JP2012137478A - Distance measurement device and distance correction means - Google Patents

Distance measurement device and distance correction means Download PDF

Info

Publication number
JP2012137478A
JP2012137478A JP2011253633A JP2011253633A JP2012137478A JP 2012137478 A JP2012137478 A JP 2012137478A JP 2011253633 A JP2011253633 A JP 2011253633A JP 2011253633 A JP2011253633 A JP 2011253633A JP 2012137478 A JP2012137478 A JP 2012137478A
Authority
JP
Japan
Prior art keywords
signal
transmission
distance
error
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011253633A
Other languages
Japanese (ja)
Inventor
Mitsunori Kono
実則 河野
Kiminori Kono
公則 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RCS Co Ltd
Original Assignee
RCS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RCS Co Ltd filed Critical RCS Co Ltd
Priority to JP2011253633A priority Critical patent/JP2012137478A/en
Publication of JP2012137478A publication Critical patent/JP2012137478A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To inexpensively realize a distance measurement device and distance correction means which can perform intercommunication between first transmission/reception means and second transmission/reception means in a time division manner by using a single wireless frequency to measure distance between the first transmission/reception means and the second transmission/reception means with high accuracy.SOLUTION: First transmission/reception means intermittently transmits wireless signals including at least a starting point signal. When second transmission/reception means receives the wireless signals, the second transmission/reception means demodulates the starting point signal from the received wireless signals, and also detects and corrects a transmission phase error or a transmission delay error to transmit wireless signals including a distance measurement signal synchronized with the corrected starting point signal at a time division timing in return. The first transmission/reception means demodulates the distance measurement signal received from the second transmission/reception means, and also detects and corrects a transmission phase error or a transmission delay error, then measures a transmission phase or transmission delay of the corrected distance measurement signal based on the starting signal generated by the means itself to calculate a distance between the means and the second transmission/reception means with high accuracy.

Description

この発明は、第1の発受信手段と第2の発受信手段との間で、単一の無線周波数を用いて、時分割で相互間の通信を行うことによって、相互間の距離を高精度で測定できる距離測定装置およびおよび距離補正手段に関するものである。
According to the present invention, the distance between each other is accurately determined by performing communication between the first transmitting / receiving unit and the second transmitting / receiving unit using a single radio frequency in a time division manner. It is related with the distance measuring device which can be measured by, and a distance correction means.

従来から、複数の無線通信機の間で相互通信を行ない相互間の距離を測定するための、距離補正手段を有する距離測定装置が提案されている。(例えば、特許文献1参照)
特開2009−162488号公報
Conventionally, there has been proposed a distance measuring device having a distance correcting means for performing mutual communication between a plurality of wireless communication devices and measuring a distance between them. (For example, see Patent Document 1)
JP 2009-162488 A

図7は、特許文献1に記載されている従来の「無線端末装置およびゲイン調整方法」の実施例である。図7において、信号の送受信を行う無線通信部1と、無線通信部1による送受信信号の信号レベルを増幅する信号増幅・フィルタ部3と、増幅された送受信信号のうち、予め設定された所定の検出閾値よりも大きい信号レベルの信号を送信信号または受信信号として検出するADC4と、ADC4による検出結果に基づく無線通信の信号の往復時間から電波伝播遅延時間を計測して相手無線端末装置との間の距離を求めるとともに、信号増幅・フィルタ部3のゲイン調整を行う測定制御・時間計測部5とを備え、上記往復時間の測定時に、送信信号と受信信号との信号レベルを合わせることで、電波減衰による距離測定精度の低下を防止するよう構成されている。   FIG. 7 is an example of a conventional “wireless terminal apparatus and gain adjustment method” described in Patent Document 1. In FIG. 7, a wireless communication unit 1 that performs signal transmission / reception, a signal amplification / filter unit 3 that amplifies a signal level of a transmission / reception signal transmitted by the wireless communication unit 1, and a predetermined predetermined value among the amplified transmission / reception signals Between the ADC 4 that detects a signal having a signal level larger than the detection threshold as a transmission signal or a reception signal, and the radio wave propagation delay time from the round-trip time of the wireless communication signal based on the detection result by the ADC 4, and between the partner wireless terminal device And a measurement control / time measurement unit 5 that adjusts the gain of the signal amplification / filter unit 3, and adjusts the signal level of the transmission signal and the reception signal when measuring the round-trip time, It is configured to prevent a decrease in distance measurement accuracy due to attenuation.

前記のように、従来の距離測定精度の低下を防止するための手段は、複数の無線端末装置間での相互通信によって、無線通信の信号の往復時間から電波伝播遅延時間を計測して相手無線端末装置との間の距離を求める距離測定装置に適用するためのものであり、無線通信の相互間の伝搬位相遅延を計測して相手無線端末装置との間の距離を求める距離測定装置には適用できない問題点があり、更に、電波減衰による距離測定精度の低下は個別の装置によって異なることから、一律に防止するための手段では、個別の装置に対応できない問題点がある。
As described above, the conventional means for preventing the decrease in distance measurement accuracy is to measure the radio wave propagation delay time from the round-trip time of the wireless communication signal by mutual communication between a plurality of wireless terminal devices, and to communicate with the partner wireless The distance measuring device is for applying to a distance measuring device for obtaining a distance to a terminal device, and for measuring a propagation phase delay between wireless communication to obtain a distance to a partner wireless terminal device. Further, there are problems that cannot be applied, and further, since the decrease in distance measurement accuracy due to radio wave attenuation differs depending on individual apparatuses, there is a problem that the means for uniformly preventing cannot be applied to individual apparatuses.

この発明は、上記の問題点を解決するためになされたものであり、第1の発受信手段と第2の発受信手段との間で、単一の無線周波数を用いて、時分割で相互間の通信を行うことにより、相互間の距離を高精度でしかも短時間で測定できる距離測定装置および距離補正手段を安価に提供することを目的とする。
The present invention has been made to solve the above-described problems, and uses a single radio frequency between the first transmitting / receiving means and the second transmitting / receiving means in a time division manner. It is an object of the present invention to provide a distance measuring device and a distance correcting means that can measure the distance between each other with high accuracy and in a short time by performing communication between them at low cost.

この発明に係わる距離測定装置では、前記第1の発受信手段が、起点信号を含む無線信号をバースト信号として、前記第2の発受信手段に向けて間欠発信し、前記第2の発受信手段が、前記第1の発受信手段から発信された起点信号を含む無線信号を受信すると、前記受信した起点信号と高精度で同期した距離測定信号を含む無線信号を前記第1の発受信手段に向けて、時分割のタイミングで発信し、前記第1の発受信手段において、前記第2の発受信手段から発信された無線信号を受信して前記距離測定信号を復調し、前記自局で生成した起点信号と同期したクロック信号を用いて前記復調した距離測定信号の位相を測定して、前記第1の発受信手段と第2の発受信手段との間の距離を高精度で測定するための誤差検出・補正手段を有する。   In the distance measuring apparatus according to the present invention, the first transmitting / receiving unit intermittently transmits a radio signal including a starting point signal as a burst signal to the second transmitting / receiving unit, and the second transmitting / receiving unit. When receiving a radio signal including a starting signal transmitted from the first transmitting / receiving unit, a radio signal including a distance measurement signal synchronized with the received starting signal with high accuracy is transmitted to the first transmitting / receiving unit. The first transmission / reception unit receives the radio signal transmitted from the second transmission / reception unit, demodulates the distance measurement signal, and generates it at the local station. Measuring the phase of the demodulated distance measuring signal using a clock signal synchronized with the starting signal and measuring the distance between the first transmitting / receiving unit and the second transmitting / receiving unit with high accuracy. Error detection / correction means

更に、前記誤差検出・補正手段が、前記第1の発受信手段の第1の受信手段、第1の制御手段、もしくはこれらの両方に設けられ、前記第2の発受信手段の第2の受信手段、第2の制御手段、もしくはこれらの両方に設けられ、あるいは前記第1の発受信手段および第2の発受信手段の両方に設けられ、前記誤差検出・補正手段において補正値および補正係数を設けて距離の補正を行ない、あるいは受信入力を測定するための受信入力測定手段と、前記受信入力測定手段によって制御される移相手段もしくは遅延手段とから構成され、前記受信入力の測定値の変化に従って、前記移相手段の伝達位相もしくは伝達遅延時間を制御し、あるいは前記受信入力測定手段と、前記起点信号もしくは距離測定信号を復調するための信号復調手段の後段に設けられた移相手段とから構成され、前記受信入力の測定値の変化に従って、前記移相手段の伝達位相を制御し、あるいはこれらの組み合わせによって距離の測定誤差を軽減させることによって、高精度の距離測定装置を実現する。
Further, the error detection / correction means is provided in the first receiving means of the first transmitting / receiving means, the first control means, or both, and the second receiving of the second transmitting / receiving means. Means, the second control means, or both of them, or both of the first transmission / reception means and the second transmission / reception means, and the error detection / correction means sets the correction value and the correction coefficient. A receiving input measuring means for measuring the received input, and a phase shift means or a delay means controlled by the receiving input measuring means to change the measured value of the received input. In accordance with the above, the transmission phase or the transmission delay time of the phase shift means is controlled, or the reception input measurement means and the subsequent stage of the signal demodulation means for demodulating the origin signal or the distance measurement signal The phase shift means is provided, and the transmission phase of the phase shift means is controlled in accordance with the change in the measurement value of the reception input, or the distance measurement error is reduced by a combination thereof, thereby achieving high accuracy. A distance measuring device is realized.

このように、本発明の距離測定装置では、第1の発受信手段と第2の発受信手段との間で、単一の無線周波数を用いたバースト信号によって相互間の通信を行うことで、安価な装置によって、相互間の距離を短時間でしかも高精度に算出できる利点がある。
Thus, in the distance measuring device of the present invention, by performing communication between the first transmitting / receiving unit and the second transmitting / receiving unit by a burst signal using a single radio frequency, There is an advantage that the distance between each other can be calculated in a short time and with high accuracy by an inexpensive apparatus.

本発明の第1の実施の形態による距離測定装置の構成図The block diagram of the distance measuring device by the 1st Embodiment of this invention 本発明の第1の実施の形態による制御タイミングチャートControl timing chart according to the first embodiment of the present invention 本発明の第1の実施の形態による受信入力と測定誤差との関係を示す図The figure which shows the relationship between the receiving input and measurement error by the 1st Embodiment of this invention 本発明の第1の実施の形態による制御フローチャートControl flowchart according to the first embodiment of the present invention 本発明の第1の実施の形態による発受信手段の構成図The block diagram of the transmission / reception means by the 1st Embodiment of this invention 本発明の第1の実施の形態による発受信手段の他の構成図Another block diagram of the transmitting / receiving means according to the first embodiment of the present invention 従来の実施例を示す構成図Configuration diagram showing a conventional example

この発明に係わる距離測定装置は、図1〜図6、および請求項1に本発明の第1の実施の形態を示すように、無線信号を用いて第1の発受信手段と第2の発受信手段との間の距離を測定する距離測定装置において、前記第1の発受信手段が、前記無線信号を、時分割のタイミングでバースト信号として発信するための第1の発信手段と、前記無線信号を、時分割のタイミングで受信するための第1の受信手段と、前記第1の発信手段と第1の受信手段とを制御するための第1の制御手段と、前記第1の発信手段と第1の受信手段との間で、アンテナあるいは送受波器を時分割で切替えあるいは共有するための第1のアンテナ切替手段とから構成される。   As shown in FIGS. 1 to 6 and claim 1 of the first embodiment of the present invention, the distance measuring apparatus according to the present invention uses a radio signal to transmit the first transmitter / receiver and the second transmitter. In the distance measuring apparatus for measuring the distance to the receiving means, the first transmitting / receiving means transmits the radio signal as a burst signal at a time division timing, and the radio First receiving means for receiving a signal at time division timing, first control means for controlling the first sending means and the first receiving means, and the first sending means And a first receiving means for switching or sharing an antenna or a transmitter / receiver in a time division manner.

また、前記第2の発受信手段が、前記無線信号を、時分割のタイミングでバースト信号として発信するための第2の発信手段と、前記無線信号を、時分割のタイミングで受信するための第2の受信手段と、前記第2の発信手段と第2の受信手段とを制御するための第2の制御手段と、前記第2の発信手段と第2の受信手段との間で、アンテナあるいは送受波器を時分割で切替えあるいは共有するための第2のアンテナ切替手段とから構成される。   A second transmitting means for transmitting the radio signal as a burst signal at a time division timing; and a second transmitting means for receiving the radio signal at a time division timing. Between the second receiving means, the second control means for controlling the second transmitting means and the second receiving means, and the second transmitting means and the second receiving means, It comprises second antenna switching means for switching or sharing the transmitter / receiver in a time division manner.

また、前記第1の発受信手段が、少なくとも起点信号を含む無線信号を間欠発信し、前記第2の発受信手段が、前記第1の発受信手段から間欠発信された無線信号を受信して前記起点信号を復調し、第2の同期確立・保持手段を設けて、前記起点信号と高精度で同期した距離測定信号を生成するとともに、第2の擬似信号生成手段と第2の誤差検出・補正手段とを設けて、自局に内在する伝達位相誤差もしくは伝達遅延誤差を検出して位相補正を行い、時間補正を行い、あるいはこれらの両方を行い、前記補正後の距離測定信号を含む無線信号を前記第1の発受信手段に向けて時分割のタイミングで折返して発信する。   In addition, the first transmitting / receiving unit intermittently transmits a radio signal including at least a starting signal, and the second transmitting / receiving unit receives the radio signal intermittently transmitted from the first transmitting / receiving unit. The origin signal is demodulated, a second synchronization establishment / holding unit is provided to generate a distance measurement signal synchronized with the origin signal with high accuracy, and a second pseudo signal generation unit and a second error detection unit A correction means for detecting a transmission phase error or a transmission delay error inherent in the own station, performing phase correction, performing time correction, or both, and including a distance measurement signal after the correction The signal is sent back to the first transmission / reception means at a time division timing.

また、前記第1の発受信手段が、前記第2の発受信手段から折返して発信された無線信号を受信して前記距離測定信号を復調するとともに、第1の擬似信号生成手段と第1の誤差検出・補正手段とを設けて、自局に内在する伝達位相誤差を検出して位相補正を行い、時間補正を行い、あるいはこれらの両方を行い、自局から発信した起点信号を基準として前記復調した距離測定信号の位相もしくはタイミングを測定し、前記第2の発受信手段との間の相対的な距離を算出することを特徴とする。   The first transmission / reception means receives a radio signal transmitted from the second transmission / reception means and demodulates the distance measurement signal. The first pseudo signal generation means and the first pseudo signal generation means An error detection / correction means is provided to detect a transmission phase error inherent in the own station, perform phase correction, perform time correction, or both, and use the origin signal transmitted from the own station as a reference. The phase or timing of the demodulated distance measurement signal is measured, and the relative distance to the second transmitting / receiving means is calculated.

また、請求項2に示すように、前記誤差検出・補正手段が、前記伝達位相誤差もしくは伝達遅延誤差を、少なくとも補正値と補正係数とを設けて検出し、曲線近似を行い、あるいはこれらの両方を行う。
また、請求項3に示すように、前記誤差検出・補正手段が、前記第1の発受信手段、前記第2の発受信手段、もしくはこれらの両方の出荷試験時、起動時、距離測定時、あるいは必要なタイミングで、前記伝達位相誤差もしくは伝達遅延誤差を検出し、内部メモリに直線近似、曲線近似、もしくはこれらの組み合わせで記憶する。
また、請求項4に示すように、前記誤差検出・補正手段が、前記復調された起点信号もしくは距離測定信号から検出された伝達位相誤差もしくは伝達遅延誤差を補正するために、デジタル制御されあるいはタップにより切り替えられる移相制御手段もしくは遅延制御手段を設ける。
According to a second aspect of the present invention, the error detection / correction means detects the transmission phase error or the transmission delay error by providing at least a correction value and a correction coefficient, performs curve approximation, or both of them. I do.
Further, as shown in claim 3, the error detection / correction means is the first transmission / reception means, the second transmission / reception means, or both of them at the time of a shipping test, at startup, at the time of distance measurement, Alternatively, the transmission phase error or the transmission delay error is detected at a necessary timing and stored in the internal memory by linear approximation, curve approximation, or a combination thereof.
According to a fourth aspect of the present invention, the error detection / correction means is digitally controlled or tapped to correct a transmission phase error or a transmission delay error detected from the demodulated origin signal or distance measurement signal. Phase shift control means or delay control means that are switched by the above are provided.

また、請求項5に示すように、前記擬似信号生成手段が中間周波信号を生成し、低雑音増幅器、ミキサ、中間周波フイルタ、中間周波信号増幅器、信号復調手段、アナログ回路、もしくはこれらの組み合わせの入力端子に、必要に応じて結合しあるいは注入する。
また、請求項6に示すように、前記擬似信号生成手段が、可変抵抗減衰器、伝達位相等価可変減衰器、伝達遅延時間等価減衰器、あるいはこれらの組み合わせを含み、前記擬似信号生成手段の伝達位相誤差もしくは伝達遅延誤差が、必要な結合量あるいは注入レベルに対して規定値内である。
Further, as shown in claim 5, the pseudo signal generating means generates an intermediate frequency signal, and a low noise amplifier, a mixer, an intermediate frequency filter, an intermediate frequency signal amplifier, a signal demodulating means, an analog circuit, or a combination thereof Connect to the input terminal or inject as required.
According to a sixth aspect of the present invention, the pseudo signal generating means includes a variable resistance attenuator, a transmission phase equivalent variable attenuator, a transmission delay time equivalent attenuator, or a combination thereof. The phase error or propagation delay error is within a specified value for the required coupling amount or injection level.

また、請求項7に示すように、前記第1の制御手段、第2の制御手段、あるいはこれらの両方が同期確立・保持手段を有し、前記復調された起点信号もしくは距離測定信号のゼロ交差点を高い周波数のサンプリング信号によって検出し、前記検出されたゼロ交差点のタイミングで、前記サンプリング信号を分周して距離測定信号を生成するためのカウンタをセットしあるいはリセットすることによって同期を確立し・保持させる。
また、請求項8に示すように、前記第1もしくは第2の受信手段に内蔵する擬似信号生成手段と、前記第1もしくは第2の発信手段に内蔵する変調・増幅手段とが、共通の変調・増幅回路、可変減衰回路、あるいはこれらの両方を有する。
In addition, as shown in claim 7, the first control means, the second control means, or both of them have synchronization establishment / holding means, and a zero crossing point of the demodulated origin signal or distance measurement signal Is detected by a high-frequency sampling signal, and synchronization is established by setting or resetting a counter for dividing the sampling signal to generate a distance measurement signal at the timing of the detected zero crossing point. Hold.
In addition, as shown in claim 8, the pseudo signal generating means built in the first or second receiving means and the modulation / amplifying means built in the first or second sending means have a common modulation. -It has an amplifier circuit, a variable attenuation circuit, or both.

(実施の形態1)
図1は、本発明の第1の実施の形態による距離測定装置の構成図である。図1において、101aは第1の発受信手段、101bは第2の発受信手段、11a、11bは制御手段、12a、12bは発信手段、13a、13bは受信手段、14a、14bはアンテナ切替手段、15a、15bはアンテナもしくは送受波器、16は無線の伝搬路である。前記第1の発受信手段101aと第2の発受信手段101bは、単一の周波数の無線信号を用い、時分割同時通信により、伝搬路16を介して双方向通信を行い、相互間の相対距離を測定する過程で、前記受信手段、制御手段、もしくはこれらの両方が、距離補正手段を有し距離測定誤差を補正する。
(Embodiment 1)
FIG. 1 is a configuration diagram of a distance measuring apparatus according to a first embodiment of the present invention. In FIG. 1, 101a is a first transmission / reception means, 101b is a second transmission / reception means, 11a and 11b are control means, 12a and 12b are transmission means, 13a and 13b are reception means, and 14a and 14b are antenna switching means. 15a and 15b are antennas or transducers, and 16 is a wireless propagation path. The first transmission / reception means 101a and the second transmission / reception means 101b use a radio signal of a single frequency, and perform bidirectional communication via the propagation path 16 by time division simultaneous communication. In the process of measuring the distance, the receiving means, the control means, or both have distance correction means to correct the distance measurement error.

なお、第1の発受信手段、第2の発受信手段、もしくはこれらの両方のアンテナ又は送受波器は、無指向性アンテナあるいは指向性アンテナが用いられ、特に、90°以上の広い指向性ビーム幅を有する円偏波指向性アンテナを用いる場合には、前記第2の発受信手段と第1の発受信手段との間で、指向性の方向が双方向通信の相手方に向けて、お互いに対向して設けることで、距離の測定精度を飛躍的に改善することができる。   The first transmitting / receiving unit, the second transmitting / receiving unit, or both of these antennas or transducers are omnidirectional antennas or directional antennas, and in particular, a wide directional beam of 90 ° or more. When a circularly polarized directional antenna having a width is used, the direction of directivity between the second transmitter / receiver and the first transmitter / receiver is directed toward the other party of bidirectional communication. By providing them in opposition, the distance measurement accuracy can be dramatically improved.

図2は、本発明の第1の実施の形態による距離測定装置のタイミングチャートである。図2において、21aは第1の発受信手段101aから発信される起点信号、21bは第2の発受信手段101bよって復調される起点信号、22は前記第1の発受信手段から第2の発受信手段に向けて起点信号が伝搬する伝搬経路、23aは前記第2の発受信手段よって復調された起点信号に同期して生成される距離測定信号、23bは前記第1の発受信手段によって復調された距離測定信号、24は前記第2の発受信手段から第1の発受信手段に向けて距離測定信号が伝搬する伝搬経路、25は前記第1の発受信手段の発信のタイミングから第2発受信手段の発信のタイミングまでの時分割の間隔、26は前記第1の発受信手段から発信される起点信号と前記第1の発受信手段によって復調される距離測定信号との位相差、27aは前記第1の発受信手段の発信手段の時間軸、27bは前記第1の発受信手段の受信手段の時間軸、28aは前記第2の発受信手段の受信手段の時間軸、28bは前記第2の発受信手段の発信手段の時間軸である。   FIG. 2 is a timing chart of the distance measuring apparatus according to the first embodiment of the present invention. In FIG. 2, 21a is a starting signal transmitted from the first transmitting / receiving means 101a, 21b is a starting signal demodulated by the second transmitting / receiving means 101b, and 22 is a second transmitting signal from the first transmitting / receiving means. A propagation path through which the origin signal propagates toward the reception means, 23a is a distance measurement signal generated in synchronization with the origin signal demodulated by the second origination / reception means, and 23b is demodulated by the first origination / reception means The distance measurement signal 24 is a propagation path through which the distance measurement signal propagates from the second transmission / reception means to the first transmission / reception means, and 25 is the second from the transmission timing of the first transmission / reception means. The time division interval until the transmission timing of the transmission / reception means, 26 is the phase difference between the origin signal transmitted from the first transmission / reception means and the distance measurement signal demodulated by the first transmission / reception means, 27a Said 1 is a time axis of the transmitting means of the first transmitting / receiving means, 27b is a time axis of the receiving means of the first transmitting / receiving means, 28a is a time axis of the receiving means of the second transmitting / receiving means, and 28b is the second time axis of the receiving means. It is a time-axis of the transmission means of a transmission / reception means.

前記第1の発受信手段から発信される前記起点信号21aをASin(2πf1t)とすると、前記起点信号21aが、距離L(m)の伝搬経路22を伝搬し、前記第2の発受信手段によって受信され、起点信号21bとして復調されると、BSin{2πf1t+(2πLf1/C)}に位相が変化する。
前記復調された起点信号21bと同期した距離測定信号23aを生成すると、生成された距離測定信号23aは、同じくBSin{2πf1t+(2πLf1/C)}で表される。
Assuming that the starting signal 21a transmitted from the first transmitting / receiving means is ASin (2πf1t), the starting signal 21a propagates through the propagation path 22 of the distance L (m) and is transmitted by the second transmitting / receiving means. When received and demodulated as the origin signal 21b, the phase changes to BSin {2πf1t + (2πLf1 / C)}.
When the distance measurement signal 23a synchronized with the demodulated starting point signal 21b is generated, the generated distance measurement signal 23a is also represented by BSin {2πf1t + (2πLf1 / C)}.

前記時分割の間隔25の後に、前記生成された距離測定信号23aが、前記第2の発受信手段から発信され、再び、距離L(m)の伝搬経路16を伝搬し、前記第1の発受信手段で復調される距離測定信号23bは、CSin{2πf1t+(4πLf1/C)}で表わされる。ここで、Cは光の速度とする。
そこで、前記第1の発受信手段で生成された起点信号21aと同期しあるいは直交し、周波数が前記起点信号の整数倍のクロック信号を用い、前記復調された距離測定信号23bの位相を測定すると、前記第1の発受信手段で生成された起点信号21aと前記第1の発受信手段で復調された距離測定信号23bとの位相差26が測定され、ΔΦ={4πLf1/C}となることから、L={CΔΦ/4πf1}から、距離L(m)が算出できる。
なお、距離測定の際に、伝搬位相差を測定する代わりに、伝搬遅延時間を測定しても同様な効果が得られる。
After the time division interval 25, the generated distance measurement signal 23a is transmitted from the second transmission / reception means, propagates again through the propagation path 16 of the distance L (m), and the first transmission signal is transmitted. The distance measurement signal 23b demodulated by the receiving means is represented by CSin {2πf1t + (4πLf1 / C)}. Here, C is the speed of light.
Therefore, when the phase of the demodulated distance measurement signal 23b is measured using a clock signal that is synchronized with or orthogonal to the starting signal 21a generated by the first transmitting / receiving means and whose frequency is an integral multiple of the starting signal. The phase difference 26 between the starting point signal 21a generated by the first transmitter / receiver and the distance measurement signal 23b demodulated by the first transmitter / receiver is measured, and ΔΦ = {4πLf1 / C}. From L = {CΔΦ / 4πf1}, the distance L (m) can be calculated.
In the distance measurement, the same effect can be obtained by measuring the propagation delay time instead of measuring the propagation phase difference.

図3は、本発明の第1の実施の形態による距離測定装置の受信入力と伝達位相および距離の測定誤差との関係を例示する図である。図3において、第1の発受信手段101aと第2発受信手段101bとの間を可変減衰器で接続し、前記可変減衰器の減衰量を変化させた場合の減衰量と測定された距離との関係を示す。
前記第1の発受信手段と第2発受信手段との間の物理的な距離は一定であるのに対して、測定された距離は減衰量の増加とともに大きくなり、内部で生じる距離の測定誤差が、前記減衰量と等価な受信信号強度(RSSI)の増減に応じて変化するものと考えられることから、適切な誤差検出手段と誤差補正手段とを設けることが必要であることを示唆していることがわかる。
FIG. 3 is a diagram illustrating the relationship between the reception input of the distance measuring device according to the first embodiment of the present invention and the measurement error of the transmission phase and distance. In FIG. 3, the first transmitter / receiver means 101a and the second transmitter / receiver means 101b are connected by a variable attenuator, and the attenuation amount and the measured distance when the attenuation amount of the variable attenuator is changed. The relationship is shown.
While the physical distance between the first transmitting / receiving means and the second transmitting / receiving means is constant, the measured distance increases as the amount of attenuation increases, resulting in a distance measurement error that occurs internally. Is considered to change according to the increase / decrease of the received signal strength (RSSI) equivalent to the attenuation amount, suggesting that it is necessary to provide appropriate error detection means and error correction means. I understand that.

なお、図3に示す距離測定誤差は発受信手段1台当りのものであり、双方向通信により距離を測定する場合の測定誤差は2倍となるので、無視できない値である。
また、図3に示す距離測定誤差は、前記発受信手段の特に受信手段の内部で大きな増幅度を有する中間周波増幅器の伝達位相誤差、あるいは伝達遅延誤差に起因するものが大部分を占めており、そのうえ、自動利得制御回路(AGC)によって中間周波増幅器の利得を制御しているために、直線ではなく曲線となっており、複雑な距離補正を行う必要がある。
本発明は、図3に示す距離補正曲線を測定して曲線近似を行い、メモリに記憶し、記憶した内容に従て伝達位相あるいは伝達遅延時間の補正を経済的な方法で実施するためになされたものである。
Note that the distance measurement error shown in FIG. 3 is per transmission / reception means, and the measurement error when measuring the distance by two-way communication is doubled and therefore cannot be ignored.
Further, most of the distance measurement errors shown in FIG. 3 are caused by a transmission phase error or a transmission delay error of an intermediate frequency amplifier having a large amplification factor in the transmitting / receiving means, particularly in the receiving means. In addition, since the gain of the intermediate frequency amplifier is controlled by the automatic gain control circuit (AGC), it is a curve instead of a straight line, and it is necessary to perform complicated distance correction.
The present invention is made to measure the distance correction curve shown in FIG. 3, perform curve approximation, store it in a memory, and implement transmission phase or transmission delay time correction in an economical manner according to the stored contents. It is a thing.

図4は、本発明の第1の実施の形態による制御フローチャートである。図4において、31はスタート、32は第1発受信手段の制御ステップ、33は第2発受信手段の制御ステップ、34は第1発受信手段の制御ステップ、35はENDである。
前記第1発受信手段の制御ステップ32では、第1発受信手段で、起点信号を生成し、起点信号を含む無線信号を間欠発信し、前記第2発受信手段の制御ステップ33では、受信した無線信号から起点信号を復調して同期を確立・保持し、内部で生じる伝達位相誤差もしくは伝達遅延誤差を補正して起点信号と同期した距離測定信号を生成し、距離測定信号を含む無線信号を時分割のタイミングで折返し発信する。
更に、前記第1発受信手段の制御ステップ34では、受信した無線信号から距離測定信号を復調して同期を確立・保持し、内部で生じる伝達位相誤差もしくは伝達遅延誤差を検出・補正し、最初に発信した起点信号を基準として補正した距離測定信号の位相もしくは遅延時間を測定して距離を算出する。
FIG. 4 is a control flowchart according to the first embodiment of the present invention. In FIG. 4, 31 is a start, 32 is a control step of the first transmission / reception means, 33 is a control step of the second transmission / reception means, 34 is a control step of the first transmission / reception means, and 35 is END.
In the control step 32 of the first transmission / reception means, the first transmission / reception means generates a starting point signal, intermittently transmits a radio signal including the starting point signal, and the second transmission / reception means control step 33 receives the signal. Demodulate the origin signal from the radio signal to establish and maintain synchronization, generate a distance measurement signal that is synchronized with the origin signal by correcting the internal transmission phase error or transmission delay error, and the radio signal including the distance measurement signal Call back at time-sharing timing.
Further, in the control step 34 of the first transmission / reception means, the distance measurement signal is demodulated from the received radio signal to establish and maintain the synchronization, and the internally generated transmission phase error or transmission delay error is detected and corrected. The distance is calculated by measuring the phase or delay time of the distance measurement signal corrected with reference to the starting point signal transmitted to.

図5は本発明の第1の実施の形態による第1の発受信手段の構成図である。図5において、101aは第1の発受信手段、11aは第1の制御手段、12aは第1の発信手段、13aは第2の受信手段、14aは第1のアンテナ切替手段、41は前記第1のアンテナ切替手段の入出力端子、42は前記第1の受信手段への入力端子、43は低雑音増幅器、44はミキサ、45は局発信号発振器、46は中間周波フイルタ、47は中間周波増幅・復調手段、48は受信信号強度測定手段(RSSI)、49は疑似信号生成手段、50a〜50eは接続端子、51は第1の同期確立・保持手段、52は第1の誤差検出・補正手段、53は距離算出手段、54は起点信号生成手段、55は変調・増幅手段、56はロールオフフイルタ、57はミキサ、58は電力増幅器、59は前記第1の発信手段の出力端子である。   FIG. 5 is a block diagram of the first transmitting / receiving means according to the first embodiment of the present invention. In FIG. 5, 101a is the first transmission / reception means, 11a is the first control means, 12a is the first transmission means, 13a is the second reception means, 14a is the first antenna switching means, and 41 is the first transmission means. 1 is an input / output terminal of the antenna switching means, 42 is an input terminal to the first receiving means, 43 is a low noise amplifier, 44 is a mixer, 45 is a local signal oscillator, 46 is an intermediate frequency filter, and 47 is an intermediate frequency. Amplification / demodulation means 48, received signal strength measurement means (RSSI), 49 pseudo signal generation means, 50a-50e connection terminals, 51 first synchronization establishment / holding means 52, first error detection / correction Means 53, distance calculation means, 54, origin signal generation means, 55, modulation / amplification means, 56, roll-off filter, 57, mixer, 58, power amplifier, 59, output terminal of the first transmission means. .

前記第1の制御手段11aの起点信号生成手段54が間欠的に起動されて識別信号と起点信号が生成され、接続端子50dを介して変調・増幅手段55に入力され、変調されたのち規定の出力に増幅され、ロールオフフイルタ56によって帯域が制限され、ミキサ57によって局部発振器45の出力と混合され、電力増幅器58によって規定の電力まで増幅され、アンテナ切替手段14aによって切替えられてアンテナ15aから空間に放射される。   The start signal generation means 54 of the first control means 11a is intermittently activated to generate an identification signal and a start signal, which are input to the modulation / amplification means 55 via the connection terminal 50d, modulated, and then specified. The output is amplified, the band is limited by the roll-off filter 56, mixed with the output of the local oscillator 45 by the mixer 57, amplified to a specified power by the power amplifier 58, switched by the antenna switching means 14a, and then spatially separated from the antenna 15a. To be emitted.

一方、前記第2の発受信手段11bから空間へ放射され、アンテナ15aによって受信され、アンテナ切替手段14aによって切替えられて接続端子42に入力されると、低雑音増幅器42によって増幅され、ミキサ44によって局発信号発振器45の出力と混合されて中間周波信号に変換され、中間周波フイルタ46によって選択された後、増幅・復調手段47によって増幅されて前記距離測定信号が復調され、接続端子50aを介して第1の制御手段11aの同期確立・保持手段51によって前記距離測定信号との同期を確立して保持し、受信信号入力測定手段48によって測定した受信信号強度に対応し、前記誤差検出・補正手段によって検出された伝達位相誤差もしくは伝達遅延誤差を補正し、前記補正された距離測定信号の位相あるいは遅延時間を、前記起点信号生成手段54によって生成された起点信号を基準として前記距離測定手段53によって測定し、前記第2の発受信手段101との距離を高精度で測定し、測定結果を接続端子60を介して外部の表示装置(記載せず)に転送する。   On the other hand, when radiated from the second transmitting / receiving means 11b to the space, received by the antenna 15a, switched by the antenna switching means 14a and inputted to the connection terminal 42, it is amplified by the low noise amplifier 42 and then mixed by the mixer 44. After being mixed with the output of the local oscillator 45 and converted to an intermediate frequency signal, selected by the intermediate frequency filter 46, amplified by the amplifying / demodulating means 47, the distance measurement signal is demodulated through the connection terminal 50a. The synchronization establishment / holding means 51 of the first control means 11a establishes and holds the synchronization with the distance measurement signal, and corresponds to the received signal strength measured by the received signal input measurement means 48, and detects and corrects the error. The transmission phase error or the transmission delay error detected by the means is corrected, and the phase of the corrected distance measurement signal is corrected. Alternatively, the delay time is measured by the distance measuring unit 53 based on the starting point signal generated by the starting point signal generating unit 54, the distance from the second transmitting / receiving unit 101 is measured with high accuracy, and the measurement result Is transferred to an external display device (not shown) via the connection terminal 60.

なお、前記第1の発受信手段の出荷試験時、起動時、距離測定時、あるいは必要なタイミングで、前記疑似信号生成手段49によって誤差検出信号を生成し、前記第1の受信手段13a内の低雑音増幅器43、ミキサ44、フイルタ46、増幅・復調手段47、あるいはその他の適当な入力端子に結合して前記誤差検出・補正手段52によって伝達位相誤差あるいは伝達遅延誤差を測定し、メモリに記憶しておく必要がある。
また、前記誤差検出・補正手段が、前記伝達位相誤差もしくは伝達遅延誤差を、少なくとも補正値と補正係数とを設けて検出し、曲線近似を行い、あるいはこれらの両方を行う。
Note that an error detection signal is generated by the pseudo signal generating means 49 at the time of a shipping test of the first transmitting / receiving means, at the time of starting, at the time of distance measurement, or at a necessary timing, and is stored in the first receiving means 13a. Low noise amplifier 43, mixer 44, filter 46, amplifying / demodulating means 47, or other suitable input terminals are coupled to measure the transmission phase error or transmission delay error by the error detecting / correcting means 52, and stored in the memory. It is necessary to keep it.
Further, the error detection / correction means detects the transmission phase error or the transmission delay error by providing at least a correction value and a correction coefficient, performs curve approximation, or both.

また、前記構成により、前記誤差検出・補正手段52が、前記第1の受信手段の少なくとも低雑音増幅器、ミキサー、中間周波信号増幅器、信号復調手段、アナログ回路、もしくはこれらの組み合わせの伝達位相誤差もしくは伝達遅延誤差を検出し、補正し、あるいはこれらの両方を行うものとする。
また、前記疑似信号生成手段49が、前記起点信号もしくは距離測定信号により変調された誤差検出信号を生成し、前記受信手段の所定の位置に所定の入力値で結合される。
また、前記疑似信号生成手段49の信号出力の調整が、可変抵抗減衰器、伝達位相等価可変減衰器(伝達位相が一定である可変減衰器)、伝達遅延時間等価可変減衰器(伝達遅延時間が一定である可変減衰器)、あるいはこれらの組み合わせを含み、伝達位相誤差もしくは伝達遅延誤差が、必要な結合量あるいは注入レベルに対して規定値内であるものとする。
Further, according to the above configuration, the error detection / correction unit 52 can transmit at least a low noise amplifier, a mixer, an intermediate frequency signal amplifier, a signal demodulation unit, an analog circuit, or a combination of these in the first reception unit. It is assumed that the propagation delay error is detected, corrected, or both.
Further, the pseudo signal generation means 49 generates an error detection signal modulated by the starting point signal or the distance measurement signal, and is coupled to a predetermined position of the reception means with a predetermined input value.
In addition, the adjustment of the signal output of the pseudo signal generating means 49 includes variable resistance attenuator, transmission phase equivalent variable attenuator (variable attenuator with constant transmission phase), transmission delay time equivalent variable attenuator (transmission delay time). A variable attenuator that is constant), or a combination thereof, and the transmission phase error or the transmission delay error is within a specified value for the required coupling amount or injection level.

また、前記第1の制御手段、第2の制御手段、あるいはこれらの両方が同期確立・保持手段を有し、前記復調された起点信号もしくは距離測定信号のゼロ交差点を高い周波数のサンプリング信号によって検出し、前記サンプリング信号を分周して距離測定信号を生成するためのカウンタを、前記ゼロ交差点のタイミングでセットしあるいはリセットする。
また、前記第1もしくは第2の受信手段に内蔵する擬似信号生成手段と、前記第1もしくは第2の発信手段に内蔵する変調・増幅手段とが、共通の回路構成を有し、前記共通の回路構成が、少なくとも、変調・増幅回路、可変減衰回路、あるいはこれらの両方であるものとする。
Further, the first control means, the second control means, or both of them have synchronization establishment / holding means, and detect the zero crossing point of the demodulated origin signal or distance measurement signal by a high frequency sampling signal. Then, a counter for dividing the sampling signal to generate a distance measurement signal is set or reset at the timing of the zero crossing.
Further, the pseudo signal generating means built in the first or second receiving means and the modulation / amplifying means built in the first or second transmitting means have a common circuit configuration, and the common It is assumed that the circuit configuration is at least a modulation / amplification circuit, a variable attenuation circuit, or both.

図6は本発明の第1の実施の形態による第2の発受信手段の構成図である。図6において、101bは第2の発受信手段、11bは第2の制御手段、12bは第2の発信手段、13bは前記第2の受信手段、14bは第2のアンテナ切替手段、41は前記第2のアンテナ切替手段の入出力端子、42は前記第2の受信手段への入力端子、43は低雑音増幅器、44はミキサ、45は局発信号発振器、46は中間周波フイルタ、47は中間周波増幅・復調手段、48は受信信号強度測定手段(RSSI)、49は疑似信号生成手段、50a〜50eは接続端子、51は第2の同期確立・保持手段、52は第2の誤差検出・補正手段、53は距離算出手段、54は起点信号生成手段、55は変調・増幅手段、56はロールオフフイルタ、57はミキサ、58は電力増幅器、59は前記第2の発信手段の出力端子である。   FIG. 6 is a block diagram of the second transmitting / receiving means according to the first embodiment of the present invention. In FIG. 6, 101b is the second transmission / reception means, 11b is the second control means, 12b is the second transmission means, 13b is the second reception means, 14b is the second antenna switching means, and 41 is the above-mentioned Input / output terminal of the second antenna switching means, 42 is an input terminal to the second receiving means, 43 is a low noise amplifier, 44 is a mixer, 45 is a local oscillator, 46 is an intermediate frequency filter, and 47 is an intermediate Frequency amplification / demodulation means 48, received signal strength measurement means (RSSI), 49 pseudo signal generation means, 50a-50e connection terminals, 51 second synchronization establishment / holding means 52, second error detection Correction means, 53 is distance calculation means, 54 is origin signal generation means, 55 is modulation / amplification means, 56 is a roll-off filter, 57 is a mixer, 58 is a power amplifier, and 59 is an output terminal of the second transmission means. is there.

前記第1の発受信手段11aから空間へ放射された起点信号を含む無線信号が、アンテナ15bによって受信され、アンテナ切替手段14bによって切替えられて接続端子42に入力されると、低雑音増幅器42によって増幅され、ミキサ44によって局発信号発振器45の出力と混合されて中間周波信号に変換され、中間周波フイルタ46によって選択された後、増幅・復調手段47によって増幅されて前記起点信号が復調され、接続端子50aを介して第2の制御手段11bの同期確立・保持手段51によって前記起点信号との同期を確立して保持し、受信信号入力測定手段48によって測定した受信信号強度に対応し、前記誤差検出・補正手段によって検出された伝達位相誤差もしくは伝達遅延誤差を補正し、前記補正された起点信号の位相あるいは遅延時間と同期した距離測定信号を、前記距離測定信号生成手段61によって生成し、前記生成された距離測定信号を接続端子50d介して第2の発信手段12bに転送する。   When a radio signal including an origin signal radiated from the first transmitting / receiving unit 11a to the space is received by the antenna 15b, switched by the antenna switching unit 14b, and input to the connection terminal 42, the low-noise amplifier 42 Amplified, mixed with the output of the local oscillator 45 by the mixer 44, converted into an intermediate frequency signal, selected by the intermediate frequency filter 46, amplified by the amplification / demodulation means 47, and the starting signal is demodulated, The synchronization with the origin signal is established and held by the synchronization establishment / holding means 51 of the second control means 11b via the connection terminal 50a, corresponding to the received signal strength measured by the received signal input measuring means 48, Correcting the transmission phase error or transmission delay error detected by the error detection / correction means, and correcting the starting signal The distance measurement signal synchronized with the phase or time delay, generated by the distance measuring signal generating means 61, transferred to the second transmitting unit 12b via a distance measurement signal the generated connection terminal 50d.

前記第2の制御手段11bの距離測定信号生成手段61が時分割のタイミングで起動されて識別信号と距離測定信号が生成され、接続端子50dを介して変調・増幅手段55に入力され、変調されたのち規定の出力に増幅され、ロールオフフイルタ56によって帯域が制限され、ミキサ57によって局部発振器45の出力と混合された後、電力増幅器58によって規定の電力まで増幅され、アンテナ切替手段14ばによって切替えられてアンテナ15ばから空間に放射される。   The distance measurement signal generation means 61 of the second control means 11b is activated at a time division timing to generate an identification signal and a distance measurement signal, which are input to the modulation / amplification means 55 via the connection terminal 50d and modulated. After that, it is amplified to a specified output, the band is limited by the roll-off filter 56, mixed with the output of the local oscillator 45 by the mixer 57, and then amplified to a specified power by the power amplifier 58. Switched and radiated from the antenna 15 to the space.

なお、前記第1の発受信手段の出荷試験時、起動時、距離測定時、あるいは必要なタイミングで、前記疑似信号生成手段49によって誤差検出信号を生成し、前記第1の受信手段13a内の低雑音増幅器43、ミキサ44、フイルタ46、増幅・復調手段47、あるいはその他の適当な入力端子に結合して前記誤差検出・補正手段52によって伝達位相誤差あるいは伝達遅延誤差を測定し、メモリに記憶しておく必要がある。
また、前記誤差検出・補正手段が、前記伝達位相誤差もしくは伝達遅延誤差を、少なくとも補正値と補正係数とを設けて検出し、補正し、あるいはこれらの両方を行う。
Note that an error detection signal is generated by the pseudo signal generating means 49 at the time of a shipping test of the first transmitting / receiving means, at the time of starting, at the time of distance measurement, or at a necessary timing, and is stored in the first receiving means 13a. Low noise amplifier 43, mixer 44, filter 46, amplifying / demodulating means 47, or other suitable input terminals are coupled to measure the transmission phase error or transmission delay error by the error detecting / correcting means 52, and stored in the memory. It is necessary to keep it.
The error detection / correction means detects and corrects the transmission phase error or the transmission delay error by providing at least a correction value and a correction coefficient, or both.

また、前記構成により、前記誤差検出・補正手段52が、前記第1の受信手段の少なくとも低雑音増幅器、ミキサー、中間周波信号増幅器、信号復調手段、アナログ回路、もしくはこれらの組み合わせの伝達位相誤差もしくは伝達遅延誤差を検出し、補正し、あるいはこれらの両方を行うものとする。
また、前記疑似信号生成手段49が、前記起点信号もしくは距離測定信号により変調された誤差検出信号を生成し、前記受信手段の所定の位置に所定の入力値で結合される。
また、前記疑似信号生成手段49の信号出力の調整が、可変抵抗減衰器、伝達位相等価可変減衰器、伝達遅延時間等価減衰器、あるいはこれらの組み合わせを含み、伝達位相誤差もしくは伝達遅延誤差が、必要な結合量あるいは注入レベルに対して規定値内であるものとする。
Further, according to the above configuration, the error detection / correction unit 52 can transmit at least a low noise amplifier, a mixer, an intermediate frequency signal amplifier, a signal demodulation unit, an analog circuit, or a combination of these in the first reception unit. It is assumed that the propagation delay error is detected, corrected, or both.
Further, the pseudo signal generation means 49 generates an error detection signal modulated by the starting point signal or the distance measurement signal, and is coupled to a predetermined position of the reception means with a predetermined input value.
Further, the adjustment of the signal output of the pseudo signal generating means 49 includes a variable resistance attenuator, a transmission phase equivalent variable attenuator, a transmission delay time equivalent attenuator, or a combination thereof. It shall be within the specified value for the required coupling amount or injection level.

また、前記第1の制御手段、第2の制御手段、あるいはこれらの両方が同期確立・保持手段を有し、前記復調された起点信号もしくは距離測定信号のゼロ交差点を高い周波数のサンプリング信号によって検出し、前記サンプリング信号を分周して距離測定信号を生成するためのカウンタを、前記ゼロ交差点のタイミングでセットしあるいはリセットすることによって高精度で同期を確立し保持することができる。
また、前記第1もしくは第2の受信手段に内蔵する擬似信号生成手段と、前記第1もしくは第2の発信手段に内蔵する変調・増幅手段とが、共通の回路構成を有し、前記共通の回路構成が、少なくとも、変調・増幅回路、可変減衰回路、あるいはこれらの両方であるものとする。
Further, the first control means, the second control means, or both of them have synchronization establishment / holding means, and detect the zero crossing point of the demodulated origin signal or distance measurement signal by a high frequency sampling signal. Then, by setting or resetting a counter for dividing the sampling signal and generating a distance measurement signal at the timing of the zero crossing, synchronization can be established and maintained with high accuracy.
Further, the pseudo signal generating means built in the first or second receiving means and the modulation / amplifying means built in the first or second transmitting means have a common circuit configuration, and the common It is assumed that the circuit configuration is at least a modulation / amplification circuit, a variable attenuation circuit, or both.

以上の説明では受信入力信号の変動に対応する伝達位相誤差もしくは伝達遅延誤差に関する距離補正手段について記述されているが、前記発受信手段内に内在する固定的あるいは変動的な伝達位相誤差もしくは伝達遅延誤差についても前記誤差検出・補正手段によって検出し、補正し、あるいは両方を行うことが可能であることは言うまでもない。
また、受信手段に設けられた中間周波フイルタの伝達位相が温度によってドリフトするために生じる伝達位相誤差に対しては、前記フイルタの中心周波数あるいはカットオフ周波数の温度変化に対する補正手段を設けるか、温度変動に対して特性が安定な中間周波フイルタを採用するか、前記誤差の検出を頻繁に行う必要がある。
In the above description, the distance correction means for the transmission phase error or the transmission delay error corresponding to the fluctuation of the received input signal is described. However, the fixed or variable transmission phase error or the transmission delay inherent in the transmission / reception means. Needless to say, errors can also be detected and corrected by the error detection / correction means, or both.
For the transmission phase error caused by the drift of the transmission phase of the intermediate frequency filter provided in the receiving means due to temperature, a correction means for the temperature change of the center frequency or cutoff frequency of the filter is provided, or the temperature It is necessary to employ an intermediate frequency filter whose characteristics are stable against fluctuations or to frequently detect the error.

また、前記詳細な説明では、主として電波信号を利用する場合について述べたが、超音波信号あるいは光信号を用いても同様な効果が得られることは言うまでもない。なお、前記超音波信号あるいは光信号を用いる場合には、アンテナの代わりに送受話器を用いるものとする。
In the detailed description, the case where radio signals are mainly used has been described, but it goes without saying that the same effect can be obtained by using ultrasonic signals or optical signals. When the ultrasonic signal or the optical signal is used, a handset is used instead of the antenna.

本発明によれば、複数の発受信手段の間で、時分割による相互通信を行うことによって、短時間に、高精度で、しかも安価な装置を用いて、相互間の距離を高精度で測定することが可能となる。
例えば、高速道路を走行中の車と車の間の距離と方向が瞬時に高精度で各々の側で算出可能となり、協調運転あるいは衝突防止装置などに応用することができ、あるいは、歩行者あるいはロボットなどの自律移動の誘導あるいは制御と、センターからのリモコンおよび監視などとが、同時に可能となる。
なお、本発明の距離測定技術は基盤技術であり、上記以外に多分野での利用が期待できる。
According to the present invention, by performing mutual communication by means of time division between a plurality of transmission / reception means, a distance between each other can be measured with high accuracy using a low-cost device with high accuracy. It becomes possible to do.
For example, the distance and direction between cars traveling on a highway can be calculated instantaneously with high accuracy on each side, and can be applied to cooperative driving or collision prevention devices, etc. Induction or control of autonomous movement of a robot or the like and remote control and monitoring from the center can be performed simultaneously.
Note that the distance measurement technique of the present invention is a basic technique, and can be expected to be used in many other fields.

1 無線通信部
2 アンテナ
3 信号増幅・フイルタ部
4 ADC
5 測定制御・時間計測部
6 信号分配器
101a 第1の発受信手段
101b 第2の発受信手段
11a、11b 制御手段
12a、12b 発信手段
13a、13b 受信手段
14a、14b アンテナ切替手段
15a、15b アンテナ
1 Wireless Communication Unit 2 Antenna 3 Signal Amplification / Filter Unit 4 ADC
5 Measurement control / time measurement unit 6 Signal distributor 101a First transmission / reception means 101b Second transmission / reception means 11a, 11b Control means 12a, 12b Transmission means 13a, 13b Reception means 14a, 14b Antenna switching means 15a, 15b Antenna

Claims (8)

無線信号を用いて第1の発受信手段と第2の発受信手段との間の距離を測定する距離測定装置において、
前記第1の発受信手段が、前記無線信号を、時分割のタイミングでバースト信号として発信するための第1の発信手段と、前記無線信号を、時分割のタイミングで受信するための第1の受信手段と、前記第1の発信手段と第1の受信手段とを制御するための第1の制御手段と、前記第1の発信手段と第1の受信手段との間で、アンテナあるいは送受波器を時分割で切替えあるいは共有するための第1のアンテナ切替手段とから構成され、
前記第2の発受信手段が、前記無線信号を、時分割のタイミングでバースト信号として発信するための第2の発信手段と、前記無線信号を、時分割のタイミングで受信するための第2の受信手段と、前記第2の発信手段と第2の受信手段とを制御するための第2の制御手段と、前記第2の発信手段と第2の受信手段との間で、アンテナあるいは送受波器を時分割で切替えあるいは共有するための第2のアンテナ切替手段とから構成され、
前記第1の発受信手段が、少なくとも起点信号を含む無線信号を間欠発信し、
前記第2の発受信手段が、前記第1の発受信手段から間欠発信された無線信号を受信して前記起点信号を復調し、第2の同期確立・保持手段を設けて、前記起点信号と高精度で同期した距離測定信号を生成するとともに、第2の擬似信号生成手段と第2の誤差検出・補正手段とを設けて、自局に内在する伝達位相誤差もしくは伝達遅延誤差を検出して位相補正を行い、時間補正を行い、あるいはこれらの両方を行い、前記補正後の距離測定信号を含む無線信号を前記第1の発受信手段に向けて時分割のタイミングで折返して発信し、
前記第1の発受信手段が、前記第2の発受信手段から折返して発信された無線信号を受信して前記距離測定信号を復調するとともに、第1の擬似信号生成手段と第1の誤差検出・補正手段とを設けて、自局に内在する伝達位相誤差を検出して位相補正を行い、時間補正を行い、あるいはこれらの両方を行い、自局から発信した起点信号を基準として前記復調した距離測定信号の位相もしくはタイミングを測定し、前記第2の発受信手段との間の相対的な距離を算出することを特徴とする距離測定装置および距離補正手段。
In a distance measuring device that measures a distance between a first transmitting / receiving unit and a second transmitting / receiving unit using a radio signal,
The first transmission / reception means is a first transmission means for transmitting the radio signal as a burst signal at a time division timing; and a first transmission means for receiving the radio signal at a time division timing. Between the receiving means, the first control means for controlling the first transmitting means and the first receiving means, and between the first transmitting means and the first receiving means, an antenna or a wave transmission / reception First antenna switching means for switching or sharing the device in a time-sharing manner,
A second transmitter for transmitting the radio signal as a burst signal at a time-division timing; and a second transmitter for receiving the radio signal at a time-division timing. An antenna or a wave transmission / reception between a receiving means, a second control means for controlling the second sending means and the second receiving means, and the second sending means and the second receiving means Second antenna switching means for switching or sharing the device in a time-sharing manner,
The first transmission / reception means intermittently transmits a radio signal including at least a starting signal,
The second transmitting / receiving means receives a radio signal intermittently transmitted from the first transmitting / receiving means, demodulates the starting signal, and provides second synchronization establishing / holding means, A highly accurate and synchronized distance measurement signal is generated, and a second pseudo signal generation means and a second error detection / correction means are provided to detect a transmission phase error or a transmission delay error inherent in the own station. Perform phase correction, perform time correction, or both, transmit a radio signal including the corrected distance measurement signal to the first transmission / reception means at a time division timing,
The first transmitter / receiver receives a radio signal transmitted from the second transmitter / receiver and demodulates the distance measurement signal. The first pseudo signal generator and the first error detector・ A correction means is provided to detect a transmission phase error inherent in the own station, perform phase correction, perform time correction, or both, and demodulate the signal based on the origin signal transmitted from the own station. A distance measuring device and a distance correcting means, characterized by measuring a phase or timing of a distance measuring signal and calculating a relative distance from the second transmitting / receiving means.
前記請求項第1項において、前記誤差検出・補正手段が、前記伝達位相誤差もしくは伝達遅延誤差を、少なくとも補正値と補正係数とを設けて検出し、曲線近似を行い、あるいはこれらの両方を行うことを特徴とする請求項第1項もしくは第2項に記載する距離測定装置および距離補正手段。
2. The error detection / correction unit according to claim 1, wherein the error detection / correction means detects the transmission phase error or the transmission delay error by providing at least a correction value and a correction coefficient, and performs curve approximation or both of them. The distance measuring device and the distance correcting means according to claim 1 or 2, characterized by the above.
前記請求項第1項において、前記誤差検出・補正手段が、前記第1の発受信手段、前記第2の発受信手段、もしくはこれらの両方の出荷試験時、起動時、距離測定時、あるいは必要なタイミングで、前記伝達位相誤差もしくは伝達遅延誤差を検出し、内部メモリに記憶することを特徴とする距離測定装置および距離補正手段。
In the first aspect of the present invention, the error detection / correction means is the first transmission / reception means, the second transmission / reception means, or both of them at the time of a shipping test, at startup, at the time of distance measurement, or necessary. A distance measuring device and distance correcting means for detecting the transmission phase error or the transmission delay error at a proper timing and storing them in an internal memory.
前記請求項第1項において、前記誤差検出・補正手段が、前記復調された起点信号もしくは距離測定信号から検出された伝達位相誤差もしくは伝達遅延誤差を補正するために、デジタル制御されあるいはタップにより切り替えられる移相制御手段もしくは遅延制御手段を設けることを特徴とする距離測定装置および距離補正手段。
5. The method of claim 1, wherein the error detection / correction means is digitally controlled or switched by a tap to correct a transmission phase error or a transmission delay error detected from the demodulated origin signal or distance measurement signal. A distance measuring apparatus and a distance correcting means, characterized by comprising a phase shift control means or a delay control means.
前記請求項第1項において、前記擬似信号生成手段が中間周波信号を生成し、低雑音増幅器、ミキサ、中間周波フイルタ、中間周波信号増幅器、信号復調手段、アナログ回路、もしくはこれらの組み合わせの入力端子に、必要に応じて結合しあるいは注入することを特徴とする距離測定装置および距離補正手段。
2. The input terminal of the first claim, wherein the pseudo signal generating means generates an intermediate frequency signal and is a low noise amplifier, a mixer, an intermediate frequency filter, an intermediate frequency signal amplifier, a signal demodulating means, an analog circuit, or a combination thereof. Further, a distance measuring device and a distance correcting means which are combined or injected as necessary.
前記請求項第1項において、前記擬似信号生成手段が、可変抵抗減衰器、伝達位相等価可変減衰器、伝達遅延時間等価減衰器、あるいはこれらの組み合わせを含み、前記擬似信号生成手段の伝達位相誤差もしくは伝達遅延誤差が、必要な結合量あるいは注入レベルに対して規定値内であることを特徴とする距離測定装置および距離補正手段。
2. The pseudo signal generating means according to claim 1, wherein the pseudo signal generating means includes a variable resistance attenuator, a transmission phase equivalent variable attenuator, a transmission delay time equivalent attenuator, or a combination thereof. Alternatively, the distance measuring device and the distance correcting means are characterized in that the transmission delay error is within a specified value with respect to a required coupling amount or injection level.
前記請求項第1項において、前記第1の制御手段、第2の制御手段、あるいはこれらの両方が同期確立・保持手段を有し、前記復調された起点信号もしくは距離測定信号のゼロ交差点を高い周波数のサンプリング信号によって検出し、前記検出されたゼロ交差点のタイミングで、前記サンプリング信号を分周して距離測定信号を生成するためのカウンタをセットしあるいはリセットすることによって同期を確立し・保持させることを特徴とする距離測定装置および距離補正手段。
In the first aspect of the present invention, the first control means, the second control means, or both of them have synchronization establishment / holding means, and the zero crossing point of the demodulated origin signal or distance measurement signal is high. Establish and maintain synchronization by setting or resetting a counter to detect a frequency sampling signal and divide the sampling signal to generate a distance measurement signal at the detected zero crossing timing A distance measuring device and a distance correcting means.
前記請求項第1項において、前記第1もしくは第2の受信手段に内蔵する擬似信号生成手段と、前記第1もしくは第2の発信手段に内蔵する変調・増幅手段とが、共通の変調・増幅回路、可変減衰回路、あるいはこれらの両方を有することを特徴とする距離測定装置および距離補正手段。   5. The method of claim 1, wherein the pseudo signal generating means built in the first or second receiving means and the modulation / amplifying means built in the first or second sending means are a common modulation / amplification. A distance measuring device and a distance correcting means comprising a circuit, a variable attenuation circuit, or both.
JP2011253633A 2010-12-10 2011-11-21 Distance measurement device and distance correction means Pending JP2012137478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011253633A JP2012137478A (en) 2010-12-10 2011-11-21 Distance measurement device and distance correction means

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010275337 2010-12-10
JP2010275337 2010-12-10
JP2011253633A JP2012137478A (en) 2010-12-10 2011-11-21 Distance measurement device and distance correction means

Publications (1)

Publication Number Publication Date
JP2012137478A true JP2012137478A (en) 2012-07-19

Family

ID=46674993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011253633A Pending JP2012137478A (en) 2010-12-10 2011-11-21 Distance measurement device and distance correction means

Country Status (1)

Country Link
JP (1) JP2012137478A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020138754A1 (en) * 2018-12-26 2020-07-02 ㈜미래컴퍼니 Method for correcting nonlinear distance error of 3-dimensional distance measuring camera by using pulse phase shift
JP2021039067A (en) * 2019-09-05 2021-03-11 株式会社東芝 Distance measuring device
US11536824B2 (en) 2019-09-19 2022-12-27 Kabushiki Kaisha Toshiba Distance measuring apparatus and distance measuring system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020138754A1 (en) * 2018-12-26 2020-07-02 ㈜미래컴퍼니 Method for correcting nonlinear distance error of 3-dimensional distance measuring camera by using pulse phase shift
JP2021039067A (en) * 2019-09-05 2021-03-11 株式会社東芝 Distance measuring device
JP7159132B2 (en) 2019-09-05 2022-10-24 株式会社東芝 rangefinder
US11536824B2 (en) 2019-09-19 2022-12-27 Kabushiki Kaisha Toshiba Distance measuring apparatus and distance measuring system

Similar Documents

Publication Publication Date Title
JP6496854B2 (en) Channel information exchange system and method for time-of-flight range determination
CN104823070B (en) Configure sound system
US7327802B2 (en) Method and apparatus for canceling the transmitted signal in a homodyne duplex transceiver
US20140253389A1 (en) Ranging using wi-fi and ultrasound measurements communication
US9301152B2 (en) Repeater device
US9967845B2 (en) Systems and methods for selectively receiving and processing RF signals at an RF beacon
WO2016041362A1 (en) Positioning method, apparatus and system for terminal device
US9287616B2 (en) Calibrating a retro-directive array for an asymmetric wireless link
US10725181B2 (en) In-band pseudolite wireless positioning method, system and device
JP4842333B2 (en) Radio apparatus and polarization plane control method
JP2012137478A (en) Distance measurement device and distance correction means
JP2013217754A (en) Distance measuring device and distance correction means
US20220361130A1 (en) Methods, Computer Programs and Wireless Communication Devices for Determining a Propagation Time of Wireless Transmissions Between Wireless Communication Devices
JP6130195B2 (en) Radar system
JP2008309744A (en) Radar equipment
JP2009225370A (en) Radio transmitter, distance determining means, position determining means and radio transmitting method
WO2011021321A1 (en) Short-distance wireless system, short-distance wireless apparatus and short-distance wireless method
JP2014115225A (en) Inter-distance measuring device using radio signal of relatively narrow band
KR100893139B1 (en) Distance measurement system using code correlation method with a phase shifter
JP2011242179A (en) Mobile radio positioning device
JP5317543B2 (en) Wireless communication system
WO2018180609A1 (en) Antenna angle adjustment device, antenna angle adjustment system, antenna angle adjustment method, and communications device
KR101706204B1 (en) Method of correcting transceiver of radio channel measurement system with multiple antennas
JP2009258050A (en) Pulse radar device, information transmission method using pulse radar device, and information transmission system using the pulse radar device
JP2016180615A (en) Location positioning device using magnetic force wave signal and location positioning system