JP2012137351A - Viscometer - Google Patents

Viscometer Download PDF

Info

Publication number
JP2012137351A
JP2012137351A JP2010289213A JP2010289213A JP2012137351A JP 2012137351 A JP2012137351 A JP 2012137351A JP 2010289213 A JP2010289213 A JP 2010289213A JP 2010289213 A JP2010289213 A JP 2010289213A JP 2012137351 A JP2012137351 A JP 2012137351A
Authority
JP
Japan
Prior art keywords
spiral structure
viscometer
double spiral
spiral
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010289213A
Other languages
Japanese (ja)
Other versions
JP5483112B2 (en
Inventor
Yasuyuki Yamamoto
泰之 山本
Sohei Matsumoto
壮平 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2010289213A priority Critical patent/JP5483112B2/en
Publication of JP2012137351A publication Critical patent/JP2012137351A/en
Application granted granted Critical
Publication of JP5483112B2 publication Critical patent/JP5483112B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Vibration Prevention Devices (AREA)
  • Micromachines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a moving body of a viscometer that is effective, when a ratio of an area of a portion causing an error factor is reduced after an area subjected to viscosity stress has been enlarged and further compactness is required.SOLUTION: In a viscometer in which a structure subjected to viscosity stress from liquid has a double spiral structure, one spiral of the double spiral structure is fixed and the other spiral of the double spiral structure is movable in a direction parallel to a central axis of a spiral, and the other spiral of the double spiral structure is caused, by an actuator, to move in the direction parallel to the center axis of the spiral so as to be subjected to the viscosity stress from the liquid generated a gap between two spirals which are the one spiral and the other spiral of the double spiral structure.

Description

本発明は、粘度計の運動体に関するもので、特に、粘性応力を受ける面積を拡大した上で、誤差要因となる部分の面積の比率を低減することが必要で、なおかつコンパクトであることが必要とされる場合に、有効な運動体を提供する。   The present invention relates to a moving body of a viscometer, and in particular, it is necessary to reduce the area ratio of the part that causes an error after expanding the area subjected to viscous stress, and to be compact. When it is said, it provides an effective moving body.

従来、振動式粘度計は、液体中で物体を振動させ、その振動の振幅や位相などが、粘性応力によって変化することを利用して、粘度と液体密度の積、あるいは粘度を測定する装置であることが知られている。振動体の形状としては、平板を面に平行な方向に振動させるもの、円柱を軸周りに回転振動させるもの、カンチレバー状の平板を面に垂直な方向に振動させるものなどが知られている。   Conventionally, a vibratory viscometer is a device that measures the product of the viscosity and the liquid density, or the viscosity by utilizing the fact that the amplitude or phase of the vibration changes depending on the viscous stress, by vibrating an object in the liquid. It is known that there is. As the shape of the vibrating body, there are known one that vibrates a flat plate in a direction parallel to the surface, one that rotates a cylinder around an axis, and one that vibrates a cantilever-like flat plate in a direction perpendicular to the surface.

特開2001−318040号公報JP 2001-318040 A

上記の従来技術のうち、振動体の形状が平板で面に平行な方向に振動させるタイプは、平板に厚みがあるため、平板の端部が液体を押しのけるような働きをしてしまい、振動体の共振周波数を変化させる効果や、擬似的に平板の面積を拡大する効果や、擬似的に振動体のばね定数を変化させる効果などの、定式化しがたい誤差要因が発生していた。
また、円柱を軸周りに回転振動させるタイプは、円筒の側面が粘性応力を受ける面積となるが、円柱の端部も粘性応力を受けるため、誤差要因を発生させていた。
カンチレバー状の平板を面に垂直な方向に振動させるタイプは、平板の面全体が液体を押してしまい、粘性応力を受ける面積が、液体の粘度、振動の速度、振幅、液体の密度、弾性率などに依存してしまうため、複雑で普及の実現性は低かった。
本発明は、振動式粘度計における上記の問題点を解決し、端部効果が少なく、高精度な振動式粘度計を実現することを課題とする。
Among the above-mentioned conventional techniques, the type of vibrating body that vibrates in a direction parallel to the surface with a flat plate has a thickness on the flat plate, so that the end of the flat plate works to push liquid away, and the vibrating body There are some error factors that are difficult to formulate, such as the effect of changing the resonance frequency of the plate, the effect of increasing the area of the plate in a pseudo manner, and the effect of changing the spring constant of the vibration member in a pseudo manner.
In the type in which the column is rotated and oscillated around the axis, the side surface of the cylinder is subjected to the viscous stress, but the end of the column is also subjected to the viscous stress, which causes an error factor.
The type that vibrates a cantilever-shaped flat plate in a direction perpendicular to the surface, the entire surface of the flat plate pushes the liquid, and the area subjected to viscous stress is the viscosity of the liquid, the speed of vibration, the amplitude, the density of the liquid, the elastic modulus, etc. It was complicated and the feasibility of popularization was low.
An object of the present invention is to solve the above-mentioned problems in a vibration type viscometer and to realize a highly accurate vibration type viscometer with little end effect.

振動体の形状が平板で、面に平行な方向に振動させるタイプの、端部効果を低減するには、平板の厚みを極端に薄くするか、平板の面積を大きくして相対的に厚みの効果を少なくすればよい。構造体としての強度や、耐久性を考慮すると、ある程度の平板の厚みは必要であるため、端部の効果をより小さくするには、平板の面積を増やす必要がある。しかし、平板を大きくすると、測定装置が大型化し、取り扱いや、コスト面で条件が悪くなってしまう。
そこで、本発明の提供する解決策は、平面を、振動に直角な方向に緩やかに曲げ、そのまま渦巻きを形成し、更に、この渦巻きとわずかなギャップを介してもう一つの渦巻きを設置して、二重渦巻き構造とすることで、2つの渦巻きのギャップの液体から粘性応力を受ける構造とすることにより、上記課題を解決するものである。
In order to reduce the edge effect of the type that vibrates in the direction parallel to the surface, the shape of the vibrating body is a flat plate. The effect should be reduced. Considering the strength and durability of the structure, a certain amount of flat plate thickness is necessary. Therefore, in order to reduce the effect of the end portion, it is necessary to increase the area of the flat plate. However, if the flat plate is made larger, the measuring apparatus becomes larger, and the conditions for handling and cost are worsened.
Therefore, the solution provided by the present invention is to gently bend the plane in the direction perpendicular to the vibration, and form a vortex as it is, and further install another vortex through this vortex and a slight gap, By adopting a double spiral structure, the above problem is solved by adopting a structure that receives viscous stress from the liquid in the gap between the two spirals.

すなわち、本発明の粘度計は、液体からの粘性応力を受ける構造体が二重渦巻き構造を有する粘度計であって、二重渦巻き構造の一方は固定され、二重渦巻き構造の他方は渦巻きの中心軸に平行な方向に可動とし、前記二重渦巻き構造の他方を、アクチュエータにより渦巻きの中心軸に平行な方向に移動させることにより、二重渦巻き構造の一方と他方の二つの渦巻きのギャップの液体から粘性応力を受けるようにしたことを特徴とする。
また、本発明は、上記粘度計において、アクチュエータによる移動は、渦巻きの中心軸に平行な方向に振動させてなることを特徴とする。
また、本発明は、上記粘度計において、二重渦巻き構造は、MEMS加工技術やワイヤー放電加工技術を用いて作製された二重渦巻き構造からなることを特徴とする。
That is, the viscometer of the present invention is a viscometer in which a structure that receives viscous stress from a liquid has a double spiral structure, one of the double spiral structure is fixed and the other of the double spiral structure is a spiral. By moving the other side of the double spiral structure in the direction parallel to the central axis of the spiral by an actuator, the gap between one and the other two spirals of the double spiral structure is made movable in a direction parallel to the central axis. It is characterized by receiving viscous stress from the liquid.
In the viscometer according to the present invention, the movement by the actuator is caused to vibrate in a direction parallel to the central axis of the spiral.
In the viscometer, the present invention is characterized in that the double spiral structure is a double spiral structure manufactured using a MEMS processing technique or a wire electric discharge machining technique.

本発明の粘度計は、コンパクトで、端部効果の少ない粘度計測定を実現する。そのため、粘度測定を必要とする産業の多くで、検査業務の低コスト、測定室の省スペース化などが可能になる。   The viscometer of the present invention is compact and realizes viscometer measurement with little end effect. Therefore, in many industries that require viscosity measurement, it is possible to reduce the cost of inspection work and save space in the measurement room.

本発明の粘度計の主要部分である二重渦巻き構造を説明した図である。It is a figure explaining the double spiral structure which is the principal part of the viscometer of this invention. 本発明の粘度計の一実施例の全体模式図である。It is the whole schematic diagram of one Example of the viscometer of this invention.

上記の二重渦巻きの構造を、粘度計として用いるため、本発明の粘度計は、一方の渦巻きを振動させるためのアクチュエータと、渦巻きにかかる粘性応力を測定するための力センサと、変位を検出するための変位計と、渦巻きとアクチュエータと変位センサを保持するための支持体と、試料を入れるための容器と、振動を解析して粘度を算出するための制御装置を備えることを特徴とする。   Since the double vortex structure is used as a viscometer, the viscometer of the present invention includes an actuator for vibrating one vortex, a force sensor for measuring the viscous stress applied to the vortex, and a displacement detection. And a support for holding a spiral, an actuator and a displacement sensor, a container for containing a sample, and a control device for analyzing the vibration and calculating the viscosity. .

図1は、本発明を実施した場合の、粘度計の主要部分である二重渦巻き構造の一例を示した説明図である。二重渦巻き構造は、図1中に示したAおよびBの要素に分けられる。AおよびBは数μm〜数百μmのギャップを介して、分離されている。この二重渦巻き構造の全体が液体中に没し、一方が振動することで、相対的な速度差が生まれ、粘性応力が発生する。振動方向は、図1の場合、紙面に対して垂直方向である。
このような二重渦巻き構造を製作する方法としては、切削加工、ワイヤー放電加工、MEMS加工技術などがある。
FIG. 1 is an explanatory view showing an example of a double spiral structure which is a main part of a viscometer when the present invention is implemented. The double spiral structure is divided into elements A and B shown in FIG. A and B are separated by a gap of several μm to several hundred μm. When the entire double spiral structure is submerged in the liquid and one of them is vibrated, a relative speed difference is produced, and a viscous stress is generated. In the case of FIG. 1, the vibration direction is a direction perpendicular to the paper surface.
As a method for manufacturing such a double spiral structure, there are a cutting process, a wire electric discharge process, a MEMS process technique, and the like.

図2は本発明を実施した場合の、粘度計の模式図である。制御装置や電源等は省略されている。二重渦巻き構造は、一方が懸垂用の構造体を介して固定され、他方が懸垂用の構造体を介してアクチュエータに結合されている。
アクチュエータを構成するものとしては、圧電素子や、ボイスコイルモータなどがある。
アクチュエータに結合された渦巻き構造の変位の大きさを測るための変位センサが取り付けられている。変位センサを構成するものとしては、レーザー変位計や、静電容量変位計や、渦電流変位計や、ひずみゲージ等がある。
固定された渦巻き構造を懸垂する構造には、2つの渦巻きの位置関係を調整するためのマイクロメータ等が設置されている。
FIG. 2 is a schematic diagram of a viscometer when the present invention is implemented. A control device, a power supply, and the like are omitted. One side of the double spiral structure is fixed via a suspension structure, and the other side is coupled to the actuator via a suspension structure.
Examples of the actuators include piezoelectric elements and voice coil motors.
A displacement sensor for measuring the magnitude of displacement of the spiral structure coupled to the actuator is attached. Examples of the displacement sensor include a laser displacement meter, a capacitance displacement meter, an eddy current displacement meter, and a strain gauge.
The structure for suspending the fixed spiral structure is provided with a micrometer or the like for adjusting the positional relationship between the two spirals.

上記の装置を用いた液体の粘度の測定は、次のような手順で行う。
(1)二重渦巻き構造を液体中に浸ける。
(2)アクチュエータを、ドライバー等を用いて駆動し、正弦波状の振動を与える。
(3)渦巻き構造の振動の振幅と位相を、変位計を用いて測定する。
(4)アクチュエータで発生させた力の振幅、位相と、渦巻き構造の振幅、位相の比をとる。
(5)上記(2)〜(4)を様々な周波数で行い、振幅−周波数、あるいは位相−周波数の関係を調べる。
(6)振幅−周波数、あるいは位相−周波数の関係を理論と比較し、カーブフィットすることで粘度を求める。
The measurement of the viscosity of the liquid using the above apparatus is performed according to the following procedure.
(1) The double spiral structure is immersed in a liquid.
(2) The actuator is driven using a driver or the like to give a sinusoidal vibration.
(3) The amplitude and phase of the vibration of the spiral structure are measured using a displacement meter.
(4) The ratio between the amplitude and phase of the force generated by the actuator and the amplitude and phase of the spiral structure is taken.
(5) The above (2) to (4) are performed at various frequencies, and the relationship between amplitude-frequency or phase-frequency is examined.
(6) The amplitude-frequency or phase-frequency relationship is compared with the theory, and the viscosity is obtained by curve fitting.

上記2重渦巻き構造を、MEMS加工技術を用いて微細加工により作製すれば、さらに小型軽量な粘度計を得ることができる。
また、上記実施例では、アクチュエータにより振動を与える場合について説明したが、並進移動を与える方式にも適用可能である。
If the double spiral structure is fabricated by microfabrication using MEMS processing technology, a smaller and lighter viscometer can be obtained.
In the above embodiment, the case where vibration is applied by the actuator has been described. However, the present invention can also be applied to a system that provides translational movement.

本発明は、粘度計の小型化に寄与することができ、卓上型の小型粘度計として利用可能である。また、小型化を更に進めれば、MEMS加工技術で構造を作製することも可能で、その場合は、小型、軽量な粘性センサとして利用可能である。   The present invention can contribute to size reduction of a viscometer and can be used as a desktop type small viscometer. Further, if the miniaturization is further promoted, the structure can be manufactured by the MEMS processing technique. In that case, the structure can be used as a small and light viscosity sensor.

Claims (3)

液体からの粘性応力を受ける構造体が二重渦巻き構造を有する粘度計であって、
二重渦巻き構造の一方は固定され、二重渦巻き構造の他方は渦巻きの中心軸に平行な方向に可動とし、
前記二重渦巻き構造の他方を、アクチュエータにより渦巻きの中心軸に平行な方向に移動させることにより、二重渦巻き構造の一方と他方の二つの渦巻きのギャップの液体から粘性応力を受けるようにしたことを特徴とする二重渦巻き構造を有する粘度計。
The structure that receives viscous stress from the liquid is a viscometer having a double spiral structure,
One of the double spiral structure is fixed, and the other of the double spiral structure is movable in a direction parallel to the central axis of the spiral,
By moving the other side of the double spiral structure in a direction parallel to the central axis of the spiral by an actuator, the double spiral structure is subjected to viscous stress from the liquid in the gap between one and the other two spirals. A viscometer having a double spiral structure characterized by
前記アクチュエータによる移動は、渦巻きの中心軸に平行な方向に振動させてなることを特徴とする請求項1記載の二重渦巻き構造を有する粘度計。   2. The viscometer having a double spiral structure according to claim 1, wherein the movement by the actuator is caused to vibrate in a direction parallel to the central axis of the spiral. 前記二重渦巻き構造は、MEMS加工技術を用いて作製された二重渦巻き構造からなることを特徴とする請求項1または2記載の二重渦巻き構造を有する粘度計。   The viscometer having a double spiral structure according to claim 1 or 2, wherein the double spiral structure is a double spiral structure manufactured using a MEMS processing technique.
JP2010289213A 2010-12-27 2010-12-27 Viscometer Active JP5483112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010289213A JP5483112B2 (en) 2010-12-27 2010-12-27 Viscometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010289213A JP5483112B2 (en) 2010-12-27 2010-12-27 Viscometer

Publications (2)

Publication Number Publication Date
JP2012137351A true JP2012137351A (en) 2012-07-19
JP5483112B2 JP5483112B2 (en) 2014-05-07

Family

ID=46674891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010289213A Active JP5483112B2 (en) 2010-12-27 2010-12-27 Viscometer

Country Status (1)

Country Link
JP (1) JP5483112B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129839A (en) * 1980-03-17 1981-10-12 Ricoh Co Ltd Ink viscosity detector for ink jet recorder
JPH03125943A (en) * 1989-10-11 1991-05-29 Asahi Okuma Ind Co Ltd Apparatus for measuring atomization properties of liquid coating agent
JP2001318040A (en) * 2000-05-09 2001-11-16 Yamaichi Electronics Co Ltd Method for measuring viscosity of liquid, and method and instrument for measuring visco-elasticity of liquid
JP2009058340A (en) * 2007-08-31 2009-03-19 National Institute Of Advanced Industrial & Technology Viscometer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129839A (en) * 1980-03-17 1981-10-12 Ricoh Co Ltd Ink viscosity detector for ink jet recorder
JPH03125943A (en) * 1989-10-11 1991-05-29 Asahi Okuma Ind Co Ltd Apparatus for measuring atomization properties of liquid coating agent
JP2001318040A (en) * 2000-05-09 2001-11-16 Yamaichi Electronics Co Ltd Method for measuring viscosity of liquid, and method and instrument for measuring visco-elasticity of liquid
JP2009058340A (en) * 2007-08-31 2009-03-19 National Institute Of Advanced Industrial & Technology Viscometer

Also Published As

Publication number Publication date
JP5483112B2 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
JP5470724B2 (en) Vibration test equipment
Kim et al. Development of a novel 3-degrees of freedom flexure based positioning system
Lee et al. Optimal design and experiment of a three-axis out-of-plane nano positioning stage using a new compact bridge-type displacement amplifier
Xu et al. Piezoelectric actuator for machining on macro-to-micro cylindrical components by a precision rotary motion control
JP2008522187A (en) Probe microscope scanner
Dao et al. Design and analysis of a compliant micro-positioning platform with embedded strain gauges and viscoelastic damper
JP5208201B2 (en) Probe for atomic force microscopy
JPWO2005104258A1 (en) Elastic body inspection method, inspection apparatus, and size prediction program
Wasisto et al. Finite element modeling and experimental proof of NEMS-based silicon pillar resonators for nanoparticle mass sensing applications
He et al. Tactile probing system based on micro-fabricated capacitive sensor
CN113167707A (en) Measuring drive, measuring device, method and use comprising an ultrasonically supported shaft
WO2007037241A1 (en) Shear measuring method and its device
CN102567563A (en) Accurately quantitative calculation method for near-field ultrasonic levitation force
JP5483112B2 (en) Viscometer
Pan et al. Miniature orthogonal optical scanning mirror excited by torsional piezoelectric fiber actuator
Guo et al. Probe system design for three dimensional micro/nano scratching machine
Stolarski Acoustic levitation-A novel alternative to traditional lubrication of contacting surfaces
JP7244958B2 (en) Resonance shear measurement device
JP2007120975A (en) Tuning fork type atomic force microscope probe, its adjusting method and its manufacturing method
Koay et al. Design and optimization of mechanically resonant torsional spring mechanism for laser light dispersion applications
JP2004012149A (en) Liquid physical property measuring apparatus
JP7318996B2 (en) Resonance shear measurement device
RU2731039C1 (en) Device for measuring surface relief parameters and mechanical properties of materials
KR20160136770A (en) Energy harvesting apparatus and method using micro bubble
Wakatsuki et al. Tri-axial sensors and actuators made of a single piezoelectric cylindrical shell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140205

R150 Certificate of patent or registration of utility model

Ref document number: 5483112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250