JP2012145507A - X-ray inspection method - Google Patents

X-ray inspection method Download PDF

Info

Publication number
JP2012145507A
JP2012145507A JP2011005354A JP2011005354A JP2012145507A JP 2012145507 A JP2012145507 A JP 2012145507A JP 2011005354 A JP2011005354 A JP 2011005354A JP 2011005354 A JP2011005354 A JP 2011005354A JP 2012145507 A JP2012145507 A JP 2012145507A
Authority
JP
Japan
Prior art keywords
ray transmission
thickness
image
calibration
transmission amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011005354A
Other languages
Japanese (ja)
Inventor
Fumio Kawahara
文雄 河原
Yoshihiro Kanematsu
佳弘 兼松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiwa eTec Co Ltd
Original Assignee
Meiwa eTec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiwa eTec Co Ltd filed Critical Meiwa eTec Co Ltd
Priority to JP2011005354A priority Critical patent/JP2012145507A/en
Publication of JP2012145507A publication Critical patent/JP2012145507A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To simply and exactly detect a defect, etc. of an inspection object without using a thick correction jig.SOLUTION: An X-ray inspection method includes steps of: irradiating a calibration object with a plurality of different known thicknesses with X-rays to measure relation between the respective thicknesses and X-ray transmission quantities of these parts; determining calibration values in the respective thicknesses so that the relation between the respective thicknesses and the X-ray transmission quantities at these parts becomes linear; obtaining an image based on X-ray transmission quantity of a normal inspection object without a defect, etc. as a master image; obtaining thickness of the inspection object at a part which the X-rays transmits from the X-ray transmission quantities of the respective parts of the master image; obtaining an image based on the X-ray transmission quantity of a usual inspection object as a test image; calculating a differential image based on differential X-ray transmission quantity which is difference of the X-ray transmission quantities between the master image and the respective parts of the test image; and calculating a calibration differential X-ray transmission quantity by multiplying the differential X-ray transmission quantities of the respective parts by the calibration value in the thickness of a master image part corresponding to positions of the respective parts of the differential image to obtain a calibration differential image based on the calculated calibration differential X-ray transmission quantity.

Description

本発明はX線検査方法に関し、特に、検査対象物の厚み変化に無関係に正確に検査対象物における欠陥等の検出を行うことが可能なX線検査方法に関する。   The present invention relates to an X-ray inspection method, and more particularly to an X-ray inspection method capable of accurately detecting defects and the like in an inspection object regardless of a change in thickness of the inspection object.

厚みxの物質をX線が透過する場合、透過するX線の線束密度(X線透過量)Iは以下の式(1)で表され、厚みxに対して指数関数的に低減する。なお式(1)中、Ioは物質に入射するX線の線束密度、μは定数である。したがって、検査対象物が厚くなると、欠陥等の存在によって検査対象物の厚みが局部的に変化してもX線透過量の変化は小さく、欠陥等の検出感度が低くなるため正確な検出ができないという問題があった。そこで、例えば特許文献1では、検査対象物に肉厚補正治具を装着して検査対象物の厚み変化による検出感度の低下を回避するようにしている。   When X-rays pass through a substance having a thickness x, the flux density (X-ray transmission amount) I of the transmitted X-rays is expressed by the following formula (1) and decreases exponentially with respect to the thickness x. In equation (1), Io is the flux density of X-rays incident on the substance, and μ is a constant. Therefore, when the inspection object becomes thick, even if the thickness of the inspection object locally changes due to the presence of a defect or the like, the change in the amount of X-ray transmission is small and the detection sensitivity of the defect or the like is low, so that accurate detection cannot be performed. There was a problem. Therefore, in Patent Document 1, for example, a thickness correction jig is attached to the inspection object to avoid a decrease in detection sensitivity due to a change in the thickness of the inspection object.

特開平8−254507JP-A-8-254507

しかし上記公報に記載の方法では、肉厚補正治具を製作してこれを検査対象物に装着する手間を要するとともに、上記公報において指摘されているように肉厚補正治具自体の欠陥等によって検査対象物の欠陥等の正確な検出が妨げられるという問題もあった。   However, in the method described in the above publication, it takes time and labor to manufacture a thickness correction jig and attach it to the inspection object, and as pointed out in the above publication, due to defects in the thickness correction jig itself. There has also been a problem that accurate detection of a defect or the like of the inspection object is hindered.

そこで、本発明はこのような課題を解決するもので、肉厚補正治具を使用することなく簡易かつ正確に検査対象物の欠陥等の検出ができるX線検査方法を提供することを目的とする。   Therefore, the present invention solves such problems, and an object of the present invention is to provide an X-ray inspection method capable of easily and accurately detecting defects or the like of an inspection object without using a thickness correction jig. To do.

上記課題を解決するために、本第1発明では、異なる複数の既知の厚みを有する較正体に対してX線を照射して各厚みとこの部分のX線透過量の関係を測定するステップと、各厚みとこの部分でのX線透過量の関係が直線状になるように前記各厚みにおける較正値を決定するステップと、検査対象物にX線を照射してこのときのX線透過量より当該X線が透過した部分の厚みを得て、当該厚みにおける前記較正値を前記X線透過量に乗じて較正X線透過量を得るステップとを備える。   In order to solve the above problems, in the first invention, a step of irradiating a calibration body having a plurality of different known thicknesses with X-rays and measuring the relationship between each thickness and the X-ray transmission amount of this portion; Determining a calibration value at each thickness so that the relationship between each thickness and the amount of X-ray transmission at this portion is linear; and irradiating the inspection object with X-rays and the amount of X-ray transmission at this time Obtaining a thickness of a portion through which the X-ray has passed, and multiplying the X-ray transmission amount by the calibration value at the thickness to obtain a calibration X-ray transmission amount.

本第1発明によれば、X線透過量に、当該X線が透過した部分の厚みに応じた較正値を乗じて較正X線透過量を得ることにより、検査対象物の厚みが厚くなると厚み変化に対する検出感度が低下するという問題を回避でき、従来のような肉厚補正治具を使用することなく簡易かつ正確に検査対象物の欠陥等の検出をすることができる。   According to the first aspect of the present invention, the X-ray transmission amount is multiplied by a calibration value corresponding to the thickness of the portion through which the X-ray is transmitted to obtain a calibration X-ray transmission amount. The problem that the detection sensitivity to the change is reduced can be avoided, and a defect or the like of the inspection object can be detected easily and accurately without using a conventional thickness correction jig.

本第2発明では、異なる複数の既知の厚みを有する較正体に対してX線を照射して各厚みとこの部分のX線透過量の関係を測定するステップと、各厚みとこの部分でのX線透過量の関係が直線状になるように前記各厚みにおける較正値を決定するステップと、欠陥等の無い正常な検査対象物のX線透過量に基づいた画像をマスタ画像として得るステップと、マスタ画像の各部のX線透過量より当該X線が透過した部分の前記検査対象物の厚みを得るステップと、通常の検査対象物のX線透過量に基づいた画像をテスト画像として得るステップと、前記マスタ画像と前記テスト画像の各部のX線透過量の差分たる差分X線透過量に基づいた差分画像を算出するステップと、前記差分画像の各部の位置に対応した前記マスタ画像部分の厚みにおける前記較正値を前記各部の差分X線透過量に乗じて較正差分X線透過量を得るステップとを備える。   In the second invention, a calibration body having a plurality of different known thicknesses is irradiated with X-rays to measure the relationship between each thickness and the X-ray transmission amount of this part, and each thickness and this part Determining a calibration value at each thickness so that the relationship between the X-ray transmission amounts is linear; obtaining an image based on the X-ray transmission amount of a normal inspection object without defects as a master image; A step of obtaining a thickness of the inspection object at a portion through which the X-ray is transmitted from an X-ray transmission amount of each part of the master image, and a step of obtaining an image based on the X-ray transmission amount of a normal inspection object as a test image Calculating a difference image based on a difference X-ray transmission amount, which is a difference between the X-ray transmission amounts of each part of the master image and the test image, and the master image portion corresponding to the position of each part of the difference image In thickness And a step of obtaining a calibration difference X-ray transmission amount by multiplying the calibration value to the difference X-ray transmission amount of the respective units.

本第2発明においては、欠陥等を生じた部分のみに生じる差分X線透過量に較正値を乗じて較正差分X線透過量を得ることによって、欠陥等の位置、大きさ、深さ(高さ)等を正確に検出することができる。   In the second aspect of the present invention, the position, size, and depth (high) of the defect and the like are obtained by multiplying the differential X-ray transmission amount generated only in the portion where the defect or the like is generated by the calibration value to obtain the calibration differential X-ray transmission amount. Etc.) can be accurately detected.

上記カッコ内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   The reference numerals in the parentheses indicate the correspondence with specific means described in the embodiments described later.

以上のように、本発明のX線検査方法によれば、肉厚補正治具を使用することなく簡易かつ正確に検査対象物の欠陥等の検出をすることができる。   As described above, according to the X-ray inspection method of the present invention, it is possible to detect a defect or the like of an inspection object simply and accurately without using a thickness correction jig.

較正体の全体斜視図である。It is a whole perspective view of a calibration body. ワーク厚とX線透過量の関係を示すグラフである。It is a graph which shows the relationship between a workpiece | work thickness and X-ray transmission amount. マスタ画像の正面図である。It is a front view of a master image. テスト画像の正面図である。It is a front view of a test image. 差分画像の正面図である。It is a front view of a difference image. 差分画像の要部の、反転信号の信号レベルを示すグラフである。It is a graph which shows the signal level of the inversion signal of the principal part of a difference image. 較正差分画像の正面図である。It is a front view of a calibration difference image. 較正差分画像の要部の、反転信号の信号レベルを示すグラフである。It is a graph which shows the signal level of the inversion signal of the principal part of a calibration difference image.

本発明方法は、検査対象物に対しX線を照射してX線透過量に応じた透過画像を得るX線撮像装置と、以下に説明する各手順の処理を行うコンピュータ装置とによって実現される。   The method of the present invention is realized by an X-ray imaging apparatus that obtains a transmission image corresponding to an X-ray transmission amount by irradiating an inspection object with X-rays, and a computer apparatus that performs processing of each procedure described below. .

最初に、図1に示すような較正体1を使用して、検査対象物(ワーク)の厚みに対するX線透過量を測定する。すなわち本実施形態における較正体1はワークと同材で形成された長尺の角型棒体で、その一側縁には例えば10mm、20mm、30mm、‥、と既知の厚みの、複数の階段部11,12,13,14,15が形成されている。なお、図1では図解を容易にするために階段部11〜15の数を実際よりも少なくしてある。このような較正体1の階段部11〜15に対してX線管の管電圧を一定にして順次X線を照射して、この時のX線透過量を測定する。   First, the X-ray transmission amount with respect to the thickness of the inspection object (workpiece) is measured using the calibration body 1 as shown in FIG. That is, the calibration body 1 in the present embodiment is a long rectangular bar formed of the same material as the workpiece, and a plurality of stairs having a known thickness such as 10 mm, 20 mm, 30 mm,. Portions 11, 12, 13, 14, and 15 are formed. In FIG. 1, the number of steps 11 to 15 is made smaller than the actual number in order to facilitate the illustration. X-rays are sequentially irradiated to the stepped portions 11 to 15 of the calibration body 1 with the tube voltage of the X-ray tube kept constant, and the amount of X-ray transmission at this time is measured.

X線透過量の測定値の一例を図2の白角印で示す。階段部(ワーク)の厚みに対するX線透過量の変化曲線mは先に式(1)で示した指数関数となるから、ワーク厚が厚くなるとその厚み変化に対するX線透過量の変化割合が小さくなり、厚み変化に他する感度が低くなる。そこで、本実施形態では、ワークの厚みとX線透過量の関係が図2の直線n状になるような各厚みにおける較正値C1,C2,C3,C4,C5,C6を決定してこれをテーブルとして記憶しておく。   An example of the measured value of the X-ray transmission amount is indicated by white square marks in FIG. Since the change curve m of the X-ray transmission amount with respect to the thickness of the staircase portion (workpiece) is the exponential function shown in the equation (1), the change rate of the X-ray transmission amount with respect to the thickness change becomes small as the workpiece thickness increases. Therefore, the sensitivity other than the thickness change is lowered. Therefore, in the present embodiment, calibration values C1, C2, C3, C4, C5, and C6 are determined for each thickness so that the relationship between the thickness of the workpiece and the amount of X-ray transmission becomes a straight line n in FIG. Store as a table.

次に、例えば図3に示すような欠陥等のないワークにX線を照射して各部のX線透過量に応じた輝度のマスタ画像Mを得る。そして、このマスタ画像Mの各部の輝度(X線透過量)より、図1の線mの関係を使用してワーク各部の厚みを算出しておく。   Next, for example, a workpiece having no defect as shown in FIG. 3 is irradiated with X-rays to obtain a master image M having a luminance corresponding to the X-ray transmission amount of each part. Then, the thickness of each part of the work is calculated from the luminance (X-ray transmission amount) of each part of the master image M using the relationship of the line m in FIG.

続いて、同種の一般のワークにX線を照射して各部のX線透過量に応じた輝度のテスト画像N(図4)を得る。本実施形態ではワーク上とその近傍に、径の異なる金属硬球を間隔をおいて複数配置してこれらを欠陥等の代わりとした。テスト画像N中のA領域の黒点が金属硬球である。   Subsequently, a general test workpiece of the same type is irradiated with X-rays to obtain a test image N (FIG. 4) having a luminance corresponding to the X-ray transmission amount of each part. In the present embodiment, a plurality of metal hard spheres having different diameters are arranged on the workpiece and in the vicinity thereof at intervals to replace these defects. The black dots in the area A in the test image N are metal hard spheres.

次のステップでは、ガウシアンフィルタ等によってそれぞれマスタ画像Mとテスト画像Nのノイズ除去を行った後、両画像M,Nの位置を一致させる。この後、両画像M,Nの差分を算出する。差分画像Eを図5に示す。差分画像Eにはテスト画像NのA領域に配設された硬球の像E1,E2,E3,E4,E5,E6のみが現れるが、硬球の像E2にはワークのエッジ部の像E21,E22が付随している。この場合の差分画像Eの、各部の輝度(差分X線透過量)を反転させた反転信号を図6に示すが、これより明らかなように、各硬球の像E1〜E6部分の反転信号F1,F2,F3,F4,F5,F6の信号レベルは、対応する硬球の径(厚み)に対応するものとはなっておらず、しかも、像E2に対応する反転信号F2にはワークエッジ部の像E21,E22による信号F21,F22が付随している。   In the next step, the noise of the master image M and the test image N is removed by a Gaussian filter or the like, and then the positions of the images M and N are matched. Thereafter, the difference between the images M and N is calculated. The difference image E is shown in FIG. In the difference image E, only hardball images E1, E2, E3, E4, E5, and E6 arranged in the area A of the test image N appear, but in the hardball image E2, images E21 and E22 of the edge portion of the work are shown. Is attached. FIG. 6 shows an inverted signal obtained by inverting the luminance (difference X-ray transmission amount) of each part of the difference image E in this case. As is clear from this, the inverted signal F1 of the image E1 to E6 part of each hard sphere. , F2, F3, F4, F5, F6 signal levels do not correspond to the diameter (thickness) of the corresponding hard sphere, and the inverted signal F2 corresponding to the image E2 has The signals F21 and F22 from the images E21 and E22 are accompanied.

ここにおいて、本実施形態では、差分画像Eの各部の輝度(差分X線透過量)に対して、当該各部のワーク厚みに対応する較正値C1〜C6を、先に準備した較正値テーブルから選択して、当該較正値C1〜C6を上記輝度に乗じて得られる較正輝度(較正差分X線透過量)よりなる較正差分画像G(図7)を得る。なお、画像G中の符号G1,G2,G3,G4,G5,G6は、テスト画像N(図4)のA領域に配設された硬球の像である。   Here, in the present embodiment, calibration values C1 to C6 corresponding to the work thickness of each part are selected from the previously prepared calibration value table for the luminance (difference X-ray transmission amount) of each part of the difference image E. Then, a calibration difference image G (FIG. 7) consisting of calibration luminance (calibration difference X-ray transmission amount) obtained by multiplying the luminance by the calibration values C1 to C6 is obtained. Note that symbols G1, G2, G3, G4, G5, and G6 in the image G are images of hard spheres arranged in the area A of the test image N (FIG. 4).

較正差分画像Gの、各部の較正輝度(較正差分X線透過量)を反転させた反転信号を図8に示す。これより明らかなように、各硬球の像G1〜G6部分の反転信号H1,H2,H3,H4,H5,H6の信号レベルは、対応する硬球の径(厚み)に正確に対応するものとなっており、しかも、反転信号H2には、反転信号F2に付随していた、ワークエッジ部の像E21,E22による信号F21,F22も付随していない。このように、較正差分画像Gを得ることによって、ワークに生じた欠陥等の位置、大きさ、深さ(高さ)等を正確に検出することができる。   FIG. 8 shows an inverted signal obtained by inverting the calibration luminance (calibration difference X-ray transmission amount) of each part of the calibration difference image G. As is clear from this, the signal levels of the inverted signals H1, H2, H3, H4, H5, and H6 of the image G1 to G6 portion of each hard sphere accurately correspond to the diameter (thickness) of the corresponding hard sphere. In addition, the inverted signal H2 is not accompanied by the signals F21 and F22 due to the workpiece edge images E21 and E22, which were associated with the inverted signal F2. Thus, by obtaining the calibration difference image G, it is possible to accurately detect the position, size, depth (height), etc. of a defect or the like generated in the workpiece.

1…較正体、E…差分画像、G…較正差分画像、M…マスタ画像、N…テスト画像。 DESCRIPTION OF SYMBOLS 1 ... Calibration object, E ... Difference image, G ... Calibration difference image, M ... Master image, N ... Test image.

Claims (2)

異なる複数の既知の厚みを有する較正体に対してX線を照射して各厚みとこの部分のX線透過量の関係を測定するステップと、各厚みとこの部分でのX線透過量の関係が直線状になるように前記各厚みにおける較正値を決定するステップと、検査対象物にX線を照射してこのときのX線透過量より当該X線が透過した部分の厚みを得て、当該厚みにおける前記較正値を前記X線透過量に乗じて較正X線透過量を得るステップとを備えるX線検査方法。 A step of irradiating a calibration body having a plurality of different known thicknesses with X-rays to measure the relationship between each thickness and the X-ray transmission amount of this portion, and the relationship between each thickness and the X-ray transmission amount at this portion Determining the calibration value at each thickness such that the thickness is linear, and irradiating the inspection object with X-rays to obtain the thickness of the portion where the X-rays are transmitted from the X-ray transmission amount at this time, Multiplying the X-ray transmission amount by the calibration value at the thickness to obtain a calibration X-ray transmission amount. 異なる複数の既知の厚みを有する較正体に対してX線を照射して各厚みとこの部分のX線透過量の関係を測定するステップと、各厚みとこの部分でのX線透過量の関係が直線状になるように前記各厚みにおける較正値を決定するステップと、欠陥等の無い正常な検査対象物のX線透過量に基づいた画像をマスタ画像として得るステップと、マスタ画像の各部のX線透過量より当該X線が透過した部分の前記検査対象物の厚みを得るステップと、通常の検査対象物のX線透過量に基づいた画像をテスト画像として得るステップと、前記マスタ画像と前記テスト画像の各部のX線透過量の差分たる差分X線透過量に基づいた差分画像を算出するステップと、前記差分画像の各部の位置に対応した前記マスタ画像部分の厚みにおける前記較正値を前記各部の差分X線透過量に乗じて較正差分X線透過量を得るステップとを備えるX線検査方法。 A step of irradiating a calibration body having a plurality of different known thicknesses with X-rays to measure the relationship between each thickness and the X-ray transmission amount of this portion, and the relationship between each thickness and the X-ray transmission amount at this portion Determining a calibration value for each thickness such that the image is linear, obtaining an image based on the X-ray transmission amount of a normal inspection object without defects as a master image, and for each part of the master image Obtaining a thickness of the inspection object at a portion through which the X-rays are transmitted from an X-ray transmission amount; obtaining an image based on an X-ray transmission amount of a normal inspection object as a test image; and the master image; A step of calculating a difference image based on a difference X-ray transmission amount which is a difference in an X-ray transmission amount of each part of the test image, and the calibration value in the thickness of the master image portion corresponding to the position of each part of the difference image. in front X-ray inspection method comprising the steps of: obtaining a calibration difference X-ray transmission amount by multiplying the difference X-ray transmission amount of each unit.
JP2011005354A 2011-01-14 2011-01-14 X-ray inspection method Pending JP2012145507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011005354A JP2012145507A (en) 2011-01-14 2011-01-14 X-ray inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011005354A JP2012145507A (en) 2011-01-14 2011-01-14 X-ray inspection method

Publications (1)

Publication Number Publication Date
JP2012145507A true JP2012145507A (en) 2012-08-02

Family

ID=46789193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011005354A Pending JP2012145507A (en) 2011-01-14 2011-01-14 X-ray inspection method

Country Status (1)

Country Link
JP (1) JP2012145507A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017062178A (en) * 2015-09-25 2017-03-30 大同特殊鋼株式会社 Defect detection method for product
JP2020118552A (en) * 2019-01-24 2020-08-06 札幌施設管理株式会社 Thickness detection method and piping inspection method
CN111521625A (en) * 2019-05-03 2020-08-11 伟博泰有限公司 Test block
CN113702408A (en) * 2021-09-18 2021-11-26 中国航空制造技术研究院 Variable-thickness silicon carbide fiber composite material X-ray detection method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017062178A (en) * 2015-09-25 2017-03-30 大同特殊鋼株式会社 Defect detection method for product
JP2020118552A (en) * 2019-01-24 2020-08-06 札幌施設管理株式会社 Thickness detection method and piping inspection method
CN111521625A (en) * 2019-05-03 2020-08-11 伟博泰有限公司 Test block
JP2020183959A (en) * 2019-05-03 2020-11-12 ヴィポテック ゲーエムベーハー Test piece
JP7014849B2 (en) 2019-05-03 2022-02-01 ヴィポテック ゲーエムベーハー Specimen
US11248907B2 (en) 2019-05-03 2022-02-15 Wipotec Gmbh Test block
CN111521625B (en) * 2019-05-03 2024-01-02 伟博泰有限公司 Test block
CN113702408A (en) * 2021-09-18 2021-11-26 中国航空制造技术研究院 Variable-thickness silicon carbide fiber composite material X-ray detection method
CN113702408B (en) * 2021-09-18 2024-04-09 中国航空制造技术研究院 X-ray detection method for variable-thickness silicon carbide fiber composite material

Similar Documents

Publication Publication Date Title
JP4799053B2 (en) Compensation method for image disturbance in X-ray image and X-ray apparatus
JP5051295B2 (en) Fine structure inspection method, fine structure inspection apparatus, and fine structure inspection program
WO2006033868A2 (en) Method and apparatus for converting a digital radiograph to an absolute thickness map
JP2018517146A5 (en)
JP2012145507A (en) X-ray inspection method
CN110084786B (en) Automatic defect identification method for digital X-ray image with gradually-changed background
AU2011203239B2 (en) Mineral particle material resolving X-ray imaging
Brierley et al. Mapping the spatial performance variability of an X-ray computed tomography inspection
JP7182697B2 (en) Ultrasonic detection and characterization process for defects in dissimilar materials
JP5145854B2 (en) Sample analyzer, sample analysis method, and sample analysis program
KR101908807B1 (en) Apparatus and method for measuring element of metal sample
KR101445143B1 (en) Foreign body signal image processing improve method
WO2019094754A1 (en) Estimation of material loss from 2d digital radiographs using double wall single imaging (dwsi) technique
JP6244290B2 (en) Crack evaluation method
US20080121792A1 (en) Image quality evaluation/calculation method, apparatus and program
JP5395614B2 (en) X-ray inspection equipment
Helmecke et al. NUMERICAL MEASUREMENT UNCERTAINTY DETERMINATION FOR COMPUTED TOMOGRAHPY IN DIMENSIONAL METROLOGY
JP2009082498A (en) Radiographic equipment, radiographic system, information processing device, and incident dose derivation measure for mamma
JP6462389B2 (en) Measuring method of measurement object using X-ray fluorescence
RU2437081C1 (en) Method of determining depth of defect
CN106225741B (en) A method of losing width in measurement large thickness ratio workpiece side
CN113702408B (en) X-ray detection method for variable-thickness silicon carbide fiber composite material
JP2009074954A (en) Fluorescent x-ray analyzer and program used therein
Haith et al. Modelling based radiography for NDE of subsea pipelines
US8831172B2 (en) Method for filmless radiographic inspection of components