JP2012138315A - Lithium ion battery module - Google Patents

Lithium ion battery module Download PDF

Info

Publication number
JP2012138315A
JP2012138315A JP2010291536A JP2010291536A JP2012138315A JP 2012138315 A JP2012138315 A JP 2012138315A JP 2010291536 A JP2010291536 A JP 2010291536A JP 2010291536 A JP2010291536 A JP 2010291536A JP 2012138315 A JP2012138315 A JP 2012138315A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium ion
negative electrode
ion battery
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010291536A
Other languages
Japanese (ja)
Inventor
Tadashi Yoshida
正 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010291536A priority Critical patent/JP2012138315A/en
Publication of JP2012138315A publication Critical patent/JP2012138315A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery module including batteries, each of which the life deterioration is suppressed by efficiently radiating heat inside a laminate type lithium ion battery module.SOLUTION: The lithium ion battery module includes laminate type lithium ion batteries. A positive electrode plate and a negative electrode plate are led out from an electrode laminated part formed by laminating a positive electrode, a negative electrode and an electrolyte membrane and covered with an exterior covering film, then a member having high thermal conductivity is brought into contact with the led out portions of the positive electrode plate and the negative electrode plate. By such a configuration, the heat inside the batteries is efficiently radiated to the outside through the electrode plates and the member having high thermal conductivity.

Description

本発明は、ラミネート型リチウムイオン電池をケース内に収納したモジュールの構造に関する。   The present invention relates to a structure of a module in which a laminated lithium ion battery is housed in a case.

リチウムイオン二次電池は出力密度が高いために従来からパソコンや携帯電話等の小型機器に用いられてきた。近年になってHEV(ハイブリッド自動車)やEV(電気自動車)に用いられ始めており、さらには、出力の大きい建設機械等の重機に搭載する試みも進められている。また、太陽光発電や風力発電等の出力の不安定な発電設備の電力平準化用蓄電池としての用途を期待されている。これらの用途に用いる場合、単電池(セル)を複数組み合わせた組電池、即ち、モジュールとして電力供給システムの中に組み込むことになる。   Lithium ion secondary batteries have been used for small devices such as personal computers and mobile phones because of their high output density. In recent years, it has begun to be used in HEVs (hybrid vehicles) and EVs (electric vehicles), and further, attempts are being made to install it on heavy machinery such as construction machines with high output. Further, it is expected to be used as a storage battery for power leveling of power generation facilities with unstable output such as solar power generation and wind power generation. When used in these applications, the battery pack is assembled in a power supply system as a battery pack, that is, a module obtained by combining a plurality of single cells (cells).

リチウムイオン二次電池は、その構造によって幾つかの種類がある。代表的なものは、捲回円筒型,捲回扁平型,積層角型,ラミネート型である。捲回円筒型は、長い帯状に形成した電解質膜を同形状の正極及び負極で挟んで円筒形状に巻いた捲回体を円筒型ケースの中に入れ、電解質液を充填し、密封した構造のものである。捲回扁平型は、前記捲回体を扁平形状に巻き取り、扁平型ケースの中に収納した構造のものである。積層角型は、平板形状の電解質膜を同形状の正極及び負極で挟み、これを絶縁板を介して複数積層し、角型のケースに収納し、電解質液を充填して密封した構造のものである。ラミネート型は、平板形状の電解質膜を同形状の正極と負極で交互に挟み込んで積層し、電解質液を含浸させた後、絶縁樹脂膜を貼った外装被覆膜で挟んで、真空引きしながら周囲を熱溶着によってシールした構造のものである。   There are several types of lithium ion secondary batteries depending on their structures. Typical examples are a wound cylindrical type, a wound flat type, a laminated square type, and a laminated type. The wound cylindrical type has a structure in which a wound body, in which a cylindrically wound electrolyte membrane is sandwiched between a positive electrode and a negative electrode of the same shape, is placed in a cylindrical case, filled with an electrolyte solution, and sealed. Is. The wound flat type has a structure in which the wound body is wound into a flat shape and stored in a flat case. The stacked rectangular type has a structure in which a flat electrolyte membrane is sandwiched between positive and negative electrodes of the same shape, a plurality of these are stacked via an insulating plate, housed in a rectangular case, and filled with an electrolyte solution and sealed. It is. Laminating molds are formed by alternately sandwiching a flat electrolyte membrane between positive and negative electrodes of the same shape, impregnating the electrolyte solution, sandwiching it with an exterior coating film with an insulating resin film, The surroundings are sealed by heat welding.

ラミネート型はケースがないため、他の種類の電池に比べて小形軽量化を図ることができ、エネルギー密度を高くすることができる。しかし、外装被覆膜の強度が低いため、複数のラミネート型リチウムイオン電池を組んでモジュールとする場合の支持構造に注意を要すること、また、ラミネート型リチウムイオン電池を複数個単純に積層してモジュールとする場合、内部に熱がこもり易くなること等が欠点として上げられる。   Since the laminate type does not have a case, it can be made smaller and lighter than other types of batteries, and the energy density can be increased. However, since the strength of the outer covering film is low, it is necessary to pay attention to the support structure when a plurality of laminated lithium ion batteries are assembled into a module, and a plurality of laminated lithium ion batteries are simply laminated. In the case of a module, heat is likely to be trapped inside, and so on.

これらの課題を解決するために、従来から幾種類かのモジュール構造が考案されている。   In order to solve these problems, several types of module structures have been conventionally devised.

特許文献1には、ラミネート型リチウムイオン電池を複数個単純に積層してモジュールとする際に、各電池間に伝熱板を挿入し、その伝熱板をラミネート電池の横に張り出す形状が示されている。この構造を取ることで、ラミネート電池の熱が伝熱板に伝わり、フィン効果により放熱することができる。   In Patent Document 1, when a plurality of laminate-type lithium ion batteries are simply stacked to form a module, a heat transfer plate is inserted between the batteries, and the heat transfer plate extends to the side of the laminate battery. It is shown. By adopting this structure, the heat of the laminated battery is transmitted to the heat transfer plate and can be dissipated by the fin effect.

特許文献2には、ラミネート型リチウムイオン電池の周囲のシール部に枠状の構造体を設けた構造が示されている。枠状の構造体の高さがラミネート型リチウムイオン電池の高さより高い寸法にしておくことで、電池間に隙間ができ、冷却空気を各電池面へ流すことができ、放熱性を改善することができる。   Patent Document 2 shows a structure in which a frame-like structure is provided at a seal portion around a laminated lithium ion battery. By making the height of the frame-shaped structure higher than the height of the laminated lithium-ion battery, gaps are created between the batteries, cooling air can flow to each battery surface, and heat dissipation is improved. Can do.

特許文献3には、特許文献2に示された枠状の構造体の側面に打ち抜き穴を多数開け、冷却空気の流通効率を上げた構造が示されている。   Patent Document 3 shows a structure in which a large number of punched holes are formed on the side surface of the frame-like structure shown in Patent Document 2 to increase the circulation efficiency of cooling air.

特許文献4には、シール部を押える枠状構造体を持ったラミネート型イオン電池のモジュール構造が示されている。枠状構造体の高さを、ラミネート型リチウムイオン電池の高さからシール部厚さを引いた値に等しくなるように設定することで、シール部を押えている。これにより、支持構造として安定するとともに、内圧に対するシール強度を向上させることができる。   Patent Document 4 shows a module structure of a laminate type ion battery having a frame-like structure that presses a seal portion. The height of the frame-like structure is set to be equal to the value obtained by subtracting the thickness of the seal portion from the height of the laminated lithium ion battery, thereby holding the seal portion. Thereby, while being stabilized as a support structure, the seal strength with respect to an internal pressure can be improved.

特許第4114415号公報Japanese Patent No. 4114415 特開2005−302501号公報JP 2005-302501 A 特開2005−302502号公報JP-A-2005-302502 特開2004−103258号公報JP 2004-103258 A

特許文献1は、電池と電池の間に熱伝導板を挟んで積層していく構造であるが、積層方向に対して電池内部での熱伝導が悪いため、電池から熱伝導板へ熱が伝わりにくいという難点がある。特に、電池自体の厚さが厚くなると、電池内部に熱がこもったままになり、電池温度がかなり高くなる恐れがある。   Patent Document 1 has a structure in which a heat conduction plate is sandwiched between batteries, but heat conduction is poor inside the battery in the stacking direction, so heat is transferred from the battery to the heat conduction plate. There is a difficulty that it is difficult. In particular, when the thickness of the battery itself is increased, heat remains in the battery and the battery temperature may be considerably increased.

特許文献2及び特許文献3は、電池を積層する際に電池間に隙間を設け、そこに冷却空気を流す構造であるが、特許文献1の場合と同様に、電池内部で積層方向の熱伝導率が低いため、冷却効果が制限されるという難点がある。   Patent Document 2 and Patent Document 3 have a structure in which a gap is provided between the batteries when the batteries are stacked, and cooling air flows therethrough. However, as in Patent Document 1, heat conduction in the stacking direction is performed inside the battery. Since the rate is low, the cooling effect is limited.

特許文献4はシール部を押える枠状構造体を持ったラミネート型イオン電池のモジュール構造であり、モジュール自体の強度やシール部の強度を向上させることができるが、伝熱の効果は無い。   Patent Document 4 is a module structure of a laminate type ion battery having a frame-like structure that presses the seal portion, and can improve the strength of the module itself and the strength of the seal portion, but has no heat transfer effect.

本発明の目的は、以上のようにラミネート型リチウムイオン電池モジュール内部の熱を効率的に放出することである。   The object of the present invention is to efficiently release the heat inside the laminated lithium ion battery module as described above.

層方向での放熱を効率的に行うためには、電極積層部から正極板と負極板を導出させ、外装被覆膜で覆い、導出した正極板と負極板部分に熱伝導性の高い物質を接触させることで効率的に放熱させる方法が考えられる。すなわち以下のような構成が考えられる。   In order to efficiently dissipate heat in the layer direction, the positive electrode plate and the negative electrode plate are led out from the electrode stack, covered with an exterior covering film, and a material with high thermal conductivity is applied to the lead plate and negative electrode plate portions that are led out. A method of efficiently dissipating heat by bringing them into contact is conceivable. That is, the following configurations can be considered.

ラミネート型リチウムイオン電池を有するリチウムイオン電池モジュールにおいて、前記リチウムイオン電池モジュールは、前記ラミネート型リチウムイオン電池と、単一または複数の放熱部材と、を有し、前記ラミネート型リチウムイオン電池は、電極積層部と、前記電極積層部の層方向に位置する正極積層部と、前記電極積層部の層方向に位置する負極積層部と、外装被覆膜とを有し、前記電極積層部は、複数の正極と、複数の負極と、複数の電解質膜を有しており、前記正極と前記負極は、前記電解質膜を介して積層しており、前記正極は、正極板と正極合剤とを有し、前記負極は、負極板と負極合剤とを有し、前記正極積層部は、複数の前記正極板と接しており、前記負極積層部は、複数の前記負極板と接しており、前記外装被覆膜は、前記電極積層部と、前記正極導出部と、前記負極導出部とを覆っており、前記放熱部材は、前記正極導出部と対向して設けられており、前記放熱部材は、前記負極導出部と対向して設けられており、前記放熱部材は、金属またはセラミックスを含むことを特徴としたリチウムイオン電池モジュール。   In the lithium ion battery module having a laminate type lithium ion battery, the lithium ion battery module includes the laminate type lithium ion battery and a single or a plurality of heat dissipating members, and the laminate type lithium ion battery includes an electrode. A laminated part; a positive electrode laminated part positioned in the layer direction of the electrode laminated part; a negative electrode laminated part located in the layer direction of the electrode laminated part; and an outer covering film. A positive electrode, a plurality of negative electrodes, and a plurality of electrolyte membranes, wherein the positive electrode and the negative electrode are laminated via the electrolyte membrane, and the positive electrode has a positive electrode plate and a positive electrode mixture. The negative electrode includes a negative electrode plate and a negative electrode mixture, the positive electrode laminate portion is in contact with the plurality of positive electrode plates, and the negative electrode laminate portion is in contact with the plurality of negative electrode plates, Exterior coating film The electrode stacking unit, the positive electrode lead-out part, and the negative electrode lead-out part are covered, the heat dissipation member is provided to face the positive electrode lead-out part, and the heat dissipation member is provided in the negative electrode lead-out part The lithium ion battery module is characterized in that the heat dissipating member includes metal or ceramics.

本発明によれば、ラミネート型リチウムイオン電池の内部で発生した熱を効果的に放熱することができる。   According to the present invention, it is possible to effectively dissipate heat generated inside the laminated lithium ion battery.

従来のラミネート型リチウムイオン電池の断面図。Sectional drawing of the conventional lamination type lithium ion battery. 従来のラミネート型リチウムイオン電池の平面図。The top view of the conventional lamination type lithium ion battery. 実施例1におけるラミネート型リチウムイオン電池と放熱部材の断面図。2 is a cross-sectional view of a laminated lithium ion battery and a heat dissipation member in Example 1. FIG. 実施例1におけるラミネート型リチウムイオン電池内部構造の平面図。1 is a plan view of an internal structure of a laminate type lithium ion battery in Example 1. FIG. 実施例1におけるラミネート型リチウムイオン電池内部構造の鳥瞰図。1 is a bird's-eye view of an internal structure of a laminated lithium ion battery in Example 1. FIG. 枠型の放熱部材とラミネート型リチウムイオン電池の鳥瞰図。A bird's-eye view of a frame type heat dissipation member and a laminate type lithium ion battery. 実施例1のラミネート型リチウムイオン電池と放熱部材から成る組電池の図。The figure of the assembled battery which consists of the lamination type lithium ion battery of Example 1, and a heat radiating member. 実施例2におけるラミネート型リチウムイオン電池と放熱部材の断面図。Sectional drawing of the laminate-type lithium ion battery and heat dissipation member in Example 2. 実施例2におけるラミネート型リチウムイオン電池と放熱部材の鳥瞰図。FIG. 3 is a bird's-eye view of a laminated lithium ion battery and a heat dissipation member in Example 2. 実施例2における放熱部材とラミネート型リチウムイオン電池の図。The figure of the heat radiating member in Example 2, and a lamination type lithium ion battery. 従来構造電池を用いたモジュールの構成図。The block diagram of the module using the conventional structure battery.

以下、本発明に係る実施形態について、図面を参照しながら説明する。   Hereinafter, embodiments according to the present invention will be described with reference to the drawings.

ラミネート型リチウムイオン電池の内部の伝熱特性は、積層面に沿う方向に良好で、積層方向に対して不良である。即ち、積層面に沿う方向の熱伝導率が高く、積層方向の熱伝導率が低い。これは、平板形状の正極と負極がそれぞれ基板としてアルミ箔と銅箔を用いており、金属の中でも熱伝導率の高いこれらの箔の方向に熱が良く伝わるためである。一方、積層方向は、電解質膜や正極と負極の電極材といった熱伝導率の低い部材を横切って熱が伝わっていかなければならない。一般的に、積層面に沿う方向の熱伝導率は積層方向の20倍程度も高い値である。   The heat transfer characteristics inside the laminate-type lithium ion battery are good in the direction along the lamination surface and poor in the lamination direction. That is, the thermal conductivity in the direction along the lamination surface is high, and the thermal conductivity in the lamination direction is low. This is because the flat positive electrode and the negative electrode use aluminum foil and copper foil as substrates, respectively, and heat is well transmitted in the direction of these foils having high thermal conductivity among metals. On the other hand, in the laminating direction, heat must be transmitted across a member having low thermal conductivity such as an electrolyte membrane or positive and negative electrode materials. Generally, the thermal conductivity in the direction along the lamination surface is about 20 times as high as that in the lamination direction.

従来、ラミネート型リチウムイオン電池の内部の熱を外に逃がすために、電池が積層している間に熱伝導性の良好な板を挟み込むことや、空間をあけて熱が逃げやすい構造をとる等の対策が取られてきた。しかし、上記のようにラミネート型リチウムイオン電池の内部の伝熱特性は、積層方向に対して不良である。このため、電池内部の熱を積層方向に移動させ、熱を逃がす従来の方法では放熱の効率は良くないと考えられる。   Conventionally, in order to release the heat inside the laminated lithium-ion battery to the outside, a plate with good thermal conductivity is sandwiched between the stacked batteries, or a structure that allows heat to escape easily by opening a space, etc. Measures have been taken. However, as described above, the heat transfer characteristics inside the laminated lithium ion battery are poor in the stacking direction. For this reason, it is considered that the heat dissipation efficiency is not good in the conventional method in which the heat inside the battery is moved in the stacking direction to release the heat.

ラミネート型リチウムイオン電池内部の熱の積層面に沿う移動を利用し、放熱させることにより従来よりも効率的に放熱が可能となる。   Heat can be radiated more efficiently than before by using the movement of the heat inside the laminated lithium ion battery along the laminated surface to dissipate heat.

以下、電池内部の熱の積層面に沿う移動を効率的に利用し、放熱するラミネート型イオン電池の構成を従来の一般的なラミネートイオン電池と比較することにより説明する。   Hereinafter, the structure of a laminate type ion battery that efficiently utilizes the movement of the heat inside the battery along the laminated surface and radiates heat will be described by comparing it with a conventional general laminate ion battery.

従来の一般的なラミネート型リチウムイオン電池を図1に示す。ラミネート型リチウムイオン電池1は、正極合剤が正極板3aに塗布された正極3と、負極合剤が負極板4aに塗布された負極4と、電解質膜2とが複数積層して電極積層部5を構成し、これが外装被覆膜6により覆われた構成をとっている。正極板3aとしてはアルミ箔が一般的である。負極板4aとしては銅箔が一般的である。外装被覆膜6は、上側に配置される凸状のラミネートフィルムと下側に配置される略平坦状のラミネートフィルムの外縁部が熱溶融で封止されており、シール部7を構成している。ラミネート型リチウムイオン電池1の外縁部からは、正極側電極端子8及び負極側電極端子9が導出されており、これらの端子は2枚のラミネートフィルムの間に挟み込まれている。なお、図1(a)は図1(b)のA−A断面を示している。   A conventional general laminated lithium ion battery is shown in FIG. A laminate type lithium ion battery 1 includes a positive electrode 3 in which a positive electrode mixture is applied to a positive electrode plate 3a, a negative electrode 4 in which a negative electrode mixture is applied to a negative electrode plate 4a, and a plurality of electrolyte membranes 2 stacked to form an electrode laminated portion. 5, which is covered with an outer covering film 6. The positive electrode plate 3a is generally an aluminum foil. Copper foil is generally used as the negative electrode plate 4a. The outer covering film 6 is formed by sealing the outer edges of the convex laminate film disposed on the upper side and the substantially flat laminate film disposed on the lower side by heat melting, thereby forming a seal portion 7. Yes. A positive electrode terminal 8 and a negative electrode terminal 9 are led out from the outer edge of the laminate type lithium ion battery 1, and these terminals are sandwiched between two laminate films. FIG. 1A shows a cross section taken along the line AA in FIG.

このような従来のラミネート型リチウムイオン電池の内部で発生した熱は熱伝導性の良好でない積層面から発散されるか、層方向で発散される。しかし、層方向では正極板、負極板の断面積あるいは、端子のわずかな断面積でしか放熱することができず、その効果は乏しい。   The heat generated inside such a conventional laminated lithium ion battery is emitted from the laminated surface with poor thermal conductivity or is emitted in the layer direction. However, in the layer direction, heat can be radiated only with a cross-sectional area of the positive electrode plate and the negative electrode plate or a slight cross-sectional area of the terminal, and the effect is poor.

層方向での放熱を効率的に行うためには、例えば、電極積層部から正極板と負極板を導出させ、外装被覆膜で覆い、導出した正極板と負極板部分に熱伝導性の高い放熱部材を対向して設けることで効率的に放熱させる方法が考えられる。すなわち以下のような構成が考えられる。   In order to efficiently dissipate heat in the layer direction, for example, the positive electrode plate and the negative electrode plate are led out from the electrode laminated portion, covered with an outer covering film, and the lead-out positive electrode plate and the negative electrode plate portion have high thermal conductivity. A method of efficiently dissipating heat by providing the heat dissipating members facing each other is conceivable. That is, the following configurations can be considered.

ラミネート型リチウムイオン電池を有するリチウムイオン電池モジュールにおいて、前記リチウムイオン電池モジュールは、前記ラミネート型リチウムイオン電池と、単一または複数の放熱部材と、を有し、前記ラミネート型リチウムイオン電池は、電極積層部と、前記電極積層部の層方向に位置する正極積層部と、前記電極積層部の層方向に位置する負極積層部と、外装被覆膜とを有し、前記電極積層部は、複数の正極と、複数の負極と、複数の電解質膜を有しており、前記正極と前記負極は、前記電解質膜を介して積層しており、前記正極は、正極板と正極合剤とを有し、前記負極は、負極板と負極合剤とを有し、前記正極積層部は、複数の前記正極板と接しており、前記負極積層部は、複数の前記負極板と接しており、前記外装被覆膜は、前記電極積層部と、前記正極導出部と、前記負極導出部とを覆っており、前記放熱部材は、前記正極導出部と対向して設けられており、前記放熱部材は、前記負極導出部と対向して設けられており、前記放熱部材は、金属またはセラミックスを含むことを特徴としたリチウムイオン電池モジュール。   In the lithium ion battery module having a laminate type lithium ion battery, the lithium ion battery module includes the laminate type lithium ion battery and a single or a plurality of heat dissipating members, and the laminate type lithium ion battery includes an electrode. A laminated part; a positive electrode laminated part positioned in the layer direction of the electrode laminated part; a negative electrode laminated part located in the layer direction of the electrode laminated part; and an outer covering film. A positive electrode, a plurality of negative electrodes, and a plurality of electrolyte membranes, wherein the positive electrode and the negative electrode are laminated via the electrolyte membrane, and the positive electrode has a positive electrode plate and a positive electrode mixture. The negative electrode includes a negative electrode plate and a negative electrode mixture, the positive electrode laminate portion is in contact with the plurality of positive electrode plates, and the negative electrode laminate portion is in contact with the plurality of negative electrode plates, Exterior coating film The electrode stacking unit, the positive electrode lead-out part, and the negative electrode lead-out part are covered, the heat dissipation member is provided to face the positive electrode lead-out part, and the heat dissipation member is provided in the negative electrode lead-out part The lithium ion battery module is characterized in that the heat dissipating member includes metal or ceramics.

上記を具備する例を実施例1と2に示すが、本発明の技術的範囲はこれらに限定されるものではない。   Examples having the above are shown in Examples 1 and 2, but the technical scope of the present invention is not limited thereto.

(実施例1)
図2に、層方向での放熱を効率的に行ったリチウムイオン電池モジュールの一例を示す。ラミネート型リチウムイオン電池1は、電極積層部5と、電極積層部5の層方向に位置する正極積層部11bと、負極積層部12bと、外装被覆膜6からなる。電極積層部5は、正極3と負極4が電解質膜2を介して積層したものである。正極3は正極板3aに正極合剤が塗布されてなるものであり、負極4は負極板4aに負極合剤が塗布されてなるものである。ラミネート型リチウムイオン電池1内部の熱を外部に逃がすために、電極積層部5の層方向には、正極板3aと接触した正極積層部11bと、負極板4aと接触した負極積層部12bがある。正極積層部11bは正極板3aと接しており、負極積層部12bは負極板4aと接しているため、電極積層部5内部の熱は、正極板3aと、負極板4aを介して、正極積層部11bと負極積層部12bに達する。実施例1では、正極積層部11bは、電極積層部5に積層された複数の正極板と接する複数の正極導出部11aが積層してなるものであり、負極積層部12bは、電極積層部5に積層された複数の負極板4aと接する複数の正極導出部11aが積層してなるものである。しかし、正極積層部は、必ずしも複数の正極導出部が積層したものである必要はなく、一個体のものであってもかまわない。負極積層部も同様である。また、実施例1では正極導出部11aは図3のように正極板3aと一体であり、正極板3aが延長した部分が正極導出部11aとなっている。このように、正極導出部11aと正極板3aは、一体であっても、別々であってもかまわない。負極導出部12aも同様である。外装被覆膜6は、上側に配置される凸状のラミネートフィルムと下側に配置される略平坦状のラミネートフィルムにより電極積層部5,正極積層部11b,負極積層部12bを覆っており、外縁部が熱溶融で封止され、シール部7を形成している。
Example 1
FIG. 2 shows an example of a lithium ion battery module that efficiently dissipates heat in the layer direction. The laminate type lithium ion battery 1 includes an electrode laminate portion 5, a positive electrode laminate portion 11 b positioned in the layer direction of the electrode laminate portion 5, a negative electrode laminate portion 12 b, and an exterior coating film 6. The electrode laminate portion 5 is obtained by laminating the positive electrode 3 and the negative electrode 4 with the electrolyte membrane 2 interposed therebetween. The positive electrode 3 is formed by applying a positive electrode mixture to a positive electrode plate 3a, and the negative electrode 4 is formed by applying a negative electrode mixture to a negative electrode plate 4a. In order to release heat inside the laminated lithium ion battery 1 to the outside, in the layer direction of the electrode laminate portion 5, there are a positive electrode laminate portion 11b in contact with the positive electrode plate 3a and a negative electrode laminate portion 12b in contact with the negative electrode plate 4a. . Since the positive electrode laminate portion 11b is in contact with the positive electrode plate 3a and the negative electrode laminate portion 12b is in contact with the negative electrode plate 4a, the heat inside the electrode laminate portion 5 is transferred to the positive electrode laminate via the positive electrode plate 3a and the negative electrode plate 4a. It reaches the part 11b and the negative electrode laminate part 12b. In Example 1, the positive electrode laminate portion 11b is formed by laminating a plurality of positive electrode lead portions 11a in contact with a plurality of positive electrode plates laminated on the electrode laminate portion 5, and the negative electrode laminate portion 12b is composed of the electrode laminate portion 5b. A plurality of positive electrode lead portions 11a in contact with a plurality of negative electrode plates 4a stacked on each other are stacked. However, the positive electrode stacking portion is not necessarily formed by stacking a plurality of positive electrode lead-out portions, and may be a single member. The same applies to the negative electrode laminate. Moreover, in Example 1, the positive electrode lead-out part 11a is integral with the positive electrode plate 3a as shown in FIG. 3, and the portion where the positive electrode plate 3a extends is the positive electrode lead-out part 11a. Thus, the positive electrode lead-out part 11a and the positive electrode plate 3a may be integrated or separate. The same applies to the negative electrode lead-out part 12a. The exterior covering film 6 covers the electrode laminated portion 5, the positive electrode laminated portion 11b, and the negative electrode laminated portion 12b with a convex laminated film arranged on the upper side and a substantially flat laminated film arranged on the lower side, The outer edge portion is sealed by heat melting to form a seal portion 7.

放熱部材10は、正極積層部11b,負極積層部12bと対向して設けられている。実施例1では、正極積層部11bの積層方向の面と、放熱部材とが、外装被覆膜6を介して対向しており、この対向している面積が大きいほど熱伝導の効率は高い。また、正極積層部11bと放熱部材10の間には、熱伝導が妨げられない範囲で外装被覆膜6以外のものを挟み込んでも構わない。負極積層部12bと、放熱部材10に関しても同様である。電池内部の熱は正極積層部11b,負極積層部12bから放熱部材10に達し、電池外部へ放出される。正極積層部11bと負極積層部12bは電気的に絶縁する必要があるので、電気伝導性を有する材料を用いる可能性のある放熱部材を正極積層部11bと負極積層部12bと直接接触させることはできず、外装被覆膜6を介して接触させる。リチウムイオン電池1の外縁部からは、正極側電極端子8及び負極側電極端子9が導出されており、これらの端子は2枚のラミネートフィルムの間に挟み込まれている。図2(a)は図2(b)のA−A断面を示している。   The heat radiating member 10 is provided to face the positive electrode laminate portion 11b and the negative electrode laminate portion 12b. In Example 1, the surface in the stacking direction of the positive electrode stacking portion 11b and the heat radiating member are opposed to each other through the exterior coating film 6, and the larger the facing area is, the higher the efficiency of heat conduction is. Moreover, you may pinch | interpose things other than the exterior coating film 6 in the range which does not prevent heat conduction between the positive electrode laminated part 11b and the thermal radiation member 10. FIG. The same applies to the negative electrode laminate 12b and the heat dissipation member 10. The heat inside the battery reaches the heat radiating member 10 from the positive electrode laminate portion 11b and the negative electrode laminate portion 12b, and is released to the outside of the battery. Since the positive electrode laminate portion 11b and the negative electrode laminate portion 12b need to be electrically insulated, it is not possible to directly contact a heat dissipation member that may use a material having electrical conductivity with the positive electrode laminate portion 11b and the negative electrode laminate portion 12b. The contact cannot be made through the outer covering film 6. A positive electrode side electrode terminal 8 and a negative electrode side electrode terminal 9 are led out from the outer edge portion of the lithium ion battery 1, and these terminals are sandwiched between two laminate films. Fig.2 (a) has shown the AA cross section of FIG.2 (b).

正極積層部11bと負極積層部12b、および正極導出部11aと負極導出部12aは触れてはならない。このため、電極積層部5に対して、正極積層部11bが位置する方向と、負極積層部12bが位置する方向は、図2(b)や図3のように異なっていることが好ましい。導出する方向は、例えば図2(b)のように、ラミネート型リチウムイオン電池の層方向の四方向の内、隣り合う2辺をぞれぞれ正極,負極が導出する形態、あるいは向かい合う辺をぞれぞれ正極,負極が導出する形態などが考えられる。但し、正極積層部11bと負極積層部12bは、触れていなければ導出する方向は特に限定されない。   The positive electrode laminate portion 11b and the negative electrode laminate portion 12b, and the positive electrode lead portion 11a and the negative electrode lead portion 12a should not be touched. For this reason, it is preferable that the direction in which the positive electrode laminated portion 11b is located and the direction in which the negative electrode laminated portion 12b are located are different from each other as shown in FIG. For example, as shown in FIG. 2 (b), the direction in which the positive electrode and the negative electrode are led out from two adjacent sides in the layer direction of the laminated lithium ion battery, respectively, or the opposite sides are as shown in FIG. A configuration in which the positive electrode and the negative electrode are led out can be considered. However, the direction in which the positive electrode laminate portion 11b and the negative electrode laminate portion 12b are led out is not particularly limited as long as they are not touched.

電池内部の熱を効率的に放熱するために、放熱部材10を正極積層部11bと負極積層部12bに接するように設置する。放熱部材10は単一であっても、複数であってもよく、形状も特に指定はない。例えば、正極側と負極側とで、2つ用いる形態が考えられる。しかし、実用の観点から、放熱部材は電池セルのケースとして設置することが望ましい。   In order to efficiently dissipate the heat inside the battery, the heat dissipating member 10 is installed in contact with the positive electrode laminate portion 11b and the negative electrode laminate portion 12b. The heat radiating member 10 may be single or plural, and the shape is not particularly specified. For example, a configuration in which two are used on the positive electrode side and the negative electrode side is conceivable. However, from a practical point of view, it is desirable to install the heat dissipation member as a battery cell case.

実施例1では図4のように、電極積層部5の積層面に沿う四方向を囲むような枠型の放熱部材10を用いた。また、放熱部材は、正極積層部11bと負極積層部12bの上面に接するように設置することで、放熱部材と、正極積層部11bおよび、負極積層部12bとの接触面積が広くなるようにした。また、枠型の放熱部材を電池に嵌め込んだ際、放熱部材の上面と、電池の上面の高さが一致するよう設定した。こうすることで、電池を複数積層させた際に、放熱部材が電池の正極積層部11bと負極積層部12bを抑え込む形となり、電池と放熱部材の密着性が上がり、熱伝導性の向上による放熱効率の向上、あるいは、シール部の強度向上の効果が得られる。   In Example 1, as shown in FIG. 4, a frame-type heat radiation member 10 that surrounds four directions along the laminated surface of the electrode laminated portion 5 was used. In addition, the heat dissipating member is placed in contact with the upper surfaces of the positive electrode laminate portion 11b and the negative electrode laminate portion 12b, so that the contact area between the heat dissipating member, the positive electrode laminate portion 11b, and the negative electrode laminate portion 12b is widened. . Moreover, when the frame-type heat dissipation member was fitted into the battery, the upper surface of the heat dissipation member and the upper surface of the battery were set to coincide with each other. In this way, when a plurality of batteries are stacked, the heat radiating member suppresses the positive electrode laminated portion 11b and the negative electrode laminated portion 12b of the battery, and the adhesion between the battery and the heat radiating member is improved, and the heat radiation is improved by improving the thermal conductivity. The effect of improving the efficiency or improving the strength of the seal portion can be obtained.

放熱部材10に用いることのできる熱伝導性の良好な部材としては、例えば、金属,セラミックスがある。金属材料としては、熱伝導率の高い銅,アルミが望ましいが、鉄系の材料でも十分な熱伝導率を有する。また、鉄系の材料に匹敵する熱伝導率を有するセラミックス系の材料として、アルミナセラミックス,ジルコニアセラミックスがある。更に、各種の高熱伝導性樹脂もあげられる。   Examples of members having good thermal conductivity that can be used for the heat radiating member 10 include metals and ceramics. As the metal material, copper or aluminum having high thermal conductivity is desirable, but an iron-based material has sufficient thermal conductivity. Moreover, there are alumina ceramics and zirconia ceramics as ceramic materials having thermal conductivity comparable to iron materials. Furthermore, various highly heat conductive resins are also included.

図5はラミネート型リチウムイオン電池1と、放熱部材10を複数積層してモジュールケース15に組み込んだリチウムイオン組電池の構造例を示すものである。通常は、一組の組電池に対して制御基板14が搭載される。複数積層したラミネート型リチウムイオン電池1の正極電極端子8と負極電極端子9は、電極端子接続ケーブルで、直列並列に適宜組み合わされた回路で制御基板14に接続される。制御基板上の制御回路素子13が電極外部取出し端子16に印加される充放電の電圧・電流に応じて、適正な制御を行う。   FIG. 5 shows an example of the structure of a laminated lithium ion battery 1 and a lithium ion assembled battery in which a plurality of heat dissipation members 10 are stacked and incorporated in a module case 15. Normally, the control board 14 is mounted on a set of assembled batteries. A plurality of laminated lithium ion batteries 1 of positive electrode terminal 8 and negative electrode terminal 9 are connected to control substrate 14 by a circuit suitably combined in series and parallel with an electrode terminal connection cable. The control circuit element 13 on the control board performs appropriate control according to the charge / discharge voltage / current applied to the electrode external extraction terminal 16.

モジュールケース15を熱伝導性の良好な部材とした。放熱部材10は、モジュールケースと対向しており、ラミネート型リチウムイオン電池1内部で発生した熱は、正極積層部11bおよび、負極板積層部12bから放熱部材10,モジュールケース15を通じてモジュール外へ効率良く逃がすことができる。モジュールケース15と放熱部材10は、熱伝導の観点から直接接していることが望ましいが、熱伝導の妨げにならない範囲で、他の部材を挟み込んでも構わない。   The module case 15 was a member having good thermal conductivity. The heat dissipating member 10 faces the module case, and the heat generated inside the laminated lithium ion battery 1 is efficiently transferred from the positive electrode laminate portion 11b and the negative electrode plate laminate portion 12b to the outside of the module through the heat dissipating member 10 and the module case 15. I can escape well. Although it is desirable that the module case 15 and the heat radiating member 10 are in direct contact with each other from the viewpoint of heat conduction, other members may be sandwiched as long as the heat conduction is not hindered.

モジュールケース15に用いることのできる熱伝導性の良好な部材としては、例えば、金属材料としては、熱伝導率の高い銅,アルミが望ましいが、鉄系の材料でも十分な熱伝導率を有する。また、鉄系の材料に匹敵する熱伝導率を有するセラミックス系の材料として、アルミナセラミックス、ジルコニアセラミックスがある。更に、各種の高熱伝導性樹脂もあげられる。   As a member having good thermal conductivity that can be used for the module case 15, for example, copper or aluminum having high thermal conductivity is desirable as the metal material, but iron-based material also has sufficient thermal conductivity. As ceramic materials having thermal conductivity comparable to iron materials, there are alumina ceramics and zirconia ceramics. Furthermore, various highly heat conductive resins are also included.

(実施例2)
図6,図7,図8は実施例2の構成を示す図である。
(Example 2)
6, FIG. 7 and FIG. 8 are diagrams showing the configuration of the second embodiment.

実施例1では、放熱部材10をラミネート型リチウムイオン電池1に嵌め込んだ状態で、放熱部材10は、電極積層部の層方向の内、四方向に設けられ、放熱部材の上面と、電池の上面の高さが一致するよう設定した。   In Example 1, in a state where the heat dissipation member 10 is fitted in the laminated lithium ion battery 1, the heat dissipation member 10 is provided in four directions among the layer directions of the electrode stack portion, and the upper surface of the heat dissipation member, The height of the upper surface was set to match.

これに対して、実施例2では、積層面部材17を有する放熱部材10を用いた。積層面部材17はラミネート型リチウムイオン電池の積層方向の面に接している。放熱部材10を、正極積層部11b,負極積層部12bだけでなく、ラミネート型リチウムイオン電池の積層方向の面に接触させることで、電池の積層方向からの放熱も可能にした。積層面部材17は電池面内の高温部に接するように配置することにより、電池の積層方向からの熱を放熱部材10に逃がし電池面内の温度分布を均一化する効果を持たせることができる。ラミネート型リチウムイオン電池1の構造は実施例1と同様である。   On the other hand, in Example 2, the heat radiating member 10 having the laminated surface member 17 was used. The laminated surface member 17 is in contact with the surface of the laminated lithium ion battery in the lamination direction. Heat dissipation from the stacking direction of the battery was made possible by bringing the heat dissipation member 10 into contact with not only the positive electrode stacking portion 11b and the negative electrode stacking portion 12b but also the surface in the stacking direction of the laminated lithium ion battery. By disposing the laminated surface member 17 so as to be in contact with the high temperature portion in the battery surface, the heat from the battery stacking direction can be released to the heat radiating member 10 and the temperature distribution in the battery surface can be made uniform. . The structure of the laminated lithium ion battery 1 is the same as that of the first embodiment.

図6,図7の構造体を複数積層してモジュールケース15に入れた状態が図8である。実施例1より高さ方向の寸法が若干大きくなるが、積層面方向の放熱を利用することができ、また、電池面内の温度分布を均一化する効果が加わり、電池寿命を延ばす効果を期待できる。   FIG. 8 shows a state in which a plurality of the structures shown in FIGS. 6 and 7 are stacked and placed in the module case 15. Although the dimension in the height direction is slightly larger than that in Example 1, heat dissipation in the direction of the laminated surface can be used, and the effect of making the temperature distribution in the battery surface uniform is added, and the effect of extending the battery life is expected. it can.

実施例2における放熱部材10は、積層面部材17も含めて一体であることが望ましい。積層面部材17に用いることのできる熱伝導性の良好な部材としては、例えば、金属材料としては、熱伝導率の高い銅,アルミが望ましいが、鉄系の材料でも十分な熱伝導率を有する。また、鉄系の材料に匹敵する熱伝導率を有するセラミックス系の材料として、アルミナセラミックス,ジルコニアセラミックスがある。更に、各種の高熱伝導性樹脂もあげられる。   It is desirable that the heat dissipating member 10 in the second embodiment is integrated including the laminated surface member 17. As a member having good thermal conductivity that can be used for the laminated surface member 17, for example, copper or aluminum having high thermal conductivity is desirable as the metal material, but even iron-based materials have sufficient thermal conductivity. . Moreover, there are alumina ceramics and zirconia ceramics as ceramic materials having thermal conductivity comparable to iron materials. Furthermore, various highly heat conductive resins are also included.

図8は図6,図7に示すラミネート型リチウムイオン電池1と、積層面部材17を有する放熱部材10とを複数積層してモジュールケース15に組み込んだリチウムイオン組電池の構造例を示すものである。   FIG. 8 shows an example of the structure of a lithium ion battery assembly in which a plurality of laminated lithium ion batteries 1 shown in FIGS. 6 and 7 and a heat radiating member 10 having a laminated surface member 17 are laminated and incorporated in a module case 15. is there.

実施例1より高さ方向の寸法が若干大きくなるが、積層面方向の放熱を利用することができ、また、電池面内の温度分布を均一化する効果が加わり、電池寿命を延ばす効果を期待できる。   Although the dimension in the height direction is slightly larger than that in Example 1, heat dissipation in the direction of the laminated surface can be used, and the effect of making the temperature distribution in the battery surface uniform is added, and the effect of extending the battery life is expected. it can.

1 ラミネート型リチウムイオン電池
2 電解質膜
3 正極
3a 正極板
4 負極
4a 負極板
5 電極積層部
6 外装被覆膜
7 シール部
8 正極側電極端子
9 負極側電極端子
10 放熱部材
11a 正極導出部
11b 正極積層部
12a 負極導出部
12b 負極積層部
13 制御回路素子
14 制御基板
15 モジュールケース
16 電極外部取出し端子
17 積層面部材
18 電極端子接続ケーブル
DESCRIPTION OF SYMBOLS 1 Laminate type lithium ion battery 2 Electrolyte membrane 3 Positive electrode 3a Positive electrode plate 4 Negative electrode 4a Negative electrode plate 5 Electrode laminated part 6 Exterior coating film 7 Sealing part 8 Positive electrode terminal 9 Negative electrode terminal 10 Heat radiation member 11a Positive electrode lead-out part 11b Positive electrode Laminated portion 12a Negative electrode lead-out portion 12b Negative electrode laminated portion 13 Control circuit element 14 Control board 15 Module case 16 Electrode external extraction terminal 17 Laminated surface member 18 Electrode terminal connection cable

Claims (9)

ラミネート型リチウムイオン電池を有するリチウムイオン電池モジュールにおいて、
前記リチウムイオン電池モジュールは、前記ラミネート型リチウムイオン電池と、単一または複数の放熱部材と、を有し、
前記ラミネート型リチウムイオン電池は、電極積層部と、前記電極積層部の層方向に位置する正極積層部と、前記電極積層部の層方向に位置する負極積層部と、外装被覆膜とを有し、
前記電極積層部は、複数の正極と、複数の負極と、複数の電解質膜を有しており、前記正極と前記負極は、前記電解質膜を介して積層しており、
前記正極は、正極板と正極合剤とを有し、
前記負極は、負極板と負極合剤とを有し、
前記正極積層部は、複数の前記正極板と接しており、
前記負極積層部は、複数の前記負極板と接しており、
前記外装被覆膜は、前記電極積層部と、前記正極導出部と、前記負極導出部とを覆っており、
前記放熱部材は、前記正極導出部と対向して設けられており、
前記放熱部材は、前記負極導出部と対向して設けられており、
前記放熱部材は、金属またはセラミックスを含むことを特徴としたリチウムイオン電池モジュール。
In a lithium ion battery module having a laminated lithium ion battery,
The lithium ion battery module includes the laminated lithium ion battery and a single or a plurality of heat dissipating members.
The laminate type lithium ion battery includes an electrode laminate portion, a positive electrode laminate portion located in the layer direction of the electrode laminate portion, a negative electrode laminate portion located in the layer direction of the electrode laminate portion, and an exterior coating film. And
The electrode laminate portion has a plurality of positive electrodes, a plurality of negative electrodes, and a plurality of electrolyte membranes, and the positive electrode and the negative electrode are laminated via the electrolyte membranes,
The positive electrode has a positive electrode plate and a positive electrode mixture,
The negative electrode has a negative electrode plate and a negative electrode mixture,
The positive electrode laminate portion is in contact with the plurality of positive electrode plates,
The negative electrode laminate portion is in contact with a plurality of the negative electrode plates,
The exterior coating film covers the electrode laminate portion, the positive electrode lead portion, and the negative electrode lead portion,
The heat dissipation member is provided to face the positive electrode lead-out part,
The heat dissipation member is provided to face the negative electrode lead-out part,
The said heat radiating member contains a metal or ceramics, The lithium ion battery module characterized by the above-mentioned.
請求項1において、
前記正極積層部は、前記正極板と接触した複数の正極導出部を有し、
複数の前記正極導出部は、積層して、前記正極積層部を形成しており、
前記負極積層部は、前記負極板と接触した複数の負極導出部を有し、
複数の前記負極導出部は、積層して、前記負極積層部を形成していることを特徴とするリチウムイオン電池モジュール。
In claim 1,
The positive electrode laminate portion has a plurality of positive electrode lead portions in contact with the positive electrode plate,
A plurality of the positive electrode lead-out portions are stacked to form the positive electrode stack portion,
The negative electrode laminate portion has a plurality of negative electrode lead portions in contact with the negative electrode plate,
A plurality of the negative electrode lead-out portions are stacked to form the negative electrode stacked portion.
請求項2において、
前記正極導出部は、前記正極板と一体であることを特徴とするラミネート型リチウムイオン電池。
In claim 2,
The laminate type lithium ion battery, wherein the positive electrode lead-out part is integral with the positive electrode plate.
請求項1ないし請求項3のいずれかにおいて、
前記金属は、アルミニウム,銅,鉄のいずれかであり、
前記セラミックスは、アルミナセラミックス,ジルコニアセラミックスのいずれかであることを特徴とするリチウムイオン電池モジュール。
In any one of Claims 1 thru | or 3,
The metal is aluminum, copper, or iron,
The lithium-ion battery module according to claim 1, wherein the ceramic is any one of alumina ceramics and zirconia ceramics.
請求項1ないし請求項4のいずれかにおいて、
前記電極積層部に対して、前記正極積層部が位置する方向と、前記負極積層部が位置する方向は、異なっていることを特徴とするリチウムイオン電池モジュール。
In any one of Claim 1 thru | or 4,
2. The lithium ion battery module according to claim 1, wherein a direction in which the positive electrode laminated portion is located and a direction in which the negative electrode laminated portion is located are different from the electrode laminated portion.
請求項1ないし請求項5のいずれかにおいて、
前記放熱部材は、前記電極積層部の積方向のうち、四方向に設けられていることを特徴とするリチウムイオン電池モジュール。
In any one of Claims 1 thru | or 5,
The said heat radiating member is provided in four directions among the product directions of the said electrode laminated part, The lithium ion battery module characterized by the above-mentioned.
請求項1ないし請求項6のいずれかにおいて
前記放熱部材は、積層面部材を有し、
前記積層面部材は、前記ラミネート型リチウムイオン電池の積層方向の面に接していることを特徴とするリチウムイオン電池モジュール。
In any one of Claims 1 thru | or 6, The said heat radiating member has a lamination surface member,
The laminated surface member is in contact with a surface in the stacking direction of the laminated lithium ion battery.
請求項1ないし請求項7のいずれかに記載されたリチウムイオン電池モジュールが積層してモジュールケースに設けられ、
前記放熱部材は、前記モジュールケースと対向しており、
前記モジュールケースは、金属またはセラミックスを含むことを特徴としたリチウムイオン組電池。
The lithium ion battery module according to any one of claims 1 to 7 is stacked and provided in a module case,
The heat dissipation member is opposed to the module case,
The module case includes a metal or a ceramic, and is a lithium ion assembled battery.
請求項8において、
前記金属は、アルミニウム,銅,鉄のいずれかであり、
前記セラミックスは、アルミナセラミックス,ジルコニアセラミックスのいずれかであることを特徴とするリチウムイオン組電池。
In claim 8,
The metal is aluminum, copper, or iron,
The lithium-ion battery according to claim 1, wherein the ceramic is any one of alumina ceramics and zirconia ceramics.
JP2010291536A 2010-12-28 2010-12-28 Lithium ion battery module Pending JP2012138315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010291536A JP2012138315A (en) 2010-12-28 2010-12-28 Lithium ion battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010291536A JP2012138315A (en) 2010-12-28 2010-12-28 Lithium ion battery module

Publications (1)

Publication Number Publication Date
JP2012138315A true JP2012138315A (en) 2012-07-19

Family

ID=46675554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010291536A Pending JP2012138315A (en) 2010-12-28 2010-12-28 Lithium ion battery module

Country Status (1)

Country Link
JP (1) JP2012138315A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141525A1 (en) * 2013-03-15 2014-09-18 Necエナジーデバイス株式会社 Battery pack
JP2016024935A (en) * 2014-07-18 2016-02-08 カルソニックカンセイ株式会社 Power storage device
JP2016096130A (en) * 2014-11-14 2016-05-26 現代自動車株式会社Hyundai Motor Company Battery system improving operation reliability of swelling cid
WO2016132405A1 (en) * 2015-02-16 2016-08-25 三洋電機株式会社 Power source device
US9577295B2 (en) 2014-06-30 2017-02-21 Hyundai Motor Company Battery system and temperature controlling unit thereof
WO2017056407A1 (en) * 2015-09-30 2017-04-06 パナソニックIpマネジメント株式会社 Cell module
WO2017073028A1 (en) * 2015-10-29 2017-05-04 パナソニックIpマネジメント株式会社 Battery module
CN107452985A (en) * 2016-06-01 2017-12-08 丰田自动车株式会社 Manufacture method, manufacture device and the all-solid-state battery of all-solid-state battery
KR20170136433A (en) * 2016-06-01 2017-12-11 도요타 지도샤(주) Manufacturing method for all-solid-state battery, manufacturing apparatus for all-solid-state battery, and all-solid-state battery
JP2018503233A (en) * 2015-12-18 2018-02-01 エルジー・ケム・リミテッド Battery module
JP2018517268A (en) * 2015-09-02 2018-06-28 エルジー・ケム・リミテッド Battery module with improved cooling structure
JP2018526775A (en) * 2015-09-21 2018-09-13 エルジー・ケム・リミテッド Battery module and battery pack including the same
CN108767360A (en) * 2018-04-24 2018-11-06 华南理工大学 A kind of silicon carbide ceramics battery cooling apparatus installing micro heat pipe array additional
JP2018195549A (en) * 2017-05-16 2018-12-06 日立化成能源科技股▲フン▼有限公司 Battery pack structure
JP2019503040A (en) * 2016-06-13 2019-01-31 エルジー・ケム・リミテッド Battery module, battery pack including the same, and automobile
JP2019061895A (en) * 2017-09-27 2019-04-18 本田技研工業株式会社 Laminated battery cell and laminated battery module
CN111490297A (en) * 2019-01-29 2020-08-04 本田技研工业株式会社 Battery module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003338269A (en) * 2002-05-21 2003-11-28 Nissan Motor Co Ltd Secondary battery module
JP2004103258A (en) * 2002-09-04 2004-04-02 Nissan Motor Co Ltd Battery pack
JP2004111098A (en) * 2002-09-13 2004-04-08 Nissan Motor Co Ltd Secondary battery module and manufacturing method
JP2005302502A (en) * 2004-04-12 2005-10-27 Uchiyama Mfg Corp Housing for battery cell
JP2005302501A (en) * 2004-04-12 2005-10-27 Uchiyama Mfg Corp Case for battery cell
JP4114415B2 (en) * 2002-06-28 2008-07-09 日産自動車株式会社 Electrode laminated battery cooling device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003338269A (en) * 2002-05-21 2003-11-28 Nissan Motor Co Ltd Secondary battery module
JP4114415B2 (en) * 2002-06-28 2008-07-09 日産自動車株式会社 Electrode laminated battery cooling device
JP2004103258A (en) * 2002-09-04 2004-04-02 Nissan Motor Co Ltd Battery pack
JP2004111098A (en) * 2002-09-13 2004-04-08 Nissan Motor Co Ltd Secondary battery module and manufacturing method
JP2005302502A (en) * 2004-04-12 2005-10-27 Uchiyama Mfg Corp Housing for battery cell
JP2005302501A (en) * 2004-04-12 2005-10-27 Uchiyama Mfg Corp Case for battery cell

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141525A1 (en) * 2013-03-15 2014-09-18 Necエナジーデバイス株式会社 Battery pack
JPWO2014141525A1 (en) * 2013-03-15 2017-02-16 Necエナジーデバイス株式会社 Assembled battery
US9768424B2 (en) 2013-03-15 2017-09-19 Nec Energy Devices, Ltd. Battery pack
US9577295B2 (en) 2014-06-30 2017-02-21 Hyundai Motor Company Battery system and temperature controlling unit thereof
JP2016024935A (en) * 2014-07-18 2016-02-08 カルソニックカンセイ株式会社 Power storage device
JP2016096130A (en) * 2014-11-14 2016-05-26 現代自動車株式会社Hyundai Motor Company Battery system improving operation reliability of swelling cid
WO2016132405A1 (en) * 2015-02-16 2016-08-25 三洋電機株式会社 Power source device
JP2018517268A (en) * 2015-09-02 2018-06-28 エルジー・ケム・リミテッド Battery module with improved cooling structure
US10566589B2 (en) 2015-09-21 2020-02-18 Lg Chem, Ltd. Battery module and battery pack comprising same
JP2018526775A (en) * 2015-09-21 2018-09-13 エルジー・ケム・リミテッド Battery module and battery pack including the same
CN107851756A (en) * 2015-09-30 2018-03-27 松下知识产权经营株式会社 Battery module
JPWO2017056407A1 (en) * 2015-09-30 2018-07-26 パナソニックIpマネジメント株式会社 Battery module
US10615382B2 (en) 2015-09-30 2020-04-07 Panasonic Intellectual Property Management Co., Ltd. Cell module
WO2017056407A1 (en) * 2015-09-30 2017-04-06 パナソニックIpマネジメント株式会社 Cell module
WO2017073028A1 (en) * 2015-10-29 2017-05-04 パナソニックIpマネジメント株式会社 Battery module
JP2018503233A (en) * 2015-12-18 2018-02-01 エルジー・ケム・リミテッド Battery module
KR101978557B1 (en) * 2016-06-01 2019-05-14 도요타 지도샤(주) Manufacturing method for all-solid-state battery, manufacturing apparatus for all-solid-state battery, and all-solid-state battery
KR20170136433A (en) * 2016-06-01 2017-12-11 도요타 지도샤(주) Manufacturing method for all-solid-state battery, manufacturing apparatus for all-solid-state battery, and all-solid-state battery
CN107452985A (en) * 2016-06-01 2017-12-08 丰田自动车株式会社 Manufacture method, manufacture device and the all-solid-state battery of all-solid-state battery
US10153520B2 (en) 2016-06-01 2018-12-11 Toyota Jidosha Kabushiki Kaisha Manufacturing method for all-solid-state battery, manufacturing apparatus for all-solid-state battery, and all-solid-state battery
JP2019503040A (en) * 2016-06-13 2019-01-31 エルジー・ケム・リミテッド Battery module, battery pack including the same, and automobile
JP2018195549A (en) * 2017-05-16 2018-12-06 日立化成能源科技股▲フン▼有限公司 Battery pack structure
JP2019061895A (en) * 2017-09-27 2019-04-18 本田技研工業株式会社 Laminated battery cell and laminated battery module
CN108767360A (en) * 2018-04-24 2018-11-06 华南理工大学 A kind of silicon carbide ceramics battery cooling apparatus installing micro heat pipe array additional
CN111490297A (en) * 2019-01-29 2020-08-04 本田技研工业株式会社 Battery module

Similar Documents

Publication Publication Date Title
JP2012138315A (en) Lithium ion battery module
JP5465125B2 (en) Power storage module
WO2015019429A1 (en) Battery module
KR102058194B1 (en) battery module
WO2013157560A1 (en) Secondary battery, secondary battery module having built-in secondary battery, and assembled battery system having built-in secondary battery module
WO2012057169A1 (en) Power-supply device, vehicle using same, battery cell, and battery-cell manufacturing method
KR20190054300A (en) Battery
US11342608B2 (en) Battery module
JP2022522459A (en) Battery module and battery pack containing it
US9048463B2 (en) Pouch-cell battery arrangement and corresponding production method and use
KR20170010667A (en) Battery module, battery pack comprising the battery module and vehicle comprising the battery pack
JP7205387B2 (en) power storage device
KR101735511B1 (en) Battery cell with patterned shape and Method for manufacturing the same
JP2009176917A (en) Nonaqueous electrolyte storage battery device
JP2023537015A (en) Battery modules and battery packs containing the same
CN107408652B (en) Battery module with improved cooling structure
KR102028916B1 (en) Battery Pack for Secondary Battery
JP2019514180A (en) Electrochemical cell with electrode isolation frame
JP2010287487A (en) Secondary battery
JP2019061895A (en) Laminated battery cell and laminated battery module
US11600844B2 (en) Solid-state battery cell and solid-state battery module
CN110770963A (en) Electrode assembly for battery module
KR20170050445A (en) Pouch type secondary battery
JP2020068052A (en) Battery pack and manufacturing method thereof
CN218918993U (en) Battery and electronic equipment

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120521

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140408