synchrotron radiation facility as a light source. SPring8 or the like corresponds to this.

図4に、上記SPring8を光源に用いてSmFe17を測定したXAFS測定結果を示す。比較のために、母材となるF導入の無いSmFe17の測定結果も同時に図4に示す。
<解析>
EXAFSの解析は、図4に示した生スペクトルからバックグラウンドを取り除き、現れる周期振動構造をフーリエ変換することで行われる。更に子細な解析には、モデルを用いて計算した結果とフィッティングすることを行う。
FIG. 4 shows the XAFS measurement result of measuring Sm 2 Fe 17 F 3 using the above SPring 8 as a light source. For comparison, the measurement result of Sm 2 Fe 17 without F introduction as a base material is also shown in FIG.
<Analysis>
The analysis of EXAFS is performed by removing the background from the raw spectrum shown in FIG. 4 and Fourier transforming the appearing periodic vibration structure. For further detailed analysis, fitting with the result calculated using the model is performed.

図5に、図4に示す生スペクトルを基にしてフーリエ変換の結果得られた動径分布関数を示す。比較のために、母材となるFの侵入の無いSmFe17の測定結果も示す。フーリエ変換の結果の横軸が目的元素原子からの距離であり、ピーク位置に目的原子近傍の原子が存在すると考えられる。
<結果>
母材となるSmFe17の動径分布関数には、3Å付近に大きなピークが一本観測されている。これが、Smに一番近接したFeに由来すると考えられる。よって、このピークについては、非特許文献4、非特許文献6等で、図1に示した、結晶構造の9d位置のFeと6c位置のSm間距離に由来すると一般に了解されている。
FIG. 5 shows a radial distribution function obtained as a result of Fourier transform based on the raw spectrum shown in FIG. For comparison, a measurement result of Sm 2 Fe 17 without intrusion of F as a base material is also shown. The horizontal axis of the result of the Fourier transform is the distance from the target element atom, and it is considered that an atom near the target atom exists at the peak position.
<Result>
In the radial distribution function of Sm 2 Fe 17 as a base material, one large peak is observed near 3 °. This is considered to be derived from Fe closest to Sm. Therefore, it is generally understood that this peak is derived from the distance between the Fe at the 9d position and the Sm at the 6c position shown in FIG. 1 in Non-Patent Document 4, Non-Patent Document 6, and the like.

なお、上記の侵入位置を示す記号9dは、結晶学上で用いられるWyckoff記号と称するものであり、数字は単位格子内にある等価点の数を意味し、アルファベットはその位置における対称性の順序を示すものとする。また、6cや後述する9dなどの記号も同様な扱いをするものとする。   The symbol 9d indicating the intrusion position is referred to as a Wyckoff symbol used in crystallography, the number means the number of equivalent points in the unit cell, and the alphabet is the order of symmetry at that position. It shall be shown. Further, symbols such as 6c and 9d described later are handled in the same manner.

F侵入試料では3Å付近に加えて、2Å付近にもピークが現れている。3Å付近のピークはSm−Fe間距離に相当し、F侵入試料にのみ現れた2ÅのピークがSm−Fの結合距離に相当すると考えられる。   In the F intrusion sample, a peak appears in the vicinity of 2 て in addition to the vicinity of 3 Å. The peak near 3 ピ ー ク corresponds to the Sm-Fe distance, and the 2Å peak that appears only in the F intrusion sample is considered to correspond to the Sm-F bond distance.

EXAFSの生データのフーリエ変換では各元素の後方散乱振幅係数の違いから、結合距離は若干短めに現れることが知られており、正確な結合距離を求めるにはモデルとの逆フーリエ変換を用いたフィッティング解析が不可欠となる。フィッティング解析を行うことで正確な結合距離だけでなく、配位数、配位子の種類等も求めることが出来る。   In the Fourier transform of the raw data of EXAFS, it is known that the coupling distance appears slightly shorter due to the difference in the backscattering amplitude coefficient of each element, and in order to obtain the accurate coupling distance, the inverse Fourier transform with the model was used. Fitting analysis is essential. By performing the fitting analysis, not only the accurate bond distance but also the coordination number, the type of ligand, and the like can be obtained.

モデルを構築し、フィッティングした結果から正確に求めた結合距離は母材のSmFe17におけるSm−Fe距離が3.02Åであり、これは過去に(非特許文献4)(非特許文献5)で報告された値3.10〜3.07Åとよく一致する。同じくフィッティングによって求めたF侵入材料のSm‐Fe距離は3.11Åであり約3%ほど広がっている。 The bond distance accurately obtained from the result of constructing and fitting the model was 3.02 mm in the Sm-Fe distance in the base material Sm 2 Fe 17 , which was previously (Non-Patent Document 4) (Non-Patent Document 5) ) Is in good agreement with the value reported in 3.10 to 3.07cm. Similarly, the Sm-Fe distance of the F intrusion material obtained by fitting is 3.11 mm, which is about 3% wider.

F侵入試料のSm−F距離はフィッティングの結果から2.245Åであると求められ、同時に配位数が約3であることも分った。なお、本測定における測定精度は±5%程度であるので、Sm−F距離が0.213〜0.236nmの範囲とみなせる。従って、比較例として下記の表1に列挙した非特許文献1−3で示されたSm−R距離に対して、有意差が十分に認められる。   The Sm-F distance of the F intrusion sample was determined to be 2.245 mm from the result of fitting, and at the same time, it was found that the coordination number was about 3. Since the measurement accuracy in this measurement is about ± 5%, the Sm-F distance can be regarded as a range of 0.213 to 0.236 nm. Therefore, a significant difference is sufficiently recognized with respect to the Sm-R distance shown in Non-Patent Documents 1-3 listed in Table 1 below as a comparative example.

以上の結合距離の一覧を表1に示す。   Table 1 shows a list of the above coupling distances.

Figure 2012146789
Figure 2012146789

以上の結果、また非特許文献6に示されたSmFe173−xの解析結果からの類推から、Fの侵入位置は図1の9e位置に近いと類推される。つまり、FはSmを含む層にのみ含まれ、F侵入後の結晶格子はSmとFeとFを含む層とFeのみを含む層が交互に積み上がった構造をしている。 From the above results and the analogy from the analysis results of Sm 2 Fe 17 N 3-x shown in Non-Patent Document 6, it can be inferred that the intrusion position of F is close to the 9e position in FIG. That is, F is contained only in the layer containing Sm, and the crystal lattice after the penetration of F has a structure in which layers containing Sm, Fe and F and layers containing only Fe are alternately stacked.

Fの侵入の無いSmFe17の場合、6c位置のSmと9d位置のFeは図2のように6cを中心に、六角形を形成している。EXAFSの結果から得られたSm−Fe距離、Sm−F距離と配位数3を満足するような位置関係としては、図3に示すように9eと呼ばれる位置をFが占める構造が考えられる。
<磁化曲線(磁気異方性と磁力の改善)>
図6に25℃における母相のSmFe17とフッ素侵入SmFe17の磁化曲線の比較を示す.母相SmFe17では磁化曲線に履歴は生じておらず、磁化容易軸がab面内であることを反映している。一方、フッ素侵入SmFe17では磁化曲線に履歴が生じており、磁化容易軸がc軸方向であることが示唆されている.試料の粒径が最適化されておらず、観測された保持力は僅かであるが粒径を最適化することで顕著に保持力が増大すると考えられる。
In the case of Sm 2 Fe 17 without intrusion of F, Sm at the 6c position and Fe at the 9d position form a hexagon around 6c as shown in FIG. As a positional relationship satisfying the Sm-Fe distance, Sm-F distance and coordination number 3 obtained from the EXAFS result, a structure in which F occupies a position called 9e as shown in FIG. 3 can be considered.
<Magnetic curve (improvement of magnetic anisotropy and magnetic force)>
FIG. 6 shows a comparison of the magnetization curves of the parent phase Sm 2 Fe 17 and the fluorine-invaded Sm 2 Fe 17 F 3 at 25 ° C. In the parent phase Sm 2 Fe 17 , no history occurs in the magnetization curve, which reflects that the easy axis of magnetization is in the ab plane. On the other hand, in the fluorine intrusion Sm 2 Fe 17 F 3 , there is a history in the magnetization curve, suggesting that the easy magnetization axis is the c-axis direction. The particle size of the sample is not optimized, and the observed holding force is slight, but it is considered that the holding force is remarkably increased by optimizing the particle size.

このように、SmFe17格子にFが侵入することにより、面内異方性から1軸異方性へと磁気異方性が変化し、永久磁石材料としての可能性を示すことが確認出来た。 Thus, it is confirmed that the penetration of F into the Sm 2 Fe 17 lattice changes the magnetic anisotropy from the in-plane anisotropy to the uniaxial anisotropy and shows the possibility as a permanent magnet material. done.

なお、上述の実施の形態の説明においては、4f遷移金属としてSmを代表金属として選定したが、他の4f遷移金属についても上記母相の構成要素として適用が可能であり、また希土類であるY(イットリウム)も適用できる。   In the description of the above-described embodiment, Sm is selected as the representative metal as the 4f transition metal. However, other 4f transition metals can also be applied as the constituent elements of the parent phase, and are Y, which is a rare earth. (Yttrium) is also applicable.

また、上記実施の形態においては、R−Feの2元系を主としたが、R−Fe−Zの3元系にも適用が可能である。ここで、Rは4f遷移金属またはY(イットリウム)であり、Zは、3d遷移金属(Feを除く)またはMo、Nb、Wとする。   In the above embodiment, the R—Fe binary system is mainly used, but the present invention can also be applied to an R—Fe—Z ternary system. Here, R is a 4f transition metal or Y (yttrium), and Z is a 3d transition metal (excluding Fe) or Mo, Nb, and W.

従って、本実施の形態で示す磁性材料は、図1に示すような、ThZn17型結晶構造を有し、R‐Feの2元系またはR−Fe−Zの3元系の結晶構造内にF元素が侵入した構造になっている。そのF元素の侵入位置は、EXAFS(X−ray Absorption Fine Structure)の解析結果から、図1に示した9e位置であり、その位置に全てのFが入った場合の組成式の一般式はRFe17になる。 Therefore, the magnetic material shown in this embodiment has a Th 2 Zn 17 type crystal structure as shown in FIG. 1, and has an R—Fe binary system or an R—Fe—Z ternary crystal structure. It has a structure in which the F element has entered. The intrusion position of the F element is the 9e position shown in FIG. 1 from the analysis result of EXAFS (X-ray Absorption Fine Structure), and the general formula of the composition formula when all F is contained in the position is R 2 Fe 17 Z 3 .

従って、RFe17と置くと、Fが侵入していない場合はX=0となるので、0<X≦3の範囲とすることができる。 Therefore, when R 2 Fe 17 Z x is set, X = 0 when F does not enter, so that the range of 0 <X ≦ 3 can be obtained.

<フッ素の導入方法1>
母材のSmFe17にフッ素を導入する方法としては、フッ化アンモニウム(NHF)、酸性フッ化アンモニウム(NH4・HF)、ケイフッ化アンモニウム((NHF)SiF)、ホウフッ化アンモニウム等の熱分解・昇華が利用出来る。
いずれの場合も大気を排気後、上述した物質の熱分解・昇華によって生じるガス中でSmFe17を150〜400℃にて処理することでフッ化物強磁性体を得る。
<Fluorine introduction method 1>
As a method of introducing fluorine into the base material Sm 2 Fe 17 , ammonium fluoride (NH 4 F), acidic ammonium fluoride (NH 4 · HF), ammonium silicofluoride ((NH 4 F) 2 SiF 6 ), boron fluoride Thermal decomposition and sublimation of ammonium fluoride can be used.
In any case, after evacuating the atmosphere, a fluoride ferromagnetic material is obtained by treating Sm 2 Fe 17 at 150 to 400 ° C. in a gas generated by thermal decomposition and sublimation of the above-described substances.

<フッ素の導入方法2>
他のフッ素導入方法としては、三フッ化窒素(NF)、三フッ化ホウ素(BF)、フッ化水素(HF)等のガスフローも使用できる。具体的には、例えばフッ化カルシウム(CaF)に濃硫酸を滴下することで発生するHFガス中でSmFe17を150〜400℃にて処理することでフッ化物強磁性体を得ることができる。
<Method 2 for introducing fluorine>
As another fluorine introduction method, a gas flow of nitrogen trifluoride (NF 3 ), boron trifluoride (BF 3 ), hydrogen fluoride (HF), or the like can be used. Specifically, for example, a fluoride ferromagnetic material is obtained by treating Sm 2 Fe 17 at 150 to 400 ° C. in HF gas generated by dropping concentrated sulfuric acid onto calcium fluoride (CaF 2 ). Can do.

Claims (7)

R−Feの2元系(ここで、Rは、4f遷移元素またはYである)からなり、ThZn17型結晶構造を有し、その結晶構造の侵入位置にF元素が配置され、化学式RFe17Fx(0<x≦3)で表記されることを特徴とする希土類磁石。 It consists of a binary system of R—Fe (where R is a 4f transition element or Y), has a Th 2 Zn 17 type crystal structure, and an F element is disposed at the intrusion position of the crystal structure. A rare earth magnet represented by R 2 Fe 17 Fx (0 <x ≦ 3). 請求項1記載の希土類磁石において、
EXAFS測定(室温)により得られたデータを逆フーリエ変換により求めて得られる動径分布関数において、前記R−Fe結合の結合距離に対応するピークと、該ピーク以外にR−Fに対応するピークとを有することを特徴とする希土類磁石。
The rare earth magnet according to claim 1,
In a radial distribution function obtained by inverse Fourier transform of data obtained by EXAFS measurement (room temperature), a peak corresponding to the bond distance of the R-Fe bond, and a peak corresponding to RF other than the peak And a rare earth magnet.
請求項1または2に記載の希土類磁石において、
RがSmであり、EXAFS測定(室温)で求められるSm−Fe結合距離が0.295〜0.325nmの範囲内であり、Sm−F距離が0.213〜0.236nmの範囲内にあることを特徴とする希土類磁石。
The rare earth magnet according to claim 1 or 2,
R is Sm, the Sm-Fe bond distance obtained by EXAFS measurement (room temperature) is in the range of 0.295 to 0.325 nm, and the Sm-F distance is in the range of 0.213 to 0.236 nm. Rare earth magnet characterized by that.
請求項1記載の希土類磁石において、
前記R−Fe母相に対して、フッ化アンモニウムガス下での高温処理、あるいはフッ化物による溶液処理等を施すことにより、結晶構造の侵入位置にF元素を配置させたことを特徴とする希土類磁石。
The rare earth magnet according to claim 1,
A rare earth characterized in that the F element is arranged at the intrusion position of the crystal structure by subjecting the R-Fe matrix to high temperature treatment under ammonium fluoride gas or solution treatment with fluoride. magnet.
R−Fe−Zの3元系(ここで、Rは、4f遷移元素またはY;Zは、Feを除く3d遷移金属またはMo、Nb、Wである)からなり、ThZn17型結晶構造を有し、その結晶構造の侵入位置にF元素が配置され、化学式RFe17−yFx(0<x≦3)(0<y<17)で表記されることを特徴とする希土類磁石。 Th 2 Zn 17 type crystal structure consisting of R—Fe—Z ternary system (where R is a 4f transition element or Y; Z is a 3d transition metal other than Fe or Mo, Nb, W) F element is arranged at the intrusion position of the crystal structure, and is represented by the chemical formula R 2 Fe 17-y Z y Fx (0 <x ≦ 3) (0 <y <17) Rare earth magnet. 請求項5記載の希土類磁石において、
EXAFS測定(室温)により得られたデータを逆フーリエ変換により求めて得られる動径分布関数において、前記R−Fe結合の結合距離に対応するピークと、該ピーク以外にR−Fに対応するピークとを有することを特徴とする希土類磁石。
The rare earth magnet according to claim 5,
In a radial distribution function obtained by inverse Fourier transform of data obtained by EXAFS measurement (room temperature), a peak corresponding to the bond distance of the R-Fe bond, and a peak corresponding to RF other than the peak And a rare earth magnet.
請求項5に記載の希土類磁石において、
RがSmであり、EXAFS測定(室温)で求められるSm−Fe結合距離が0.295〜0.325nmの範囲内であり、Sm−F距離が0.213〜0.236nmの範囲内にあることを特徴とする希土類磁石。
The rare earth magnet according to claim 5,
R is Sm, the Sm-Fe bond distance obtained by EXAFS measurement (room temperature) is in the range of 0.295 to 0.325 nm, and the Sm-F distance is in the range of 0.213 to 0.236 nm. Rare earth magnet characterized by that.
JP2011003372A 2011-01-11 2011-01-11 Rare earth magnets Expired - Fee Related JP5752425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011003372A JP5752425B2 (en) 2011-01-11 2011-01-11 Rare earth magnets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011003372A JP5752425B2 (en) 2011-01-11 2011-01-11 Rare earth magnets

Publications (2)

Publication Number Publication Date
JP2012146789A true JP2012146789A (en) 2012-08-02
JP5752425B2 JP5752425B2 (en) 2015-07-22

Family

ID=46790079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011003372A Expired - Fee Related JP5752425B2 (en) 2011-01-11 2011-01-11 Rare earth magnets

Country Status (1)

Country Link
JP (1) JP5752425B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06145880A (en) * 1990-12-21 1994-05-27 Provost Fellows & Scholars Of College Of Holy & Undivided Trinity Of Queen Elizabeth Near Dublin Improved magnetic material and its manufacturing process
US5478411A (en) * 1990-12-21 1995-12-26 Provost, Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin Magnetic materials and processes for their production
JPH0913151A (en) * 1994-12-16 1997-01-14 Matsushita Electric Ind Co Ltd Rare earth-iron-nitrogen base magnetic material and its production
EP1085531A2 (en) * 1999-09-14 2001-03-21 Yingchang Yang Multielement interstitial hard magnetic material and process for producing magnetic powder and magnet using the same
JP2002256463A (en) * 2000-12-28 2002-09-11 Nippon Steel Corp Steel material superior in weather resistance
JP2008546212A (en) * 2005-06-07 2008-12-18 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Internal gettering by alloy clusters
JP2010034335A (en) * 2008-07-30 2010-02-12 Hitachi Ltd Rare-earth magnet and rotating machine using the same
US20100289366A1 (en) * 2009-05-12 2010-11-18 Hitachi, Ltd. Rare Earth Magnet and Motor Using the Same
WO2011068107A1 (en) * 2009-12-04 2011-06-09 株式会社日立製作所 Light rare earth magnet and magnetic device
JP2011114247A (en) * 2009-11-30 2011-06-09 Hitachi Ltd Ferromagnetic compound magnet
JP2011211106A (en) * 2010-03-30 2011-10-20 Hitachi Ltd Magnetic material and motor using the same

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06145880A (en) * 1990-12-21 1994-05-27 Provost Fellows & Scholars Of College Of Holy & Undivided Trinity Of Queen Elizabeth Near Dublin Improved magnetic material and its manufacturing process
US5478411A (en) * 1990-12-21 1995-12-26 Provost, Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin Magnetic materials and processes for their production
JPH0913151A (en) * 1994-12-16 1997-01-14 Matsushita Electric Ind Co Ltd Rare earth-iron-nitrogen base magnetic material and its production
EP1085531A2 (en) * 1999-09-14 2001-03-21 Yingchang Yang Multielement interstitial hard magnetic material and process for producing magnetic powder and magnet using the same
JP2001093713A (en) * 1999-09-14 2001-04-06 Peking Univ Multi-element-based rare earth-iron lattice interstitial permanent magnet material, permanent magnet composed of the material and manufacture of the material and the permanent magnet
US6419759B1 (en) * 1999-09-14 2002-07-16 Yingchang Yang Multielement interstitial hard magnetic material and process for producing magnetic powder and magnet using the same
JP2002256463A (en) * 2000-12-28 2002-09-11 Nippon Steel Corp Steel material superior in weather resistance
JP2008546212A (en) * 2005-06-07 2008-12-18 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Internal gettering by alloy clusters
JP2010034335A (en) * 2008-07-30 2010-02-12 Hitachi Ltd Rare-earth magnet and rotating machine using the same
US20100289366A1 (en) * 2009-05-12 2010-11-18 Hitachi, Ltd. Rare Earth Magnet and Motor Using the Same
JP2010267637A (en) * 2009-05-12 2010-11-25 Hitachi Ltd Rare earth magnet, and motor using the same
JP2011114247A (en) * 2009-11-30 2011-06-09 Hitachi Ltd Ferromagnetic compound magnet
WO2011068107A1 (en) * 2009-12-04 2011-06-09 株式会社日立製作所 Light rare earth magnet and magnetic device
JP2011211106A (en) * 2010-03-30 2011-10-20 Hitachi Ltd Magnetic material and motor using the same

Also Published As

Publication number Publication date
JP5752425B2 (en) 2015-07-22

Similar Documents

Publication Publication Date Title
Tietze et al. Interfacial dominated ferromagnetism in nanograined ZnO: a μSR and DFT study
Körner et al. Theoretical screening of intermetallic ThMn12-type phases for new hard-magnetic compounds with low rare earth content
Lewis et al. De magnete et meteorite: cosmically motivated materials
Schönhöbel et al. Intrinsic magnetic properties of SmFe12− xVx alloys with reduced V-concentration
Zhao et al. Large magnetic anisotropy predicted for rare-earth-free F e 16− x C o x N 2 alloys
Pandey et al. Tuning the magnetic properties and structural stabilities of the 2-17-3 magnets Sm 2 Fe 17 X 3 (X= C, N) by substituting La or Ce for Sm
Odkhuu et al. First-principles prediction of possible rare-earth free permanent magnet of tetragonal Fe Co with enhanced magnetic anisotropy and energy product through interstitial nitrogen
Guo et al. Magnetism and phase stability of R (Co, M) 7 pseudobinary intermetallics with TbCu7-type structure
Kundu et al. Complex magnetic properties associated with competing local and itinerant magnetism in Pr 2 Co 0.86 Si 2.88
Khazzan et al. Correlation between the nanocrystalline Sm (Fe, Mo) 12 and its out of equilibrium phase Sm (Fe, Mo) 10
Younsi et al. Structural and magnetic properties of nanocrystalline PrCo3− xFex
Zhang et al. Evolution of interface structure of α− F e/N d 2 Fe 14 B nanocomposites prepared by crystallization from the amorphous alloy
JP5752425B2 (en) Rare earth magnets
CN109952621B (en) Rare earth-transition metal system ferromagnetic alloy
Singh et al. Physics-informed machine-learning prediction of curie temperatures and its promise for guiding the discovery of functional magnetic materials
Yang et al. Neutron diffraction studies of permanent magnetic materials
Sewak et al. Ferromagnetism in intermetallic Hf6Co23 alloy
Sewak et al. Search for ferromagnetism in Hf2Co7: An investigation by perturbed angular correlation (PAC) spectroscopy
Liu et al. 873 K isothermal section of phase diagram for Y-Fe-Ti ternary system
Li et al. Magnetic properties of Sm 3 Fe 28.1− x Co x Mo 0.9 (x= 0, 4, 8, 1 2, 1 4, 1 6) compounds
Kulińska Perturbed Angular Correlation method in materials science
US11984243B2 (en) High performance magnets
Ohodnicki et al. Structure–Property Correlations in CoFe–SiO 2 Nanogranular Films Utilizing x-Ray Photoelectron Spectroscopy and Small-Angle Scattering Techniques
US20220285057A1 (en) High performance magnets
KATO et al. Magnetism and Electronic States of X2Co12P7 (X= Ti, Zr and Hf)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150520

R150 Certificate of patent or registration of utility model

Ref document number: 5752425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees